101
|
Karam CS, Kellner WA, Takenaka N, Clemmons AW, Corces VG. 14-3-3 mediates histone cross-talk during transcription elongation in Drosophila. PLoS Genet 2010; 6:e1000975. [PMID: 20532201 PMCID: PMC2880557 DOI: 10.1371/journal.pgen.1000975] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 05/04/2010] [Indexed: 12/21/2022] Open
Abstract
Post-translational modifications of histone proteins modulate the binding of transcription regulators to chromatin. Studies in Drosophila have shown that the phosphorylation of histone H3 at Ser10 (H3S10ph) by JIL-1 is required specifically during early transcription elongation. 14-3-3 proteins bind H3 only when phosphorylated, providing mechanistic insights into the role of H3S10ph in transcription. Findings presented here show that 14-3-3 functions downstream of H3S10ph during transcription elongation. 14-3-3 proteins localize to active genes in a JIL-1–dependent manner. In the absence of 14-3-3, levels of actively elongating RNA polymerase II are severely diminished. 14-3-3 proteins interact with Elongator protein 3 (Elp3), an acetyltransferase that functions during transcription elongation. JIL-1 and 14-3-3 are required for Elp3 binding to chromatin, and in the absence of either protein, levels of H3K9 acetylation are significantly reduced. These results suggest that 14-3-3 proteins mediate cross-talk between histone phosphorylation and acetylation at a critical step in transcription elongation. Activation of gene expression is thought to be regulated mainly at the level of transcription initiation. Nevertheless, many genes in Drosophila and vertebrates contain RNA polymerase that has started transcription but is paused 30–40 bp from the initiation site. Activation of these genes may thus be regulated by releasing the polymerase from the paused state rather than bringing this protein to the promoter. This release requires the recruitment of specialized proteins that modify the polymerase. It appears that the recruitment of these proteins takes place by modification of two chromatin proteins, histones H3 and H4. Here we characterize a process composed of multiple steps required for release of RNA polymerase from the paused state. The process starts with the recruitment of an enzyme that adds a phosphate group to histone H3. This phosphate serves as a signal to recruit a different protein, which in turn recruits a second enzyme capable of adding an acetyl group to the same histone molecule. The multiple steps involved may provide a variety of mechanisms to control the process.
Collapse
Affiliation(s)
- Caline S. Karam
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Wendy A. Kellner
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Naomi Takenaka
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Alexa W. Clemmons
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Victor G. Corces
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
102
|
Hou Z, Peng H, White DE, Wang P, Lieberman PM, Halazonetis T, Rauscher FJ. 14-3-3 binding sites in the snail protein are essential for snail-mediated transcriptional repression and epithelial-mesenchymal differentiation. Cancer Res 2010; 70:4385-93. [PMID: 20501852 DOI: 10.1158/0008-5472.can-10-0070] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The Snail transcription factor is a repressor and a master regulator of epithelial-mesenchymal transition (EMT) events in normal embryonic development and during tumor metastases. Snail directly regulates genes affecting cell adhesion, motility, and polarity. Invasive tumor cells express high levels of Snail, which is a marker for aggressive disease and poor prognosis. Transcriptional repression and EMT induction by Snail requires binding to its obligate corepressor, the LIM protein Ajuba. It is unclear how this complex is assembled and maintained on Snail target genes. Here we define functional 14-3-3 binding motifs in Snail and Ajuba, which selectively bind 14-3-3 protein isoforms. In Snail, an NH(2)-terminal motif in the repression domain cooperates with a COOH-terminal, high-affinity motif for binding to 14-3-3 proteins. Coordinate mutation of both motifs abolishes 14-3-3 binding and inhibits Snail-mediated gene repression and EMT differentiation. Snail, 14-3-3 proteins, and Ajuba form a ternary complex that is readily detected through chromatin immunoprecipitation at the endogenous E-cadherin promoter. Collectively, these data show that 14-3-3 proteins are new components of the Snail transcriptional repression machinery and mediate its important biological functions.
