101
|
Camino JD, Gracia P, Cremades N. The role of water in the primary nucleation of protein amyloid aggregation. Biophys Chem 2021; 269:106520. [PMID: 33341693 DOI: 10.1016/j.bpc.2020.106520] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022]
Abstract
The understanding of the complex conformational landscape of amyloid aggregation and its modulation by relevant physicochemical and cellular factors is a prerequisite for elucidating some of the molecular basis of pathology in amyloid related diseases, and for developing and evaluating effective disease-specific therapeutics to reduce or eliminate the underlying sources of toxicity in these diseases. Interactions of proteins with solvating water have been long considered to be fundamental in mediating their function and folding; however, the relevance of water in the process of protein amyloid aggregation has been largely overlooked. Here, we provide a perspective on the role water plays in triggering primary amyloid nucleation of intrinsically disordered proteins (IDPs) based on recent experimental evidences. The initiation of amyloid aggregation likely results from the synergistic effect between both protein intermolecular interactions and the properties of the water hydration layer of the protein surface. While the self-assembly of both hydrophobic and hydrophilic IDPs would be thermodynamically favoured due to large water entropy contributions, large desolvation energy barriers are expected, particularly for the nucleation of hydrophilic IDPs. Under highly hydrating conditions, primary nucleation is slow, being facilitated by the presence of nucleation-active surfaces (heterogeneous nucleation). Under conditions of poor water activity, such as those found in the interior of protein droplets generated by liquid-liquid phase separation, however, the desolvation energy barrier is significantly reduced, and nucleation can occur very rapidly in the bulk of the solution (homogeneous nucleation), giving rise to structurally distinct amyloid polymorphs. Water, therefore, plays a key role in modulating the transition free energy of amyloid nucleation, thus governing the initiation of the process, and dictating the type of preferred primary nucleation and the type of amyloid polymorph generated, which could vary depending on the particular microenvironment that the protein molecules encounter in the cell.
Collapse
Affiliation(s)
- José D Camino
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR(CSIC), Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Pablo Gracia
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR(CSIC), Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Nunilo Cremades
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR(CSIC), Universidad de Zaragoza, Zaragoza 50018, Spain.
| |
Collapse
|
102
|
Kumar H, Udgaonkar JB. The Lys 280 → Gln mutation mimicking disease-linked acetylation of Lys 280 in tau extends the structural core of fibrils and modulates their catalytic properties. Protein Sci 2021; 30:785-803. [PMID: 33496017 DOI: 10.1002/pro.4030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/31/2022]
Abstract
Amyloid fibrillar aggregates isolated from the brains of patients with neurodegenerative diseases invariably have post-translational modifications (PTMs). The roles that PTMs play in modulating the structures and polymorphism of amyloid aggregates, and hence their ability to catalyze the conversion of monomeric protein to their fibrillar structure is, however, poorly understood. This is particularly true in the case of tau aggregates, where specific folds of fibrillar tau have been implicated in specific tauopathies. Several PTMs, including acetylation at Lys 280, increase aggregation of tau in the brain, and increase neurodegeneration. In this study, tau-K18 K280Q, in which the Lys 280 → Gln mutation is used to mimic acetylation at Lys 280, is shown, using HX-MS measurements, to form fibrils with a structural core that is longer than that of tau-K18 fibrils. Measurements of critical concentrations show that the binding affinity of monomeric tau-K18 for its fibrillar counterpart is only marginally more than that of monomeric tau-K18 K280Q for its fibrillar counterpart. Quantitative analysis of the kinetics of seeded aggregation, using a simple Michaelis-Menten-like model, in which the monomer first binds and then undergoes conformational conversion to β-strand, shows that the fibrils of tau-K18 K280Q convert monomeric protein more slowly than do fibrils of tau-K18. In contrast, monomeric tau-K18 K280Q is converted faster to fibrils than is monomeric tau-K18. Thus, the effect of Lys 280 acetylation on tau aggregate propagation in brain cells is expected to depend on the amount of acetylated tau present, and on whether the propagating seed is acetylated at Lys 280 or not.
Collapse
Affiliation(s)
- Harish Kumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India.,Indian Institute of Science Education and Research, Pune, India
| |
Collapse
|
103
|
Lin Y, Fichou Y, Longhini AP, Llanes LC, Yin P, Bazan GC, Kosik KS, Han S. Liquid-Liquid Phase Separation of Tau Driven by Hydrophobic Interaction Facilitates Fibrillization of Tau. J Mol Biol 2021; 433:166731. [PMID: 33279579 PMCID: PMC7855949 DOI: 10.1016/j.jmb.2020.166731] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 11/17/2022]
Abstract
Amyloid aggregation of tau protein is implicated in neurodegenerative diseases, yet its facilitating factors are poorly understood. Recently, tau has been shown to undergo liquid liquid phase separation (LLPS) both in vivo and in vitro. LLPS was shown to facilitate tau amyloid aggregation in certain cases, while being independent of aggregation in other cases. It is therefore important to understand the differentiating properties that resolve this apparent conflict. We report on a model system of hydrophobically driven LLPS induced by high salt concentration (LLPS-HS), and compare it to electrostatically driven LLPS represented by tau-RNA/heparin complex coacervation (LLPS-ED). We show that LLPS-HS promotes tau protein dehydration, undergoes maturation and directly leads to canonical tau fibrils, while LLPS-ED is reversible, remains hydrated and does not promote amyloid aggregation. We show that the nature of the interaction driving tau condensation is a differentiating factor between aggregation-prone and aggregation-independent LLPS.
