101
|
Liao C, Li J, Chen X, Lu J, Liu Q, Chen L, Huang Y, Li Y. Selective synthesis of pyridyl pyridones and oxydipyridines by transition-metal-free hydroxylation and arylation of 2-fluoropyridine derivatives. Org Biomol Chem 2020; 18:1185-1193. [PMID: 31989995 DOI: 10.1039/c9ob02661d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An efficient protocol for the construction of various pyridyl pyridone and oxydipyridine derivatives through a hydroxylation and arylation tandem reaction of 2-fluoropyridines is reported. Under simple transition-metal-free conditions, the reaction provided a series of products in good to excellent yields, and their structures were confirmed by crystal diffraction analysis. Furthermore, the controlling effect of 6-position substituents on the highly selective synthesis of pyridone and oxydipyridine was studied.
Collapse
Affiliation(s)
- Chunshu Liao
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 China.
| | - Jianrong Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 China.
| | - Xiaoqiong Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 China.
| | - Jingjun Lu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 China.
| | - Qiang Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 China. and Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lu Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 China.
| | - Yubing Huang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 China.
| | - Yibiao Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 China.
| |
Collapse
|
102
|
Corea RSG, Gronert S. Remote functional group directed C–H activation by an Ir( iii) phenanthroline complex. Chem Commun (Camb) 2020; 56:15569-15572. [DOI: 10.1039/d0cc06298g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The regioselectivity of the C–H activation of 1-butanol and 1-methoxybutane by an iridium(iii) phenanthroline complex was studied in the gas phase and revealed activation at gamma and delta carbons.
Collapse
Affiliation(s)
| | - Scott Gronert
- Department of Chemistry
- Virginia Commonwealth University
- Richmond
- USA
- Department of Chemistry and Biochemistry
| |
Collapse
|
103
|
Mei H, Liu J, Pajkert R, Röschenthaler GV, Han J. A Selectfluor-promoted oxidative reaction of disulfides and amines: access to sulfinamides. Org Biomol Chem 2020; 18:3761-3766. [DOI: 10.1039/d0ob00720j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An unprecedented metal-free oxidative reaction of disulfides and amines with Selectfluor as a mild oxidant under aerobic conditions was developed.
Collapse
Affiliation(s)
- Haibo Mei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Jiang Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Romana Pajkert
- Department of Life Sciences and Chemistry
- Jacobs University Bremen gGmbH
- 28759 Bremen
- Germany
| | | | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| |
Collapse
|
104
|
Zhong LJ, Wang HY, Ouyang XH, Li JH, An DL. Benzylic C–H heteroarylation of N-(benzyloxy)phthalimides with cyanopyridines enabled by photoredox 1,2-hydrogen atom transfer. Chem Commun (Camb) 2020; 56:8671-8674. [DOI: 10.1039/d0cc03619f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Visible light initiated α-C(sp3)–H hetroarylation of N-(benzyloxy)phthalimides with cyanopyridines via 1,2-hydrogen atom transfer is depicted.
Collapse
Affiliation(s)
- Long-Jin Zhong
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- Hunan University
- Changsha 410082
- China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
| | - Hong-Yu Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Jin-Heng Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- Hunan University
- Changsha 410082
- China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
| | - De-Lie An
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- Hunan University
- Changsha 410082
- China
| |
Collapse
|
105
|
Chen R, Wang KK, Wang ZY, Miao C, Wang D, Zhang AA, Liu L. Synthesis of γ-Lactones by TBAI-Promoted Intermolecular Carboesterification of Carboxylic Acids with Alkenes and Alcohols. J Org Chem 2019; 84:16068-16075. [PMID: 31769673 DOI: 10.1021/acs.joc.9b02568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A novel tetrabutylammonium iodide (TBAI)-promoted three-component reaction of carboxylic acid with alkene and alcohol has been developed, which represents facile and straightforward access to polysubstituted γ-lactone skeletons in moderate-to-good yields. This methodology is distinguished by the use of a commercial catalyst and readily available starting materials, wide substrate scope, and operational simplicity. Mechanistic studies suggested that this transformation went through a radical process.
