101
|
Lin R, Li J, Zhao F, Zhou M, Wang J, Xiao T. Transcriptome analysis of genes potentially associated with white and black plumage formation in Chinese indigenous ducks ( Anas platyrhynchos). Br Poult Sci 2022; 63:466-474. [PMID: 35094630 DOI: 10.1080/00071668.2022.2035676] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
1. Plumage colour is an important recognisable characteristic of duck (Anas platyrhynchos), but the coloration mechanisms remain largely unknown. To elucidate the molecular mechanisms underlying the formation of black and white plumage, the following study applied RNA sequencing (RNA-Seq) to catalogue the global gene expression profiles in the duck feather bulbs of black and white colours.2. Black feather bulbs were collected from Putian Black ducks (B-PTB) and black Longsheng Jade-green ducks (B-LS), while white feather bulbs were collected from Putian White ducks (W-PTW), Putian Black ducks (W-PTB) and Longsheng Jade-green ducks (W-LS). Sixteen cDNA libraries were constructed and sequenced for transcriptional analysis. Three comparison groups were employed to analyse differentially expressed genes (DEGs), including W-PTB versus B-PTB, W-PTW versus B-PTB and W-LS versus B-LS.3. The results showed 180 DEGs between W-PTB and B-PTB, 303 DEGs between W-PTW and B-PTB, and 108 DEGs between W-LS and B-LS. Further analysis showed that 18 DEGs were directly involved in the pigmentation process and melanogenesis signalling pathway. Additionally, the distribution of DEGs varied amongst groups whereby ASIP appeared only in the W-LS versus B-LS group, GNAI1 and ZEB2 appeared only in the W-PTW versus B-PTB group, and KITLG, EDN3 and FZD4 appeared only in W-PTB versus B-PTB.4. The findings suggested that the mechanism of feather albinism may differ between duck breeds. This study provided new information for discovering genes that are important for feather pigmentation and helps elucidate molecular mechanisms involved in black and white plumage in ducks.
Collapse
Affiliation(s)
- Ruiyi Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiaquan Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fanglu Zhao
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mai Zhou
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Junhui Wang
- The Animal Husbandry Station in Fujian Province, Fuzhou, China
| | - Tianfang Xiao
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
102
|
Cao X, Cheng J, Huang Y, Lan X, Lei C, Chen H. Comparative Enhancer Map of Cattle Muscle Genome Annotated by ATAC-Seq. Front Vet Sci 2022; 8:782409. [PMID: 34977215 PMCID: PMC8715921 DOI: 10.3389/fvets.2021.782409] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
Annotating regulatory elements could benefit the interpretation of the molecular mechanism of genome-wide association study (GWAS) hits. In this work, we performed transposase-accessible chromatin with sequencing (ATAC-seq) to annotate the cattle muscle genome's functional elements. A total of 10,023 and 11,360 peaks were revealed in muscle genomes of adult and embryo cattle, respectively. The two peak sets produced 8,850 differentially accessible regions (DARs), including 2,515 promoters and 4,319 putative enhancers. These functional elements were associated with the cell cycle, muscle development, and lipid metabolism. A total of 15 putative enhancers were selected for a dual-luciferase reporter assay, and 12 of them showed enhancer activity in cattle myoblasts. Interestingly, the GeneHancer database has annotated the interactions of eight active enhancers with gene promoters, such as embryo-specific peak1053 (log2FC = 1.81, embryo/adult, E/A) with ligand-dependent nuclear receptor corepressor-like protein (LCORL) and embryo-specific peak4218 (log2FC = 1.81) with FERM domain-containing 8 (FRMD8). A total of 295 GWAS loci from the animal QTL database were mapped to 183 putative enhancers, including rs109554838 (associated with cattle body weight and average daily gain) to peak1053 and rs110294629 (associated with beef shear force and tenderness score) to peak4218. Notably, peak4218 has been found to be involved in mouse embryo development. Deleting peak4218 clearly reduced luciferase activity (P = 3.30E-04). Our comparative enhancer map is expected to benefit the area of beef cattle breeding.
Collapse
Affiliation(s)
- Xiukai Cao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Jie Cheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yongzhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China.,College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
103
|
Wu L, Jiao X, Zhang D, Cheng Y, Song G, Qu Y, Lei F. Comparative Genomics and Evolution of Avian Specialized Traits. Curr Genomics 2021; 22:496-511. [PMID: 35386431 PMCID: PMC8905638 DOI: 10.2174/1389202923666211227143952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 11/25/2022] Open
Abstract
Genomic data are important for understanding the origin and evolution of traits. Under the context of rapidly developing of sequencing technologies and more widely available genome sequences, researchers are able to study evolutionary mechanisms of traits via comparative genomic methods. Compared with other vertebrates, bird genomes are relatively small and exhibit conserved synteny with few repetitive elements, which makes them suitable for evolutionary studies. Increasing genomic progress has been reported on the evolution of powered flight, body size variation, beak morphology, plumage colouration, high-elevation colonization, migration, and vocalization. By summarizing previous studies, we demonstrate the genetic bases of trait evolution, highlighting the roles of small-scale sequence variation, genomic structural variation, and changes in gene interaction networks. We suggest that future studies should focus on improving the quality of reference genomes, exploring the evolution of regulatory elements and networks, and combining genomic data with morphological, ecological, behavioural, and developmental biology data.
Collapse
Affiliation(s)
- Lei Wu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaolu Jiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dezhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yalin Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
104
|
Tan X, Liu L, Liu X, Cui H, Liu R, Zhao G, Wen J. Large-Scale Whole Genome Sequencing Study Reveals Genetic Architecture and Key Variants for Breast Muscle Weight in Native Chickens. Genes (Basel) 2021; 13:genes13010003. [PMID: 35052342 PMCID: PMC8774586 DOI: 10.3390/genes13010003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/30/2022] Open
Abstract
Breast muscle weight (BrW) is one of the most important economic traits in chicken, and directional breeding for that results in both phenotypic and genetic changes. The Jingxing yellow chicken, including an original (without human-driven selection) line and a selected line (based on selection for increased intramuscular fat content), were used to dissect the genetic architecture and key variants associated with BrW. We detected 1069 high-impact single nucleotide polymorphisms (SNPs) with high conserved score and significant frequency difference between two lines. Based on the annotation result, the ECM-receptor interaction and fatty acid biosynthesis were enriched, and muscle-related genes, including MYOD1, were detected. By performing genome-wide association study for the BrW trait, we defined a major haplotype and two conserved SNPs that affected BrW. By integrated genomic and transcriptomic analysis, IGF2BP1 was identified as the crucial gene associated with BrW. In conclusion, these results offer a new insight into chicken directional selection and provide target genetic markers by which to improve chicken BrW.
Collapse
Affiliation(s)
- Xiaodong Tan
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.T.); (X.L.); (H.C.); (R.L.); (G.Z.)
| | - Lu Liu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311302, China;
| | - Xiaojing Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.T.); (X.L.); (H.C.); (R.L.); (G.Z.)
| | - Huanxian Cui
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.T.); (X.L.); (H.C.); (R.L.); (G.Z.)
| | - Ranran Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.T.); (X.L.); (H.C.); (R.L.); (G.Z.)
| | - Guiping Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.T.); (X.L.); (H.C.); (R.L.); (G.Z.)
| | - Jie Wen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.T.); (X.L.); (H.C.); (R.L.); (G.Z.)
- Correspondence:
| |
Collapse
|
105
|
Liu H, Wang L, Guo Z, Xu Q, Fan W, Xu Y, Hu J, Zhang Y, Tang J, Xie M, Zhou Z, Hou S. Genome-wide association and selective sweep analyses reveal genetic loci for FCR of egg production traits in ducks. Genet Sel Evol 2021; 53:98. [PMID: 34930109 PMCID: PMC8690979 DOI: 10.1186/s12711-021-00684-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 11/10/2021] [Indexed: 12/30/2022] Open
Abstract
Background As a major economic trait in poultry, egg production efficiency attracts widespread interest in breeding and production. However, limited information is available about the underlying genetic architecture of egg production traits in ducks. In this paper, we analyzed six egg production-related traits in 352 F2 ducks derived from reciprocal crosses between mallard and Pekin ducks. Results Feed conversation ratio (FCR) was positively correlated with feed intake but negatively correlated with egg-related traits, including egg weight and egg production, both phenotypically and genetically. Estimates of pedigree-based heritability were higher than 0.2 for all traits investigated, except hip-width. Based on whole-genome sequencing data, we conducted genome-wide association studies to identify genomic regions associated with these traits. In total, 11 genomic regions were associated with FCR. No genomic regions were identified as significantly associated with hip-width, total feed intake, average daily feed intake, and total egg production. Analysis of selective sweeps between mallard and Pekin ducks confirmed three of these genomic regions on chromosomes 13, 3 and 6. Within these three regions, variants in candidate genes that were in linkage disequilibrium with the GWAS leader single nucleotide polymorphisms (SNPs) (Chr13:2,196,728, P = 7.05 × 10–14; Chr3:76,991,524, P = 1.06 × 10–12; Chr6:20,356,803, P = 1.14 × 10–10) were detected. Thus, we identified 31 potential candidate genes associated with FCR, among which the strongest candidates are those that are highly expressed in tissues involved in reproduction and nervous system functions of ducks: CNTN4, CRBR, GPR63, KLHL32, FHL5, TRNT1, MANEA, NDUFAF4, and SCD. Conclusions For the first time, we report the identification of genomic regions that are associated with FCR in ducks and our results illustrate the genomic changes that occurred during their domestication and are involved in egg production efficiency. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-021-00684-5.
Collapse
Affiliation(s)
- Hehe Liu
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - Lei Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - Zhanbao Guo
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qian Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - Wenlei Fan
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yaxi Xu
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jian Hu
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yunsheng Zhang
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jing Tang
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ming Xie
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhengkui Zhou
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shuisheng Hou
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
106
|
Ma S, Liu H, Wang J, Wang L, Xi Y, Liu Y, Xu Q, Hu J, Han C, Bai L, Li L, Wang J. Transcriptome Analysis Reveals Genes Associated With Sexual Dichromatism of Head Feather Color in Mallard. Front Genet 2021; 12:627974. [PMID: 34956302 PMCID: PMC8692775 DOI: 10.3389/fgene.2021.627974] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Sexual dimorphism of feather color is typical in mallards, in which drakes exhibit green head feathers, while females show dull head feather color. We showed that more melanosomes deposited in the males' head's feather barbules than females and further form a two-dimensional hexagonal lattice, which conferred the green feather coloration of drakes. Additionally, transcriptome analysis revealed that some essential melanin biosynthesis genes were highly expressed in feather follicles during the development of green feathers, contributing to melanin deposition. We further identified 18 candidate differentially expressed genes, which may affect the sharp color differences between the males' head feathers, back feathers, and the females' head feathers. TYR and TYRP1 genes are associated with melanin biosynthesis directly. Their expressions in the males' head feather follicles were significantly higher than those in the back feather follicles and females' head feather follicles. Most clearly, the expression of TYRP1 was 256 and 32 times higher in the head follicles of males than in those of the female head and the male back, respectively. Hence, TYR and TYRP1 are probably the most critical candidate genes in DEGs. They may affect the sexual dimorphism of head feather color by cis-regulation of some transcription factors and the Z-chromosome dosage effect.
Collapse
Affiliation(s)
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Liang S, Wang MS, Zhang B, Feng Y, Tang J, Xie M, Huang W, Zhang Q, Zhang D, Hou S. NOD1 Is Associated With the Susceptibility of Pekin Duck Flock to Duck Hepatitis A Virus Genotype 3. Front Immunol 2021; 12:766740. [PMID: 34745142 PMCID: PMC8563994 DOI: 10.3389/fimmu.2021.766740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/04/2021] [Indexed: 11/29/2022] Open
Abstract
Duck viral hepatitis (DVH) is an acute, highly lethal infectious disease of ducklings that causes huge losses in the duck industry. Duck hepatitis A virus genotype 3 (DHAV-3) has been one of the most prevalent DVH pathogen in the Asian duck industry in recent years. Here, we investigated the genetic basis of the resistance and susceptibility of ducks to DVH by comparing the genomes and transcriptomes of a resistant Pekin duck flock (Z8) and a susceptible Pekin duck flock (SZ7). Our comparative genomic and transcriptomic analyses suggested that NOD1 showed a strong signal of association with DVH susceptibility in ducks. Then, we found that NOD1 showed a significant expression difference between the livers of susceptible and resistant individuals after infection with DHAV-3, with higher expression in the SZ7 flock. Furthermore, suppression and overexpression experiments showed that the number of DHAV-3 genomic copies in primary duck hepatocytes was influenced by the expression level of NOD1. In addition, in situ RNAscope analysis showed that the localization of NOD1 and DHAV-3 in liver cells was consistent. Altogether, our data suggested that NOD1 was likely associated with DHAV-3 susceptibility in ducks, which provides a target for future investigations of the pathogenesis of DVH.