Collapse
Affiliation(s)
- Yanxian Lin
- Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106, United States
| | - Yann Fichou
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, United States
| | - Andrew P Longhini
- Molecular, Cell and Developmental Biology, University of California, Santa Barbara, CA 93106, United States
| | - Luana C Llanes
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, United States; Center for Polymers and Organic Solids, University of California, Santa Barbara, CA 93106, United States
| | - Pengyi Yin
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, United States
| | - Guillermo C Bazan
- Departments of Chemistry and Chemical Engineering, National University of Singapore, 117543, Singapore
| | - Kenneth S Kosik
- Molecular, Cell and Developmental Biology, University of California, Santa Barbara, CA 93106, United States; Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, United States
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, United States; Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, United States.
| |
Collapse
|
104
|
Campora M, Francesconi V, Schenone S, Tasso B, Tonelli M. Journey on Naphthoquinone and Anthraquinone Derivatives: New Insights in Alzheimer's Disease. Pharmaceuticals (Basel) 2021; 14:33. [PMID: 33466332 PMCID: PMC7824805 DOI: 10.3390/ph14010033] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that is characterized by memory loss, cognitive impairment, and functional decline leading to dementia and death. AD imposes neuronal death by the intricate interplay of different neurochemical factors, which continue to inspire the medicinal chemist as molecular targets for the development of new agents for the treatment of AD with diverse mechanisms of action, but also depict a more complex AD scenario. Within the wide variety of reported molecules, this review summarizes and offers a global overview of recent advancements on naphthoquinone (NQ) and anthraquinone (AQ) derivatives whose more relevant chemical features and structure-activity relationship studies will be discussed with a view to providing the perspective for the design of viable drugs for the treatment of AD. In particular, cholinesterases (ChEs), β-amyloid (Aβ) and tau proteins have been identified as key targets of these classes of compounds, where the NQ or AQ scaffold may contribute to the biological effect against AD as main unit or significant substructure. The multitarget directed ligand (MTDL) strategy will be described, as a chance for these molecules to exhibit significant potential on the road to therapeutics for AD.
Collapse
Affiliation(s)
| | | | | | | | - Michele Tonelli
- Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto XV, 3, 16132 Genova, Italy; (M.C.); (V.F.); (S.S.); (B.T.)
| |
Collapse
|
105
|
Recent studies of atomic-resolution structures of tau protein and structure-based inhibitors. QUANTITATIVE BIOLOGY 2021. [DOI: 10.15302/j-qb-021-0271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
106
|
Soeda Y, Takashima A. New Insights Into Drug Discovery Targeting Tau Protein. Front Mol Neurosci 2020; 13:590896. [PMID: 33343298 PMCID: PMC7744460 DOI: 10.3389/fnmol.2020.590896] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
Microtubule-associated protein tau is characterized by the fact that it is an intrinsically disordered protein due to its lack of a stable conformation and high flexibility. Intracellular inclusions of fibrillar forms of tau with a β-sheet structure accumulate in the brain of patients with Alzheimer's disease and other tauopathies. Accordingly, detachment of tau from microtubules and transition of tau from a disordered state to an abnormally aggregated state are essential events preceding the onset of tau-related diseases. Many reports have shown that this transition is caused by post-translational modifications, including hyperphosphorylation and acetylation. The misfolded tau is self-assembled and forms a tau oligomer before the appearance of tau inclusions. Animal and pathological studies using human samples have demonstrated that tau oligomer formation contributes to neuronal loss. During the progression of tauopathies, tau seeds are released from cells and incorporated into other cells, leading to the propagation of pathological tau aggregation. Accumulating evidence suggests several potential approaches for blocking tau-mediated toxicity: (1) direct inhibition of pathological tau aggregation and (2) inhibition of tau post-translational modifications that occur prior to pathological tau aggregation, (3) inhibition of tau propagation and (4) stabilization of microtubules. In addition to traditional low-molecular-weight compounds, newer drug discovery approaches such as the development of medium-molecular-weight drugs (peptide- or oligonucleotide-based drugs) and high-molecular-weight drugs (antibody-based drugs) provide alternative pathways to preventing the formation of abnormal tau. Of particular interest are recent studies suggesting that tau droplet formation by liquid-liquid phase separation may be the initial step in aberrant tau aggregation, as well results that implicate roles for tau in dendritic and nuclear functions. Here, we review the mechanisms through which drugs can target tau and consider recent clinical trials for the treatment of tauopathies. In addition, we discuss the utility of these newer strategies and propose future directions for research on tau-targeted therapeutics.
Collapse
Affiliation(s)
- Yoshiyuki Soeda
- Laboratory for Alzheimer's Disease, Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, Japan
| | - Akihiko Takashima
- Laboratory for Alzheimer's Disease, Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, Japan
| |
Collapse
|
107
|
Ulamec SM, Brockwell DJ, Radford SE. Looking Beyond the Core: The Role of Flanking Regions in the Aggregation of Amyloidogenic Peptides and Proteins. Front Neurosci 2020; 14:611285. [PMID: 33335475 PMCID: PMC7736610 DOI: 10.3389/fnins.2020.611285] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
Amyloid proteins are involved in many neurodegenerative disorders such as Alzheimer's disease [Tau, Amyloid β (Aβ)], Parkinson's disease [alpha-synuclein (αSyn)], and amyotrophic lateral sclerosis (TDP-43). Driven by the early observation of the presence of ordered structure within amyloid fibrils and the potential to develop inhibitors of their formation, a major goal of the amyloid field has been to elucidate the structure of the amyloid fold at atomic resolution. This has now been achieved for a wide variety of sequences using solid-state NMR, microcrystallography, X-ray fiber diffraction and cryo-electron microscopy. These studies, together with in silico methods able to predict aggregation-prone regions (APRs) in protein sequences, have provided a wealth of information about the ordered fibril cores that comprise the amyloid fold. Structural and kinetic analyses have also shown that amyloidogenic proteins often contain less well-ordered sequences outside of the amyloid core (termed here as flanking regions) that modulate function, toxicity and/or aggregation rates. These flanking regions, which often form a dynamically disordered "fuzzy coat" around the fibril core, have been shown to play key parts in the physiological roles of functional amyloids, including the binding of RNA and in phase separation. They are also the mediators of chaperone binding and membrane binding/disruption in toxic amyloid assemblies. Here, we review the role of flanking regions in different proteins spanning both functional amyloid and amyloid in disease, in the context of their role in aggregation, toxicity and cellular (dys)function. Understanding the properties of these regions could provide new opportunities to target disease-related aggregation without disturbing critical biological functions.