Collapse
Affiliation(s)
- Zhaoyuan Hou
- The Wistar Institute, Philadelphia, Pennsylvania and Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
103
|
Brunmeir R, Lagger S, Simboeck E, Sawicka A, Egger G, Hagelkruys A, Zhang Y, Matthias P, Miller WJ, Seiser C. Epigenetic regulation of a murine retrotransposon by a dual histone modification mark. PLoS Genet 2010; 6:e1000927. [PMID: 20442873 PMCID: PMC2861705 DOI: 10.1371/journal.pgen.1000927] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 03/29/2010] [Indexed: 12/15/2022] Open
Abstract
Large fractions of eukaryotic genomes contain repetitive sequences of which the vast majority is derived from transposable elements (TEs). In order to inactivate those potentially harmful elements, host organisms silence TEs via methylation of transposon DNA and packaging into chromatin associated with repressive histone marks. The contribution of individual histone modifications in this process is not completely resolved. Therefore, we aimed to define the role of reversible histone acetylation, a modification commonly associated with transcriptional activity, in transcriptional regulation of murine TEs. We surveyed histone acetylation patterns and expression levels of ten different murine TEs in mouse fibroblasts with altered histone acetylation levels, which was achieved via chemical HDAC inhibition with trichostatin A (TSA), or genetic inactivation of the major deacetylase HDAC1. We found that one LTR retrotransposon family encompassing virus-like 30S elements (VL30) showed significant histone H3 hyperacetylation and strong transcriptional activation in response to TSA treatment. Analysis of VL30 transcripts revealed that increased VL30 transcription is due to enhanced expression of a limited number of genomic elements, with one locus being particularly responsive to HDAC inhibition. Importantly, transcriptional induction of VL30 was entirely dependent on the activation of MAP kinase pathways, resulting in serine 10 phosphorylation at histone H3. Stimulation of MAP kinase cascades together with HDAC inhibition led to simultaneous phosphorylation and acetylation (phosphoacetylation) of histone H3 at the VL30 regulatory region. The presence of the phosphoacetylation mark at VL30 LTRs was linked with full transcriptional activation of the mobile element. Our data indicate that the activity of different TEs is controlled by distinct chromatin modifications. We show that activation of a specific mobile element is linked to a dual epigenetic mark and propose a model whereby phosphoacetylation of histone H3 is crucial for full transcriptional activation of VL30 elements. The majority of genomic sequences in higher eukaryotes do not contain protein coding genes. Large fractions are covered by repetitive sequences, many of which are derived from transposable elements (TEs). These selfish genes, only containing sequences necessary for self-propagation, can multiply and change their location within the genome, threatening host genome integrity and provoking mutational bursts. Therefore host organisms have evolved a diverse repertoire of defence mechanisms to counteract and silence these genomic parasites. One way is to package DNA sequences containing TEs into transcriptionally inert heterochromatin, which is partly achieved via chemical modification of the packaging proteins associated with DNA, the histones. To better understand the contribution of histone acetylation in the activation of TEs, we treated mouse fibroblasts with a specific histone deacetylase inhibitor. By monitoring the expression of ten different types of murine mobile elements, we identified a defined subset of VL30 transposons specifically reactivated upon increased histone acetylation. Importantly, phosphorylation of histone H3, a modification that is triggered by stress, is required for acetylation-dependent activation of VL30 elements. We present a model where concomitant histone phosphorylation and acetylation cooperate in the transcriptional induction of VL30 elements.