Collapse
Affiliation(s)
- Suyun Liang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ming-Shan Wang
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Bo Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yulong Feng
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Tang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ming Xie
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Huang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qi Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dabing Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shuisheng Hou
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
108
|
Yang R, Xu Z, Wang Q, Zhu D, Bian C, Ren J, Huang Z, Zhu X, Tian Z, Wang Y, Jiang Z, Zhao Y, Zhang D, Li N, Hu X. Genome‑wide association study and genomic prediction for growth traits in yellow-plumage chicken using genotyping-by-sequencing. Genet Sel Evol 2021; 53:82. [PMID: 34706641 PMCID: PMC8555081 DOI: 10.1186/s12711-021-00672-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 09/08/2021] [Indexed: 12/25/2022] Open
Abstract
Background Growth traits are of great importance for poultry breeding and production and have been the topic of extensive investigation, with many quantitative trait loci (QTL) detected. However, due to their complex genetic background, few causative genes have been confirmed and the underlying molecular mechanisms remain unclear, thus limiting our understanding of QTL and their potential use for the genetic improvement of poultry. Therefore, deciphering the genetic architecture is a promising avenue for optimising genomic prediction strategies and exploiting genomic information for commercial breeding. The objectives of this study were to: (1) conduct a genome-wide association study to identify key genetic factors and explore the polygenicity of chicken growth traits; (2) investigate the efficiency of genomic prediction in broilers; and (3) evaluate genomic predictions that harness genomic features. Results We identified five significant QTL, including one on chromosome 4 with major effects and four on chromosomes 1, 2, 17, and 27 with minor effects, accounting for 14.5 to 34.1% and 0.2 to 2.6% of the genomic additive genetic variance, respectively, and 23.3 to 46.7% and 0.6 to 4.5% of the observed predictive accuracy of breeding values, respectively. Further analysis showed that the QTL with minor effects collectively had a considerable influence, reflecting the polygenicity of the genetic background. The accuracy of genomic best linear unbiased predictions (BLUP) was improved by 22.0 to 70.3% compared to that of the conventional pedigree-based BLUP model. The genomic feature BLUP model further improved the observed prediction accuracy by 13.8 to 15.2% compared to the genomic BLUP model. Conclusions A major QTL and four minor QTL were identified for growth traits; the remaining variance was due to QTL effects that were too small to be detected. The genomic BLUP and genomic feature BLUP models yielded considerably higher prediction accuracy compared to the pedigree-based BLUP model. This study revealed the polygenicity of growth traits in yellow-plumage chickens and demonstrated that the predictive ability can be greatly improved by using genomic information and related features. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-021-00672-9.
Collapse
Affiliation(s)
- Ruifei Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhenqiang Xu
- Wen's Nanfang Poultry Breeding Co. Ltd, Yunfu, 527400, Guangdong Province, China
| | - Qi Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Di Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Cheng Bian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiangli Ren
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhuolin Huang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaoning Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhixin Tian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yuzhe Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ziqin Jiang
- Wen's Nanfang Poultry Breeding Co. Ltd, Yunfu, 527400, Guangdong Province, China
| | - Yiqiang Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dexiang Zhang
- Wen's Nanfang Poultry Breeding Co. Ltd, Yunfu, 527400, Guangdong Province, China.
| | - Ning Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaoxiang Hu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
109
|
Zhu F, Yin ZT, Wang Z, Smith J, Zhang F, Martin F, Ogeh D, Hincke M, Lin FB, Burt DW, Zhou ZK, Hou SS, Zhao QS, Li XQ, Ding SR, Li GS, Yang FX, Hao JP, Zhang Z, Lu LZ, Yang N, Hou ZC. Three chromosome-level duck genome assemblies provide insights into genomic variation during domestication. Nat Commun 2021; 12:5932. [PMID: 34635656 PMCID: PMC8505442 DOI: 10.1038/s41467-021-26272-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/21/2021] [Indexed: 01/23/2023] Open
Abstract
Domestic ducks are raised for meat, eggs and feather down, and almost all varieties are descended from the Mallard (Anas platyrhynchos). Here, we report chromosome-level high-quality genome assemblies for meat and laying duck breeds, and the Mallard. Our new genomic databases contain annotations for thousands of new protein-coding genes and recover a major percentage of the presumed "missing genes" in birds. We obtain the entire genomic sequences for the C-type lectin (CTL) family members that regulate eggshell biomineralization. Our population and comparative genomics analyses provide more than 36 million sequence variants between duck populations. Furthermore, a mutant cell line allows confirmation of the predicted anti-adipogenic function of NR2F2 in the duck, and uncovered mutations specific to Pekin duck that potentially affect adipose deposition. Our study provides insights into avian evolution and the genetics of oviparity, and will be a rich resource for the future genetic improvement of commercial traits in the duck.
Collapse
Affiliation(s)
- Feng Zhu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Zhong-Tao Yin
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Zheng Wang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Jacqueline Smith
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Fan Zhang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Fergal Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Denye Ogeh
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Maxwell Hincke
- Department of Cellular and Molecular Medicine, Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, KIH 8M5, Canada
| | - Fang-Bing Lin
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - David W Burt
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
- The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Zheng-Kui Zhou
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Shui-Sheng Hou
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Qiang-Sen Zhao
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Xiao-Qin Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Si-Ran Ding
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Guan-Sheng Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Fang-Xi Yang
- Beijing Golden-Star Inc., Beijing, 100076, China
| | - Jing-Pin Hao
- Beijing Golden-Star Inc., Beijing, 100076, China
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Li-Zhi Lu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Zhuo-Cheng Hou
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China.
| |
Collapse
|
110
|
Zhu T, Qi X, Chen Y, Wang L, Lv X, Yang W, Zhang J, Li K, Ning Z, Jiang Z, Qu L. Positive selection of skeleton-related genes during duck domestication revealed by whole genome sequencing. BMC Ecol Evol 2021; 21:165. [PMID: 34488647 PMCID: PMC8419914 DOI: 10.1186/s12862-021-01894-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 08/20/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Domestication alters several phenotypic, neurological, and physiological traits in domestic animals compared to those in their wild ancestors. Domestic ducks originated from mallards, and some studies have shown that spot-billed ducks may have also made minor genetic contributions to domestication. Compared with the two ancestral species, domestic ducks generally differ in body size and bone morphology. In this study, we performed both genomic and transcriptomic analyses to identify candidate genes for elucidating the genetic mechanisms underlying phenotypic variation. METHODS In this study, the duck genome data from eight domestic breeds and two wild species were collected to study the genetic changes during domestication. And the transcriptome data of different tissues from wild ducks and seven domestic ducks were used to reveal the expression difference between wild and domestic ducks. RESULTS Using fixation index (Fst) algorithm and transcriptome data, we found that the genes related to skeletal development had high Fst values in wild and domestic breeds, and the differentially expressed genes were mainly enriched in the ossification pathway. Our data strongly suggest that the skeletal systems of domestic ducks were changed to adapt to artificial selection for larger sizes. In addition, by combining the genome and transcriptome data, we found that some Fst candidate genes exhibited different expression patterns, and these genes were found to be involved in digestive, immune, and metabolic functions. CONCLUSIONS A wide range of phenotypic differences exists between domestic and wild ducks. Through both genome and transcriptome analyses, we found that genes related to the skeletal system in domestic ducks were strongly selected. Our findings provide new insight into duck domestication and selection effects during the domestication.
Collapse
Affiliation(s)
- Tao Zhu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Beijing, 100193, China
| | - Xin Qi
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Beijing, 100193, China
| | - Yu Chen
- Beijing General Station of Animal Husbandry, Beiyuan Road 15A#, Beijing, 100107, China
| | - Liang Wang
- Beijing General Station of Animal Husbandry, Beiyuan Road 15A#, Beijing, 100107, China
| | - Xueze Lv
- Beijing General Station of Animal Husbandry, Beiyuan Road 15A#, Beijing, 100107, China
| | - Weifang Yang
- Beijing General Station of Animal Husbandry, Beiyuan Road 15A#, Beijing, 100107, China
| | - Jianwei Zhang
- Beijing General Station of Animal Husbandry, Beiyuan Road 15A#, Beijing, 100107, China
| | - Kaiyang Li
- Beijing General Station of Animal Husbandry, Beiyuan Road 15A#, Beijing, 100107, China
| | - Zhonghua Ning
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Beijing, 100193, China
| | - Zhihua Jiang
- Department of Animal Sciences, Center for Reproductive Biology, Veterinary and Biomedical Research Building, Washington State University, Pullman, Washington, 647010, USA
| | - Lujiang Qu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Beijing, 100193, China.
| |
Collapse
|
111
|
Kulikova IV. Molecular Mechanisms and Gene Regulation of Melanic Plumage Coloration in Birds. RUSS J GENET+ 2021. [DOI: 10.1134/s102279542108007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
112
|
Wang K, Hu H, Tian Y, Li J, Scheben A, Zhang C, Li Y, Wu J, Yang L, Fan X, Sun G, Li D, Zhang Y, Han R, Jiang R, Huang H, Yan F, Wang Y, Li Z, Li G, Liu X, Li W, Edwards D, Kang X. The chicken pan-genome reveals gene content variation and a promoter region deletion in IGF2BP1 affecting body size. Mol Biol Evol 2021; 38:5066-5081. [PMID: 34329477 PMCID: PMC8557422 DOI: 10.1093/molbev/msab231] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Domestication and breeding have reshaped the genomic architecture of chicken, but the retention and loss of genomic elements during these evolutionary processes remain unclear. We present the first chicken pan-genome constructed using 664 individuals, which identified an additional ∼66.5 Mb sequences that are absent from the reference genome (GRCg6a). The constructed pan-genome encoded 20,491 predicated protein-coding genes, of which higher expression level are observed in conserved genes relative to dispensable genes. Presence/absence variation (PAV) analyses demonstrated that gene PAV in chicken was shaped by selection, genetic drift, and hybridization. PAV-based GWAS identified numerous candidate mutations related to growth, carcass composition, meat quality, or physiological traits. Among them, a deletion in the promoter region of IGF2BP1 affecting chicken body size is reported, which is supported by functional studies and extra samples. This is the first time to report the causal variant of chicken body size QTL located at chromosome 27 which was repeatedly reported. Therefore, the chicken pan-genome is a useful resource for biological discovery and breeding. It improves our understanding of chicken genome diversity and provides materials to unveil the evolution history of chicken domestication.
Collapse
Affiliation(s)
- Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Haifei Hu
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Crawley, 6009 WA, Australia
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Jingyi Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei, China
| | - Armin Scheben
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Chenxi Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Yiyi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Junfeng Wu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Lan Yang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Xuewei Fan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Yanhua Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Hetian Huang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Fengbin Yan
- Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Yanbin Wang
- Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Wenting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Crawley, 6009 WA, Australia
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| |
Collapse
|
113
|
Jiang F, Jiang Y, Wang W, Xiao C, Lin R, Xie T, Sung WK, Li S, Jakovlić I, Chen J, Du X. A chromosome-level genome assembly of Cairina moschata and comparative genomic analyses. BMC Genomics 2021; 22:581. [PMID: 34330207 PMCID: PMC8325232 DOI: 10.1186/s12864-021-07897-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/08/2021] [Indexed: 02/08/2023] Open
Abstract
Background The Muscovy duck (Cairina moschata) is an economically important duck species, with favourable growth and carcass composition parameters in comparison to other ducks. However, limited genomic resources for Muscovy duck hinder our understanding of its evolution and genetic diversity. Results We combined linked-reads sequencing technology and reference-guided methods for de novo genome assembly. The final draft assembly was 1.12 Gbp with 29 autosomes, one sex chromosome and 4,583 unlocalized scaffolds with an N50 size of 77.35 Mb. Based on universal single-copy orthologues (BUSCO), the draft genome assembly completeness was estimated to be 93.30 %. Genome annotation identified 15,580 genes, with 15,537 (99.72 %) genes annotated in public databases. We conducted comparative genomic analyses and found that species-specific and rapidly expanding gene families (compared to other birds) in Muscovy duck are mainly involved in Calcium signaling, Adrenergic signaling in cardiomyocytes, and GnRH signaling pathways. In comparison to the common domestic duck (Anas platyrhynchos), we identified 104 genes exhibiting strong signals of adaptive evolution (Ka/Ks > 1). Most of these genes were associated with immune defence pathways (e.g. IFNAR1 and TLR5). This is indicative of the existence of differences in the immune responses between the two species. Additionally, we combined divergence and polymorphism data to demonstrate the “faster-Z effect” of chromosome evolution. Conclusions The chromosome-level genome assembly of Muscovy duck and comparative genomic analyses provide valuable resources for future molecular ecology studies, as well as the evolutionary arms race between the host and influenza viruses. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07897-4.
Collapse
Affiliation(s)
- Fan Jiang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China.,Key Lab of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China
| | - Yaoxin Jiang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China
| | - Wenxuan Wang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China
| | - Changyi Xiao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China
| | - Ruiyi Lin
- College of Animal Science, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Tanghui Xie
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China
| | - Wing-Kin Sung
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China.,Department of Computer Science, National University of Singapore, Singapore, Singapore
| | - Shijun Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China.,Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, 130118, Changchun, China
| | - Ivan Jakovlić
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, Lanzhou University, 730000, Lanzhou, China.
| | - Jianhai Chen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Sichuan, Chengdu, China.
| | - Xiaoyong Du
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China. .,Key Lab of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China.
| |
Collapse
|
114
|
Wang L, Sun F, Wan ZY, Ye B, Wen Y, Liu H, Yang Z, Pang H, Meng Z, Fan B, Alfiko Y, Shen Y, Bai B, Lee MSQ, Piferrer F, Schartl M, Meyer A, Yue GH. Genomic Basis of Striking Fin Shapes and Colors in the Fighting Fish. Mol Biol Evol 2021; 38:3383-3396. [PMID: 33871625 PMCID: PMC8321530 DOI: 10.1093/molbev/msab110] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Resolving the genomic basis underlying phenotypic variations is a question of great importance in evolutionary biology. However, understanding how genotypes determine the phenotypes is still challenging. Centuries of artificial selective breeding for beauty and aggression resulted in a plethora of colors, long-fin varieties, and hyper-aggressive behavior in the air-breathing Siamese fighting fish (Betta splendens), supplying an excellent system for studying the genomic basis of phenotypic variations. Combining whole-genome sequencing, quantitative trait loci mapping, genome-wide association studies, and genome editing, we investigated the genomic basis of huge morphological variation in fins and striking differences in coloration in the fighting fish. Results revealed that the double tail, elephant ear, albino, and fin spot mutants each were determined by single major-effect loci. The elephant ear phenotype was likely related to differential expression of a potassium ion channel gene, kcnh8. The albinotic phenotype was likely linked to a cis-regulatory element acting on the mitfa gene and the double-tail mutant was suggested to be caused by a deletion in a zic1/zic4 coenhancer. Our data highlight that major loci and cis-regulatory elements play important roles in bringing about phenotypic innovations and establish Bettas as new powerful model to study the genomic basis of evolved changes.