Collapse
Affiliation(s)
| | | | - Sheena E. Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
108
|
Abstract
Aβ plaques are one of the two lesions in the brain that define the neuropathological diagnosis of Alzheimer's disease. Plaques are highly diverse structures; many of them include massed, fibrillar polymers of the Aβ protein referred to as Aβ-amyloid, but some lack the defining features of amyloid. Cellular elements in 'classical' plaques include abnormal neuronal processes and reactive glial cells, but these are not present in all plaques. Plaques have been given various names since their discovery in 1892, including senile plaques, amyloid plaques, and neuritic plaques. However, with the identification in the 1980s of Aβ as the obligatory and universal component of plaques, the term 'Aβ plaques' has become a unifying term for these heterogeneous formations. Tauopathy, the second essential lesion of the Alzheimer's disease diagnostic dyad, is downstream of Aβ-proteopathy, but it is critically important for the manifestation of dementia. The etiologic link between Aβ-proteopathy and tauopathy in Alzheimer's disease remains largely undefined. Aβ plaques develop and propagate via the misfolding, self-assembly and spread of Aβ by the prion-like mechanism of seeded protein aggregation. Partially overlapping sets of risk factors and sequelae, including inflammation, genetic variations, and various environmental triggers have been linked to plaque development and idiopathic Alzheimer's disease, but no single factor has emerged as a requisite cause. The value of Aβ plaques per se as therapeutic targets is uncertain; although some plaques are sites of focal gliosis and inflammation, the complexity of inflammatory biology presents challenges to glia-directed intervention. Small, soluble, oligomeric assemblies of Aβ are enriched in the vicinity of plaques, and these probably contribute to the toxic impact of Aβ aggregation on the brain. Measures designed to reduce the production or seeded self-assembly of Aβ can impede the formation of Aβ plaques and oligomers, along with their accompanying abnormalities; given the apparent long timecourse of the emergence, maturation and proliferation of Aβ plaques in humans, such therapies are likely to be most effective when begun early in the pathogenic process, before significant damage has been done to the brain. Since their discovery in the late 19th century, Aβ plaques have, time and again, illuminated fundamental mechanisms driving neurodegeneration, and they should remain at the forefront of efforts to understand, and therefore treat, Alzheimer's disease.
Collapse
Affiliation(s)
- Lary C. Walker
- Department of Neurology and Yerkes National Primate Research Center, Emory University
| |
Collapse
|
109
|
Alyenbaawi H, Allison WT, Mok SA. Prion-Like Propagation Mechanisms in Tauopathies and Traumatic Brain Injury: Challenges and Prospects. Biomolecules 2020; 10:E1487. [PMID: 33121065 PMCID: PMC7692808 DOI: 10.3390/biom10111487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/23/2022] Open
Abstract
The accumulation of tau protein in the form of filamentous aggregates is a hallmark of many neurodegenerative diseases such as Alzheimer's disease (AD) and chronic traumatic encephalopathy (CTE). These dementias share traumatic brain injury (TBI) as a prominent risk factor. Tau aggregates can transfer between cells and tissues in a "prion-like" manner, where they initiate the templated misfolding of normal tau molecules. This enables the spread of tau pathology to distinct parts of the brain. The evidence that tauopathies spread via prion-like mechanisms is considerable, but work detailing the mechanisms of spread has mostly used in vitro platforms that cannot fully reveal the tissue-level vectors or etiology of progression. We review these issues and then briefly use TBI and CTE as a case study to illustrate aspects of tauopathy that warrant further attention in vivo. These include seizures and sleep/wake disturbances, emphasizing the urgent need for improved animal models. Dissecting these mechanisms of tauopathy progression continues to provide fresh inspiration for the design of diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Hadeel Alyenbaawi
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada; (H.A.); (W.T.A.)
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Medical Laboratories, Majmaah University, Majmaah 11952, Saudi Arabia
| | - W. Ted Allison
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada; (H.A.); (W.T.A.)
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Sue-Ann Mok
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada; (H.A.); (W.T.A.)