Collapse
Affiliation(s)
- Rongxiang Chen
- College of Chemistry and Chemical Engineering , Xinxiang University , Xinxiang , Henan 453000 , P. R. China
| | - Kai-Kai Wang
- College of Chemistry and Chemical Engineering , Xinxiang University , Xinxiang , Henan 453000 , P. R. China
| | - Zhan-Yong Wang
- College of Chemistry and Chemical Engineering , Xinxiang University , Xinxiang , Henan 453000 , P. R. China
| | - Changqing Miao
- College of Chemistry and Chemical Engineering , Xinxiang University , Xinxiang , Henan 453000 , P. R. China
| | - Doudou Wang
- College of Chemistry and Chemical Engineering , Xinxiang University , Xinxiang , Henan 453000 , P. R. China
| | - An-An Zhang
- College of Chemistry and Chemical Engineering , Shangqiu Normal University , Shangqiu , Henan 476000 , P. R. China
| | - Lantao Liu
- College of Chemistry and Chemical Engineering , Shangqiu Normal University , Shangqiu , Henan 476000 , P. R. China
| |
Collapse
|
106
|
Gazi S, Đokić M, Chin KF, Ng PR, Soo HS. Visible Light-Driven Cascade Carbon-Carbon Bond Scission for Organic Transformations and Plastics Recycling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1902020. [PMID: 31871870 PMCID: PMC6918108 DOI: 10.1002/advs.201902020] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/03/2019] [Indexed: 06/10/2023]
Abstract
Significant efforts are devoted to developing artificial photosynthetic systems to produce fuels and chemicals in order to cope with the exacerbating energy and environmental crises in the world now. Nonetheless, the large-scale reactions that are the focus of the artificial photosynthesis community, such as water splitting, are thus far not economically viable, owing to the existing, cheaper alternatives to the gaseous hydrogen and oxygen products. As a potential substitute for water oxidation, here, a unique, visible light-driven oxygenation of carbon-carbon bonds for the selective transformation of 32 unactivated alcohols, mediated by a vanadium photocatalyst under ambient, atmospheric conditions is presented. Furthermore, since the initial alcohol products remain as substrates, an unprecedented photodriven cascade carbon-carbon bond cleavage of macromolecules can be performed. Accordingly, hydroxyl-terminated polymers such as polyethylene glycol, its block co-polymer with polycaprolactone, and even the non-biodegradable polyethylene can be repurposed into fuels and chemical feedstocks, such as formic acid and methyl formate. Thus, a distinctive approach is presented to integrate the benefits of photoredox catalysis into environmental remediation and artificial photosynthesis.
Collapse
Affiliation(s)
- Sarifuddin Gazi
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University21 Nanyang LinkSingapore637371Singapore
- Department of ChemistrySchool of Applied SciencesUniversity of Science and TechnologyTechno City, Kling Road, Baridua 9th MileRi BhoiMeghalaya793101India
| | - Miloš Đokić
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University21 Nanyang LinkSingapore637371Singapore
| | - Kek Foo Chin
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University21 Nanyang LinkSingapore637371Singapore
| | - Pei Rou Ng
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University21 Nanyang LinkSingapore637371Singapore
| | - Han Sen Soo
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University21 Nanyang LinkSingapore637371Singapore
- Solar Fuels LaboratoryNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| |
Collapse
|
107
|
Yuan JW, Zhu JL, Li B, Yang LY, Mao P, Zhang SR, Li YC, Qu LB. Transition-metal free C3-amidation of quinoxalin-2(1H)-ones using Selectfluor as a mild oxidant. Org Biomol Chem 2019; 17:10178-10187. [PMID: 31763665 DOI: 10.1039/c9ob02157d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A practical and efficient synthetic route to construct a variety of 3-amidated quinoxalin-2(1H)-ones was developed via transition-metal free direct oxidative amidation of quinoxalin-2(1H)-ones with amidates using Selectfluor reagent as a mild oxidant. This protocol features mild reaction conditions, operational simplicity, broad substrate scope, and good to excellent yields.