Collapse
Affiliation(s)
- Le Wang
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Fei Sun
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Zi Yi Wan
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Baoqing Ye
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Yanfei Wen
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Huiming Liu
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Zituo Yang
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Hongyan Pang
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Zining Meng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bin Fan
- Department of Food and Environmental Engineering, Yangjiang Polytechnic, Yangjiang, China
| | - Yuzer Alfiko
- Biotech Lab, Wilmar International, Jakarta, Indonesia
| | - Yubang Shen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China
| | - Bin Bai
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - May Shu Qing Lee
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Francesc Piferrer
- Institute of Marine Sciences (ICM), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, USA
| | - Axel Meyer
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Gen Hua Yue
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
115
|
Li YD, Liu X, Li ZW, Wang WJ, Li YM, Cao ZP, Luan P, Xiao F, Gao HH, Guo HS, Wang N, Li H, Wang SZ. A combination of genome-wide association study and selection signature analysis dissects the genetic architecture underlying bone traits in chickens. Animal 2021; 15:100322. [PMID: 34311193 DOI: 10.1016/j.animal.2021.100322] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 01/01/2023] Open
Abstract
The bones of chicken play an important role in supporting and protecting the body. The growth and development of bones have a substantial influence on the health and production performance in chickens. However, genetic architecture underlying chicken bone traits is not well understood. The objectives of this study are to dissect the genetic basis of bone traits in chickens and to identify valuable genes and genetic markers for chicken breeding. We performed a combination of genome-wide association study (GWAS) and selection signature analysis (fixation index values and nucleotide diversity ratios) in an F2 crossbred experimental population with different genetic backgrounds (broiler × layer) to identify candidate genes and significant variants related to femur, shank, keel length, chest width, metatarsal claw weight, metatarsal length, and metatarsal circumference. A total of 545 individuals were genotyped based on the whole genome re-sequencing method (26 F0 individuals were re-sequenced at 10 × coverage; 519 F2 individuals were re-sequenced at 3 × coverage). A total of 2 028 112 single-nucleotide polymorphisms (SNPs) remained to carry out analysis after quality control and imputation. The integration of GWAS and selection signature analysis indicated that all significant SNPs responsible for bone traits were mainly localized on chicken chromosomes 1, 4, and 27. Finally, we identified 21 positional candidate genes that might regulate chicken bone growth and development, including LRCH1, RB1, FNDC3A, MLNR, CAB39L, FOXO1, LHFP, TRPC4, POSTN, SMAD9, RBPJ, PPARGC1A, SLIT2, NCAPG, NKX3-2, CPZ, SPOP, NGFR, SOST, ZNF652, and HOXB3. Additionally, an array of uncharacterized genes was identified. The findings provide an in-depth understanding of the genetic architecture of chicken bone traits and offer a molecular basis for applying genomics in practical chicken breeding.
Collapse
Affiliation(s)
- Y D Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - X Liu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Z W Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - W J Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Y M Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Z P Cao
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - P Luan
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - F Xiao
- Fujian Sunnzer Biotechnology Development Co., Ltd, Guangze, Fujian Province 354100, PR China
| | - H H Gao
- Fujian Sunnzer Biotechnology Development Co., Ltd, Guangze, Fujian Province 354100, PR China
| | - H S Guo
- Fujian Sunnzer Biotechnology Development Co., Ltd, Guangze, Fujian Province 354100, PR China
| | - N Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - H Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - S Z Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
116
|
Liu H, Xu H, Lan X, Cao X, Pan C. The InDel variants of sheep IGF2BP1 gene are associated with growth traits. Anim Biotechnol 2021; 34:134-142. [PMID: 34255980 DOI: 10.1080/10495398.2021.1942029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) plays positive roles in the growth, proliferation of cells and early embryos development by binding mRNA targets. Recently, it had been shown that some polymorphic loci within IGF2BP1 gene were associated with growth traits in animals, especially in goats. Therefore, it has been hypothesized that some variants within IGF2BP1 gene may be also involved in growth traits of sheep. Nine insertion/deletion (InDel) mutations within IGF2BP1 were identified and three loci were polymorphic. Meanwhile, the association analyses between three InDels and growth traits were carried out in 745 sheep. The results showed that all InDels included 5 bp InDel in downstream region, 9 bp InDel in intron 4 and 15 bp InDel in intron 2 within IGF2BP1 were significantly associated with growth traits (p<.05). Furthermore, at 5 and 9 bp InDel loci, the individuals of heterozygous genotype (ID) had superior growing performance especially at body weight (BW). In all, three InDels were crucial variants correlated with growth traits and could be applied in marker-assisted selection (MAS) in sheep.
Collapse
Affiliation(s)
- Hongfei Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, P. R. China.,College of Animal Science and Technology, Northwest A&F University, Yangling, P. R. China
| | - Hongwei Xu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, P. R. China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, P. R. China
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, P. R. China
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, P. R. China
| |
Collapse
|
117
|
Wang R, Sun J, Han H, Huang Y, Chen T, Yang M, Wei Q, Wan H, Liao Y. Whole-genome resequencing reveals genetic characteristics of different duck breeds from the Guangxi region in China. G3-GENES GENOMES GENETICS 2021; 11:6156632. [PMID: 33677537 PMCID: PMC8759808 DOI: 10.1093/g3journal/jkab054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/17/2021] [Indexed: 11/15/2022]
Abstract
Distinctive indigenous duck (Anas platyrhynchos) populations of Guangxi, China, evolved due to the geographical, cultural, and environmental variability of this region. To investigate the genetic diversity and population structure of the indigenous ducks of Guangxi, 78 individuals from eight populations were collected and sequenced by whole-genome resequencing with an average depth of ∼9.40×. The eight indigenous duck populations included four breeds and four resource populations. Moreover, the genome data of 47 individuals from two typical meat-type breeds and two native egg-type breeds were obtained from a public database. Calculation of heterozygosity, nucleotide diversity (π), Tajima’s D, and FST indicated that the Guangxi populations were characterized by higher genetic diversity and lower differentiation than meat-type breeds. The highest diversity was observed in the Xilin-Ma ducks. Principal component, structure, and phylogenetic tree analyses revealed the relationship between the indigenous duck populations of Guangxi. A mild degree of differentiation was observed among the Guangxi populations, although three populations were closer to the meat or egg breeds. Indigenous populations are famous for their special flavor, small body size, and slow growth rates. Selective sweep analysis revealed the candidate genes and pathways associated with these growth traits. Our findings provide a valuable source of information regarding genetic diversity, population conservation, and genome-associated breeding of ducks.
Collapse
Affiliation(s)
- Ran Wang
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, Guangdong 518120, China.,ShenZhen Engineering Laboratory for Genomics-Assisted Animal Breeding, BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Junli Sun
- Guangxi Key Laboratory of Livestock Genetic Improvement, Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530001, China
| | - Hu Han
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, Guangdong 518120, China.,ShenZhen Engineering Laboratory for Genomics-Assisted Animal Breeding, BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Yingfei Huang
- Guangxi Key Laboratory of Livestock Genetic Improvement, Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530001, China
| | - Tao Chen
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, Guangdong 518120, China.,ShenZhen Engineering Laboratory for Genomics-Assisted Animal Breeding, BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Manman Yang
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, Guangdong 518120, China.,ShenZhen Engineering Laboratory for Genomics-Assisted Animal Breeding, BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Qiang Wei
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, Guangdong 518120, China.,ShenZhen Engineering Laboratory for Genomics-Assisted Animal Breeding, BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Huofu Wan
- Guangxi Key Laboratory of Livestock Genetic Improvement, Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530001, China
| | - Yuying Liao
- Guangxi Key Laboratory of Livestock Genetic Improvement, Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530001, China.,Guangxi Veterinary Research Institute, Nanning, Guangxi 530001, China
| |
Collapse
|
118
|
Deng Y, Hu S, Luo C, Ouyang Q, Li L, Ma J, Lin Z, Chen J, Liu H, Hu J, Chen G, Shu D, Pan Y, Hu B, He H, Qu H, Wang J. Integrative analysis of histomorphology, transcriptome and whole genome resequencing identified DIO2 gene as a crucial gene for the protuberant knob located on forehead in geese. BMC Genomics 2021; 22:487. [PMID: 34193033 PMCID: PMC8244220 DOI: 10.1186/s12864-021-07822-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/17/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND During domestication, remarkable changes in behavior, morphology, physiology and production performance have taken place in farm animals. As one of the most economically important poultry, goose owns a unique appearance characteristic called knob, which is located at the base of the upper bill. However, neither the histomorphology nor the genetic mechanism of the knob phenotype has been revealed in geese. RESULTS In the present study, integrated radiographic, histological, transcriptomic and genomic analyses revealed the histomorphological characteristics and genetic mechanism of goose knob. The knob skin was developed, and radiographic results demonstrated that the knob bone was obviously protuberant and pneumatized. Histologically, there were major differences in structures in both the knob skin and bone between geese owing knob (namely knob-geese) and those devoid of knob (namely non-knob geese). Through transcriptome analysis, 592 and 952 genes differentially expressed in knob skin and bone, and significantly enriched in PPAR and Calcium pathways in knob skin and bone, respectively, which revealed the molecular mechanisms of histomorphological differences of the knob between knob- and non-knob geese. Furthermore, integrated transcriptomic and genomic analysis contributed to the identification of 17 and 21 candidate genes associated with the knob formation in the skin and bone, respectively. Of them, DIO2 gene could play a pivotal role in determining the knob phenotype in geese. Because a non-synonymous mutation (c.642,923 G > A, P265L) changed DIO2 protein secondary structure in knob geese, and Sanger sequencing further showed that the AA genotype was identified in the population of knob geese, and was prevalent in a crossing population which was artificially selected for 10 generations. CONCLUSIONS This study was the first to uncover the knob histomorphological characteristics and genetic mechanism in geese, and DIO2 was identified as the crucial gene associated with the knob phenotype. These data not only expand and enrich our knowledge on the molecular mechanisms underlying the formation of head appendages in both mammalian and avian species, but also have important theoretical and practical significance for goose breeding.
Collapse
Affiliation(s)
- Yan Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China
| | - Chenglong Luo
- The Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangdong, 510640, Guangzhou, China
| | - Qingyuan Ouyang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China
| | - Jiaming Ma
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China
| | - Zhenping Lin
- The Baisha Livestock and Poultry Original Species Research Institute, Guangdong, 515000, Shantou, China
| | - Junpeng Chen
- The Baisha Livestock and Poultry Original Species Research Institute, Guangdong, 515000, Shantou, China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China
| | - Guohong Chen
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Jiangsu, 225009, Yangzhou, China
| | - Dingming Shu
- The Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangdong, 510640, Guangzhou, China
| | - Yuxuan Pan
- The Baisha Livestock and Poultry Original Species Research Institute, Guangdong, 515000, Shantou, China
| | - Bo Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China
| | - Hao Qu
- The Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangdong, 510640, Guangzhou, China.
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China.
| |
Collapse
|
119
|
Ren S, Lyu G, Irwin DM, Liu X, Feng C, Luo R, Zhang J, Sun Y, Shang S, Zhang S, Wang Z. Pooled Sequencing Analysis of Geese ( Anser cygnoides) Reveals Genomic Variations Associated With Feather Color. Front Genet 2021; 12:650013. [PMID: 34220935 PMCID: PMC8249929 DOI: 10.3389/fgene.2021.650013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/28/2021] [Indexed: 02/03/2023] Open
Abstract
During the domestication of the goose a change in its feather color took place, however, the molecular mechanisms responsible for this change are not completely understood. Here, we performed whole-genome resequencing on three pooled samples of geese (feral and domestic geese), with two distinct feather colors, to identify genes that might regulate feather color. We identified around 8 million SNPs within each of the three pools and validated allele frequencies for a subset of these SNPs using PCR and Sanger sequencing. Several genomic regions with signatures of differential selection were found when we compared the gray and white feather color populations using the FST and Hp approaches. When we combined previous functional studies with our genomic analyses we identified 26 genes (KITLG, MITF, TYRO3, KIT, AP3B1, SMARCA2, ROR2, CSNK1G3, CCDC112, VAMP7, SLC16A2, LOC106047519, RLIM, KIAA2022, ST8SIA4, LOC106044163, TRPM6, TICAM2, LOC106038556, LOC106038575, LOC106038574, LOC106038594, LOC106038573, LOC106038604, LOC106047489, and LOC106047492) that potentially regulate feather color in geese. These results substantially expand the catalog of potential feather color regulators in geese and provide a basis for further studies on domestication and avian feather coloration.