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
110
|
Smith HI, Guthertz N, Cawood EE, Maya-Martinez R, Breeze AL, Radford SE. The role of the I T-state in D76N β 2-microglobulin amyloid assembly: A crucial intermediate or an innocuous bystander? J Biol Chem 2020; 295:12474-12484. [PMID: 32661194 PMCID: PMC7458819 DOI: 10.1074/jbc.ra120.014901] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/06/2020] [Indexed: 02/05/2023] Open
Abstract
The D76N variant of human β2-microglobulin (β2m) is the causative agent of a hereditary amyloid disease. Interestingly, D76N-associated amyloidosis has a distinctive pathology compared with aggregation of WT-β2m, which occurs in dialysis-related amyloidosis. A folding intermediate of WT-β2m, known as the IT-state, which contains a nonnative trans Pro-32, has been shown to be a key precursor of WT-β2m aggregation in vitro However, how a single amino acid substitution enhances the rate of aggregation of D76N-β2m and gives rise to a different amyloid disease remained unclear. Using real-time refolding experiments monitored by CD and NMR, we show that the folding mechanisms of WT- and D76N-β2m are conserved in that both proteins fold slowly via an IT-state that has similar structural properties. Surprisingly, however, direct measurement of the equilibrium population of IT using NMR showed no evidence for an increased population of the IT-state for D76N-β2m, ruling out previous models suggesting that this could explain its enhanced aggregation propensity. Producing a kinetically trapped analog of IT by deleting the N-terminal six amino acids increases the aggregation rate of WT-β2m but slows aggregation of D76N-β2m, supporting the view that although the folding mechanisms of the two proteins are conserved, their aggregation mechanisms differ. The results exclude the IT-state as the origin of the rapid aggregation of D76N-β2m, suggesting that other nonnative states must cause its high aggregation rate. The results highlight how a single substitution at a solvent-exposed site can affect the mechanism of aggregation and the resulting disease.
Collapse
Affiliation(s)
- Hugh I Smith
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Nicolas Guthertz
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Emma E Cawood
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - Roberto Maya-Martinez
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Alexander L Breeze
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
111
|
Townsend DJ, Mala B, Hughes E, Hussain R, Siligardi G, Fullwood NJ, Middleton DA. Circular Dichroism Spectroscopy Identifies the β-Adrenoceptor Agonist Salbutamol As a Direct Inhibitor of Tau Filament Formation in Vitro. ACS Chem Neurosci 2020; 11:2104-2116. [PMID: 32520518 DOI: 10.1021/acschemneuro.0c00154] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Potential drug treatments for Alzheimer's disease (AD) may be found by identifying compounds that block the assembly of the microtubule-associated protein tau into neurofibrillar tangles associated with neuron destabilization and cell death. Here, a small library of structurally diverse compounds was screened in vitro for the ability to inhibit tau aggregation, using high-throughput synchrotron radiation circular dichroism as a novel tool to monitor the structural changes in the protein as it assembles into filaments. The catecholamine epinephrine was found to be the most effective tau aggregation inhibitor of all 88 screened compounds. Subsequently, we tested chemically similar phenolamine drugs from the β-adrenergic receptor agonist class, using conventional circular dichroism spectroscopy, thioflavin T fluorescence, and transmission electron microscopy. Two compounds, salbutamol and dobutamine, used widely in the treatment of respiratory and cardiovascular disease, impede the aggregation of tau in vitro. Dobutamine reduces both the rate and yield of tau filament formation over 24 h; however, it has little effect on the structural transition of tau into β-sheet structures over 24 h. Salbutamol also reduces the yield and rate of filament formation and additionally inhibits tau's structural change into β-sheet-rich aggregates. Salbutamol has a good safety profile and a half-life that facilitates permeation through the blood-brain barrier and could represent an expediated approach to developing AD therapeutics. These results provide the motivation for the in vivo evaluation of pre-existing β-adrenergic receptor agonists as a potential therapy for AD through the reduction of tau deposition.
Collapse
Affiliation(s)
- David J Townsend
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Barbora Mala
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Eleri Hughes
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Rohanah Hussain
- Diamond House, Harwell Science & Innovation Campus, Diamond Light Source Ltd., Didcot OX11 ODE, United Kingdom
| | - Giuliano Siligardi
- Diamond House, Harwell Science & Innovation Campus, Diamond Light Source Ltd., Didcot OX11 ODE, United Kingdom
| | - Nigel J. Fullwood
- Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YG, United Kingdom
| | - David A. Middleton
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| |
Collapse
|
112
|
Kawasaki R, Tate SI. Impact of the Hereditary P301L Mutation on the Correlated Conformational Dynamics of Human Tau Protein Revealed by the Paramagnetic Relaxation Enhancement NMR Experiments. Int J Mol Sci 2020; 21:ijms21113920. [PMID: 32486218 PMCID: PMC7313075 DOI: 10.3390/ijms21113920] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/23/2022] Open
Abstract
Tau forms intracellular insoluble aggregates as a neuropathological hallmark of Alzheimer’s disease. Tau is largely unstructured, which complicates the characterization of the tau aggregation process. Recent studies have demonstrated that tau samples two distinct conformational ensembles, each of which contains the soluble and aggregation-prone states of tau. A shift to populate the aggregation-prone ensemble may promote tau fibrillization. However, the mechanism of this ensemble transition remains elusive. In this study, we explored the conformational dynamics of a tau fragment by using paramagnetic relaxation enhancement (PRE) and interference (PRI) NMR experiments. The PRE correlation map showed that tau is composed of segments consisting of residues in correlated motions. Intriguingly, residues forming the β-structures in the heparin-induced tau filament coincide with residues in these segments, suggesting that each segment behaves as a structural unit in fibrillization. PRI data demonstrated that the P301L mutation exclusively alters the transiently formed tau structures by changing the short- and long-range correlated motions among residues. The transient conformations of P301L tau expose the amyloid motif PHF6 to promote tau self-aggregation. We propose the correlated motions among residues within tau determine the population sizes of the conformational ensembles, and perturbing the correlated motions populates the aggregation-prone form.
