101
|
Li R, Wu R, Li Z, Wang J, Liu X, Wen Y, Chiang FK, Chen SW, Chan KC, Lu Z. Boosting Oxygen-Evolving Activity via Atom-Stepped Interfaces Architected with Kinetic Frustration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2206890. [PMID: 36101917 DOI: 10.1002/adma.202206890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/28/2022] [Indexed: 06/15/2023]
Abstract
A highly active interface is extremely critical for the catalytic efficiency of an electrocatalyst; however, facilely tailoring its atomic packing characteristics remains challenging. Herein, a simple yet effective strategy is reported to obtain copious high-energy atomic steps at the interface via controlling the solidification behavior of glass-forming metallic liquids. By adjusting the chemical composition and cooling rate, highly faceted FeNi3 nanocrystals are in situ formed in an FeNiB metallic glass (MG) matrix, leading to the creation of order/disorder interfaces. Benefiting from the catalytically active and stable atomic steps at the jagged interfaces, the resultant free-standing FeNi3 nanocrystal/MG composite exhibits a low oxygen-evolving overpotential of 214 mV at 10 mA cm-2 , a small Tafel slope of 32.4 mV dec-1 , and good stability in alkaline media, outperforming most state-of-the-art catalysts. This approach is based on the manipulation of nucleation and crystal growth of the solid-solution nanophases (e.g., FeNi3 ) in glass-forming liquids, so that the highly stepped interface architecture can be obtained due to the kinetic frustration effect in MGs upon undercooling. It is envisaged that the atomic-level stepped interface engineering via the physical metallurgy method can be easily extended to other MG systems, providing a new and generic paradigm for designing efficient yet cost-effective electrocatalysts.
Collapse
Affiliation(s)
- Rui Li
- Institute of Clean Energy, Yangtze River Delta Research Insitute, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ruoyu Wu
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhibin Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jing Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiongjun Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuren Wen
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Fu-Kuo Chiang
- National Institute of Clean-and-Low-Carbon Energy, Beijing, 102211, China
| | - Shi-Wei Chen
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan R. O. C
| | - K C Chan
- Department of Industrial and Systems Engineering, Research Institute for Advanced Manufacturing, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Zhaoping Lu
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
102
|
Chen Y, Lin J, Jia B, Wang X, Jiang S, Ma T. Isolating Single and Few Atoms for Enhanced Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201796. [PMID: 35577552 DOI: 10.1002/adma.202201796] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/16/2022] [Indexed: 05/27/2023]
Abstract
Atomically dispersed metal catalysts have triggered great interest in the field of catalysis owing to their unique features. Isolated single or few metal atoms can be anchored on substrates via chemical bonding or space confinement to maximize atom utilization efficiency. The key challenge lies in precisely regulating the geometric and electronic structure of the active metal centers, thus significantly influencing the catalytic properties. Although several reviews have been published on the preparation, characterization, and application of single-atom catalysts (SACs), the comprehensive understanding of SACs, dual-atom catalysts (DACs), and atomic clusters has never been systematically summarized. Here, recent advances in the engineering of local environments of state-of-the-art SACs, DACs, and atomic clusters for enhanced catalytic performance are highlighted. Firstly, various synthesis approaches for SACs, DACs, and atomic clusters are presented. Then, special attention is focused on the elucidation of local environments in terms of electronic state and coordination structure. Furthermore, a comprehensive summary of isolated single and few atoms for the applications of thermocatalysis, electrocatalysis, and photocatalysis is provided. Finally, the potential challenges and future opportunities in this emerging field are presented. This review will pave the way to regulate the microenvironment of the active site for boosting catalytic processes.
Collapse
Affiliation(s)
- Yang Chen
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Jian Lin
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Baohua Jia
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Xiaodong Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Shuaiyu Jiang
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| |
Collapse
|
103
|
Liu H, Rong H, Zhang J. Synergetic Dual-Atom Catalysts: The Next Boom of Atomic Catalysts. CHEMSUSCHEM 2022; 15:e202200498. [PMID: 35686615 DOI: 10.1002/cssc.202200498] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Dual-atom catalysts (DACs) are an important branch of single-atom catalysts (SACs), in which the former can effectively break the dilemma faced by the traditional SACs. The synergetic effects between bimetallic atoms provide many active sites, promising to improve catalytic performance and even catalyze more complex reactions. This paper reviews the recent research progresses of two kinds of DACs, including homonuclear and heteronuclear DACs, and their applications in oxygen reduction, carbon dioxide reduction, hydrogen evolution, oxygen evolution, Zn-air batteries, tandem catalytic reactions, and so on. In addition, in order to promote the further development of DACs, the challenges and perspectives of DACs are put forward.
