101
|
Mahajan A, Yuan C, Lee H, Chen ESW, Wu PY, Tsai MD. Structure and function of the phosphothreonine-specific FHA domain. Sci Signal 2008; 1:re12. [PMID: 19109241 DOI: 10.1126/scisignal.151re12] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The forkhead-associated (FHA) domain is the only known phosphoprotein-binding domain that specifically recognizes phosphothreonine (pThr) residues, distinguishing them from phosphoserine (pSer) residues. In contrast to its very strict specificity toward pThr, the FHA domain recognizes very diverse patterns in the residues surrounding the pThr residue. For example, the FHA domain of Ki67, a protein associated with cellular proliferation, binds to an extended target surface involving residues remote from the pThr, whereas the FHA domain of Dun1, a DNA damage-response kinase, specifically recognizes a doubly phosphorylated Thr-Gln (TQ) cluster by virtue of its possessing two pThr-binding sites. The FHA domain exists in various proteins with diverse functions and is particularly prevalent among proteins involved in the DNA damage response. Despite a very short history, a number of unique structural and functional properties of the FHA domain have been uncovered. This review highlights the diversity of biological functions of the FHA domain-containing proteins and the structural bases for the novel binding specificities and multiple binding modes of FHA domains.
Collapse
Affiliation(s)
- Anjali Mahajan
- Biophysics Program, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
102
|
Rapid recruitment of BRCA1 to DNA double-strand breaks is dependent on its association with Ku80. Mol Cell Biol 2008; 28:7380-93. [PMID: 18936166 DOI: 10.1128/mcb.01075-08] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BRCA1 is the first susceptibility gene to be linked to breast and ovarian cancers. Although mounting evidence has indicated that BRCA1 participates in DNA double-strand break (DSB) repair pathways, its precise mechanism is still unclear. Here, we analyzed the in situ response of BRCA1 at DSBs produced by laser microirradiation. The amino (N)- and carboxyl (C)-terminal fragments of BRCA1 accumulated independently at DSBs with distinct kinetics. The N-terminal BRCA1 fragment accumulated immediately after laser irradiation at DSBs and dissociated rapidly. In contrast, the C-terminal fragment of BRCA1 accumulated more slowly at DSBs but remained at the sites. Interestingly, rapid accumulation of the BRCA1 N terminus, but not the C terminus, at DSBs depended on Ku80, which functions in the nonhomologous end-joining (NHEJ) pathway, independently of BARD1, which binds to the N terminus of BRCA1. Two small regions in the N terminus of BRCA1 independently accumulated at DSBs and interacted with Ku80. Missense mutations found within the N terminus of BRCA1 in cancers significantly changed the kinetics of its accumulation at DSBs. A P142H mutant failed to associate with Ku80 and restore resistance to irradiation in BRCA1-deficient cells. These might provide a molecular basis of the involvement of BRCA1 in the NHEJ pathway of the DSB repair process.
Collapse
|
103
|
Abstract
DNA ligases are required for DNA replication, repair, and recombination. In eukaryotes, there are three families of ATP-dependent DNA ligases. Members of the DNA ligase I and IV families are found in all eukaryotes, whereas DNA ligase III family members are restricted to vertebrates. These enzymes share a common catalytic region comprising a DNA-binding domain, a nucleotidyltransferase (NTase) domain, and an oligonucleotide/oligosaccharide binding (OB)-fold domain. The catalytic region encircles nicked DNA with each of the domains contacting the DNA duplex. The unique segments adjacent to the catalytic region of eukaryotic DNA ligases are involved in specific protein-protein interactions with a growing number of DNA replication and repair proteins. These interactions determine the specific cellular functions of the DNA ligase isozymes. In mammals, defects in DNA ligation have been linked with an increased incidence of cancer and neurodegeneration.
Collapse
Affiliation(s)
- Tom Ellenberger
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
104
|
Ku antigen interacts with abasic sites. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1777-85. [PMID: 18757043 DOI: 10.1016/j.bbapap.2008.08.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 07/28/2008] [Accepted: 08/05/2008] [Indexed: 11/21/2022]
Abstract
One of the most abundant lesions in DNA is the abasic (AP) sites arising spontaneously or as an intermediate in base excision repair. Certain proteins participating in the processing of these lesions form a Schiff base with the deoxyribose of the AP site. This intermediate can be stabilized by NaBH(4) treatment. By this method, DNA duplexes with AP sites were used to trap proteins in cell extracts. In HeLa cell extract, along with a prevalent trap product with an apparent molecular mass of 95 kDa, less intensive low-molecular-weight products were observed. The major one was identified as the p80-subunit of Ku antigen (Ku). Ku antigen, a DNA binding component of DNA-dependent protein kinase (DNA-PK), participates in double-stranded break repair and is responsible for the resistance of cells to ionizing radiation. The specificity of Ku interaction with AP sites was proven by more efficient competition of DNA duplexes with an analogue of abasic site than non-AP DNA. Ku80 was cross-linked to AP DNAs with different efficiencies depending on the size and position of strand interruptions opposite to AP sites. Ku antigen as a part of DNA-PK was shown to inhibit AP site cleavage by apurinic/apyrimidinic endonuclease 1.