Collapse
Affiliation(s)
- Ryosuke Kawasaki
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan;
| | - Shin-ichi Tate
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan;
- Department of Mathematical and Life Sciences, Graduate School of the Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Correspondence: ; Tel.: +81-82-424-7387
| |
Collapse
|
113
|
Urbanek A, Popovic M, Elena-Real CA, Morató A, Estaña A, Fournet A, Allemand F, Gil AM, Cativiela C, Cortés J, Jiménez AI, Sibille N, Bernadó P. Evidence of the Reduced Abundance of Proline cis Conformation in Protein Poly Proline Tracts. J Am Chem Soc 2020; 142:7976-7986. [PMID: 32266815 DOI: 10.1021/jacs.0c02263] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proline is found in a cis conformation in proteins more often than other proteinogenic amino acids, where it influences structure and modulates function, being the focus of several high-resolution structural studies. However, until now, technical and methodological limitations have hampered the site-specific investigation of the conformational preferences of prolines present in poly proline (poly-P) homorepeats in their protein context. Here, we apply site-specific isotopic labeling to obtain high-resolution NMR data on the cis/trans equilibrium of prolines within the poly-P repeats of huntingtin exon 1, the causative agent of Huntington's disease. Screening prolines in different positions in long (poly-P11) and short (poly-P3) poly-P tracts, we found that, while the first proline of poly-P tracts adopts similar levels of cis conformation as isolated prolines, a length-dependent reduced abundance of cis conformers is observed for terminal prolines. Interestingly, the cis isomer could not be detected in inner prolines, in line with percentages derived from a large database of proline-centered tripeptides extracted from crystallographic structures. These results suggest a strong cooperative effect within poly-Ps that enhances their stiffness by diminishing the stability of the cis conformation. This rigidity is key to rationalizing the protection toward aggregation that the poly-P tract confers to huntingtin. Furthermore, the study provides new avenues to probe the structural properties of poly-P tracts in protein design as scaffolds or nanoscale rulers.
Collapse
Affiliation(s)
- Annika Urbanek
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier. 29, rue de Navacelles, 34090 Montpellier, France
| | - Matija Popovic
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier. 29, rue de Navacelles, 34090 Montpellier, France
| | - Carlos A Elena-Real
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier. 29, rue de Navacelles, 34090 Montpellier, France
| | - Anna Morató
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier. 29, rue de Navacelles, 34090 Montpellier, France
| | - Alejandro Estaña
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier. 29, rue de Navacelles, 34090 Montpellier, France.,LAAS-CNRS, Université de Toulouse, CNRS, 7 Avenue du Colonel Roche, 31400 Toulouse, France
| | - Aurélie Fournet
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier. 29, rue de Navacelles, 34090 Montpellier, France
| | - Frédéric Allemand
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier. 29, rue de Navacelles, 34090 Montpellier, France
| | - Ana M Gil
- Departamento de Quı́mica Orgánica, Instituto de Sı́ntesis Quı́mica y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Carlos Cativiela
- Departamento de Quı́mica Orgánica, Instituto de Sı́ntesis Quı́mica y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Juan Cortés
- LAAS-CNRS, Université de Toulouse, CNRS, 7 Avenue du Colonel Roche, 31400 Toulouse, France
| | - Ana I Jiménez
- Departamento de Quı́mica Orgánica, Instituto de Sı́ntesis Quı́mica y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Nathalie Sibille
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier. 29, rue de Navacelles, 34090 Montpellier, France
| | - Pau Bernadó
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier. 29, rue de Navacelles, 34090 Montpellier, France
| |
Collapse
|
114
|
Ebo JS, Saunders JC, Devine PWA, Gordon AM, Warwick AS, Schiffrin B, Chin SE, England E, Button JD, Lloyd C, Bond NJ, Ashcroft AE, Radford SE, Lowe DC, Brockwell DJ. An in vivo platform to select and evolve aggregation-resistant proteins. Nat Commun 2020; 11:1816. [PMID: 32286330 PMCID: PMC7156504 DOI: 10.1038/s41467-020-15667-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
Protein biopharmaceuticals are highly successful, but their utility is compromised by their propensity to aggregate during manufacture and storage. As aggregation can be triggered by non-native states, whose population is not necessarily related to thermodynamic stability, prediction of poorly-behaving biologics is difficult, and searching for sequences with desired properties is labour-intensive and time-consuming. Here we show that an assay in the periplasm of E. coli linking aggregation directly to antibiotic resistance acts as a sensor for the innate (un-accelerated) aggregation of antibody fragments. Using this assay as a directed evolution screen, we demonstrate the generation of aggregation resistant scFv sequences when reformatted as IgGs. This powerful tool can thus screen and evolve ‘manufacturable’ biopharmaceuticals early in industrial development. By comparing the mutational profiles of three different immunoglobulin scaffolds, we show the applicability of this method to investigate protein aggregation mechanisms important to both industrial manufacture and amyloid disease. Protein aggregation remains a significant challenge for manufacturing of protein biopharmaceuticals. Here, the authors demonstrate the use of directed evolution and an assay for in vivo innate protein aggregation-propensity to generate aggregation-resistant scFv fragments.
Collapse
Affiliation(s)
- Jessica S Ebo
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.,School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Janet C Saunders
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.,School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.,AstraZeneca, Granta Park, Cambridge, CB21 6GH, UK.,AstraZeneca, Granta Park, Cambridge, CB21 6GH, UK
| | - Paul W A Devine
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.,School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.,AstraZeneca, Granta Park, Cambridge, CB21 6GH, UK
| | - Alice M Gordon
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.,School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Amy S Warwick
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.,School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Bob Schiffrin
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.,School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | | | | | | | | | | | - Alison E Ashcroft
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.,School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.,School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David C Lowe
- AstraZeneca, Granta Park, Cambridge, CB21 6GH, UK.