Collapse
Affiliation(s)
- Shuang Ren
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China.,College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Guangqi Lyu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Xin Liu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Chunyu Feng
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Runhong Luo
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Junpeng Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yongfeng Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Songyang Shang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Shuyi Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zhe Wang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
120
|
Feng G, Zhao J, Lei J, Wang L, Wang S, Zhang T, Lu H. Identification of Igf2bp1 gene family and effect on chicken myoblast proliferation. JOURNAL OF APPLIED ANIMAL RESEARCH 2021. [DOI: 10.1080/09712119.2021.1932916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Guang Feng
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, People’s Republic of China
| | - Jiarong Zhao
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, People’s Republic of China
| | - Jingjing Lei
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, People’s Republic of China
| | - Ling Wang
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, People’s Republic of China
| | - Shanshan Wang
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, People’s Republic of China
| | - Tao Zhang
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, People’s Republic of China
| | - Hongzhao Lu
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, People’s Republic of China
| |
Collapse
|
121
|
Feng P, Zeng T, Yang H, Chen G, Du J, Chen L, Shen J, Tao Z, Wang P, Yang L, Lu L. Whole-genome resequencing provides insights into the population structure and domestication signatures of ducks in eastern China. BMC Genomics 2021; 22:401. [PMID: 34058976 PMCID: PMC8165772 DOI: 10.1186/s12864-021-07710-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 05/12/2021] [Indexed: 01/03/2023] Open
Abstract
Background Duck is an ancient domesticated animal with high economic value, used for its meat, eggs, and feathers. However, the origin of indigenous Chinese ducks remains elusive. To address this question, we performed whole-genome resequencing to first explore the genetic relationship among variants of these domestic ducks with their potential wild ancestors in eastern China, as well as understand how the their genomes were shaped by different natural and artificial selective pressures. Results Here, we report the resequencing of 60 ducks from Chinese spot-billed ducks (Anas zonorhyncha), mallards (Anas platyrhnchos), Fenghua ducks, Shaoxing ducks, Shanma ducks and Cherry Valley Pekin ducks of eastern China (ten from each population) at an average effective sequencing depth of ~ 6× per individual. The results of population and demographic analysis revealed a deep phylogenetic split between wild (Chinese spot-billed ducks and mallards) and domestic ducks. By applying selective sweep analysis, we identified that several candidate genes, important pathways and GO categories associated with artificial selection were functionally related to cellular adhesion, type 2 diabetes, lipid metabolism, the cell cycle, liver cell proliferation, and muscle functioning in domestic ducks. Conclusion Genetic structure analysis showed a close genetic relationship of Chinese spot-billed ducks and mallards, which supported that Chinese spot-billed ducks contributed to the breeding of domestic ducks. During the long history of artificial selection, domestic ducks have developed a complex biological adaptation to captivity. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07710-2.
Collapse
Affiliation(s)
- Peishi Feng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China.,Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Tao Zeng
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hua Yang
- Institute of Quality and Standards for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guohong Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jinping Du
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Science, Wuhan, China
| | - Li Chen
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Junda Shen
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhenrong Tao
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ping Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China.
| | - Lin Yang
- College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Lizhi Lu
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| |
Collapse
|
122
|
Xi Y, Xu Q, Huang Q, Ma S, Wang Y, Han C, Zhang R, Wang J, Liu H, Li L. Genome-wide association analysis reveals that EDNRB2 causes a dose-dependent loss of pigmentation in ducks. BMC Genomics 2021; 22:381. [PMID: 34034661 PMCID: PMC8146663 DOI: 10.1186/s12864-021-07719-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/13/2021] [Indexed: 12/30/2022] Open
Abstract
Background Birds have various plumage color patterns, and spot is a common phenotype. Herein, we conducted genome-wide association studies (GWAS) in a population of 225 ducks with different sized black spots to reveal the genetic basis of this phenomenon. Results First, we quantified the black spot phenotype within the duck population. The results showed that the uncolored area of the body surface first appeared on the ventral side. With increasing duck age, the area of the black spots was highly conserved across the whole body surface. The GWAS results identified a 198 kb (Chr4: 10,149,651 bp to 10,348,068 bp) genetic region that was significantly associated with the black spot phenotype. The conditional GWAS and linkage disequilibrium (LD) analysis further narrowed the ultimate candidate region to 167 kb (Chr4: 10,180,939 bp to 10,348,068 bp). A key gene regulating melanoblast migration and differentiation, EDNRB2 (Endothelin B receptor-like), was found in the candidate region and having significant mRNA expression level changes in embryonic duck skin tissue with different spot sizes. The significant SNPs (single nucleotide polymorphisms) associated with the EDNRB2 gene were annotated, and two mutations (Chr4: 10,180,939 T > C and Chr4: 10,190,671 A > T) were found to result in the loss of binding sites for two trans-factors, XBP1 and cMYB. The phenotypic effect of these two mutations suggested that they can regulate the size of black spots in a dose-dependent manner, and Chr4: 10,180,939 T > C was the major allele locus. Conclusions Our results revealed that EDNRB2 was the gene responsible for the variation in duck body surface spot size. Chr4: 10,180,939 T > C was the major allele that explained 49.5 % (dorsal side) and 32.9 % (ventral side) of the variation in duck body surface spot size, while 32.1 % (dorsal side) and 19.1 % (ventral side) of the variation could be explained by Chr4: 10,190,671 A > T. The trans-factor prediction also suggested that XBP1 and cMYB have the potential to interact with EDNRB2, providing new insights into the mechanism of action of these genes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07719-7.
Collapse
Affiliation(s)
- Yang Xi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Qian Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Qin Huang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Shengchao Ma
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Yushi Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Chunchun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Rongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China.
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China.
| |
Collapse
|
123
|
Li GS, Zhu F, Zhang F, Yang FX, Hao JP, Hou ZC. Genome-wide association study reveals novel loci associated with feeding behavior in Pekin ducks. BMC Genomics 2021; 22:334. [PMID: 33964893 PMCID: PMC8106866 DOI: 10.1186/s12864-021-07668-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/30/2021] [Indexed: 11/17/2022] Open
Abstract
Background Feeding behavior traits are an essential part of livestock production. However, the genetic base of feeding behavior traits remains unclear in Pekin ducks. This study aimed to determine novel loci related to feeding behavior in Pekin ducks. Results In this study, the feeding information of 540 Pekin ducks was recorded, and individual genotype was evaluated using genotyping-by-sequencing methods. Genome-wide association analysis (GWAS) was conducted for feeding behavior traits. Overall, thirty significant (P-value < 4.74E-06) SNPs for feeding behavior traits were discovered, and four of them reached the genome-wide significance level (P-value < 2.37E-07). One genome-wide significance locus associated with daily meal times was located in a 122.25 Mb region on chromosome 2, which was within the intron of gene ubiquitin-conjugating enzyme E2 E2 (UBE2E2), and could explain 2.64% of the phenotypic variation. This locus was also significantly associated with meal feed intake, and explained 2.72% of this phenotypic variation. Conclusions This study is the first GWAS for feeding behavior traits in ducks. Our results provide a list of candidate genes associated with feeding behavior, and also help to better understand the genetic mechanisms of feeding behavior patterns in ducks. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07668-1.
Collapse
Affiliation(s)
- Guang-Sheng Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Feng Zhu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Fan Zhang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | | | | | - Zhuo-Cheng Hou
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
124
|
|
125
|
Shen QK, Peng MS, Adeola AC, Kui L, Duan S, Miao YW, Eltayeb NM, Lichoti JK, Otecko NO, Strillacci MG, Gorla E, Bagnato A, Charles OS, Sanke OJ, Dawuda PM, Okeyoyin AO, Musina J, Njoroge P, Agwanda B, Kusza S, Nanaei HA, Pedar R, Xu MM, Du Y, Nneji LM, Murphy RW, Wang MS, Esmailizadeh A, Dong Y, Ommeh SC, Zhang YP. Genomic Analyses of Unveil Helmeted Guinea Fowl (Numida meleagris) Domestication in West Africa. Genome Biol Evol 2021; 13:6261762. [PMID: 34009300 PMCID: PMC8214406 DOI: 10.1093/gbe/evab090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2021] [Indexed: 12/22/2022] Open
Abstract
Domestication of the helmeted guinea fowl (HGF; Numida meleagris) in Africa remains elusive. Here we report a high-quality de novo genome assembly for domestic HGF generated by long- and short-reads sequencing together with optical and chromatin interaction mapping. Using this assembly as the reference, we performed population genomic analyses for newly sequenced whole-genomes for 129 birds from Africa, Asia, and Europe, including domestic animals (n = 89), wild progenitors (n = 34), and their closely related wild species (n = 6). Our results reveal domestication of HGF in West Africa around 1,300-5,500 years ago. Scanning for selective signals characterized the functional genes in behavior and locomotion changes involved in domestication of HGF. The pleiotropy and linkage in genes affecting plumage color and fertility were revealed in the recent breeding of Italian domestic HGF. In addition to presenting a missing piece to the jigsaw puzzle of domestication in poultry, our study provides valuable genetic resources for researchers and breeders to improve production in this species.
Collapse
Affiliation(s)
- Quan-Kuan Shen
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Nairobi, Kenya.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Nairobi, Kenya.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Adeniyi C Adeola
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Nairobi, Kenya.,Centre for Biotechnology Research, Bayero University, Kano, Nigeria
| | - Ling Kui
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Yong-Wang Miao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Nada M Eltayeb
- Department of Animal breeding and Reproduction Technology, College of Animal Production, University of Bahri, Khartoum, Sudan
| | - Jacqueline K Lichoti
- State Department of Livestock, Ministry of Agriculture Livestock Fisheries and Irrigation, Nairobi, Kenya
| | - Newton O Otecko
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Nairobi, Kenya.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | | | - Erica Gorla
- Department of Veterinary Medicine, Università degli Studi di Milano, Italy
| | - Alessandro Bagnato
- Department of Veterinary Medicine, Università degli Studi di Milano, Italy
| | | | - Oscar J Sanke
- Taraba State Ministry of Agriculture and Natural Resources, Jalingo, Nigeria
| | - Philip M Dawuda
- Department of Veterinary Surgery and Theriogenology, College of Veterinary Medicine, University of Agriculture, Makurdi, Nigeria
| | - Agboola O Okeyoyin
- National Park Service Headquarter, Federal Capital Territory, Abuja, Nigeria
| | - John Musina
- Department of Zoology, National Museums of Kenya, Nairobi, Kenya
| | - Peter Njoroge
- Department of Zoology, National Museums of Kenya, Nairobi, Kenya
| | - Bernard Agwanda
- Department of Zoology, National Museums of Kenya, Nairobi, Kenya
| | - Szilvia Kusza
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Debrecen, Hungary
| | | | - Rana Pedar
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Iran
| | - Ming-Min Xu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Nairobi, Kenya.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Yuan Du
- Nowbio Biotechnology Company, Kunming, China
| | - Lotanna M Nneji
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Nairobi, Kenya
| | - Robert W Murphy
- Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, Toronto, Ontario, Canada
| | - Ming-Shan Wang
- Howard Hughes Medical Institute, University of California Santa Cruz, California, USA.,Department of Ecology and Evolutionary Biology, University of California Santa Cruz, California, USA
| | - Ali Esmailizadeh
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Iran
| | - Yang Dong
- College of Biological Big Data, Yunnan Agriculture University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.,Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Sheila C Ommeh
- Department of Zoology, National Museums of Kenya, Nairobi, Kenya.,Institute of Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Nairobi, Kenya.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Yunnan University, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
126
|
Jiang F, Lin R, Xiao C, Xie T, Jiang Y, Chen J, Ni P, Sung WK, Han J, Du X, Li S. Analysis of whole-genome re-sequencing data of ducks reveals a diverse demographic history and extensive gene flow between Southeast/South Asian and Chinese populations. Genet Sel Evol 2021; 53:35. [PMID: 33849442 PMCID: PMC8042899 DOI: 10.1186/s12711-021-00627-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/26/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The most prolific duck genetic resource in the world is located in Southeast/South Asia but little is known about the domestication and complex histories of these duck populations. RESULTS Based on whole-genome resequencing data of 78 ducks (Anas platyrhynchos) and 31 published whole-genome duck sequences, we detected three geographic distinct genetic groups, including local Chinese, wild, and local Southeast/South Asian populations. We inferred the demographic history of these duck populations with different geographical distributions and found that the Chinese and Southeast/South Asian ducks shared similar demographic features. The Chinese domestic ducks experienced the strongest population bottleneck caused by domestication and the last glacial maximum (LGM) period, whereas the Chinese wild ducks experienced a relatively weak bottleneck caused by domestication only. Furthermore, the bottleneck was more severe in the local Southeast/South Asian populations than in the local Chinese populations, which resulted in a smaller effective population size for the former (7100-11,900). We show that extensive gene flow has occurred between the Southeast/South Asian and Chinese populations, and between the Southeast Asian and South Asian populations. Prolonged gene flow was detected between the Guangxi population from China and its neighboring Southeast/South Asian populations. In addition, based on multiple statistical approaches, we identified a genomic region that included three genes (PNPLA8, THAP5, and DNAJB9) on duck chromosome 1 with a high probability of gene flow between the Guangxi and Southeast/South Asian populations. Finally, we detected strong signatures of selection in genes that are involved in signaling pathways of the nervous system development (e.g., ADCYAP1R1 and PDC) and in genes that are associated with morphological traits such as cell growth (e.g., IGF1R). CONCLUSIONS Our findings provide valuable information for a better understanding of the domestication and demographic history of the duck, and of the gene flow between local duck populations from Southeast/South Asia and China.