Collapse
|
105
|
Abstract
Hereditary defects in the repair of DNA damage are implicated in a variety of diseases, many of which are typified by neurological dysfunction and/or increased genetic instability and cancer. Of the different types of DNA damage that arise in cells, single-strand breaks (SSBs) are the most common, arising at a frequency of tens of thousands per cell per day from direct attack by intracellular metabolites and from spontaneous DNA decay. Here, the molecular mechanisms and organization of the DNA-repair pathways that remove SSBs are reviewed and the connection between defects in these pathways and hereditary neurodegenerative disease are discussed.
Collapse
Affiliation(s)
- Keith W Caldecott
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| |
Collapse
|
106
|
Du L, Dunn-Walters DK, Chrzanowska KH, Stankovic T, Kotnis A, Li X, Lu J, Eggertsen G, Brittain C, Popov SW, Gennery AR, Taylor AMR, Pan-Hammarström Q. A regulatory role for NBS1 in strand-specific mutagenesis during somatic hypermutation. PLoS One 2008; 3:e2482. [PMID: 18575580 PMCID: PMC2423615 DOI: 10.1371/journal.pone.0002482] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 05/14/2008] [Indexed: 11/18/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) is believed to initiate somatic hypermutation (SHM) by deamination of deoxycytidines to deoxyuridines within the immunoglobulin variable regions genes. The deaminated bases can subsequently be replicated over, processed by base excision repair or mismatch repair, leading to introduction of different types of point mutations (G/C transitions, G/C transversions and A/T mutations). It is evident that the base excision repair pathway is largely dependent on uracil-DNA glycosylase (UNG) through its uracil excision activity. It is not known, however, which endonuclease acts in the step immediately downstream of UNG, i.e. that cleaves at the abasic sites generated by the latter. Two candidates have been proposed, an apurinic/apyrimidinic endonuclease (APE) and the Mre11-Rad50-NBS1 complex. The latter is intriguing as this might explain how the mutagenic pathway is primed during SHM. We have investigated the latter possibility by studying the in vivo SHM pattern in B cells from ataxia-telangiectasia-like disorder (Mre11 deficient) and Nijmegen breakage syndrome (NBS1 deficient) patients. Our results show that, although the pattern of mutations in the variable heavy chain (V(H)) genes was altered in NBS1 deficient patients, with a significantly increased number of G (but not C) transversions occurring in the SHM and/or AID targeting hotspots, the general pattern of mutations in the V(H) genes in Mre11 deficient patients was only slightly altered, with an increased frequency of A to C transversions. The Mre11-Rad50-NBS1 complex is thus unlikely to be the major nuclease involved in cleavage of the abasic sites during SHM, whereas NBS1 might have a specific role in regulating the strand-biased repair during phase Ib mutagenesis.
Collapse
Affiliation(s)
- Likun Du
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Deborah K. Dunn-Walters
- Department of Immunobiology, King's College London School of Medicine, Guy's Hospital, London, United Kingdom
| | | | - Tanja Stankovic
- The University of Birmingham CRC Institute for Cancer Studies, the Medical School Edghaston, Birmingham, United Kingdom
| | - Ashwin Kotnis
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Xin Li
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Jiayi Lu
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Gösta Eggertsen
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Claire Brittain
- The University of Birmingham CRC Institute for Cancer Studies, the Medical School Edghaston, Birmingham, United Kingdom
| | - Sergey W. Popov
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Andrew R. Gennery
- Department of Pediatric Immunology, Newcastle General Hospital, Newcastle, United Kingdom
| | - A. Malcolm R. Taylor
- The University of Birmingham CRC Institute for Cancer Studies, the Medical School Edghaston, Birmingham, United Kingdom
| | - Qiang Pan-Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
107
|
Abstract
Antibody class switching occurs in mature B cells in response to antigen stimulation and costimulatory signals. It occurs by a unique type of intrachromosomal deletional recombination within special G-rich tandem repeated DNA sequences [called switch, or S, regions located upstream of each of the heavy chain constant (C(H)) region genes, except Cdelta]. The recombination is initiated by the B cell-specific activation-induced cytidine deaminase (AID), which deaminates cytosines in both the donor and acceptor S regions. AID activity converts several dC bases to dU bases in each S region, and the dU bases are then excised by the uracil DNA glycosylase UNG; the resulting abasic sites are nicked by apurinic/apyrimidinic endonuclease (APE). AID attacks both strands of transcriptionally active S regions, but how transcription promotes AID targeting is not entirely clear. Mismatch repair proteins are then involved in converting the resulting single-strand DNA breaks to double-strand breaks with DNA ends appropriate for end-joining recombination. Proteins required for the subsequent S-S recombination include DNA-PK, ATM, Mre11-Rad50-Nbs1, gammaH2AX, 53BP1, Mdc1, and XRCC4-ligase IV. These proteins are important for faithful joining of S regions, and in their absence aberrant recombination and chromosomal translocations involving S regions occur.