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK. .,School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
115
|
Doherty CPA, Ulamec SM, Maya-Martinez R, Good SC, Makepeace J, Khan GN, van Oosten-Hawle P, Radford SE, Brockwell DJ. A short motif in the N-terminal region of α-synuclein is critical for both aggregation and function. Nat Struct Mol Biol 2020; 27:249-259. [PMID: 32157247 PMCID: PMC7100612 DOI: 10.1038/s41594-020-0384-x] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/22/2020] [Indexed: 02/04/2023]
Abstract
Aggregation of human α-synuclein (αSyn) is linked to Parkinson’s disease (PD) pathology. The central region of the αSyn sequence contains the non-amyloid β-component (NAC) crucial for aggregation. However, how NAC flanking regions modulate αSyn aggregation remains unclear. Using bioinformatics, mutation, and NMR we identify a 7-residue sequence, named P1 (residues 36-42), that controls αSyn aggregation. Deletion or substitution of this ‘master-controller’ prevents aggregation at pH 7.5 in vitro. At lower pH, P1 synergises with a sequence containing the PreNAC region (P2, residues 45-57) to prevent aggregation. Deleting P1 (ΔP1) or both P1 and P2 (ΔΔ) also prevents age-dependent αSyn aggregation and toxicity in C. elegans models and prevents αSyn-mediated vesicle fusion by altering the conformational properties of the protein when lipid-bound. The results highlight the importance of a master-controller sequence motif that controls both αSyn aggregation and function- a region that could be targeted to prevent aggregation in disease.
Collapse
Affiliation(s)
- Ciaran P A Doherty
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Sabine M Ulamec
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Roberto Maya-Martinez
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Sarah C Good
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Jemma Makepeace
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - G Nasir Khan
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Patricija van Oosten-Hawle
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| |
Collapse
|
116
|
Weickert S, Wawrzyniuk M, John LH, Rüdiger SGD, Drescher M. The mechanism of Hsp90-induced oligomerizaton of Tau. SCIENCE ADVANCES 2020; 6:eaax6999. [PMID: 32201713 PMCID: PMC7069708 DOI: 10.1126/sciadv.aax6999] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 12/17/2019] [Indexed: 05/27/2023]
Abstract
Aggregation of the microtubule-associated protein Tau is a hallmark of Alzheimer's disease with Tau oligomers suspected as the most toxic agent. Tau is a client of the molecular chaperone Hsp90, although it is unclear whether and how the chaperone massages the structure of intrinsically disordered Tau. Using electron paramagnetic resonance, we extract structural information from the very broad conformational ensemble of Tau: Tau in solution is highly dynamic and polymorphic, although "paper clip"-shaped by long-range contacts. Interaction with Hsp90 promotes an open Tau conformation, which we identify as the molecular basis for the formation of small Tau oligomers by exposure of the aggregation-prone repeat domain to other Tau molecules. At the same time, formation of Tau fibrils is inhibited. We therefore provide the nanometer-scale zoom into chaperoning an amyloid client, highlighting formation of oligomers as the consequence of this biologically relevant interaction.
Collapse
Affiliation(s)
- S. Weickert
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457 Konstanz, Germany
| | - M. Wawrzyniuk
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - L. H. John
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - S. G. D. Rüdiger
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - M. Drescher
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
117
|
Ebo JS, Guthertz N, Radford SE, Brockwell DJ. Using protein engineering to understand and modulate aggregation. Curr Opin Struct Biol 2020; 60:157-166. [PMID: 32087409 PMCID: PMC7132541 DOI: 10.1016/j.sbi.2020.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/07/2023]
Abstract
Protein aggregation occurs through a variety of mechanisms, initiated by the unfolded, non-native, or even the native state itself. Understanding the molecular mechanisms of protein aggregation is challenging, given the array of competing interactions that control solubility, stability, cooperativity and aggregation propensity. An array of methods have been developed to interrogate protein aggregation, spanning computational algorithms able to identify aggregation-prone regions, to deep mutational scanning to define the entire mutational landscape of a protein's sequence. Here, we review recent advances in this exciting and emerging field, focussing on protein engineering approaches that, together with improved computational methods, hold promise to predict and control protein aggregation linked to human disease, as well as facilitating the manufacture of protein-based therapeutics.