Collapse
Affiliation(s)
- Reinhard Brunmeir
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Sabine Lagger
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Elisabeth Simboeck
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Anna Sawicka
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Gerda Egger
- Department of Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | - Astrid Hagelkruys
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Yu Zhang
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Basel, Switzerland
| | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Basel, Switzerland
| | - Wolfgang J. Miller
- Laboratories of Genome Dynamics, Center of Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
- * E-mail: (CS); (WJM)
| | - Christian Seiser
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Vienna, Austria
- * E-mail: (CS); (WJM)
| |
Collapse
|
104
|
Abstract
More than 200 phosphorylated 14-3-3-binding sites in the literature were analysed to define 14-3-3 specificities, identify relevant protein kinases, and give insights into how cellular 14-3-3/phosphoprotein networks work. Mode I RXX(pS/pT)XP motifs dominate, although the +2 proline residue occurs in less than half, and LX(R/K)SX(pS/pT)XP is prominent in plant 14-3-3-binding sites. Proline at +1 is rarely reported, and such motifs did not stand up to experimental reanalysis of human Ndel1. Instead, we discovered that 14-3-3 interacts with two residues that are phosphorylated by basophilic kinases and located in the DISC1 (disrupted-in-schizophrenia 1)-interacting region of Ndel1 that is implicated in cognitive disorders. These data conform with the general findings that there are different subtypes of 14-3-3-binding sites that overlap with the specificities of different basophilic AGC (protein kinase A/protein kinase G/protein kinase C family) and CaMK (Ca2+/calmodulin-dependent protein kinase) protein kinases, and a 14-3-3 dimer often engages with two tandem phosphorylated sites, which is a configuration with special signalling, mechanical and evolutionary properties. Thus 14-3-3 dimers can be digital logic gates that integrate more than one input to generate an action, and coincidence detectors when the two binding sites are phosphorylated by different protein kinases. Paired sites are generally located within disordered regions and/or straddle either side of functional domains, indicating how 14-3-3 dimers modulate the conformations and/or interactions of their targets. Finally, 14-3-3 proteins bind to members of several multi-protein families. Two 14-3-3-binding sites are conserved across the class IIa histone deacetylases, whereas other protein families display differential regulation by 14-3-3s. We speculate that 14-3-3 dimers may have contributed to the evolution of such families, tailoring regulatory inputs to different physiological demands.
Collapse
|
105
|
Jung HR, Pasini D, Helin K, Jensen ON. Quantitative mass spectrometry of histones H3.2 and H3.3 in Suz12-deficient mouse embryonic stem cells reveals distinct, dynamic post-translational modifications at Lys-27 and Lys-36. Mol Cell Proteomics 2010; 9:838-50. [PMID: 20150217 DOI: 10.1074/mcp.m900489-mcp200] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SUZ12 is a core component of the polycomb repressive complex 2 (PRC2) and is required for the differentiation of mouse embryonic stem cells (ESCs). PRC2 is associated with transcriptional repression via methylation of H3 Lys-27. We applied quantitative mass spectrometry to investigate the effects of Suz12 deficiency on H3.2 and H3.3 from mouse ESCs. Using high mass accuracy MS combined with CID or electron transfer dissociation (ETD) tandem mass spectrometry, we identified a total of 81 unique modified peptides from H3.2 and H3.3 and assigned 46 modifications at 22 different positions, including distinct coexisting modifications. In certain cases, high mass accuracy LTQ-Orbitrap MS/MS allowed precise localization of near isobaric coexisting PTMs such as trimethylation and acetylation within individual peptides. ETD MS/MS facilitated sequencing and annotation of phosphorylated histone peptides. The combined use of ETD and CID MS/MS increased the total number of identified modified peptides. Comparative quantitative analysis of histones from wild type and Suz12-deficient ESCs using stable isotope labeling with amino acids in cell culture and LC-MS/MS revealed a dramatic reduction of H3K27me2 and H3K27me3 and an increase of H3K27ac, thereby uncovering an antagonistic methyl/acetyl switch at H3K27. The reduction in H3K27 methylation and increase in H3K27 acetylation was accompanied by H3K36 acetylation and methylation. Estimation of the global isoform percentage of unmodified and modified histone peptides (amino acids 27-40) showed the relative distribution of distinct coexisting histone marks. Our study revealed limitations of antibody-based Western blotting methods for detection of coexisting protein modifications and demonstrated the utility of quantitative tandem mass spectrometry for detailed analysis of the dynamics of coexisting post-translational modifications in proteins.