Collapse
Affiliation(s)
- Fan Jiang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Ruiyi Lin
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 People’s Republic of China
| | - Changyi Xiao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Tanghui Xie
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Yaoxin Jiang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Jianhai Chen
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
- Institute for Systems Genetics, West China Hospital, Auspiciousness Peace Center, Gaopeng Avenue, Wuhou District, Chengdu, 610041 People’s Republic of China
| | - Pan Ni
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Wing-Kin Sung
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
- Department of Computer Science, National University of Singapore, Singapore, 117417 Singapore
| | - Jianlin Han
- International Livestock Research Institute (ILRI), Nairobi, Kenya
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, People’s Republic of China
| | - Xiaoyong Du
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Shijun Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, 130118 People’s Republic of China
| |
Collapse
|
127
|
Liu D, Fan W, Xu Y, Yu S, Liu W, Guo Z, Huang W, Zhou Z, Hou S. Genome-wide association studies demonstrate that TASP1 contributes to increased muscle fiber diameter. Heredity (Edinb) 2021; 126:991-999. [PMID: 33767369 DOI: 10.1038/s41437-021-00425-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
Muscle fiber diameter is an economically important trait because it affects meat yield and quality. However, the genetic basis underlying muscle fiber diameter has not been determined. In this study, we collected THREE muscular histological phenotypes in 479 ducks from an F2 segregating population generated by mallard × Pekin duck crosses. We performed genome-wide association studies (GWAS) and identified a quantitative trait locus (QTL) significantly associated with muscle fiber diameter on chromosome 3. Then, we discovered the selection signatures using the fixation index among 40 mallards and 30 Pekin ducks in this QTL region. Furthermore, we characterized the recombination event in this QTL region and identified a 6-kb block located on TASP1 that was significantly associated with muscle fiber diameter. Finally, five SNPs were screened as potential causative mutations within the 6-kb block. In conclusion, we demonstrated that TASP1 contributes to an increase in muscle fiber diameter, which helps to characterize muscle development and contributes to the genetic improvement of meat yield and quality in livestock.
Collapse
Affiliation(s)
- Dapeng Liu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Animal Nutrition; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Wenlei Fan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, PR China
| | - Yaxi Xu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Animal Nutrition; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Simeng Yu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Animal Nutrition; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Wenjing Liu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Animal Nutrition; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, PR China.,College of Animal Science, Qingdao Agricultural University, Qingdao, PR China
| | - Zhanbao Guo
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Animal Nutrition; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Wei Huang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Animal Nutrition; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Zhengkui Zhou
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Animal Nutrition; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, PR China.
| | - Shuisheng Hou
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Animal Nutrition; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, PR China.
| |
Collapse
|
128
|
Gao G, Gao D, Zhao X, Xu S, Zhang K, Wu R, Yin C, Li J, Xie Y, Hu S, Wang Q. Genome-Wide Association Study-Based Identification of SNPs and Haplotypes Associated With Goose Reproductive Performance and Egg Quality. Front Genet 2021; 12:602583. [PMID: 33777090 PMCID: PMC7994508 DOI: 10.3389/fgene.2021.602583] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/24/2021] [Indexed: 01/10/2023] Open
Abstract
Geese are one of the most economically important waterfowl. However, the low reproductive performance and egg quality of geese hinder the development of the goose industry. The identification and application of genetic markers may improve the accuracy of beneficial trait selection. To identify the genetic markers associated with goose reproductive performance and egg quality traits, we performed a genome-wide association study (GWAS) for body weight at birth (BBW), the number of eggs at 48 weeks of age (EN48), the number of eggs at 60 weeks of age (EN60) and egg yolk color (EYC). The GWAS acquired 2.896 Tb of raw sequencing data with an average depth of 12.44× and identified 9,279,339 SNPs. The results of GWAS showed that 26 SNPs were significantly associated with BBW, EN48, EN60, and EYC. Moreover, five of these SNPs significantly associated with EN48 and EN60 were in a haplotype block on chromosome 35 from 4,512,855 to 4,541,709 bp, oriented to TMEM161A and another five SNPs significantly correlated to EYC were constructed in haplotype block on chromosome 5 from 21,069,009 to 21,363,580, which annotated by TMEM161A, CALCR, TFPI2, and GLP1R. Those genes were enriched in epidermal growth factor-activated receptor activity, regulation of epidermal growth factor receptor signaling pathway. The SNPs, haplotype markers, and candidate genes identified in this study can be used to improve the accuracy of marker-assisted selection for the reproductive performance and egg quality traits of geese. In addition, the candidate genes significantly associated with these traits may provide a foundation for better understanding the mechanisms underlying reproduction and egg quality in geese.
Collapse
Affiliation(s)
- Guangliang Gao
- Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing, China
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Dengfeng Gao
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Xianzhi Zhao
- Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | | | - Keshan Zhang
- Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Rui Wu
- Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Chunhui Yin
- Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Jing Li
- Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Youhui Xie
- Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Silu Hu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qigui Wang
- Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| |
Collapse
|
129
|
Guo X, He XX, Chen H, Wang ZC, Li HF, Wang JX, Wang MS, Jiang RS. Revisiting the evolutionary history of domestic and wild ducks based on genomic analyses. Zool Res 2021; 42:43-50. [PMID: 33269825 PMCID: PMC7840458 DOI: 10.24272/j.issn.2095-8137.2020.133] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Although domestic ducks have been important poultry species throughout human history, their origin remains enigmatic, with mallards and/or Chinese spot-billed ducks being proposed as the direct wild ancestor(s) of domestic ducks. Here, we analyzed 118 whole genomes from mallard, Chinese spot-billed, and domestic ducks to reconstruct their evolutionary history. We found pervasive introgression patterns among these duck populations. Furthermore, we showed that domestic ducks separated from mallard and Chinese spot-billed ducks nearly 38 thousand years ago (kya) and 54 kya, respectively, which is considerably outside the time period of presumed duck domestication. Thus, our results suggest that domestic ducks may have originated from another wild duck population that is currently undefined or unsampled, rather than from present-day mallard and/or Chinese spot-billed ducks, as previously thought. Overall, this study provides new insight into the complex evolution of ducks.
Collapse
Affiliation(s)
- Xing Guo
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xin-Xin He
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Hong Chen
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zhi-Cheng Wang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Hui-Fang Li
- Jiangsu Institute of Poultry Science, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu 225125, China
| | - Jiang-Xian Wang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Ming-Shan Wang
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA.,Department of Ecology and Evolutionary Biology, University of California Santa Cruz, CA 95064, USA. E-mail:
| | - Run-Shen Jiang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei, Anhui 230036, China. E-mail:
| |
Collapse
|
130
|
Liu H, Hu J, Guo Z, Fan W, Xu Y, Liang S, Liu D, Zhang Y, Xie M, Tang J, Huang W, Zhang Q, Xi Y, Li Y, Wang L, Ma S, Jiang Y, Feng Y, Wu Y, Cao J, Zhou Z, Hou S. A single nucleotide polymorphism variant located in the cis-regulatory region of the ABCG2 gene is associated with mallard egg colour. Mol Ecol 2021; 30:1477-1491. [PMID: 33372351 DOI: 10.1111/mec.15785] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 12/01/2020] [Accepted: 12/15/2020] [Indexed: 12/30/2022]
Abstract
Avian egg coloration is shaped by natural selection, but its genetic basis remains unclear. Here, we used genome-wide association analysis and identity by descent to finely map green egg colour to a 179-kb region of Chr4 based on the resequencing of 352 ducks (Anas platyrhynchos) from a segregating population resulting from the mating of Pekin ducks (white-shelled eggs) and mallards (green-shelled eggs). We further narrowed the candidate region to a 30-kb interval by comparing genome divergence in seven indigenous duck populations. Among the genes located in the finely mapped region, only one transcript of the ABCG2 gene (XM_013093252.2) exhibited higher uterine expression in green-shelled individuals than in white-shelled individuals, as supported by transcriptome data from four populations. ABCG2 has been reported to encode a protein that functions as a membrane transporter for biliverdin. Sanger sequencing of the whole 30-kb candidate region (Chr4: 47.41-47.44 Mb) and a plasmid reporter assay helped to identify a single nucleotide polymorphism (Chr4: 47,418,074 G>A) located in a conserved predicted promoter region whose variation may alter ABCG2 transcription activity. We provide a useful molecular marker for duck breeding and contribute data to the research on ecological evolution based on egg colour patterns among birds.
Collapse
Affiliation(s)
- Hehe Liu
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jian Hu
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhanbao Guo
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenlei Fan
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaxi Xu
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Suyun Liang
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dapeng Liu
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunsheng Zhang
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ming Xie
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Tang
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Huang
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qi Zhang
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Xi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yanying Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Lei Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shengchao Ma
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yong Jiang
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yulong Feng
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongbao Wu
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junting Cao
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhengkui Zhou
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuisheng Hou
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
131
|
Liu J, Wang Z, Li J, Xu L, Liu J, Feng S, Guo C, Chen S, Ren Z, Rao J, Wei K, Chen Y, Jarvis ED, Zhang G, Zhou Q. A new emu genome illuminates the evolution of genome configuration and nuclear architecture of avian chromosomes. Genome Res 2021; 31:497-511. [PMID: 33408157 PMCID: PMC7919449 DOI: 10.1101/gr.271569.120] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/30/2020] [Indexed: 01/30/2023]
Abstract
Emu and other ratites are more informative than any other birds in reconstructing the evolution of the ancestral avian or vertebrate karyotype because of their much slower rate of genome evolution. Here, we generated a new chromosome-level genome assembly of a female emu, and estimated the tempo of chromosome evolution across major avian phylogenetic branches, by comparing it to chromosome-level genome assemblies of 11 other bird and one turtle species. We found ratites exhibited the lowest numbers of intra- and inter-chromosomal changes among birds since their divergence with turtles. The small-sized and gene-rich emu microchromosomes have frequent inter-chromosomal contacts that are associated with housekeeping genes, which appears to be driven by clustering their centromeres in the nuclear interior, away from the macrochromosomes in the nuclear periphery. Unlike nonratite birds, only less than one-third of the emu W Chromosome regions have lost homologous recombination and diverged between the sexes. The emu W is demarcated into a highly heterochromatic region (WS0) and another recently evolved region (WS1) with only moderate sequence divergence with the Z Chromosome. WS1 has expanded its inactive chromatin compartment, increased chromatin contacts within the region, and decreased contacts with the nearby regions, possibly influenced by the spreading of heterochromatin from WS0. These patterns suggest that alteration of chromatin conformation comprises an important early step of sex chromosome evolution. Overall, our results provide novel insights into the evolution of avian genome structure and sex chromosomes in three-dimensional space.
Collapse
Affiliation(s)
- Jing Liu
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna 1090, Austria
| | - Zongji Wang
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna 1090, Austria
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo 315100, China
| | - Jing Li
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Luohao Xu
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna 1090, Austria
| | - Jiaqi Liu
- Wuhan Gooalgene Technology Company, Wuhan 430070, China
| | - Shaohong Feng
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
| | - Chunxue Guo
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
| | - Shengchan Chen
- Longteng Ecological Culture Company, Limited, Zhashui 711400, China
| | - Zhanjun Ren
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jinpeng Rao
- Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China
| | - Kai Wei
- Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China
| | - Yuezhou Chen
- Jianzhou Poultry Industry Company, Limited, Yong'an 366000, China
| | - Erich D Jarvis
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, New York 10065, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Guojie Zhang
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Qi Zhou
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna 1090, Austria
- Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China
| |
Collapse
|
132
|
Wen J, Shao P, Chen Y, Wang L, Lv X, Yang W, Jia Y, Jiang Z, Zhu B, Qu L. Genomic scan revealed KIT gene underlying white/gray plumage color in Chinese domestic geese. Anim Genet 2021; 52:356-360. [PMID: 33644907 DOI: 10.1111/age.13050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2021] [Indexed: 01/17/2023]
Abstract
Goose is an important type of domesticated poultry. The wild geese that are regarded as the ancestors of modern domestic geese present gray plumage. Domesticated, geese have both white and gray feathers. To elucidate the genetic mechanisms underlying the formation of white and gray plumage in geese, we resequenced the whole genome of 18 geese from six populations including white and gray goose breeds. The average sequencing depth per individual was 9.81× and the average genome coverage was 96.8%. A total of 346 genes were detected in the top 1% of FST scores of gray- and white-feathered geese, and a significant FST site was located in the intron region within the KIT gene, the 18 bp deletion in KIT having the strongest potential association with white feathers. It has been reported that a number of genes are associated with plumage colors in birds. However, no studies have identified the relationship between KIT and plumage color in birds at present, although the white coat can be attributed to mutations in KIT in some mammals. Our study showed that that KIT is a plausible candidate gene for white/gray plumage color in Chinese domestic geese.
Collapse
Affiliation(s)
- J Wen
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100094, China
| | - P Shao
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100094, China
| | - Y Chen
- Beijing Animal Husbandry and Veterinary Station, Beijing, 100107, China
| | - L Wang
- Beijing Animal Husbandry and Veterinary Station, Beijing, 100107, China
| | - X Lv
- Beijing Animal Husbandry and Veterinary Station, Beijing, 100107, China
| | - W Yang
- Beijing Animal Husbandry and Veterinary Station, Beijing, 100107, China
| | - Y Jia
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Z Jiang
- Department of Animal Sciences, Washington State University, Pullman, WA, 99164, USA
| | - B Zhu
- Zhuozhou Animal Health Supervision Station, Hebei, 072750, China
| | - L Qu
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100094, China
| |
Collapse
|
133
|
Li C, Tian D, Tang B, Liu X, Teng X, Zhao W, Zhang Z, Song S. Genome Variation Map: a worldwide collection of genome variations across multiple species. Nucleic Acids Res 2021; 49:D1186-D1191. [PMID: 33170268 PMCID: PMC7778933 DOI: 10.1093/nar/gkaa1005] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/10/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
The Genome Variation Map (GVM; http://bigd.big.ac.cn/gvm/) is a public data repository of genome variations. It aims to collect and integrate genome variations for a wide range of species, accepts submissions of different variation types from all over the world and provides free open access to all publicly available data in support of worldwide research activities. Compared with the previous version, particularly, a total of 22 species, 115 projects, 55 935 samples, 463 429 609 variants, 66 220 associations and 56 submissions (as of 7 September 2020) were newly added in the current version of GVM. In the current release, GVM houses a total of ∼960 million variants from 41 species, including 13 animals, 25 plants and 3 viruses. Moreover, it incorporates 64 819 individual genotypes and 260 393 manually curated high-quality genotype-to-phenotype associations. Since its inception, GVM has archived genomic variation data of 43 754 samples submitted by worldwide users and served >1 million data download requests. Collectively, as a core resource in the National Genomics Data Center, GVM provides valuable genome variations for a diversity of species and thus plays an important role in both functional genomics studies and molecular breeding.