Collapse
Affiliation(s)
- Jessica S Ebo
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK; School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Nicolas Guthertz
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK; School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK; School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK; School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
118
|
Roberts M, Sevastou I, Imaizumi Y, Mistry K, Talma S, Dey M, Gartlon J, Ochiai H, Zhou Z, Akasofu S, Tokuhara N, Ogo M, Aoyama M, Aoyagi H, Strand K, Sajedi E, Agarwala KL, Spidel J, Albone E, Horie K, Staddon JM, de Silva R. Pre-clinical characterisation of E2814, a high-affinity antibody targeting the microtubule-binding repeat domain of tau for passive immunotherapy in Alzheimer's disease. Acta Neuropathol Commun 2020; 8:13. [PMID: 32019610 PMCID: PMC7001291 DOI: 10.1186/s40478-020-0884-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/24/2020] [Indexed: 11/10/2022] Open
Abstract
Tau deposition in the brain is a pathological hallmark of many neurodegenerative disorders, including Alzheimer's disease (AD). During the course of these tauopathies, tau spreads throughout the brain via synaptically-connected pathways. Such propagation of pathology is thought to be mediated by tau species ("seeds") containing the microtubule binding region (MTBR) composed of either three repeat (3R) or four repeat (4R) isoforms. The tau MTBR also forms the core of the neuropathological filaments identified in AD brain and other tauopathies. Multiple approaches are being taken to limit tau pathology, including immunotherapy with anti-tau antibodies. Given its key structural role within fibrils, specifically targetting the MTBR with a therapeutic antibody to inhibit tau seeding and aggregation may be a promising strategy to provide disease-modifying treatment for AD and other tauopathies. Therefore, a monoclonal antibody generating campaign was initiated with focus on the MTBR. Herein we describe the pre-clinical generation and characterisation of E2814, a humanised, high affinity, IgG1 antibody recognising the tau MTBR. E2814 and its murine precursor, 7G6, as revealed by epitope mapping, are antibodies bi-epitopic for 4R and mono-epitopic for 3R tau isoforms because they bind to sequence motif HVPGG. Functionally, both antibodies inhibited tau aggregation in vitro. They also immunodepleted a variety of MTBR-containing tau protein species. In an in vivo model of tau seeding and transmission, attenuation of deposition of sarkosyl-insoluble tau in brain could also be observed in response to antibody treatment. In AD brain, E2814 bound different types of tau filaments as shown by immunogold labelling and recognised pathological tau structures by immunohistochemical staining. Tau fragments containing HVPGG epitopes were also found to be elevated in AD brain compared to PSP or control. Taken together, the data reported here have led to E2814 being proposed for clinical development.
Collapse
Affiliation(s)
- Malcolm Roberts
- Hatfield Research Laboratories, Eisai Limited, Hatfield, UK.
| | - Ioanna Sevastou
- Reta Lila Weston Institute & Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, UK
| | | | - Kavita Mistry
- Hatfield Research Laboratories, Eisai Limited, Hatfield, UK
| | - Sonia Talma
- Hatfield Research Laboratories, Eisai Limited, Hatfield, UK
| | - Madhurima Dey
- Hatfield Research Laboratories, Eisai Limited, Hatfield, UK
| | - Jane Gartlon
- Hatfield Research Laboratories, Eisai Limited, Hatfield, UK
| | - Hiroshi Ochiai
- Tsukuba Research Laboratories, Eisai Co., Tsukuba-shi, Ibaraki, Japan
| | - Zhi Zhou
- Tsukuba Research Laboratories, Eisai Co., Tsukuba-shi, Ibaraki, Japan
| | - Shigeru Akasofu
- Tsukuba Research Laboratories, Eisai Co., Tsukuba-shi, Ibaraki, Japan
| | - Naoki Tokuhara
- Tsukuba Research Laboratories, Eisai Co., Tsukuba-shi, Ibaraki, Japan
| | - Makoto Ogo
- Tsukuba Research Laboratories, Eisai Co., Tsukuba-shi, Ibaraki, Japan
| | - Muneo Aoyama
- Tsukuba Research Laboratories, Eisai Co., Tsukuba-shi, Ibaraki, Japan
| | - Hirofumi Aoyagi
- Tsukuba Research Laboratories, Eisai Co., Tsukuba-shi, Ibaraki, Japan
| | - Kate Strand
- Reta Lila Weston Institute & Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, UK
| | - Ezat Sajedi
- Reta Lila Weston Institute & Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, UK
| | | | | | | | - Kanta Horie
- Tsukuba Research Laboratories, Eisai Co., Tsukuba-shi, Ibaraki, Japan
| | | | - Rohan de Silva
- Reta Lila Weston Institute & Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, UK.
| |
Collapse
|
119
|
Zhao J, Zhu Y, Song X, Xiao Y, Su G, Liu X, Wang Z, Xu Y, Liu J, Eliezer D, Ramlall TF, Lippens G, Gibson J, Zhang F, Linhardt RJ, Wang L, Wang C. 3-O-Sulfation of Heparan Sulfate Enhances Tau Interaction and Cellular Uptake. Angew Chem Int Ed Engl 2020; 59:1818-1827. [PMID: 31692167 PMCID: PMC6982596 DOI: 10.1002/anie.201913029] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/29/2019] [Indexed: 12/31/2022]
Abstract
Prion-like transcellular spreading of tau in Alzheimer's Disease (AD) is mediated by tau binding to cell surface heparan sulfate (HS). However, the structural determinants for tau-HS interaction are not well understood. Microarray and SPR assays of structurally defined HS oligosaccharides show that a rare 3-O-sulfation (3-O-S) of HS significantly enhances tau binding. In Hs3st1-/- (HS 3-O-sulfotransferase-1 knockout) cells, reduced 3-O-S levels of HS diminished both cell surface binding and internalization of tau. In a cell culture, the addition of a 3-O-S HS 12-mer reduced both tau cell surface binding and cellular uptake. NMR titrations mapped 3-O-S binding sites to the microtubule binding repeat 2 (R2) and proline-rich region 2 (PRR2) of tau. Tau is only the seventh protein currently known to recognize HS 3-O-sulfation. Our work demonstrates that this rare 3-O-sulfation enhances tau-HS binding and likely the transcellular spread of tau, providing a novel target for disease-modifying treatment of AD and other tauopathies.