Collapse
Affiliation(s)
- Hye Ryung Jung
- Centre for Epigenetics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | | | | | | |
Collapse
|
106
|
Drobic B, Pérez-Cadahía B, Yu J, Kung SKP, Davie JR. Promoter chromatin remodeling of immediate-early genes is mediated through H3 phosphorylation at either serine 28 or 10 by the MSK1 multi-protein complex. Nucleic Acids Res 2010; 38:3196-208. [PMID: 20129940 PMCID: PMC2879512 DOI: 10.1093/nar/gkq030] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Upon activation of the ERK and p38 MAPK pathways, the MSK1/2-mediated nucleosomal response, including H3 phosphorylation at serine 28 or 10, is coupled with the induction of immediate-early (IE) gene transcription. The outcome of this response, varying with the stimuli and cellular contexts, ranges from neoplastic transformation to neuronal synaptic plasticity. Here, we used sequential co-immunoprecipitation assays and sequential chromatin immunoprecipitation (ChIP) assays on mouse fibroblast 10T1/2 and MSK1 knockdown 10T1/2 cells to show that H3 serine 28 and 10 phosphorylation leads to promoter remodeling. MSK1, in complexes with phospho-serine adaptor 14-3-3 proteins and BRG1 the ATPase subunit of the SWI/SNF remodeler, is recruited to the promoter of target genes by transcription factors such as Elk-1 or NF-kappaB. Following MSK1-mediated H3 phosphorylation, BRG1 associates with the promoter of target genes via 14-3-3 proteins, which act as scaffolds. The recruited SWI/SNF remodels nucleosomes at the promoter of IE genes enabling the binding of transcription factors like JUN and the onset of transcription.
Collapse
Affiliation(s)
- Bojan Drobic
- Department of Immunology, University of Manitoba, Manitoba Institute of Cell Biology, Winnipeg, Manitoba R3E 0V9, Canada
| | | | | | | | | |
Collapse
|
107
|
Pérez-Cadahía B, Drobic B, Davie JR. H3 phosphorylation: dual role in mitosis and interphase. Biochem Cell Biol 2010; 87:695-709. [PMID: 19898522 DOI: 10.1139/o09-053] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chromatin condensation and subsequent decondensation are processes required for proper execution of various cellular events. During mitosis, chromatin compaction is at its highest, whereas relaxation of chromatin is necessary for DNA replication, repair, recombination, and gene transcription. Since histone proteins are directly complexed with DNA in the form of a nucleosome, great emphasis is put on deciphering histone post-translational modifications that control the chromatin condensation state. Histone H3 phosphorylation is a mark present in mitosis, where chromatin condensation is necessary, and in transcriptional activation of genes, when chromatin needs to be decondensed. There are four characterized phospho residues within the H3 N-terminal tail during mitosis: Thr3, Ser10, Thr11, and Ser28. Interestingly, H3 phosphorylated at Ser10, Thr11, and Ser28 has been observed on genomic regions of transcriptionally active genes. Therefore, H3 phosphorylation is involved in processes requiring opposing chromatin states. The level of H3 phosphorylation is mediated by opposing actions of specific kinases and phosphatases during mitosis and gene transcription. The cellular contexts under which specific residues on H3 are phosphorylated in mitosis and interphase are known to some extent. However, the functional consequences of H3 phosphorylation are still unclear.