Collapse
Affiliation(s)
- Janet Stavnezer
- Department of Molecular Genetics and Microbiology, Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, Massachusetts 01655-012, USA.
| | | | | |
Collapse
|
108
|
Macrae CJ, McCulloch RD, Ylanko J, Durocher D, Koch CA. APLF (C2orf13) facilitates nonhomologous end-joining and undergoes ATM-dependent hyperphosphorylation following ionizing radiation. DNA Repair (Amst) 2008; 7:292-302. [PMID: 18077224 DOI: 10.1016/j.dnarep.2007.10.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 10/23/2007] [Accepted: 10/24/2007] [Indexed: 11/25/2022]
Abstract
Nonhomologous end-joining (NHEJ) is the major mammalian DNA double-strand break (DSB) repair pathway of DSBs induced by DNA damaging agents. NHEJ is initiated by the recognition of DSBs by the DNA end-binding heterodimer, Ku, and the final step of DNA end-joining is accomplished by the XRCC4-DNA ligase IV complex. We demonstrate that Aprataxin and PNK-like factor (APLF), an endo/exonuclease with an FHA domain and unique zinc fingers (ZFs), interacts with both Ku and XRCC4-DNA ligase IV in human cells. The interaction of APLF with XRCC4-DNA ligase IV is FHA- and phospho-dependent, and is mediated by CK2 phosphorylation of XRCC4 in vitro. In contrast, APLF associates with Ku independently of the FHA and ZF domains, and APLF complexes with Ku at DNA ends. APLF undergoes ionizing radiation (IR) induced ATM-dependent hyperphosphorylation at serine residue 116, which is highly conserved across mammalian APLF homologues. We demonstrate further that depletion of APLF in human cells by siRNA is associated with impaired NHEJ. Collectively, these results suggest that APLF is an ATM target that is involved in NHEJ and facilitates DSB repair, likely via interactions with Ku and XRCC4-DNA ligase IV.
Collapse
Affiliation(s)
- Chloe J Macrae
- Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
109
|
APLF (C2orf13) is a novel component of poly(ADP-ribose) signaling in mammalian cells. Mol Cell Biol 2008; 28:4620-8. [PMID: 18474613 DOI: 10.1128/mcb.02243-07] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
APLF is a novel protein of unknown function that accumulates at sites of chromosomal DNA strand breakage via forkhead-associated (FHA) domain-mediated interactions with XRCC1 and XRCC4. APLF can also accumulate at sites of chromosomal DNA strand breaks independently of the FHA domain via an unidentified mechanism that requires a highly conserved C-terminal tandem zinc finger domain. Here, we show that the zinc finger domain binds tightly to poly(ADP-ribose), a polymeric posttranslational modification synthesized transiently at sites of chromosomal damage to accelerate DNA strand break repair reactions. Protein poly(ADP-ribosyl)ation is tightly regulated and defects in either its synthesis or degradation slow global rates of chromosomal single-strand break repair. Interestingly, APLF negatively affects poly(ADP-ribosyl)ation in vitro, and this activity is dependent on its capacity to bind the polymer. In addition, transient overexpression in human A549 cells of full-length APLF or a C-terminal fragment encoding the tandem zinc finger domain greatly suppresses the appearance of poly(ADP-ribose), in a zinc finger-dependent manner. We conclude that APLF can accumulate at sites of chromosomal damage via zinc finger-mediated binding to poly(ADP-ribose) and is a novel component of poly(ADP-ribose) signaling in mammalian cells.