Collapse
Affiliation(s)
- Cuiping Li
- China National Center for Bioinformation, Beijing 100101, China.,National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Dongmei Tian
- China National Center for Bioinformation, Beijing 100101, China.,National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Bixia Tang
- China National Center for Bioinformation, Beijing 100101, China.,National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaonan Liu
- China National Center for Bioinformation, Beijing 100101, China.,National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xufei Teng
- China National Center for Bioinformation, Beijing 100101, China.,National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenming Zhao
- China National Center for Bioinformation, Beijing 100101, China.,National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhang Zhang
- China National Center for Bioinformation, Beijing 100101, China.,National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuhui Song
- China National Center for Bioinformation, Beijing 100101, China.,National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
134
|
Li J, Zhang J, Liu J, Zhou Y, Cai C, Xu L, Dai X, Feng S, Guo C, Rao J, Wei K, Jarvis ED, Jiang Y, Zhou Z, Zhang G, Zhou Q. A new duck genome reveals conserved and convergently evolved chromosome architectures of birds and mammals. Gigascience 2021; 10:giaa142. [PMID: 33406261 PMCID: PMC7787181 DOI: 10.1093/gigascience/giaa142] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/31/2020] [Accepted: 11/16/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Ducks have a typical avian karyotype that consists of macro- and microchromosomes, but a pair of much less differentiated ZW sex chromosomes compared to chickens. To elucidate the evolution of chromosome architectures between ducks and chickens, and between birds and mammals, we produced a nearly complete chromosomal assembly of a female Pekin duck by combining long-read sequencing and multiplatform scaffolding techniques. RESULTS A major improvement of genome assembly and annotation quality resulted from the successful resolution of lineage-specific propagated repeats that fragmented the previous Illumina-based assembly. We found that the duck topologically associated domains (TAD) are demarcated by putative binding sites of the insulator protein CTCF, housekeeping genes, or transitions of active/inactive chromatin compartments, indicating conserved mechanisms of spatial chromosome folding with mammals. There are extensive overlaps of TAD boundaries between duck and chicken, and also between the TAD boundaries and chromosome inversion breakpoints. This suggests strong natural selection pressure on maintaining regulatory domain integrity, or vulnerability of TAD boundaries to DNA double-strand breaks. The duck W chromosome retains 2.5-fold more genes relative to chicken. Similar to the independently evolved human Y chromosome, the duck W evolved massive dispersed palindromic structures, and a pattern of sequence divergence with the Z chromosome that reflects stepwise suppression of homologous recombination. CONCLUSIONS Our results provide novel insights into the conserved and convergently evolved chromosome features of birds and mammals, and also importantly add to the genomic resources for poultry studies.
Collapse
Affiliation(s)
- Jing Li
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jilin Zhang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 5 Nobels väg, Stockholm 17177, Sweden
| | - Jing Liu
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Department of Neuroscience and Developmental Biology, University of Vienna, 1 Universitätsring, Vienna 1090, Austria
| | - Yang Zhou
- BGI-Shenzhen, 146 Beishan Industrial Zone, Shenzhen 518083, China
| | - Cheng Cai
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Luohao Xu
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Department of Neuroscience and Developmental Biology, University of Vienna, 1 Universitätsring, Vienna 1090, Austria
| | - Xuelei Dai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Shaohong Feng
- BGI-Shenzhen, 146 Beishan Industrial Zone, Shenzhen 518083, China
| | - Chunxue Guo
- BGI-Shenzhen, 146 Beishan Industrial Zone, Shenzhen 518083, China
| | - Jinpeng Rao
- Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310052, China
| | - Kai Wei
- Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310052, China
| | - Erich D Jarvis
- Laboratory of Neurogenetics of Language, The Rockefeller University, 1230 York Ave, NY 10065, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Zhengkui Zhou
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, 12 Zhong Guan Cun Da Jie, Beijing, China
| | - Guojie Zhang
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East Jiaochang Road, Kunming 650223, China
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 10 Nørregade, DK-2100 Copenhagen, Denmark
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 32 East Jiaochang Road, Kunming 650223, China
| | - Qi Zhou
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Department of Neuroscience and Developmental Biology, University of Vienna, 1 Universitätsring, Vienna 1090, Austria
- Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310052, China
| |
Collapse
|
135
|
Xu J, Fu Y, Hu Y, Yin L, Tang Z, Yin D, Zhu M, Yu M, Li X, Zhou Y, Zhao S, Liu X. Whole genome variants across 57 pig breeds enable comprehensive identification of genetic signatures that underlie breed features. J Anim Sci Biotechnol 2020; 11:115. [PMID: 33292532 PMCID: PMC7713148 DOI: 10.1186/s40104-020-00520-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/19/2020] [Indexed: 01/15/2023] Open
Abstract
Background A large number of pig breeds are distributed around the world, their features and characteristics vary among breeds, and they are valuable resources. Understanding the underlying genetic mechanisms that explain across-breed variation can help breeders develop improved pig breeds. Results In this study, we performed GWAS using a standard mixed linear model with three types of genome variants (SNP, InDel, and CNV) that were identified from public, whole-genome, sequencing data sets. We used 469 pigs of 57 breeds, and we identified and analyzed approximately 19 million SNPs, 1.8 million InDels, and 18,016 CNVs. We defined six biological phenotypes by the characteristics of breed features to identify the associated genome variants and candidate genes, which included coat color, ear shape, gradient zone, body weight, body length, and body height. A total of 37 candidate genes was identified, which included 27 that were reported previously (e.g., PLAG1 for body weight), but the other 10 were newly detected candidate genes (e.g., ADAMTS9 for coat color). Conclusion Our study indicated that using GWAS across a modest number of breeds with high density genome variants provided efficient mapping of complex traits. Supplementary Information Supplementary information accompanies this paper at 10.1186/s40104-020-00520-8.
Collapse
Affiliation(s)
- Jingya Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Yuhua Fu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Yan Hu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Lilin Yin
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Zhenshuang Tang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Dong Yin
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Mengjin Zhu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Mei Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Xinyun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Yang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| | - Xiaolei Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| |
Collapse
|
136
|
Guo X, Wang ZC, Wang S, Li HF, Suwannapoom C, Wang JX, Zhang C, Shao Y, Wang MS, Jiang RS. Genetic signature of hybridization between Chinese spot-billed ducks and domesticated ducks. Anim Genet 2020; 51:866-875. [PMID: 33020910 DOI: 10.1111/age.13002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 12/27/2022]
Abstract
In this study, we analyzed 93 whole genomes from Chinese spot-billed ducks (CSB), meat-type ducks (MET), and egg and dual purpose-type ducks (EDT) to characterize the genetic material flowing between the CSB and modern ducks. Using a frequency of shared identical-by-descent method, approximately 10.9 Mb introgression segments containing 140 genes were identified showing the signatures of introgression between CSB and EDT. Meanwhile, nearly 10.6 M introgression regions containing 149 genes were identified between CSB and MET. Based on the haplotypes tree of each segment, we found that the introgression between CSB and domesticated ducks was asymmetric with a high level of gene flow from domestic to CSB and a low level of migration in the opposite direction. Moreover, we identified several genes that were introgressions from CSB and showed the signature of positive selection, which may contribute to the breeding of modern ducks. Our results provide new insight into the evolution and breeding history of domestic ducks and may be useful for the future management of wild and domestic duck populations.
Collapse
Affiliation(s)
- X Guo
- College of Animal Science and Technology, Anhui Agricultural University, 130, Changjiang West Road, Hefei, Anhui, 230036, China
| | - Z-C Wang
- College of Animal Science and Technology, Anhui Agricultural University, 130, Changjiang West Road, Hefei, Anhui, 230036, China
| | - S Wang
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang Dong Road, Kunming, Yunnan, 650223, China
| | - H-F Li
- Jiangsu Institute of Poultry Science, Chinese Academy of Agriculture Science, 58 cangjie Rode, Yangzhou, Jiangsu, 225125, China
| | - C Suwannapoom
- School of Agriculture and Natural Resources, University of Phayao, 19 Moo 2 Tambon Maeka, Amphur Muang, Phayao, 56000, Thailand
| | - J-X Wang
- College of Animal Science and Technology, Anhui Agricultural University, 130, Changjiang West Road, Hefei, Anhui, 230036, China
| | - C Zhang
- College of Animal Science and Technology, Anhui Agricultural University, 130, Changjiang West Road, Hefei, Anhui, 230036, China
| | - Y Shao
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang Dong Road, Kunming, Yunnan, 650223, China
| | - M-S Wang
- Howard Hughes Medical Institute, University of California Santa Cruz, 1156 High St, Santa Cruz, CA, 95064, USA.,Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 1156 High St, Santa Cruz, CA, 95064, USA
| | - R-S Jiang
- College of Animal Science and Technology, Anhui Agricultural University, 130, Changjiang West Road, Hefei, Anhui, 230036, China
| |
Collapse
|
137
|
Xi Y, Liu H, Li L, Xu Q, Liu Y, Wang L, Ma S, Wang J, Bai L, Zhang R, Han C. Transcriptome Reveals Multi Pigmentation Genes Affecting Dorsoventral Pattern in Avian Body. Front Cell Dev Biol 2020; 8:560766. [PMID: 33117797 PMCID: PMC7559526 DOI: 10.3389/fcell.2020.560766] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/31/2020] [Indexed: 11/13/2022] Open
Abstract
Certain animals exhibit a special dorsoventral pattern with a lighter ventral side compared to the dorsal one and this phenomenon was preserved in the long-term evolution process. Birds also retain this trait. Recently, Inaba et al. (2019) found that ASIP (agouti signal protein) regulated interconversion between different melanocyte types leads to dorsal stripe pattern, which may partly explain the birds' dorsoventral plumage color difference. In this study, we used the embryo samples of LBM (light brown mottling) ducks (Anas platyrhynchos) with white ventral and dark dorsal body parts to investigate the mechanism of dorsoventral color variation. Firstly, melanin deposition process of duck embryos was investigated. The result indicated that E13 and E16 were the active stages of melanin synthesis. Moreover, the melanin deposition on the dorsum of LBM ducks was higher than that on the ventral side throughout. Then, RNA-seq was conducted for the dorsal and ventral skin tissues from E7 (early), E13 (middle) and E19 (late) of LBM ducks. Expression pattern analysis showed that the mRNA expression of most melanin synthesis related genes were at the highest level at E13, which was consistent with the section analysis. A correlation was found between melanogenesis pathway and dorsoventral color difference by co-expression analysis. In the DEG (differentially expressed gene) analysis, we added the dorsal skin transcriptome of embryonic white and black duck of same subspecies (Anas platyrhynchos domestica) for horizontal comparison. The results showed that 8 melanogenesis related genes (TYR, TYRP1, MLANA, RAB38, OCA2, TSPAN10, MC1R, and MSLN) were the common DEGs (Differential expressed genes) in the comparisons of body parts and breeds suggesting that the underlying molecular regulatory mechanism of dorsoventral plumage color difference may be similar to that of albino and melanic duck, which were caused by the different expression of multiple genes in melanin synthesis pathway. In addition, the molecular regulation of melanin synthesis pathway in the dorsal and ventral side of LBM ducks was analyzed. In this pathway, ASIP, MC1R, TYR, and TYRP1 have differential mRNA expression. ASIP, as an upstream gene in this pathway, was likely to play a decisive role in determining the dorsoventral plumage pattern.
Collapse
Affiliation(s)
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Genome-wide association study reveals the genetic determinism of growth traits in a Gushi-Anka F 2 chicken population. Heredity (Edinb) 2020; 126:293-307. [PMID: 32989280 PMCID: PMC8026619 DOI: 10.1038/s41437-020-00365-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 08/18/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023] Open
Abstract
Chicken growth traits are economically important, but the relevant genetic mechanisms have not yet been elucidated. Herein, we performed a genome-wide association study to identify the variants associated with growth traits. In total, 860 chickens from a Gushi-Anka F2 resource population were phenotyped for 68 growth and carcass traits, and 768 samples were genotyped based on the genotyping-by-sequencing (GBS) method. Finally, 734 chickens and 321,314 SNPs remained after quality control and removal of the sex chromosomes, and these data were used to carry out a GWAS analysis. A total of 470 significant single-nucleotide polymorphisms (SNPs) for 43 of the 68 traits were detected and mapped on chromosomes (Chr) 1-6, -9, -10, -16, -18, -23, and -27. Of these, the significant SNPs in Chr1, -4, and -27 were found to be associated with more than 10 traits. Multiple traits shared significant SNPs, indicating that the same mutation in the region might have a large effect on multiple growth or carcass traits. Haplotype analysis revealed that SNPs within the candidate region of Chr1 presented a mosaic pattern. The significant SNPs and pathway enrichment analysis revealed that the MLNR, MED4, CAB39L, LDB2, and IGF2BP1 genes could be putative candidate genes for growth and carcass traits. The findings of this study improve our understanding of the genetic mechanisms regulating chicken growth and carcass traits and provide a theoretical basis for chicken breeding programs.