Collapse
Affiliation(s)
- Huimin Liu
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Hongpan Rong
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jiatao Zhang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
104
|
Huo J, Shen Z, Cao X, Li L, Zhao Y, Liu H, Wang G. Macro/Micro-Environment Regulating Carbon-Supported Single-Atom Catalysts for Hydrogen/Oxygen Conversion Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202394. [PMID: 35853722 DOI: 10.1002/smll.202202394] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Single-atom catalysts (SACs) have attracted tremendous research interest due to their unique atomic structure, maximized atom utilization, and remarkable catalytic performance. Among the SACs, the carbon-supported SACs have been widely investigated due to their easily controlled properties of the carbon substrates, such as the tunable morphologies, ordered porosity, and abundant anchoring sites. The electrochemical performance of carbon-supported SACs is highly related to the morphological structure of carbon substrates (macro-environment) and the local coordination environments of center metals (micro-environment). This review aims to provide a comprehensive summary on the macro/micro-environment regulating carbon-supported SACs for highly efficient hydrogen/oxygen conversion reactions. The authors first summarize the macro-environment engineering strategies of carbon-supported SACs with altered specific surface areas and porous properties of the carbon substrates, facilitating the mass diffusion kinetics and structural stability. Then the micro-environment engineering strategies of carbon-supported SACs are discussed with the regulated atomic structure and electronic structure of metal centers, boosting the catalytic performance. Insights into the correlation between the co-boosted effect from the macro/micro-environments and catalytic activity for hydrogen/oxygen conversion reactions are summarized and discussed. Finally, the challenges and perspectives are addressed in building highly efficient carbon-supported SACs for practical applications.
Collapse
Affiliation(s)
- Juanjuan Huo
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Ziyan Shen
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Xianjun Cao
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Lu Li
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Yufei Zhao
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Hao Liu
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou, 450002, China
- Centre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia
| | - Guoxiu Wang
- Centre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia
| |
Collapse
|
105
|
He T, Chen Y, Liu Q, Lu B, Song X, Liu H, Liu M, Liu YN, Zhang Y, Ouyang X, Chen S. Theory-Guided Regulation of FeN 4 Spin State by Neighboring Cu Atoms for Enhanced Oxygen Reduction Electrocatalysis in Flexible Metal-Air Batteries. Angew Chem Int Ed Engl 2022; 61:e202201007. [PMID: 35468253 DOI: 10.1002/anie.202201007] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Indexed: 01/11/2023]
Abstract
Iron, nitrogen-codoped carbon (Fe-N-C) nanocomposites have emerged as viable electrocatalysts for the oxygen reduction reaction (ORR) due to the formation of FeNx Cy coordination moieties. In this study, results from first-principles calculations show a nearly linear correlation of the energy barriers of key reaction steps with the Fe magnetic moment. Experimentally, when single Cu sites are incorporated into Fe-N-C aerogels (denoted as NCAG/Fe-Cu), the Fe centers exhibit a reduced magnetic moment and markedly enhanced ORR activity within a wide pH range of 0-14. With the NCAG/Fe-Cu nanocomposites used as the cathode catalyst in a neutral/quasi-solid aluminum-air and alkaline/quasi-solid zinc-air battery, both achieve a remarkable performance with an ultrahigh open-circuit voltage of 2.00 and 1.51 V, large power density of 130 and 186 mW cm-2 , and good mechanical flexibility, all markedly better than those with commercial Pt/C or Pt/C-RuO2 catalysts at the cathode.