Collapse
Affiliation(s)
- Jin-Wei Yuan
- School of Chemistry & Chemical Engineering, Henan University of Technology; Academician Workstation for Natural Medicinal Chemistry of Henan Province, Zhengzhou 450001, China.
| | - Jun-Liang Zhu
- School of Chemistry & Chemical Engineering, Henan University of Technology; Academician Workstation for Natural Medicinal Chemistry of Henan Province, Zhengzhou 450001, China.
| | - Bing Li
- School of Chemistry & Chemical Engineering, Henan University of Technology; Academician Workstation for Natural Medicinal Chemistry of Henan Province, Zhengzhou 450001, China.
| | - Liang-Yu Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology; Academician Workstation for Natural Medicinal Chemistry of Henan Province, Zhengzhou 450001, China.
| | - Pu Mao
- School of Chemistry & Chemical Engineering, Henan University of Technology; Academician Workstation for Natural Medicinal Chemistry of Henan Province, Zhengzhou 450001, China.
| | - Shou-Ren Zhang
- Henan Key Laboratory of Nanocomposites and Applications; Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China
| | - Yan-Chun Li
- Henan Key Laboratory of Nanocomposites and Applications; Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China
| | - Ling-Bo Qu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
108
|
Bieszczad B, Perego LA, Melchiorre P. Photochemical C−H Hydroxyalkylation of Quinolines and Isoquinolines. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910641] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bartosz Bieszczad
- ICIQ – Institute of Chemical Research of Catalonia, the Barcelona Institute of Science and Technology Avenida Països Catalans 16 – 43007 Tarragona Spain
| | - Luca Alessandro Perego
- ICIQ – Institute of Chemical Research of Catalonia, the Barcelona Institute of Science and Technology Avenida Països Catalans 16 – 43007 Tarragona Spain
| | - Paolo Melchiorre
- ICREA Passeig Lluís Companys 23 08010 Barcelona Spain
- ICIQ – Institute of Chemical Research of Catalonia, the Barcelona Institute of Science and Technology Avenida Països Catalans 16 – 43007 Tarragona Spain
| |
Collapse
|
109
|
Bieszczad B, Perego LA, Melchiorre P. Photochemical C-H Hydroxyalkylation of Quinolines and Isoquinolines. Angew Chem Int Ed Engl 2019; 58:16878-16883. [PMID: 31529788 PMCID: PMC6900123 DOI: 10.1002/anie.201910641] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Indexed: 11/07/2022]
Abstract
We report herein a visible light-mediated C-H hydroxyalkylation of quinolines and isoquinolines that proceeds via a radical path. The process exploits the excited-state reactivity of 4-acyl-1,4-dihydropyridines, which can readily generate acyl radicals upon blue light absorption. By avoiding the need for external oxidants, this radical-generating strategy enables a departure from the classical, oxidative Minisci-type pattern and unlocks a unique reactivity, leading to hydroxyalkylated heteroarenes. Mechanistic investigations provide evidence that a radical-mediated spin-center shift is the key step of the process. The method's mild reaction conditions and high functional group tolerance accounted for the late-stage functionalization of active pharmaceutical ingredients and natural products.
Collapse
Affiliation(s)
- Bartosz Bieszczad
- ICIQ – Institute of Chemical Research of Catalonia, the Barcelona Institute of Science and TechnologyAvenida Països Catalans 16 –43007TarragonaSpain
| | - Luca Alessandro Perego
- ICIQ – Institute of Chemical Research of Catalonia, the Barcelona Institute of Science and TechnologyAvenida Països Catalans 16 –43007TarragonaSpain
| | - Paolo Melchiorre
- ICREAPasseig Lluís Companys 2308010BarcelonaSpain
- ICIQ – Institute of Chemical Research of Catalonia, the Barcelona Institute of Science and TechnologyAvenida Països Catalans 16 –43007TarragonaSpain
| |
Collapse
|
110
|
Aguilar Troyano FJ, Ballaschk F, Jaschinski M, Özkaya Y, Gómez‐Suárez A. Light-Mediated Formal Radical Deoxyfluorination of Tertiary Alcohols through Selective Single-Electron Oxidation with TEDA 2+.. Chemistry 2019; 25:14054-14058. [PMID: 31452265 PMCID: PMC6899844 DOI: 10.1002/chem.201903702] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Indexed: 01/28/2023]
Abstract
The synthesis of tertiary alkyl fluorides through a formal radical deoxyfluorination process is described herein. This light-mediated, catalyst-free methodology is fast and broadly applicable allowing for the preparation of C-F bonds from (hetero)benzylic, propargylic, and non-activated tertiary alcohol derivatives. Preliminary mechanistic studies support that the key step of the reaction is the single-electron oxidation of cesium oxalates-which are readily available from the corresponding tertiary alcohols-with in situ generated TEDA2+. (TEDA: N-(chloromethyl)triethylenediamine), a radical cation derived from Selectfluor®.