Collapse
|
110
|
Melander F, Bekker-Jensen S, Falck J, Bartek J, Mailand N, Lukas J. Phosphorylation of SDT repeats in the MDC1 N terminus triggers retention of NBS1 at the DNA damage-modified chromatin. ACTA ACUST UNITED AC 2008; 181:213-26. [PMID: 18411307 PMCID: PMC2315670 DOI: 10.1083/jcb.200708210] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
DNA double-strand breaks (DSBs) trigger accumulation of the MRE11–RAD50–Nijmegen breakage syndrome 1 (NBS1 [MRN]) complex, whose retention on the DSB-flanking chromatin facilitates survival. Chromatin retention of MRN requires the MDC1 adaptor protein, but the mechanism behind the MRN–MDC1 interaction is unknown. We show that the NBS1 subunit of MRN interacts with the MDC1 N terminus enriched in Ser-Asp-Thr (SDT) repeats. This interaction was constitutive and mediated by binding between the phosphorylated SDT repeats of MDC1 and the phosphate-binding forkhead-associated domain of NBS1. Phosphorylation of the SDT repeats by casein kinase 2 (CK2) was sufficient to trigger MDC1–NBS1 interaction in vitro, and MDC1 associated with CK2 activity in cells. Inhibition of CK2 reduced SDT phosphorylation in vivo, and disruption of the SDT-associated phosphoacceptor sites prevented the retention of NBS1 at DSBs. Together, these data suggest that phosphorylation of the SDT repeats in the MDC1 N terminus functions to recruit NBS1 and, thereby, increases the local concentration of MRN at the sites of chromosomal breakage.
Collapse
Affiliation(s)
- Fredrik Melander
- Institute of Cancer Biology and 2Centre for Genotoxic Stress Research, Danish Cancer Society, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
111
|
Hong Z, Jiang J, Lan L, Nakajima S, Kanno SI, Koseki H, Yasui A. A polycomb group protein, PHF1, is involved in the response to DNA double-strand breaks in human cell. Nucleic Acids Res 2008; 36:2939-47. [PMID: 18385154 PMCID: PMC2396414 DOI: 10.1093/nar/gkn146] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
DNA double-strand breaks (DSBs) represent the most toxic DNA damage arisen from endogenous and exogenous genotoxic stresses and are known to be repaired by either homologous recombination or nonhomologous end-joining processes. Although many proteins have been identified to participate in either of the processes, the whole processes still remain elusive. Polycomb group (PcG) proteins are epigenetic chromatin modifiers involved in gene silencing, cancer development and the maintenance of embryonic and adult stem cells. By screening proteins responding to DNA damage using laser micro-irradiation, we found that PHF1, a human homolog of Drosophila polycomb-like, Pcl, protein, was recruited to DSBs immediately after irradiation and dissociated within 10 min. The accumulation at DSBs is Ku70/Ku80-dependent, and knockdown of PHF1 leads to X-ray sensitivity and increases the frequency of homologous recombination in HeLa cell. We found that PHF1 interacts physically with Ku70/Ku80, suggesting that PHF1 promotes nonhomologous end-joining processes. Furthermore, we found that PHF1 interacts with a number of proteins involved in DNA damage responses, RAD50, SMC1, DHX9 and p53, further suggesting that PHF1, besides the function in PcG, is involved in genome maintenance processes.
Collapse
Affiliation(s)
- Zehui Hong
- Department of Molecular Genetics, Institute of Development, Aging and Cancer, Tohoku University, Seiryomachi 4-1, Aobaku, Sendai 980-8575, Japan
| | | | | | | | | | | | | |
Collapse
|
112
|
Hegde ML, Hazra TK, Mitra S. Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells. Cell Res 2008; 18:27-47. [PMID: 18166975 DOI: 10.1038/cr.2008.8] [Citation(s) in RCA: 480] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Base excision repair (BER) is an evolutionarily conserved process for maintaining genomic integrity by eliminating several dozen damaged (oxidized or alkylated) or inappropriate bases that are generated endogenously or induced by genotoxicants, predominantly, reactive oxygen species (ROS). BER involves 4-5 steps starting with base excision by a DNA glycosylase, followed by a common pathway usually involving an AP-endonuclease (APE) to generate 3' OH terminus at the damage site, followed by repair synthesis with a DNA polymerase and nick sealing by a DNA ligase. This pathway is also responsible for repairing DNA single-strand breaks with blocked termini directly generated by ROS. Nearly all glycosylases, far fewer than their substrate lesions particularly for oxidized bases, have broad and overlapping substrate range, and could serve as back-up enzymes in vivo. In contrast, mammalian cells encode only one APE, APE1, unlike two APEs in lower organisms. In spite of overall similarity, BER with distinct subpathways in the mammals is more complex than in E. coli. The glycosylases form complexes with downstream proteins to carry out efficient repair via distinct subpathways one of which, responsible for repair of strand breaks with 3' phosphate termini generated by the NEIL family glycosylases or by ROS, requires the phosphatase activity of polynucleotide kinase instead of APE1. Different complexes may utilize distinct DNA polymerases and ligases. Mammalian glycosylases have nonconserved extensions at one of the termini, dispensable for enzymatic activity but needed for interaction with other BER and non-BER proteins for complex formation and organelle targeting. The mammalian enzymes are sometimes covalently modified which may affect activity and complex formation. The focus of this review is on the early steps in mammalian BER for oxidized damage.