Collapse
Affiliation(s)
- Ting He
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, 932 Lushan South Road, Changsha, Hunan, 410083, China.,School of Materials Science and Engineering, Xiangtan University Yuhu District, Xiangtan, Hunan, 411105, China
| | - Yang Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, 932 Lushan South Road, Changsha, Hunan, 410083, China
| | - Qiming Liu
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Bingzhang Lu
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Xianwen Song
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, 932 Lushan South Road, Changsha, Hunan, 410083, China
| | - Hongtao Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, 932 Lushan South Road, Changsha, Hunan, 410083, China
| | - Min Liu
- School of Physics and Electronics, Central South University, Changsha, Hunan, 410083, China
| | - You-Nian Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, 932 Lushan South Road, Changsha, Hunan, 410083, China
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, 932 Lushan South Road, Changsha, Hunan, 410083, China.,Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Xiaoping Ouyang
- School of Materials Science and Engineering, Xiangtan University Yuhu District, Xiangtan, Hunan, 411105, China
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064, USA
| |
Collapse
|
106
|
Adegbemiga Yusuf B, Xia C, Xie M, Yaseen W, Xie J, Xu Y. Scalable fabrication of Ru-Mo2C composite catalytic material with carbon-based core-shell structure and its remarkable application for hydrogen evolution reaction. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
107
|
Jing T, Zhang N, Zhang C, Mourdikoudis S, Sofer Z, Li W, Li P, Li T, Zuo Y, Rao D. Improving C–N–FeO x Oxygen Evolution Electrocatalysts through Hydroxyl-Modulated Local Coordination Environment. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Tianyun Jing
- School of Materials Science and Engineering, Jiangsu University, 212013 Zhenjiang, People’s Republic of China
| | - Ning Zhang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, 999077 Kowloon, Hong Kong, People’s Republic of China
| | - Chaonan Zhang
- School of Materials Science and Engineering, Jiangsu University, 212013 Zhenjiang, People’s Republic of China
| | - Stefanos Mourdikoudis
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Wei Li
- Institute of Surface Micro and Nano Materials, Xuchang University, Xuchang, Henan 461002, People’s Republic of China
| | - Pinjiang Li
- Institute of Surface Micro and Nano Materials, Xuchang University, Xuchang, Henan 461002, People’s Republic of China
| | - Tingting Li
- Institute of Surface Micro and Nano Materials, Xuchang University, Xuchang, Henan 461002, People’s Republic of China
| | - Yunpeng Zuo
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628 Prague 6, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, 77900 Olomouc, Czech Republic
| | - Dewei Rao
- School of Materials Science and Engineering, Jiangsu University, 212013 Zhenjiang, People’s Republic of China
| |
Collapse
|
108
|
He T, Chen Y, Liu Q, Lu B, Song X, Liu H, Liu M, Liu Y, Zhang Y, Ouyang X, Chen S. Theory‐Guided Regulation of FeN
4
Spin State by Neighboring Cu Atoms for Enhanced Oxygen Reduction Electrocatalysis in Flexible Metal–Air Batteries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ting He
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science College of Chemistry and Chemical Engineering Central South University 932 Lushan South Road Changsha Hunan 410083 China
- School of Materials Science and Engineering Xiangtan University Yuhu District Xiangtan Hunan 411105 China
| | - Yang Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science College of Chemistry and Chemical Engineering Central South University 932 Lushan South Road Changsha Hunan 410083 China
| | - Qiming Liu
- Department of Chemistry and Biochemistry University of California 1156 High Street Santa Cruz CA 95064 USA
| | - Bingzhang Lu
- Department of Chemistry and Biochemistry University of California 1156 High Street Santa Cruz CA 95064 USA
| | - Xianwen Song
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science College of Chemistry and Chemical Engineering Central South University 932 Lushan South Road Changsha Hunan 410083 China
| | - Hongtao Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science College of Chemistry and Chemical Engineering Central South University 932 Lushan South Road Changsha Hunan 410083 China
| | - Min Liu
- School of Physics and Electronics Central South University Changsha Hunan 410083 China
| | - You‐Nian Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science College of Chemistry and Chemical Engineering Central South University 932 Lushan South Road Changsha Hunan 410083 China
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science College of Chemistry and Chemical Engineering Central South University 932 Lushan South Road Changsha Hunan 410083 China
- Key Laboratory of Materials Processing and Mold, Ministry of Education Zhengzhou University Zhengzhou, Henan 450002 China
| | - Xiaoping Ouyang
- School of Materials Science and Engineering Xiangtan University Yuhu District Xiangtan Hunan 411105 China
| | - Shaowei Chen
- Department of Chemistry and Biochemistry University of California 1156 High Street Santa Cruz CA 95064 USA
| |
Collapse
|
109
|