Collapse
Affiliation(s)
| | - Frederic Ballaschk
- Organic ChemistryBergische Universität WuppertalGaußstrasse 2042119WuppertalGermany
| | - Marcel Jaschinski
- Organic ChemistryBergische Universität WuppertalGaußstrasse 2042119WuppertalGermany
| | - Yasemin Özkaya
- Organic ChemistryBergische Universität WuppertalGaußstrasse 2042119WuppertalGermany
| | - Adrián Gómez‐Suárez
- Organic ChemistryBergische Universität WuppertalGaußstrasse 2042119WuppertalGermany
| |
Collapse
|
111
|
Vijeta A, Reisner E. Carbon nitride as a heterogeneous visible-light photocatalyst for the Minisci reaction and coupling to H 2 production. Chem Commun (Camb) 2019; 55:14007-14010. [PMID: 31690891 DOI: 10.1039/c9cc07348e] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cyanamide functionalised carbon nitride powder is reported as a photocatalyst for direct Minisci-type coupling of heteroarenes with ethers, alcohols, and amides using atmospheric oxygen as the oxidant at room temperature. This mild protocol displays broad substrate scope, good functional group tolerance and the catalyst can be easily isolated and reused for several cycles. It thereby addresses the two major limitations of previously reported photoredox-mediated Minisci reactions: (i) use of expensive and potentially harmful non-recyclable photocatalysts, and (ii) requirement of a stoichiometric amount of strong chemical oxidant. Finally, using platinum as a co-catalyst with the carbon nitride allows this light-mediated reaction to generate two value-added products under an anaerobic atmosphere - functionalised heteroarenes and H2 fuel.
Collapse
Affiliation(s)
- Arjun Vijeta
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Erwin Reisner
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
112
|
Wang C, Yu Y, Liu WL, Duan WL. Site-Tunable Csp3–H Bonds Functionalization by Visible-Light-Induced Radical Translocation of N-Alkoxyphthalimides. Org Lett 2019; 21:9147-9152. [DOI: 10.1021/acs.orglett.9b03524] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Chuanyong Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China
| | - Yangyang Yu
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China
| | - Wen-Long Liu
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China
| | - Wei-Liang Duan
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China
| |
Collapse
|
113
|
Zhou J, Zhou P, Zhao T, Ren Q, Li J. (Thio)etherification of Quinoxalinones under Visible‐Light Photoredox Catalysis. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901008] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jiadi Zhou
- Collaborative Innovation Center of Yangtze River Delta Region Green PharmaceuticalsZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Peng Zhou
- College of Pharmaceutical SciencesZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Tingting Zhao
- College of Pharmaceutical SciencesZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Quanlei Ren
- College of Pharmaceutical SciencesZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Jianjun Li
- Collaborative Innovation Center of Yangtze River Delta Region Green PharmaceuticalsZhejiang University of Technology Hangzhou 310014 People's Republic of China
- College of Pharmaceutical SciencesZhejiang University of Technology Hangzhou 310014 People's Republic of China
| |
Collapse
|
114
|
Mai W, Yuan J, Zhu J, Li Q, Yang L, Xiao Y, Mao P, Qu L. Selectfluor‐Mediated Direct C‐H Phosphonation of Quinoxalin‐2(1
H
)‐ones under Base and Transition‐Metal Free Conditions. ChemistrySelect 2019. [DOI: 10.1002/slct.201903478] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wen‐Peng Mai
- School of Materials and Chemical EngineeringHenan Institute of Engineering Zhengzhou 451191 China
| | - Jin‐Wei Yuan
- School of Chemistry & Chemical EngineeringHenan University of TechnologyAcademician Workstation for Natural Medicinal Chemistry of Henan Province Zhengzhou 450001 China
| | - Jun‐Liang Zhu
- School of Chemistry & Chemical EngineeringHenan University of TechnologyAcademician Workstation for Natural Medicinal Chemistry of Henan Province Zhengzhou 450001 China
| | - Qiang‐Qiang Li
- School of Chemistry & Chemical EngineeringHenan University of TechnologyAcademician Workstation for Natural Medicinal Chemistry of Henan Province Zhengzhou 450001 China
| | - Liang‐Ru Yang
- School of Chemistry & Chemical EngineeringHenan University of TechnologyAcademician Workstation for Natural Medicinal Chemistry of Henan Province Zhengzhou 450001 China
| | - Yong‐Mei Xiao
