101
|
Froese T, Froese R. Comparisons of static brain-body allometries across vertebrates must distinguish between indeterminate and determinate growth. Nat Ecol Evol 2019; 3:1404. [PMID: 31548649 DOI: 10.1038/s41559-019-0984-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 08/14/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Tom Froese
- Institute for Applied Mathematics and Systems Research, National Autonomous University of Mexico, Mexico City, Mexico. .,Center for the Sciences of Complexity, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | - Rainer Froese
- GEOMAR Helmholtz-Centre for Ocean Research, Kiel, Germany
| |
Collapse
|
102
|
Marhounová L, Kotrschal A, Kverková K, Kolm N, Němec P. Artificial selection on brain size leads to matching changes in overall number of neurons. Evolution 2019; 73:2003-2012. [PMID: 31339177 PMCID: PMC6772110 DOI: 10.1111/evo.13805] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/13/2019] [Accepted: 06/19/2019] [Indexed: 12/16/2022]
Abstract
Neurons are the basic computational units of the brain, but brain size is the predominant surrogate measure of brain functional capacity in comparative and cognitive neuroscience. This approach is based on the assumption that larger brains harbor higher numbers of neurons and their connections, and therefore have a higher information-processing capacity. However, recent studies have shown that brain mass may be less strongly correlated with neuron counts than previously thought. Till now, no experimental test has been conducted to examine the relationship between evolutionary changes in brain size and the number of brain neurons. Here, we provide such a test by comparing neuron number in artificial selection lines of female guppies (Poecilia reticulata) with >15% difference in relative brain mass and numerous previously demonstrated cognitive differences. Using the isotropic fractionator, we demonstrate that large-brained females have a higher overall number of neurons than small-brained females, but similar neuronal densities. Importantly, this difference holds also for the telencephalon, a key region for cognition. Our study provides the first direct experimental evidence that selection for brain mass leads to matching changes in number of neurons and shows that brain size evolution is intimately linked to the evolution of neuron number and cognition.
Collapse
Affiliation(s)
- Lucie Marhounová
- Department of Zoology, Faculty of ScienceCharles University12844PragueCzech Republic
| | - Alexander Kotrschal
- Behavioural Ecology GroupDepartment of Animal Sciences6708wdWageningenNetherlands
- Department of Zoology/EthologyStockholm University10691StockholmSweden
| | - Kristina Kverková
- Department of Zoology, Faculty of ScienceCharles University12844PragueCzech Republic
| | - Niclas Kolm
- Department of Zoology/EthologyStockholm University10691StockholmSweden
| | - Pavel Němec
- Department of Zoology, Faculty of ScienceCharles University12844PragueCzech Republic
| |
Collapse
|
103
|
Abstract
The dramatic evolutionary expansion of the neocortex, together with a proliferation of specialized cortical areas, is believed to underlie the emergence of human cognitive abilities. In a broader phylogenetic context, however, neocortex evolution in mammals, including humans, is remarkably conservative, characterized largely by size variations on a shared six-layered neuronal architecture. By contrast, the telencephalon in non-mammalian vertebrates, including reptiles, amphibians, bony and cartilaginous fishes, and cyclostomes, features a great variety of very different tissue structures. Our understanding of the evolutionary relationships of these telencephalic structures, especially those of basally branching vertebrates and invertebrate chordates, remains fragmentary and is impeded by conceptual obstacles. To make sense of highly divergent anatomies requires a hierarchical view of biological organization, one that permits the recognition of homologies at multiple levels beyond neuroanatomical structure. Here we review the origin and diversification of the telencephalon with a focus on key evolutionary innovations shaping the neocortex at multiple levels of organization.
Collapse
Affiliation(s)
- Steven D Briscoe
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| | - Clifton W Ragsdale
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA; Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
104
|
Abstract
Abstract
The concept of biphasic, loglinear growth of the vertebrate brain is based on graphical displays of logarithmic transformations of the original measurements. Such displays commonly give the appearance of two distinct mathematical distributions – one set of observations following a steep trajectory at the low end of the size range and another set following a shallow trajectory at the high end. However, the appearance of two distributions is an artefact resulting from the logarithmic transformations. Observations of brain mass vs. body mass in each of the eight vertebrate species examined in the current investigation conform to a single mathematical distribution that is well described by a single equation fitted to the original, untransformed data by non-linear regression. Data for carp, chickens, kangaroos and rabbits are described by three-parameter power equations whereas those for dolphins and primates are described by exponential functions that rise rapidly to a maximum. The brain continues to grow throughout life in carp, chickens, kangaroos and rabbits but not in dolphins and primates. Future investigations of relative growth of the brain should be based on graphical and analytical study of observations expressed on the native mathematical scale.