Lu S, Shi Y, Zhou W, Zhang Z, Wu F, Zhang B. Dissolution of the Heteroatom Dopants and Formation of Ortho-Quinone Moieties in the Doped Carbon Materials during Water Electrooxidation. J Am Chem Soc 2022; 144:3250-3258. [PMID: 35138841 DOI: 10.1021/jacs.1c13374] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Heteroatom-doped carbon materials are widely used as metal-free electrocatalysts and supporting substrates for many metal-based composites. However, almost all the current researches are based on the assumption of the self-stability of the heteroatom-doped carbon materials, neglecting their possible structural evolution during electrocatalysis, especially under harsh oxygen evolution reaction (OER) conditions. Besides, previous researches always focused on the dropcast carbon-based materials with only a few participated dopants, leading to unobservable structural evolution during the electrolysis. Here, heteroatom-doped graphite flakes (GP) with a large quantity of participated dopants are chosen as the research model to multiply the transformation during the electrolysis. Through the combination of theoretical calculations and experiments, we present the nearly complete dissolution of the heteroatoms in N-, P-, and Se-doped carbon materials in the form of the high-valence oxoanions during OER. The oxygen-abundant residues are proven to be responsible for the OER activity. Among the oxygen-containing functional groups in the residues, the ortho-quinone moieties, whose structures change with the doping elements, are finally identified as the active sites. Heteroatom-doped carbon materials as the supporting substrates for the metal-based composite experience a similar transformation, leading to unexpectedly different activity origins. Our work not only reveals the real active sites of the heteroatom-doped carbon materials for OER but also provides new insight into understanding the heteroatom-doped carbon materials as the supporting substrates for other anodic reactions.
Collapse
Affiliation(s)
- Shanshan Lu
- Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
| | - Yanmei Shi
- Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
| | - Wei Zhou
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Zhipu Zhang
- Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
| | - Fan Wu
- Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
| | - Bin Zhang
- Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, Tianjin 300072, China.,Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
110
|
Liu M, Li N, Cao S, Wang X, Lu X, Kong L, Xu Y, Bu XH. A "Pre-Constrained Metal Twins" Strategy to Prepare Efficient Dual-Metal-Atom Catalysts for Cooperative Oxygen Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107421. [PMID: 34862677 DOI: 10.1002/adma.202107421] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Dual-metal-atom-center catalysts (DACs) are a novel frontier in oxygen electrocatalysis, boasting functional and electronic synergies between contiguous metal centers and higher catalytic activities than single-atom-center catalysts. However, the definition and catalytic mechanism of DACs configurations remain unclear. Here, a "pre-constrained metal twins" strategy is proposed to prepare contiguous FeN4 and CoN4 DACs with homogeneous conformations embedded in a N-doped graphitic carbon (FeCo-DACs/NC). A programmable phthalocyanines dimer is used as a structural moiety to anchor the bimetallic sites (containing Co and Fe) in a metal-organic framework (MOF) to achieve delocalized dispersion before pyrolysis. The resultant FeCo-DACs/NC exhibits excellent electrochemical performance in oxygen electrocatalysis and rechargeable Zn-air batteries. Theoretical calculations demonstrate that the synergetic interaction of adjacent metals optimizes the d-band center position of metal centers and balances the free energy of the *O intermediate, thereby improving the oxygen electrocatalytic activity. This work opens up an avenue for the rational design of DACs with tailored electronic structures and uniform geometric configurations.
Collapse
Affiliation(s)
- Ming Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin, 300350, China
| | - Na Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin, 300350, China
| | - Shoufu Cao
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Xuemin Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin, 300350, China
| | - Xiaoqing Lu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Lingjun Kong
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin, 300350, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Yunhua Xu
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, China
| | - Xian-He Bu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin, 300350, China
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
111
|
Sun L, Reddu V, Wang X. Multi-atom cluster catalysts for efficient electrocatalysis. Chem Soc Rev 2022; 51:8923-8956. [DOI: 10.1039/d2cs00233g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review presents recent developments in the synthesis, modulation and characterization of multi-atom cluster catalysts for electrochemical energy applications.
Collapse
Affiliation(s)
- Libo Sun
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
- Cambridge Centre for Advanced Research and Education in Singapore Ltd (Cambridge CARES), CREATE Tower, Singapore 138602, Singapore
| | - Vikas Reddu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Xin Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
- Cambridge Centre for Advanced Research and Education in Singapore Ltd (Cambridge CARES), CREATE Tower, Singapore 138602, Singapore
| |
Collapse
|