- School of Chemistry & Chemical EngineeringHenan University of TechnologyAcademician Workstation for Natural Medicinal Chemistry of Henan Province Zhengzhou 450001 China
| | - Pu Mao
- School of Chemistry & Chemical EngineeringHenan University of TechnologyAcademician Workstation for Natural Medicinal Chemistry of Henan Province Zhengzhou 450001 China
| | - Ling‐Bo Qu
- College of ChemistryZhengzhou University Zhengzhou 450001 China
| |
Collapse
|
115
|
Galloway JD, Mai DN, Baxter RD. Radical Benzylation of Quinones via C–H Abstraction. J Org Chem 2019; 84:12131-12137. [DOI: 10.1021/acs.joc.9b01004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jordan D. Galloway
- Department of Chemistry, Chemical Biology, University of California, 5200 North Lake Road, Merced, California 95343, United States
| | - Duy N. Mai
- Department of Chemistry, Chemical Biology, University of California, 5200 North Lake Road, Merced, California 95343, United States
| | - Ryan D. Baxter
- Department of Chemistry, Chemical Biology, University of California, 5200 North Lake Road, Merced, California 95343, United States
| |
Collapse
|
116
|
Huang CY, Kang H, Li J, Li CJ. En Route to Intermolecular Cross-Dehydrogenative Coupling Reactions. J Org Chem 2019; 84:12705-12721. [DOI: 10.1021/acs.joc.9b01704] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Chia-Yu Huang
- Department of Chemistry and FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montreal, Quebec H3A 0B8, Canada
| | - Hyotaik Kang
- Department of Chemistry and FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montreal, Quebec H3A 0B8, Canada
| | - Jianbin Li
- Department of Chemistry and FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montreal, Quebec H3A 0B8, Canada
| | - Chao-Jun Li
- Department of Chemistry and FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
117
|
Paul S, Bhakat M, Guin J. Radical C−H Acylation of Nitrogen Heterocycles Induced by an Aerobic Oxidation of Aldehydes. Chem Asian J 2019; 14:3154-3160. [DOI: 10.1002/asia.201900857] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Subhasis Paul
- School of Chemical SciencesIndian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur Kolkata- 700032 India
| | - Manotosh Bhakat
- School of Chemical SciencesIndian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur Kolkata- 700032 India
| | - Joyram Guin
- School of Chemical SciencesIndian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur Kolkata- 700032 India
| |
Collapse
|
118
|
Liu X, Sun K, Chen X, Wang W, Liu Y, Li Q, Peng Y, Qu L, Yu B. Visible‐Light‐Promoted Transition‐Metal‐Free Approach toward Phosphoryl‐Substituted Dihydroisoquinolones
via
Cascade Phosphorylation/Cyclization of
N
‐Allylbenzamides. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900544] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiao‐Ceng Liu
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 People's Republic of China
| | - Kai Sun
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 People's Republic of China
| | - Xiao‐Lan Chen
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 People's Republic of China
| | - Wen‐Fei Wang
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 People's Republic of China
| | - Yan Liu
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 People's Republic of China
| | - Qian‐Li Li
- School of Chemistry & Chemical EngineeringLiaocheng University, Liaocheng Shandong 252059 People's Republic of China
| | - Yu‐Yu Peng
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and TransportationChangsha University of Science and Technology Changsha 410114 People's Republic of China
| | - Ling‐Bo Qu
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 People's Republic of China
| | - Bing Yu
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 People's Republic of China
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and TransportationChangsha University of Science and Technology Changsha 410114 People's Republic of China
| |
Collapse
|
119
|
Xu WX, Dai XQ, Weng JQ. K 2S 2O 8-Mediated Hydroxyalkylation of Benzothiazoles with Alcohols in Aqueous Solution. ACS OMEGA 2019; 4:11285-11292. [PMID: 31460231 PMCID: PMC6648524 DOI: 10.1021/acsomega.9b01695] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 06/18/2019] [Indexed: 06/10/2023]
Abstract
The K2S2O8-mediated hydroxyalkylation of 2H-benzothiazoles with aliphatic alcohols in aqueous solution was described. The mild and convenient protocol generated a series of hydroxyalkylated benzothiazoles in moderate to good yields. Besides, benzimidazole and ethers were also compatible in this reaction, leading to corresponding C2 ether-substituted heteroarenes.