Collapse
Affiliation(s)
- Beatriz Pérez-Cadahía
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, MB R3E0V9, Canada
| | | | | |
Collapse
|
108
|
Davie JR, Drobic B, Perez-Cadahia B, He S, Espino PS, Sun JM, Chen HY, Dunn KL, Wark L, Mai S, Khan DH, Davie SN, Lu S, Peltier CP, Delcuve GP. Nucleosomal response, immediate-early gene expression and cell transformation. ACTA ACUST UNITED AC 2010; 50:135-45. [DOI: 10.1016/j.advenzreg.2009.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
109
|
Beck IME, Vanden Berghe W, Vermeulen L, Yamamoto KR, Haegeman G, De Bosscher K. Crosstalk in inflammation: the interplay of glucocorticoid receptor-based mechanisms and kinases and phosphatases. Endocr Rev 2009; 30:830-82. [PMID: 19890091 PMCID: PMC2818158 DOI: 10.1210/er.2009-0013] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 08/18/2009] [Indexed: 12/20/2022]
Abstract
Glucocorticoids (GCs) are steroidal ligands for the GC receptor (GR), which can function as a ligand-activated transcription factor. These steroidal ligands and derivatives thereof are the first line of treatment in a vast array of inflammatory diseases. However, due to the general surge of side effects associated with long-term use of GCs and the potential problem of GC resistance in some patients, the scientific world continues to search for a better understanding of the GC-mediated antiinflammatory mechanisms. The reversible phosphomodification of various mediators in the inflammatory process plays a key role in modulating and fine-tuning the sensitivity, longevity, and intensity of the inflammatory response. As such, the antiinflammatory GCs can modulate the activity and/or expression of various kinases and phosphatases, thus affecting the signaling efficacy toward the propagation of proinflammatory gene expression and proinflammatory gene mRNA stability. Conversely, phosphorylation of GR can affect GR ligand- and DNA-binding affinity, mobility, and cofactor recruitment, culminating in altered transactivation and transrepression capabilities of GR, and consequently leading to a modified antiinflammatory potential. Recently, new roles for kinases and phosphatases have been described in GR-based antiinflammatory mechanisms. Moreover, kinase inhibitors have become increasingly important as antiinflammatory tools, not only for research but also for therapeutic purposes. In light of these developments, we aim to illuminate the integrated interplay between GR signaling and its correlating kinases and phosphatases in the context of the clinically important combat of inflammation, giving attention to implications on GC-mediated side effects and therapy resistance.
Collapse
Affiliation(s)
- Ilse M E Beck
- Laboratory of Eukaryotic Gene Expression and Signal Transduction, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | | | | | | | |
Collapse
|
110
|
Histone crosstalk between H3S10ph and H4K16ac generates a histone code that mediates transcription elongation. Cell 2009; 138:1122-36. [PMID: 19766566 DOI: 10.1016/j.cell.2009.07.031] [Citation(s) in RCA: 315] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 05/13/2009] [Accepted: 07/16/2009] [Indexed: 12/21/2022]
Abstract
The phosphorylation of the serine 10 at histone H3 has been shown to be important for transcriptional activation. Here, we report the molecular mechanism through which H3S10ph triggers transcript elongation of the FOSL1 gene. Serum stimulation induces the PIM1 kinase to phosphorylate the preacetylated histone H3 at the FOSL1 enhancer. The adaptor protein 14-3-3 binds the phosphorylated nucleosome and recruits the histone acetyltransferase MOF, which triggers the acetylation of histone H4 at lysine 16 (H4K16ac). This histone crosstalk generates the nucleosomal recognition code composed of H3K9acS10ph/H4K16ac determining a nucleosome platform for the bromodomain protein BRD4 binding. The recruitment of the positive transcription elongation factor b (P-TEFb) via BRD4 induces the release of the promoter-proximal paused RNA polymerase II and the increase of its processivity. Thus, the single phosphorylation H3S10ph at the FOSL1 enhancer triggers a cascade of events which activate transcriptional elongation.
Collapse
|
111
|
Demidov D, Hesse S, Tewes A, Rutten T, Fuchs J, Ashtiyani RK, Lein S, Fischer A, Reuter G, Houben A. Aurora1 phosphorylation activity on histone H3 and its cross-talk with other post-translational histone modifications in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:221-30. [PMID: 19582900 DOI: 10.1111/j.1365-313x.2009.03861.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The enzymological properties of AtAurora1, a kinase responsible for the cell cycle-dependent phosphorylation of histone H3 at S10, and its cross-talk with other post-translational histone modifications, were determined. In vitro phosphorylation of H3S10 by AtAurora1 is strongly increased by K9 acetylation, and decreased by K14 acetylation and T11 phosphorylation. However, S10 phosphorylation activity is unaltered by mono-, di- or trimethylation of K9. An interference of H3K9 dimethylation by SUVR4 occurs by a pre-existing phosphorylation at S10. Hence, cross-talk in plants exists between phosphorylation of H3S10 and methylation, acetylation or phosphorylation of neighbouring amino acid residues. AtAurora1 undergoes autophosphorylation in vivo regardless of the presence of substrate, and forms dimers in planta. Of the three ATP-competitive Aurora inhibitors tested, Hesperadin was most effective in reducing the in vivo kinase activity of AtAurora1. Hesperadin consistently inhibited histone H3S10 phosphorylation during mitosis in Arabidopsis cells, but did not affect other H3 post-translational modifications, suggesting a specific inhibition of AtAurora in vivo. Inactivation of AtAurora also caused lagging chromosomes in a number of anaphase cells, but, unlike the situation in mammalian cells, Hesperadin did not influence the microtubule dynamics in dividing cells.