Collapse
|
139
|
Wang Y, Bu L, Cao X, Qu H, Zhang C, Ren J, Huang Z, Zhao Y, Luo C, Hu X, Shu D, Li N. Genetic Dissection of Growth Traits in a Unique Chicken Advanced Intercross Line. Front Genet 2020; 11:894. [PMID: 33033489 PMCID: PMC7509424 DOI: 10.3389/fgene.2020.00894] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/20/2020] [Indexed: 12/23/2022] Open
Abstract
The advanced intercross line (AIL) that is created by successive generations of pseudo-random mating after the F2 generation is a valuable resource, especially in agricultural livestock and poultry species, because it improves the precision of quantitative trait loci (QTL) mapping compared with traditional association populations by introducing more recombination events. The growth traits of broilers have significant economic value in the chicken industry, and many QTLs affecting growth traits have been identified, especially on chromosomes 1, 4, and 27, albeit with large confidence intervals that potentially contain dozens of genes. To promote a better understanding of the underlying genetic architecture of growth trait differences, specifically body weight and bone development, in this study, we report a nine-generation AIL derived from two divergent outbred lines: High Quality chicken Line A (HQLA) and Huiyang Bearded (HB) chicken. We evaluate the genetic architecture of the F0, F2, F8, and F9 generations of AIL and demonstrate that the population of the F9 generation sufficiently randomized the founder genomes and has the characteristics of rapid linkage disequilibrium decay, limited allele frequency decline, and abundant nucleotide diversity. This AIL yielded a much narrower QTL than the F2 generations, especially the QTL on chromosome 27, which was reduced to 120 Kb. An ancestral haplotype association analysis showed that most of the dominant haplotypes are inherited from HQLA but with fluctuation of the effects between them. We highlight the important role of four candidate genes (PHOSPHO1, IGF2BP1, ZNF652, and GIP) in bone growth. We also retrieved a missing QTL from AIL on chromosome 4 by identifying the founder selection signatures, which are explained by the loss of association power that results from rare alleles. Our study provides a reasonable resource for detecting quantitative trait genes and tracking ancestor history and will facilitate our understanding of the genetic mechanisms underlying chicken bone growth.
Collapse
Affiliation(s)
- Yuzhe Wang
- College of Animal Science and Technology, China Agricultural University, Beijing, China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lina Bu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xuemin Cao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hao Qu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Chunyuan Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiangli Ren
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhuolin Huang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yiqiang Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chenglong Luo
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiaoxiang Hu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dingming Shu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ning Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
140
|
Genome diversity of Chinese indigenous chicken and the selective signatures in Chinese gamecock chicken. Sci Rep 2020; 10:14532. [PMID: 32883984 PMCID: PMC7471287 DOI: 10.1038/s41598-020-71421-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
Gamecock chickens are one of the earliest recorded birds in China, and have accumulated some unique morphological and behavioral signatures such as large body size, muscularity and aggressive behavior, whereby being excellent breeding materials and a good model for studying bird muscular development and behavior. In this study, we sequenced 126 chicken genomes from 19 populations, including four commercial chicken breeds that are commonly farmed in China, 13 nationwide Chinese typical indigenous chicken breeds (including two Chinese gamecock breeds), one red jungle fowl from Guangxi Province of China and three gamecock chickens from Laos. Combined with 31 published chicken genomes from three populations, a comparative genomics analysis was performed across 157 chickens. We found a severe confounding effect on potential cold adaptation exerted by introgression from commercial chickens into Chinese indigenous chickens, and argued that the genetic introgression from commercial chickens into indigenous chickens should be seriously considered for identifying selection footprint in indigenous chickens. LX gamecock chickens might have played a core role in recent breeding and conservation of other Chinese gamecock chickens. Importantly, AGMO (Alkylglycerol monooxygenase) and CPZ (Carboxypeptidase Z) might be crucial for determining the behavioral pattern of gamecock chickens, while ISPD (Isoprenoid synthase domain containing) might be essential for the muscularity of gamecock chickens. Our results can further the understanding of the evolution of Chinese gamecock chickens, especially the genetic basis of gamecock chickens revealed here was valuable for us to better understand the mechanisms underlying the behavioral pattern and the muscular development in chicken.
Collapse
|
141
|
Genome-Wide Association Study and Pathway Analysis for Heterophil/Lymphocyte (H/L) Ratio in Chicken. Genes (Basel) 2020; 11:genes11091005. [PMID: 32867375 PMCID: PMC7563235 DOI: 10.3390/genes11091005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/27/2022] Open
Abstract
Disease control and prevention have been critical factors in the dramatic growth of the poultry industry. Disease resistance in chickens can be improved through genetic selection for immunocompetence. The heterophil/lymphocyte ratio (H/L) in the blood reflects the immune system status of chickens. Our objective was to conduct a genome-wide association study (GWAS) and pathway analysis to identify possible biological mechanisms involved in H/L traits. In this study, GWAS for H/L was performed in 1317 Cobb broilers to identify significant single-nucleotide polymorphisms (SNPs) associated with H/L. Eight SNPs (p < 1/8068) reached a significant level of association. The significant SNP on GGA 19 (chicken chromosome 19) was in the gene for complement C1q binding protein (C1QBP). The wild-type and mutant individuals showed significant differences in H/L at five identified SNPs (p < 0.05). According to the results of pathway analysis, nine associated pathways (p < 0.05) were identified. By combining GWAS with pathway analysis, we found that all SNPs after QC explained 12.4% of the phenotypic variation in H/L, and 52 SNPs associated with H/L explained as much as 9.7% of the phenotypic variation in H/L. Our findings contribute to understanding of the genetic regulation of H/L and provide theoretical support.
Collapse
|
142
|
Deng MT, Zhang F, Zhu F, Yang YZ, Yang FX, Hao JP, Hou ZC. Genome-wide association study reveals novel loci associated with fat-deposition and meat-quality traits in Pekin ducks. Anim Genet 2020; 51:953-957. [PMID: 32844456 DOI: 10.1111/age.12995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2020] [Indexed: 01/23/2023]
Abstract
Meat-quality traits play an essential role in meat poultry production. To determine the genetic mechanisms of meat quality in Pekin ducks, we performed a large-scale GWAS to identify quantitative trait loci affecting meat quality in Pekin ducks. We measured 10 traits in 542 Pekin ducks and genotyped each duck using genotyping-by-sequencing. The genetic parameters (genomic heritability, genetic correlation) for 10 meat-quality related traits were evaluated. Based on the large genotype-phenotype dataset, we performed GWASs for all of these traits. A total of 33 significant QTL (P < 3.03 × 10-5 ) across 13 chromosomes were identified by loci-based analysis. Some newly identified candidate genes were discovered for fat-deposition and meat-quality traits, including PAG1 for body weight and eviscerated weight, INTU and NUP35 for abdominal fat weight and ratio, NUP3 and ARHGDIB for skin fat weight and ratio, GOLGA5 for breast muscle toughness and breast tenderness, and CTDSPL and PKP1 for breast muscle thickness. The current study is the first systematic report regarding duck meat quality.
Collapse
Affiliation(s)
- M-T Deng
- National Engineering Laboratory for Animal Breeding and MARA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - F Zhang
- National Engineering Laboratory for Animal Breeding and MARA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - F Zhu
- National Engineering Laboratory for Animal Breeding and MARA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Y-Z Yang
- Beijing General Station of Animal Husbandry, Beijing, 100107, China
| | - F-X Yang
- Beijing Jinxing Golden Star Duck Center, Beijing, 100076, China
| | - J-P Hao
- Beijing Jinxing Golden Star Duck Center, Beijing, 100076, China
| | - Z-C Hou
- National Engineering Laboratory for Animal Breeding and MARA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
143
|
Xu H, Li H, Wang Z, Abudureyimu A, Yang J, Cao X, Lan X, Zang R, Cai Y. A Deletion Downstream of the CHCHD7 Gene Is Associated with Growth Traits in Sheep. Animals (Basel) 2020; 10:ani10091472. [PMID: 32825793 PMCID: PMC7552293 DOI: 10.3390/ani10091472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The genes CHCHD7 and PLAG1 are located on the same growth-related major quantitative trait locus of sheep. PLAG1 affects sheep growth, but no corresponding studies have been conducted on CHCHD7. However, polymorphisms in the CHCHD7 gene are associated with carcass weight and muscle formation in cattle, body height in cattle and humans, and weaning weight in Duroc pigs. In this study, the mathematical expectation method was used to analyze an 8-bp deletion mutation located downstream of the CHCHD7 gene in 2350 individuals from seven sheep breeds. The associations between wild-type and deletion genotypes and growth traits in Tan sheep were also analyzed. The 8-bp deletion locus was significantly associated with body length (p = 0.032), chest depth (p = 0.015), and chest width (p = 0.047) of Tan sheep. Additionally, wild-type genotype carriers were more numerous than those heterozygous for the deletion genotype. Thus, the genotyped 8-bp deletion downstream of the CHCHD7 gene may be associated with growth and development traits in sheep. Abstract In sheep, the coiled-coil-helix-coiled-coil-helix domain containing 7 (CHCHD7) gene and the pleiomorphic adenoma gene 1 (PLAG1) are on the same growth-related major quantitative trait locus, positioned head-to-head approximately 420 bp apart on chromosome 9. PLAG1 affects sheep growth, but the effects of CHCHD7 have not been determined. In this study, an 8-bp deletion downstream of CHCHD7 was analyzed in 2350 sheep from seven breeds. The associations between the deletion and growth traits of Tan sheep were also determined. Both genotypes (homozygous wild-type and heterozygous) for the 8-bp deletion were found in Tan (TS), Luxi Blackhead (LXBH), Small-Tail Han (STHS), and Lanzhou Fat-Tail (LFTS) sheep. However, there were no polymorphic sites for the mutation in Hu (HS), Sartuul (SS), and Australian White (AUW) sheep. In TS, LXBH, STHS, and LFTS sheep, the deletion genotype was less frequent than the wild-type genotype, and the allele frequencies of the deletion variant were 0.007 (TS), 0.011 (LBXH), 0.008 (STHS), and 0.010 (LFTS). The 8-bp deletion was significantly associated with body length (p = 0.032), chest depth (p = 0.015), and chest width (p = 0.047) in Tan sheep. Thus, the 8-bp deletion downstream of the CHCHD7 gene might be associated with growth and development traits of sheep.
Collapse
Affiliation(s)
- Hongwei Xu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China; (H.X.); (A.A.); (J.Y.); (X.C.)
- Science Experimental Center, Northwest Minzu University, Lanzhou 730030, China
| | - Haixia Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.L.); (Z.W.); (X.L.)
| | - Zhen Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.L.); (Z.W.); (X.L.)
| | - Ayimuguli Abudureyimu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China; (H.X.); (A.A.); (J.Y.); (X.C.)
| | - Jutian Yang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China; (H.X.); (A.A.); (J.Y.); (X.C.)
| | - Xin Cao
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China; (H.X.); (A.A.); (J.Y.); (X.C.)
- Science Experimental Center, Northwest Minzu University, Lanzhou 730030, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.L.); (Z.W.); (X.L.)
| | - Rongxin Zang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China; (H.X.); (A.A.); (J.Y.); (X.C.)
- Correspondence: (R.Z.); (Y.C.)
| | - Yong Cai
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China; (H.X.); (A.A.); (J.Y.); (X.C.)
- Science Experimental Center, Northwest Minzu University, Lanzhou 730030, China
- Correspondence: (R.Z.); (Y.C.)
| |
Collapse
|
144
|
Lee D, Lee J, Heo KN, Kwon K, Moon Y, Lim D, Lee KT, Kim J. Population analysis of the Korean native duck using whole-genome sequencing data. BMC Genomics 2020; 21:554. [PMID: 32787779 PMCID: PMC7430827 DOI: 10.1186/s12864-020-06933-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/20/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Advances in next-generation sequencing technologies have provided an opportunity to perform population-level comparative genomic analysis to discover unique genomic characteristics of domesticated animals. Duck is one of the most popular domesticated waterfowls, which is economically important as a source of meat, eggs, and feathers. The objective of this study is to perform population and functional analyses of Korean native duck, which has a distinct meat flavor and texture phenotype, using whole-genome sequencing data. To study the distinct genomic features of Korean native duck, we conducted population-level genomic analysis of 20 Korean native ducks together with 15 other duck breeds. RESULTS A total of 15.56 million single nucleotide polymorphisms were detected in Korean native duck. Based on the unique existence of non-synonymous single nucleotide polymorphisms in Korean native duck, a total of 103 genes related to the unique genomic characteristics of Korean native duck were identified in comparison with 15 other duck breeds, and their functions were investigated. The nucleotide diversity and population structures among the used duck breeds were then compared, and their phylogenetic relationship was analyzed. Finally, highly differentiated genomic regions among Korean native duck and other duck breeds were identified, and functions of genes in those regions were examined. CONCLUSIONS This is the first study to compare the population of Korean native duck with those of other duck breeds by using whole-genome sequencing data. Our findings can be used to expand our knowledge of genomic characteristics of Korean native duck, and broaden our understanding of duck breeds.