Collapse
Affiliation(s)
- Wen-Xiu Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| | - Xiao-Qiang Dai
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| | - Jian-Quan Weng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| |
Collapse
|
120
|
Zhao H, Jin J. Visible Light-Promoted Aliphatic C-H Arylation Using Selectfluor as a Hydrogen Atom Transfer Reagent. Org Lett 2019; 21:6179-6184. [PMID: 31120260 DOI: 10.1021/acs.orglett.9b01635] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A mild, practical method for direct arylation of unactivated C(sp3)-H bonds with heteroarenes has been achieved via photochemistry. Selectfluor is used as a hydrogen atom transfer reagent under visible light irradiation. A diverse range of chemical feedstocks, such as alkanes, ketones, esters, and ethers, and complex molecules readily undergo intermolecular C(sp3)-C(sp2) bond formation. Moreover, a broad array of heteroarenes, including pharmaceutically useful scaffolds, can be alkylated effectively by the protocol presented here.
Collapse
Affiliation(s)
- Hong Zhao
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Jian Jin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| |
Collapse
|
121
|
Huang CY, Li J, Liu W, Li CJ. Diacetyl as a "traceless" visible light photosensitizer in metal-free cross-dehydrogenative coupling reactions. Chem Sci 2019; 10:5018-5024. [PMID: 31183051 PMCID: PMC6530541 DOI: 10.1039/c8sc05631e] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/07/2019] [Indexed: 12/22/2022] Open
Abstract
Minisci alkylation is of prime importance for its applicability in functionalizing diverse heteroarenes, which are core structures in many bioactive compounds. In alkyl radical generation processes, precious metal catalysts, high temperatures and excessive oxidants are generally involved, which lead to sustainability and safety concerns. Herein we report a new strategy using diacetyl (2,3-butanedione) as an abundant, visible light-sensitive and "traceless" hydrogen atom abstractor to achieve metal-free cross-dehydrogenative Minisci alkylation under mild conditions. Mechanistic studies supported hydrogen atom transfer (HAT) between an activated C(sp3)-H substrate and diacetyl. Moreover, with the assistance of di-tert-butyl peroxide (DTBP), the scope of the reaction could be extended to strong aliphatic C-H bonds via diacetyl-mediated energy transfer. The robustness of this strategy was demonstrated by functionalizing complex molecules such as quinine, fasudil, nicotine, menthol and alanine derivatives.
Collapse
Affiliation(s)
- Chia-Yu Huang
- Department of Chemistry , FRQNT Centre for Green Chemistry and Catalysis , McGill University , 801 Sherbrooke St. W. , Montreal , Quebec H3A 0B8 , Canada .
| | - Jianbin Li
- Department of Chemistry , FRQNT Centre for Green Chemistry and Catalysis , McGill University , 801 Sherbrooke St. W. , Montreal , Quebec H3A 0B8 , Canada .
| | - Wenbo Liu
- Department of Chemistry , FRQNT Centre for Green Chemistry and Catalysis , McGill University , 801 Sherbrooke St. W. , Montreal , Quebec H3A 0B8 , Canada .
| | - Chao-Jun Li
- Department of Chemistry , FRQNT Centre for Green Chemistry and Catalysis , McGill University , 801 Sherbrooke St. W. , Montreal , Quebec H3A 0B8 , Canada .