Collapse
Affiliation(s)
- Dmitri Demidov
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Granot G, Sikron-Persi N, Li Y, Grafi G. Phosphorylated H3S10 occurs in distinct regions of the nucleolus in differentiated leaf cells. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1789:220-4. [PMID: 19135559 DOI: 10.1016/j.bbagrm.2008.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 12/08/2008] [Accepted: 12/09/2008] [Indexed: 01/05/2023]
Abstract
Serine 10 phosphorylation of histone H3 (H3S10ph) has long been considered a mitotic marker, which is often associated with chromosome condensation both in plants and animals. Yet, in animal cells, H3S10ph was found associated with transcriptional activation of genes. Here we extend this view to plant cells showing that H3S10ph not only occurs in dividing cells during mitosis, but also in differentiated mesophyll cells. In these cells H3S10ph displayed a peculiar localization within the nucleolus where it was restricted to specific domains reminiscent of fibrillar centers. Chromatin immunoprecipitation analysis showed that H3S10ph is associated with ribosomal DNAs. Thus, in plants H3S10ph appears to be associated with two structurally differing nuclear sites engaged in gene silencing (mitotic centromeres) and in gene transcription (nucleolus).
Collapse
Affiliation(s)
- Gila Granot
- French Associates Institute for Dryland Agriculture and Biotechnology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 84990, Israel
| | | | | | | |
Collapse
|
113
|
Adhvaryu KK, Selker EU. Protein phosphatase PP1 is required for normal DNA methylation in Neurospora. Genes Dev 2009; 22:3391-6. [PMID: 19141471 DOI: 10.1101/gad.1738008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Covalent modifications of histones integrate intracellular and extracellular cues to regulate the genome. H3 Lys 9 methylation (H3K9me) can direct heterochromatin formation and DNA methylation, while phosphorylation of H3 Ser 10 (H3S10p) drives gene activation and chromosome condensation. To examine the relationship between H3S10p, H3K9me, and DNA methylation in Neurospora crassa, we built and tested mutants of the putative H3S10 phosphatase, PP1. A PP1-impaired mutant showed increased H3S10p and selective reduction of methylation of H3K9 and DNA. Similarly, amino acid substitutions of H3S10 abolished methylation of H3K9 and DNA. Thus, H3S10 dephosphorylation by PP1 is required for DNA methylation of some loci.
Collapse
Affiliation(s)
- Keyur K Adhvaryu
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| | | |
Collapse
|
114
|
Fischle W. Talk is cheap--cross-talk in establishment, maintenance, and readout of chromatin modifications. Genes Dev 2008; 22:3375-82. [DOI: 10.1101/gad.1759708] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
115
|
Expression of Histone H3 Tails with Combinatorial Lysine Modifications under the Reprogrammed Genetic Code for the Investigation on Epigenetic Markers. ACTA ACUST UNITED AC 2008; 15:1166-74. [DOI: 10.1016/j.chembiol.2008.09.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 09/25/2008] [Accepted: 09/29/2008] [Indexed: 12/16/2022]
|
116
|
Delcuve GP, He S, Davie JR. Mitotic partitioning of transcription factors. J Cell Biochem 2008; 105:1-8. [PMID: 18459122 DOI: 10.1002/jcb.21806] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mitosis is a highly orchestrated process involving numerous protein kinases and phosphatases. At the onset of mitosis, the chromatin condensation into metaphase chromosomes is correlated with global phosphorylation of histone H3. The bulk of transcription is silenced while many of the transcription-associated proteins, including transcription and chromatin remodeling factors, are excluded from chromatin, typically as a consequence of their phosphorylation. Components of the transcription machinery and regulatory proteins are recycled and equally partitioned between newly divided cells by mechanisms that may involve microtubules, microfilaments or intermediate filaments. However, as demonstrated in the case of Runx2, a subset of transcription factors involved in lineage-specific control, likely remain associated with their target genes to direct the deposition or removal of epigenetic marks. The displacement and re-entry into daughter cells of transcription and chromatin remodeling factors are temporally defined and regulated. Reformation of daughter nuclei is a critical time to re-establish the proper gene expression pattern. The mechanisms involved in the marking and re-establishment of gene expression has been elucidated for few genes. The elucidation of how the memory of a programmed expression profile is transmitted to daughter cells represents a challenge.