Collapse
Affiliation(s)
- Jing Zhao
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States
| | - Yanan Zhu
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, United States
| | - Xuehong Song
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, United States
| | - Yuanyuan Xiao
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States
| | - Guowei Su
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, United States
| | - Xinyue Liu
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States
| | - Zhangjie Wang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, United States
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, United States
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, United States
| | - David Eliezer
- Department of Biochemistry, Program in Structural Biology, Weill Cornell Medical College, New York, New York, United States
| | - Trudy F. Ramlall
- Department of Biochemistry, Program in Structural Biology, Weill Cornell Medical College, New York, New York, United States
| | - Guy Lippens
- Toulouse Biotechnology Institute, CNRS, INRA, INSA, University of Toulouse, 31077 Toulouse, France
| | - James Gibson
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, United States
| | - Robert J. Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, United States
| | - Lianchun Wang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, United States
- Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, United States
| | - Chunyu Wang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, United States
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, United States
| |
Collapse
|
120
|
Fichou Y, Oberholtzer ZR, Ngo H, Cheng CY, Keller TJ, Eschmann NA, Han S. Tau-Cofactor Complexes as Building Blocks of Tau Fibrils. Front Neurosci 2019; 13:1339. [PMID: 31920504 PMCID: PMC6923735 DOI: 10.3389/fnins.2019.01339] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/27/2019] [Indexed: 12/30/2022] Open
Abstract
The aggregation of the human tau protein into neurofibrillary tangles is directly diagnostic of many neurodegenerative conditions termed tauopathies. The species, factors and events that are responsible for the initiation and propagation of tau aggregation are not clearly established, even in a simplified and artificial in vitro system. This motivates the mechanistic study of in vitro aggregation of recombinant tau from soluble to fibrillar forms, for which polyanionic cofactors are the most commonly used external inducer. In this study, we performed biophysical characterizations to unravel the mechanisms by which cofactors induce fibrillization. We first reinforce the idea that cofactors are the limiting factor to generate ThT-active tau fibrils, and establish that they act as templating reactant that trigger tau conformational rearrangement. We show that heparin has superior potency for recruiting monomeric tau into aggregation-competent species compared to any constituent intermediate or aggregate "seeds." We show that tau and cofactors form intermediate complexes whose evolution toward ThT-active fibrils is tightly regulated by tau-cofactor interactions. Remarkably, it is possible to find mild cofactors that complex with tau without forming ThT-active species, except when an external catalyst (e.g., a seed) is provided to overcome the energy barrier. In a cellular context, we propose the idea that tau could associate with cofactors to form a metastable complex that remains "inert" and reversible, until encountering a relevant seed that can trigger an irreversible transition to β-sheet containing species.
Collapse
Affiliation(s)
- Yann Fichou
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Zachary R. Oberholtzer
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Hoang Ngo
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Chi-Yuan Cheng
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Timothy J. Keller
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Neil A. Eschmann
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
121
|
Pan H, Qiu H, Zhang K, Zhang P, Liang W, Yang M, Mou C, Lin M, He M, Xiao X, Zhang D, Wang H, Liu F, Li Y, Jin H, Yan X, Liang H, Cui W. Fascaplysin Derivatives Are Potent Multitarget Agents against Alzheimer's Disease: in Vitro and in Vivo Evidence. ACS Chem Neurosci 2019; 10:4741-4756. [PMID: 31639294 DOI: 10.1021/acschemneuro.9b00503] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive neurodegeneration and impaired cognitive functions. Fascaplysin is a β-carboline alkaloid isolated from marine sponge Fascaplysinopsis bergquist in 1988. Previous studies have shown that fascaplysin might act on acetylcholinesterase and β-amyloid (Aβ) to produce anti-AD properties. In this study, a series of fascaplysin derivatives were synthesized. The cholinesterase inhibition activities, the neuronal protective effects, and the toxicities of these compounds were evaluated in vitro. Compounds 2a and 2b, the two most powerful compounds in vitro, were further selected to evaluate their cognitive-enhancing effects in animals. Both 2a and 2b could ameliorate cognitive dysfunction induced by scopolamine or Aβ oligomers without affecting locomotor functions in mice. We also found that 2a and 2b could prevent cholinergic dysfunctions, decrease pro-inflammatory cytokine expression, and inhibit Aβ-induced tau hyperphosphorylation in vivo. Most importantly, pharmacodynamics studies suggested that 2b could penetrate the blood-brain barrier and be retained in the central nervous system. All these results suggested that fascaplysin derivatives are potent multitarget agents against AD and might be clinical useful for AD treatment.
Collapse
Affiliation(s)
- Hanbo Pan
- Ningbo Key Laboratory of Behavior Neuroscience, Zhejiang Province Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Hongda Qiu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Ke Zhang
- Ningbo Key Laboratory of Behavior Neuroscience, Zhejiang Province Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Panpan Zhang
- Ningbo Key Laboratory of Behavior Neuroscience, Zhejiang Province Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Weida Liang
- Ningbo Key Laboratory of Behavior Neuroscience, Zhejiang Province Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Mengxiang Yang
- Ningbo Key Laboratory of Behavior Neuroscience, Zhejiang Province Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Chenye Mou
- Ningbo Key Laboratory of Behavior Neuroscience, Zhejiang Province Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Miaoman Lin
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Ming He
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Xiao Xiao
- Ningbo Key Laboratory of Behavior Neuroscience, Zhejiang Province Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Difan Zhang
- Ningbo Key Laboratory of Behavior Neuroscience, Zhejiang Province Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Haixing Wang
- Zhejiang Province Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Fufeng Liu
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yongmei Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Haixiao Jin
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Xiaojun Yan
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Hongze Liang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Wei Cui
- Ningbo Key Laboratory of Behavior Neuroscience, Zhejiang Province Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|