Collapse
Affiliation(s)
- Gary C Packard
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
105
|
Lee JJ, McGue M, Iacono WG, Michael AM, Chabris CF. The causal influence of brain size on human intelligence: Evidence from within-family phenotypic associations and GWAS modeling. INTELLIGENCE 2019; 75:48-58. [PMID: 32831433 DOI: 10.1016/j.intell.2019.01.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
There exists a moderate correlation between MRI-measured brain size and the general factor of IQ performance (g), but the question of whether the association reflects a theoretically important causal relationship or spurious confounding remains somewhat open. Previous small studies (n < 100) looking for the persistence of this correlation within families failed to find a tendency for the sibling with the larger brain to obtain a higher test score. We studied the within-family relationship between brain volume and intelligence in the much larger sample provided by the Human Connectome Project (n = 1,022) and found a highly significant correlation (disattenuated ρ = 0.18, p < .001). We replicated this result in the Minnesota Center for Twin and Family Research (n = 2,698), finding a highly significant within-family correlation between head circumference and intelligence (disattenuated ρ = 0.19, p < .001). We also employed novel methods of causal inference relying on summary statistics from genome-wide association studies (GWAS) of head size (n ≈ 10,000) and measures of cognition (257,000 < n < 767,000). Using bivariate LD Score regression, we found a genetic correlation between intracranial volume (ICV) and years of education (EduYears) of 0.41 (p < .001). Using the Latent Causal Variable method, we found a genetic causality proportion of 0.72 (p < .001); thus the genetic correlation arises from an asymmetric pattern, extending to sub-significant loci, of genetic variants associated with ICV also being associated with EduYears but many genetic variants associated with EduYears not being associated with ICV. This is the pattern of genetic results expected from a causal effect of brain size on intelligence. These findings give reason to take up the hypothesis that the dramatic increase in brain volume over the course of human evolution has been the result of natural selection favoring general intelligence.
Collapse
Affiliation(s)
- James J Lee
- Department of Psychology, University of Minnesota Twin Cities, 75 East River Parkway, Minneapolis, MN 55455, USA
| | - Matt McGue
- Department of Psychology, University of Minnesota Twin Cities, 75 East River Parkway, Minneapolis, MN 55455, USA
| | - William G Iacono
- Department of Psychology, University of Minnesota Twin Cities, 75 East River Parkway, Minneapolis, MN 55455, USA
| | - Andrew M Michael
- Geisinger Health System, 120 Hamm Drive Suite 2A, Lewisburg, PA 17837, USA.,Duke Institute for Brain Sciences, Duke University, 308 Research Drive, LSRC M051, Durham, NC 27708, USA
| | | |
Collapse
|
106
|
Affiliation(s)
- Joseph Robert Burger
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
- North Carolina Museum of Natural Sciences, Raleigh, NC, USA
| | | | - Claire Leadbetter
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Farhin Shaikh
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
107
|
Watanabe A, Gignac PM, Balanoff AM, Green TL, Kley NJ, Norell MA. Are endocasts good proxies for brain size and shape in archosaurs throughout ontogeny? J Anat 2019; 234:291-305. [PMID: 30506962 PMCID: PMC6365484 DOI: 10.1111/joa.12918] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2018] [Indexed: 12/21/2022] Open
Abstract
Cranial endocasts, or the internal molds of the braincase, are a crucial correlate for investigating the neuroanatomy of extinct vertebrates and tracking brain evolution through deep time. Nevertheless, the validity of such studies pivots on the reliability of endocasts as a proxy for brain morphology. Here, we employ micro-computed tomography imaging, including diffusible iodine-based contrast-enhanced CT, and a three-dimensional geometric morphometric framework to examine both size and shape differences between brains and endocasts of two exemplar archosaur taxa - the American alligator (Alligator mississippiensis) and the domestic chicken (Gallus gallus). With ontogenetic sampling, we quantitatively evaluate how endocasts differ from brains and whether this deviation changes during development. We find strong size and shape correlations between brains and endocasts, divergent ontogenetic trends in the brain-to-endocast correspondence between alligators and chickens, and a comparable magnitude between brain-endocast shape differences and intraspecific neuroanatomical variation. The results have important implications for paleoneurological studies in archosaurs. Notably, we demonstrate that the pattern of endocranial shape variation closely reflects brain shape variation. Therefore, analyses of endocranial morphology are unlikely to generate spurious conclusions about large-scale trends in brain size and shape. To mitigate any artifacts, however, paleoneurological studies should consider the lower brain-endocast correspondence in the hindbrain relative to the forebrain; higher size and shape correspondences in chickens than alligators throughout postnatal ontogeny; artificially 'pedomorphic' shape of endocasts relative to their corresponding brains; and potential biases in both size and shape data due to the lack of control for ontogenetic stages in endocranial sampling.
Collapse
Affiliation(s)
- Akinobu Watanabe
- Department of AnatomyNew York Institute of Technology College of Osteopathic MedicineOld WestburyNYUSA
- Division of PaleontologyAmerican Museum of Natural HistoryNew YorkNYUSA
- Richard Gilder Graduate SchoolAmerican Museum of Natural HistoryNew YorkNYUSA
- Department of Life Sciences Vertebrates DivisionNatural History MuseumLondonUK
| | - Paul M. Gignac
- Division of PaleontologyAmerican Museum of Natural HistoryNew YorkNYUSA
- Department of Anatomy and Cell BiologyOklahoma State University Center for Health SciencesTulsaOKUSA
| | - Amy M. Balanoff
- Division of PaleontologyAmerican Museum of Natural HistoryNew YorkNYUSA
- Center for Functional Anatomy and EvolutionJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Todd L. Green
- Department of Anatomy and Cell BiologyOklahoma State University Center for Health SciencesTulsaOKUSA
| | - Nathan J. Kley
- Department of Anatomical SciencesStony Brook UniversityStony BrookNYUSA
| | - Mark A. Norell
- Division of PaleontologyAmerican Museum of Natural HistoryNew YorkNYUSA
- Richard Gilder Graduate SchoolAmerican Museum of Natural HistoryNew YorkNYUSA
| |
Collapse
|