Collapse
Affiliation(s)
- Geneviève P Delcuve
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0V9
| | | | | |
Collapse
|
117
|
Yang XJ, Seto E. Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol Cell 2008; 31:449-461. [PMID: 18722172 DOI: 10.1016/j.molcel.2008.07.002] [Citation(s) in RCA: 786] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Indexed: 12/23/2022]
Abstract
Lysine acetylation has emerged as a major posttranslational modification for histones. Crossregulation between this and other modifications is crucial in modulating chromatin-based transcriptional control and shaping inheritable epigenetic programs. In addition to histones, many other nuclear proteins and various cytoplasmic regulators are subject to lysine acetylation. This review focuses on recent findings pertinent to acetylation of nonhistone proteins and emphasizes how this modification might crosstalk with phosphorylation, methylation, ubiquitination, sumoylation, and others to form code-like multisite modification programs for dynamic control of cellular signaling under diverse conditions.
Collapse
Affiliation(s)
- Xiang-Jiao Yang
- Molecular Oncology Group, Department of Medicine, McGill University Health Centre, Montréal, QC H3A 1A1, Canada; McGill Cancer Centre, Montréal, QC H3A 1A1, Canada.
| | - Edward Seto
- Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
118
|
Brès V, Yoh SM, Jones KA. The multi-tasking P-TEFb complex. Curr Opin Cell Biol 2008; 20:334-40. [PMID: 18513937 DOI: 10.1016/j.ceb.2008.04.008] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 04/17/2008] [Accepted: 04/23/2008] [Indexed: 11/24/2022]
Abstract
P-TEFb (CycT1:Cdk9), the metazoan RNA polymerase II Ser2 C-terminal domain (CTD) kinase, regulates transcription elongation at many genes and integrates mRNA synthesis with histone modification, pre-mRNA processing, and mRNA export. Recruitment of P-TEFb to target genes requires deubiquitination of H2Bub, phosphorylation of H3S10, and the bromodomain protein, Brd4. Brd4 activates growth-related genes in the G1 phase of the cell cycle and can also tether P-TEFb to mitotic chromosomes, possibly to mark sites of active transcription throughout cell division. P-TEFb co-operates with c-Myc during transactivation and cell transformation, and also requires SKIP (c-Ski-interacting protein), an mRNA elongation and splicing factor. Some functions of the P-TEFb/Ser2P CTD are executed by the Spt6 transcription elongation factor, which binds directly to the phosphorylated CTD and recruits the Iws1 ('interacts with Spt6') protein. Iws1, in turn, interacts with the REF1/Aly nuclear export adaptor and stimulates the kinetics of mRNA export. Given the prominent role of Spt6 in regulating chromatin structure, the CTD-bound Spt6:Iws1 complex may also control histone modifications during elongation. Following transcription, P-TEFb accompanies the mature mRNA to the cytoplasm to promote translation elongation.