Collapse
Affiliation(s)
- Muralidhar L Hegde
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1079, USA
| | | | | |
Collapse
|
113
|
Poly(ADP-ribose)-binding zinc finger motifs in DNA repair/checkpoint proteins. Nature 2008; 451:81-5. [PMID: 18172500 DOI: 10.1038/nature06420] [Citation(s) in RCA: 346] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 10/26/2007] [Indexed: 12/22/2022]
Abstract
Post-translational modification (PTM) of proteins plays an important part in mediating protein interactions and/or the recruitment of specific protein targets. PTM can be mediated by the addition of functional groups (for example, acetylation or phosphorylation), peptides (for example, ubiquitylation or sumoylation), or nucleotides (for example, poly(ADP-ribosyl)ation). Poly(ADP-ribosyl)ation often involves the addition of long chains of ADP-ribose units, linked by glycosidic ribose-ribose bonds, and is critical for a wide range of processes, including DNA repair, regulation of chromosome structure, transcriptional regulation, mitosis and apoptosis. Here we identify a novel poly(ADP-ribose)-binding zinc finger (PBZ) motif in a number of eukaryotic proteins involved in the DNA damage response and checkpoint regulation. The PBZ motif is also required for post-translational poly(ADP-ribosyl)ation. We demonstrate interaction of poly(ADP-ribose) with this motif in two representative human proteins, APLF (aprataxin PNK-like factor) and CHFR (checkpoint protein with FHA and RING domains), and show that the actions of CHFR in the antephase checkpoint are abrogated by mutations in PBZ or by inhibition of poly(ADP-ribose) synthesis.
Collapse
|
114
|
Guikema JEJ, Linehan EK, Tsuchimoto D, Nakabeppu Y, Strauss PR, Stavnezer J, Schrader CE. APE1- and APE2-dependent DNA breaks in immunoglobulin class switch recombination. ACTA ACUST UNITED AC 2007; 204:3017-26. [PMID: 18025127 PMCID: PMC2118529 DOI: 10.1084/jem.20071289] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Antibody class switch recombination (CSR) occurs by an intrachromosomal deletion requiring generation of double-stranded breaks (DSBs) in switch-region DNA. The initial steps in DSB formation have been elucidated, involving cytosine deamination by activation-induced cytidine deaminase and generation of abasic sites by uracil DNA glycosylase. However, it is not known how abasic sites are converted into single-stranded breaks and, subsequently, DSBs. Apurinic/apyrimidinic endonuclease (APE) efficiently nicks DNA at abasic sites, but it is unknown whether APE participates in CSR. We address the roles of the two major mammalian APEs, APE1 and APE2, in CSR. APE1 deficiency causes embryonic lethality in mice; we therefore examined CSR and DSBs in mice deficient in APE2 and haploinsufficient for APE1. We show that both APE1 and APE2 function in CSR, resulting in the DSBs necessary for CSR and thereby describing a novel in vivo function for APE2.
Collapse
Affiliation(s)
- Jeroen E J Guikema
- Department of Molecular Genetics and Microbiology, Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | | | | | |
Collapse
|
115
|
Abstract
Defects in cellular DNA repair processes have been linked to genome instability, heritable cancers, and premature aging syndromes. Yet defects in some repair processes manifest themselves primarily in neuronal tissues. This review focuses on studies defining the molecular defects associated with several human neurological disorders, particularly ataxia with oculomotor apraxia 1 (AOA1) and spinocerebellar ataxia with axonal neuropathy 1 (SCAN1). A picture is emerging to suggest that brain cells, due to their nonproliferative nature, may be particularly prone to the progressive accumulation of unrepaired DNA lesions.
Collapse
Affiliation(s)
- Ulrich Rass
- London Research Institute, Cancer Research UK, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, UK
| | | | | |
Collapse
|