| |
Collapse
|
122
|
Kumagai Y, Murakami N, Kamiyama F, Tanaka R, Yoshino T, Kojima M, Matsunaga S. C–H γ,γ,γ-Trifluoroalkylation of Quinolines via Visible-Light-Induced Sequential Radical Additions. Org Lett 2019; 21:3600-3605. [DOI: 10.1021/acs.orglett.9b01015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuhei Kumagai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Nanami Murakami
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Futa Kamiyama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Ryo Tanaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Masahiro Kojima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
123
|
Yuan J, Zeng F, Mai W, Yang L, Xiao Y, Mao P, Wei D. Fluorination-triggered tandem cyclization of styrene-type carboxylic acids to access 3-aryl isocoumarin derivatives under microwave irradiation. Org Biomol Chem 2019; 17:5038-5046. [PMID: 31045201 DOI: 10.1039/c9ob00509a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A practical and straightforward synthetic route through a fluorination-triggered tandem cyclization of styrene-type carboxylic acids was developed to construct a variety of 4-fluoro-3-aryl-3,4-dihydroisocoumarins and 3-arylisocoumarins under microwave irradiation. This novel protocol features mild reaction conditions and operational simplicity, with good yields.
Collapse
Affiliation(s)
- Jinwei Yuan
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China.
| | - Fanlin Zeng
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China.
| | - Wenpeng Mai
- School of Material and Chemical Engineering, Henan Institute of Engineering, Zhengzhou 451191, P. R. China
| | - Liangru Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China.
| | - Yongmei Xiao
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China.
| | - Pu Mao
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China.
| | - Donghui Wei
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
124
|
Liang XA, Niu L, Wang S, Liu J, Lei A. Visible-Light-Induced C(sp3)–H Oxidative Arylation with Heteroarenes. Org Lett 2019; 21:2441-2444. [DOI: 10.1021/acs.orglett.9b00744] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xing-An Liang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, People’s Republic of China
| | - Linbin Niu
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, People’s Republic of China
| | - Shengchun Wang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, People’s Republic of China
| | - Jiamei Liu
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, People’s Republic of China
| | - Aiwen Lei
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, People’s Republic of China
| |
Collapse
|
125
|
Li R, Shi T, Chen XL, Lv QY, Zhang YL, Peng YY, Qu LB, Yu B. Visible-light-promoted organic dye-catalyzed sulfidation and phosphorylation of arylhydrazines toward aromatic sulfides and diarylphosphoryl hydrazides. NEW J CHEM 2019. [DOI: 10.1039/c9nj03692j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Visible-light-promoted sulfidation and phosphorylation of arylhydrazines for the synthesis of aromatic sulfides and diarylphosphoryl hydrazides were developed using the organic dyes rose bengal and Na2-eosin Y as photocatalysts, respectively.
Collapse
Affiliation(s)
- Rui Li
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Tao Shi
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Xiao-Lan Chen
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Qi-Yan Lv
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
- Henan Nonferrous Metals Geological Exploration Institute
| | - Yin-Li Zhang
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Yu-Yu Peng
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation
- Changsha University of Science & Technology
- Changsha 410114
- China
| | - Ling-Bo Qu
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Bing Yu
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
- Henan Nonferrous Metals Geological Exploration Institute
| |
Collapse
|
126
|
Uygur M, García Mancheño O. Visible light-mediated organophotocatalyzed C-H bond functionalization reactions. Org Biomol Chem 2019; 17:5475-5489. [PMID: 31115431 DOI: 10.1039/c9ob00834a] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Over the last decade, a variety of methodologies for the direct functionalization of C-H bonds have been developed. Among others, visible light photoredox reactions have recently emerged as one of the most efficient and highly selective processes for the direct introduction of a functionality into organic molecules. Easy reaction setups, as well as mild reaction conditions, make this approach superior to other methodologies applying transition metals or strong oxidants, in terms of both costs and substrate and functional group tolerance. In this review, the recent developments in organophotocatalyzed C-H bond functionalization reactions are presented.
Collapse
Affiliation(s)
- Mustafa Uygur
- Organic Chemistry Institute, Münster University, Corrensstr. 40, 48149 Münster, Germany.
| | | |
Collapse
|
127
|
Kong Y, Xu W, Ye F, Weng J. Recent Advances in Visible-Light-Induced Cross Dehydrogenation Coupling Reaction under Transition Metal-Free Conditions. CHINESE J ORG CHEM 2019. [DOI: 10.6023/cjoc201905016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|