Collapse
Affiliation(s)
- Vanessa Brès
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037-1099, USA
| | | | | |
Collapse
|
119
|
Meyer KD, Donner AJ, Knuesel MT, York AG, Espinosa JM, Taatjes DJ. Cooperative activity of cdk8 and GCN5L within Mediator directs tandem phosphoacetylation of histone H3. EMBO J 2008; 27:1447-57. [PMID: 18418385 DOI: 10.1038/emboj.2008.78] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2007] [Accepted: 03/27/2008] [Indexed: 11/09/2022] Open
Abstract
The human Mediator complex is generally required for expression of protein-coding genes. Here, we show that the GCN5L acetyltransferase stably associates with Mediator together with the TRRAP polypeptide. Yet, contrary to expectations, TRRAP/GCN5L does not associate with the transcriptionally active core Mediator but rather with Mediator that contains the cdk8 subcomplex. Consequently, this derivative 'T/G-Mediator' complex does not directly activate transcription in a reconstituted human transcription system. However, within T/G-Mediator, cdk8 phosphorylates serine-10 on histone H3, which in turn stimulates H3K14 acetylation by GCN5L within the complex. Tandem phosphoacetylation of H3 correlates with transcriptional activation, and ChIP assays demonstrate co-occupancy of T/G-Mediator components at several activated genes in vivo. Moreover, cdk8 knockdown causes substantial reduction of global H3 phosphoacetylation, suggesting that T/G-Mediator is a major regulator of this H3 mark. Cooperative H3 modification provides a mechanistic basis for GCN5L association with cdk8-Mediator and also identifies a biochemical means by which cdk8 can indirectly activate gene expression. Indeed our results suggest that T/G-Mediator directs early events-such as modification of chromatin templates-in transcriptional activation.
Collapse
Affiliation(s)
- Krista D Meyer
- Department of Chemistry and Biochemistry, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | | | | | | | | | | |
Collapse
|
120
|
Winter S, Fischle W, Seiser C. Modulation of 14-3-3 interaction with phosphorylated histone H3 by combinatorial modification patterns. Cell Cycle 2008; 7:1336-42. [PMID: 18418070 DOI: 10.4161/cc.7.10.5946] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Post-translational modifications of histones are determining factors in the global and local regulation of genome activity. Phosphorylation of histone H3 is globally associated with mitotic chromatin compaction but occurs in a much more restricted manner during interphase transcriptional regulation of a limited subset of genes. In the course of gene regulation, serine 10 phosphorylation at histone H3 is targeted to a very small fraction of nucleosomes that is highly susceptible to additional acetylation events. Recently, we and others have identified 14-3-3 as a binding protein that recognizes both phosphorylated serine 10 and phosphorylated serine 28 on histone H3. In vitro, the affinity of 14-3-3 for phosphoserine 10 is weak but becomes significantly increased by additional acetylation of either lysine 9 or lysine 14 on the same histone tail. In contrast, the histone H3S28 site matches elements of 14-3-3 high affinity consensus motifs. This region mediates an initial stronger interaction that is less susceptible to modulation by "auxiliary" modifications. Here we discuss the binding of 14-3-3 proteins to histone H3 in detail and putative biological implications of these interactions.
Collapse
Affiliation(s)
- Stefan Winter
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Vienna, Austria
| | | | | |
Collapse
|
121
|
14-3-3 interaction with histone H3 involves a dual modification pattern of phosphoacetylation. Mol Cell Biol 2008; 28:2840-9. [PMID: 18268010 DOI: 10.1128/mcb.01457-07] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Histone modifications occur in precise patterns and are proposed to signal the recruitment of effector molecules that profoundly impact chromatin structure, gene regulation, and cell cycle events. The linked modifications serine 10 phosphorylation and lysine 14 acetylation on histone H3 (H3S10phK14ac), modifications conserved from Saccharomyces cerevisiae to humans, are crucial for transcriptional activation of many genes. However, the mechanism of H3S10phK14ac involvement in these processes is unclear. To shed light on the role of this dual modification, we utilized H3 peptide affinity assays to identify H3S10phK14ac-interacting proteins. We found that the interaction of the known phospho-binding 14-3-3 proteins with H3 is dependent on the presence of both of these marks, not just phosphorylation alone. This is true of mammalian 14-3-3 proteins as well as the yeast homologues Bmh1 and Bmh2. The importance of acetylation in this interaction is also seen in vivo, where K14 acetylation is required for optimal Bmh1 recruitment to the GAL1 promoter during transcriptional activation.
Collapse
|