Collapse
Affiliation(s)
- Daehwan Lee
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jongin Lee
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Kang-Neung Heo
- National Institute of Animal Science, Wanju, 55365, Republic of Korea
| | - Kisang Kwon
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Youngbeen Moon
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Dajeong Lim
- National Institute of Animal Science, Wanju, 55365, Republic of Korea
| | - Kyung-Tai Lee
- National Institute of Animal Science, Wanju, 55365, Republic of Korea
| | - Jaebum Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
145
|
Cao X, Wang Y, Shu D, Qu H, Luo C, Hu X. Food intake-related genes in chicken determined through combinatorial genome-wide association study and transcriptome analysis. Anim Genet 2020; 51:741-751. [PMID: 32720725 DOI: 10.1111/age.12980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2020] [Indexed: 11/30/2022]
Abstract
The chicken gizzard is the primary digestive and absorptive organ regulating food intake and metabolism. Body weight is a typical complex trait regulated by an interactive polygene network which is under the control of an interacting network of polygenes. To simplify these genotype-phenotype associations, the gizzard is a suitable target organ to preliminarily explore the mechanism underlying the regulation of chicken growth through controlled food intake. This study aimed to identify key food intake-related genes through combinatorial GWAS and transcriptome analysis. We performed GWAS of body weight in an F2 intercrossed population and transcriptional profiling analysis of gizzards from chickens with different body weight. We identified a major 10 Mb quantitative trait locus (QTL) on chromosome 1 and numerous minor QTL distributed among 24 chromosomes. Combining data regarding QTL and gizzard gene expression, two hub genes, MLNR and HTR2A, and a list of core genes with small effect were found to be associated with food intake. Furthermore, the neuroactive ligand-receptor interaction pathway was found to play a key role in regulating the appetite of chickens. The present results show the major-minor gene interactions in metabolic pathways and provide insights into the genetic architecture and gene regulation during food intake in chickens.
Collapse
Affiliation(s)
- Xuemin Cao
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuzhe Wang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.,College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dingming Shu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Hao Qu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Chenglong Luo
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xiaoxiang Hu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
146
|
Li D, Sun G, Zhang M, Cao Y, Zhang C, Fu Y, Li F, Li G, Jiang R, Han R, Li Z, Wang Y, Tian Y, Liu X, Li W, Kang X. Breeding history and candidate genes responsible for black skin of Xichuan black-bone chicken. BMC Genomics 2020; 21:511. [PMID: 32703156 PMCID: PMC7376702 DOI: 10.1186/s12864-020-06900-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022] Open
Abstract
Background Domesticated chickens have a wide variety of phenotypes, in contrast with their wild progenitors. Unlike other chicken breeds, Xichuan black-bone chickens have blue-shelled eggs, and black meat, beaks, skin, bones, and legs. The breeding history and the economically important traits of this breed have not yet been explored at the genomic level. We therefore used whole genome resequencing to analyze the breeding history of the Xichuan black-bone chickens and to identify genes responsible for its unique phenotype. Results Principal component and population structure analysis showed that Xichuan black-bone chicken is in a distinct clade apart from eight other breeds. Linkage disequilibrium analysis showed that the selection intensity of Xichuan black-bone chickens is higher than for other chicken breeds. The estimated time of divergence between the Xichuan black-bone chickens and other breeds is 2.89 ka years ago. Fst analysis identified a selective sweep that contains genes related to melanogenesis. This region is probably associated with the black skin of the Xichuan black-bone chickens and may be the product of long-term artificial selection. A combined analysis of genomic and transcriptomic data suggests that the candidate gene related to the black-bone trait, EDN3, might interact with the upstream ncRNA LOC101747896 to generate black skin color during melanogenesis. Conclusions These findings help explain the unique genetic and phenotypic characteristics of Xichuan black-bone chickens, and provide basic research data for studying melanin deposition in animals.
Collapse
Affiliation(s)
- Donghua Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Guirong Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450046, China
| | - Meng Zhang
- The First Hospital, Jilin University, Changchun, 130062, Jilin, China
| | - Yanfang Cao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Chenxi Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yawei Fu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Fang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Guoxi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450046, China
| | - Ruirui Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450046, China
| | - Ruili Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450046, China
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450046, China
| | - Yanbin Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450046, China
| | - Yadong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450046, China
| | - Xiaojun Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Wenting Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China. .,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450046, China.
| |
Collapse
|
147
|
Wang X, Jiang G, Kebreab E, Li J, Feng X, Li C, Zhang X, Huang X, Fang C, Fang R, Dai Q. 1H NMR-based metabolomics study of breast meat from Pekin and Linwu duck of different ages and relation to meat quality. Food Res Int 2020; 133:109126. [PMID: 32466939 DOI: 10.1016/j.foodres.2020.109126] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/27/2020] [Accepted: 02/23/2020] [Indexed: 01/09/2023]
Abstract
This study investigated the effects of breed and age on meat quality, and metabolite profiles of duck breast meat, and the relationship between changes in metabolite profiles and the meat quality. The meat quality and 1H nuclear magnetic resonance (NMR)-based metabolomics of breast meat from Pekin and Linwu ducks at 2 different ages (42 and 72d) was analyzed. The results showed that age exerted a greater effect on the observed meat quality traits of breast meat than breed, and its interaction (breed × age) effect on pH values and yellowness (b*) of duck breast meat was significant. Total of 32 metabolites were detected in breast meat of Pekin and Linwu duck. The difference of metabolite profiles in breast meat between Pekin and Linwu duck at 72 d was greater than that at 42 d, while the effects of age on metabolites of duck meat from both breeds were similar. Anserine, aspartate, and carnosine were the most relevant metabolites of duck breast meat quality, and nicotinamide in duck breast meat was negatively correlated with cooking loss. These results provide an overall perspective for bridging the gap between the breed and age on duck meat quality and metabolome, and improve the understanding of the relationship between metabolites and duck meat quality.
Collapse
Affiliation(s)
- Xiangrong Wang
- Hunan Institute of Animal Science and Veterinary Medicine, Changsha, Hunan 410131, China; Department of Animal Science, University of California, Davis, CA 95616, United States; Hunan Co-Innovation Center of Animal Production Safety (CICAPS), Changsha, Hunan 410128, China.
| | - Guitao Jiang
- Hunan Institute of Animal Science and Veterinary Medicine, Changsha, Hunan 410131, China; Hunan Co-Innovation Center of Animal Production Safety (CICAPS), Changsha, Hunan 410128, China.
| | - Ermias Kebreab
- Department of Animal Science, University of California, Davis, CA 95616, United States.
| | - Jinghui Li
- Department of Animal Science, University of California, Davis, CA 95616, United States.
| | - Xiaoyu Feng
- Department of Animal Science, University of California, Davis, CA 95616, United States.
| | - Chuang Li
- Hunan Institute of Animal Science and Veterinary Medicine, Changsha, Hunan 410131, China.
| | - Xu Zhang
- Hunan Institute of Animal Science and Veterinary Medicine, Changsha, Hunan 410131, China.
| | - Xuan Huang
- Hunan Institute of Animal Science and Veterinary Medicine, Changsha, Hunan 410131, China.
| | - Chengkun Fang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Rejun Fang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Co-Innovation Center of Animal Production Safety (CICAPS), Changsha, Hunan 410128, China.
| | - Qiuzhong Dai
- Hunan Institute of Animal Science and Veterinary Medicine, Changsha, Hunan 410131, China; Hunan Co-Innovation Center of Animal Production Safety (CICAPS), Changsha, Hunan 410128, China.
| |
Collapse
|
148
|
Yang W, Yang Y, Zhao C, Yang K, Wang D, Yang J, Niu X, Gong J. Animal-ImputeDB: a comprehensive database with multiple animal reference panels for genotype imputation. Nucleic Acids Res 2020; 48:D659-D667. [PMID: 31584087 PMCID: PMC6943029 DOI: 10.1093/nar/gkz854] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/19/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
Animal-ImputeDB (http://gong_lab.hzau.edu.cn/Animal_ImputeDB/) is a public database with genomic reference panels of 13 animal species for online genotype imputation, genetic variant search, and free download. Genotype imputation is a process of estimating missing genotypes in terms of the haplotypes and genotypes in a reference panel. It can effectively increase the density of single nucleotide polymorphisms (SNPs) and thus can be widely used in large-scale genome-wide association studies (GWASs) using relatively inexpensive and low-density SNP arrays. However, most animals except humans lack high-quality reference panels, which greatly limits the application of genotype imputation in animals. To overcome this limitation, we developed Animal-ImputeDB, which is dedicated to collecting genotype data and whole-genome resequencing data of nonhuman animals from various studies and databases. A computational pipeline was developed to process different types of raw data to construct reference panels. Finally, 13 high-quality reference panels including ∼400 million SNPs from 2265 samples were constructed. In Animal-ImputeDB, an easy-to-use online tool consisting of two popular imputation tools was designed for the purpose of genotype imputation. Collectively, Animal-ImputeDB serves as an important resource for animal genotype imputation and will greatly facilitate research on animal genomic selection and genetic improvement.
Collapse
Affiliation(s)
- Wenqian Yang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Yanbo Yang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Cecheng Zhao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Kun Yang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Dongyang Wang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Jiajun Yang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Xiaohui Niu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Jing Gong
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P. R. China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, P. R. China
| |
Collapse
|
149
|
Wang L, Guo J, Xi Y, Ma S, Li Y, He H, Wang J, Han C, Bai L, Mustafa A, Liu H, Li L. Understanding the Genetic Domestication History of the Jianchang Duck by Genotyping and Sequencing of Genomic Genes Under Selection. G3 (BETHESDA, MD.) 2020; 10:1469-1476. [PMID: 32165372 PMCID: PMC7202016 DOI: 10.1534/g3.119.400893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/01/2020] [Indexed: 12/11/2022]
Abstract
The Jianchang duck is mainly distributed in Southwest China, and has the characteristics of fast growth rate and strong abilities in lipid deposition in the liver. In order to investigate the effects of domestication process on formation of the unique characteristics of Jianchang duck, the whole genome of sixteen individuals and three pooling of Jianchang duck were re-sequenced, and genome data of 70 mallards and 83 domestic ducks from thirteen different places in China were obtained from NCBI. The population stratification and evolution analysis showed gene exchanges existed between the Jianchang and other domestic duck populations, as well as Jianchang ducks and mallards. Genomic comparison between mallards and Jianchang ducks showed genes, including CNTN1, CHRNA9, and SHANK2, which is involved in brain and nerve development, experienced strong positive selection in the process of Jianchang duck domestication. The genomic comparison between Jianchang and domestic duck populations showed that HSD17B12 and ESM1, which affect lipid metabolism, experienced strong positive selection during the domestication process. FST analysis among populations of Jianchang duck with different plumage colors indicated that MITF was related to the phenotype of a white feather, while MC1R was related to the phenotype of hemp feather. Our results provided a base for the domestication process of Jianchang duck and the genomic genes for unique traits.
Collapse
Affiliation(s)
- Lei Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P.R. China
| | - Jiazhong Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P.R. China
| | - Yang Xi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P.R. China
| | - Shengchao Ma
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P.R. China
| | - Yanying Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P.R. China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P.R. China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P.R. China
| | - Chunchun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P.R. China
| | - Lili Bai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P.R. China
| | - Ahsan Mustafa
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, P.R. China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P.R. China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P.R. China
| |
Collapse
|
150
|
Huang X, Otecko NO, Peng M, Weng Z, Li W, Chen J, Zhong M, Zhong F, Jin S, Geng Z, Luo W, He D, Ma C, Han J, Ommeh SC, Zhang Y, Zhang X, Du B. Genome-wide genetic structure and selection signatures for color in 10 traditional Chinese yellow-feathered chicken breeds. BMC Genomics 2020; 21:316. [PMID: 32312230 PMCID: PMC7171827 DOI: 10.1186/s12864-020-6736-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/15/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Yellow-feathered chickens (YFCs) have a long history in China. They are well-known for the nutritional and commercial importance attributable to their yellow color phenotype. Currently, there is a huge paucity in knowledge of the genetic determinants responsible for phenotypic and biochemical properties of these iconic chickens. This study aimed to uncover the genetic structure and the molecular underpinnings of the YFCs trademark coloration. RESULTS The whole-genomes of 100 YFCs from 10 major traditional breeds and 10 Huaibei partridge chickens from China were re-sequenced. Comparative population genomics based on autosomal single nucleotide polymorphisms (SNPs) revealed three geographically based clusters among the YFCs. Compared to other Chinese indigenous chicken genomes incorporated from previous studies, a closer genetic proximity within YFC breeds than between YFC breeds and other chicken populations is evident. Through genome-wide scans for selective sweeps, we identified RALY heterogeneous nuclear ribonucleoprotein (RALY), leucine rich repeat containing G protein-coupled receptor 4 (LGR4), solute carrier family 23 member 2 (SLC23A2), and solute carrier family 2 member 14 (SLC2A14), besides the classical beta-carotene dioxygenase 2 (BCDO2), as major candidates pigment determining genes in the YFCs. CONCLUSION We provide the first comprehensive genomic data of the YFCs. Our analyses show phylogeographical patterns among the YFCs and potential candidate genes giving rise to the yellow color trait of the YFCs. This study lays the foundation for further research on the genome-phenotype cross-talks that define important poultry traits and for formulating genetic breeding and conservation strategies for the YFCs.
Collapse
Affiliation(s)
- Xunhe Huang
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, School of Life Science of Jiaying University, Meizhou, 514015, China
| | - Newton O Otecko
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Minsheng Peng
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Zhuoxian Weng
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, School of Life Science of Jiaying University, Meizhou, 514015, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Weina Li
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, School of Life Science of Jiaying University, Meizhou, 514015, China
| | - Jiebo Chen
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, School of Life Science of Jiaying University, Meizhou, 514015, China
| | - Ming Zhong
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, School of Life Science of Jiaying University, Meizhou, 514015, China
| | - Fusheng Zhong
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, School of Life Science of Jiaying University, Meizhou, 514015, China
| | - Sihua Jin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Zhaoyu Geng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Wei Luo
- College of Animal Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Danlin He
- College of Animal Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Cheng Ma
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Jianlin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.,International Livestock Research Institute (ILRI), Nairobi, 30709-00100, Kenya
| | - Sheila C Ommeh
- Animal Biotechnology Group, Institute For Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, 62000-00200, Kenya
| | - Yaping Zhang
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China. .,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China. .,State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, 650091, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Xiquan Zhang
- College of Animal Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Bingwang Du
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, School of Life Science of Jiaying University, Meizhou, 514015, China.
| |
Collapse
|