101
|
Levitt JJ, Kubicki M, Nestor PG, Ersner-Hershfield H, Westin CF, Alvarado JL, Kikinis R, Jolesz FA, McCarley RW, Shenton ME. A diffusion tensor imaging study of the anterior limb of the internal capsule in schizophrenia. Psychiatry Res 2010; 184:143-50. [PMID: 21055906 PMCID: PMC4043632 DOI: 10.1016/j.pscychresns.2010.08.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 08/03/2010] [Indexed: 10/18/2022]
Abstract
Frontal-subcortical cognitive and limbic feedback loops modulate higher cognitive functioning. The final step in these feedback loops is the thalamo-cortical projection through the anterior limb of the internal capsule (AL-IC). Using diffusion tensor imaging (DTI), we evaluated abnormalities in the AL-IC fiber tract in schizophrenia. Participants comprised 16 chronic schizophrenia patients and 19 male, normal controls, who were group matched for handedness, age, and parental socioeconomic status, and underwent DTI on a 1.5 Tesla GE system. We measured the diffusion indices, fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD), and manually segmented, based on FA maps, AL-IC volume, normalized for intracranial contents (ICC). The results showed a significant reduction in the ICC-corrected volume of the AL-IC in schizophrenia, but did not show diffusion measure group differences in the AL-IC in FA, MD, RD or AD. In addition, in the schizophrenia patients, AL-IC FA correlated positively with performance on measures of spatial and verbal declarative/episodic memory, and right AL-IC ICC-corrected volume correlated positively with more perseverative responses on the Wisconsin Card Sort Test (WCST). We found a reduction in AL-IC ICC-corrected volume in schizophrenia, without FA, MD, RD or AD group differences, implicating the presence of a structural abnormality in schizophrenia in this subcortical white matter region which contains important cognitive, and limbic feedback pathways that modulate prefrontal cortical function. Despite not demonstrating a group difference in FA, we found that AL-IC FA was a good predictor of spatial and verbal declarative/episodic memory performance in schizophrenia.
Collapse
Affiliation(s)
- James J. Levitt
- Clinical Neuroscience Division, Laboratory of Neuroscience, Department of Psychiatry, VA Boston Healthcare System, Brockton Division, Brockton, MA 02301 and Harvard Medical School, Boston, MA 02115, United States,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, United States,Corresponding Author: James J. Levitt, M.D., Department of Psychiatry-116A, VA Boston Healthcare System, Harvard Medical School, 940 Belmont Street, Brockton, MA 02301; (508) 583-4500 x61798; Fax: 617-525-6150;
| | - Marek Kubicki
- Clinical Neuroscience Division, Laboratory of Neuroscience, Department of Psychiatry, VA Boston Healthcare System, Brockton Division, Brockton, MA 02301 and Harvard Medical School, Boston, MA 02115, United States,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, United States
| | - Paul G. Nestor
- Clinical Neuroscience Division, Laboratory of Neuroscience, Department of Psychiatry, VA Boston Healthcare System, Brockton Division, Brockton, MA 02301 and Harvard Medical School, Boston, MA 02115, United States
| | - Hal Ersner-Hershfield
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, United States
| | - C-F Westin
- Laboratory of Mathematical Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, United States
| | - Jorge L. Alvarado
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, United States
| | - Ron Kikinis
- Surgical Planning Laboratory, MRI Division, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Ferenc A. Jolesz
- Surgical Planning Laboratory, MRI Division, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Robert W. McCarley
- Clinical Neuroscience Division, Laboratory of Neuroscience, Department of Psychiatry, VA Boston Healthcare System, Brockton Division, Brockton, MA 02301 and Harvard Medical School, Boston, MA 02115, United States
| | - Martha E. Shenton
- Clinical Neuroscience Division, Laboratory of Neuroscience, Department of Psychiatry, VA Boston Healthcare System, Brockton Division, Brockton, MA 02301 and Harvard Medical School, Boston, MA 02115, United States,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, United States,Surgical Planning Laboratory, MRI Division, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
102
|
Abstract
Functional and structural brain imaging has identified neural and neurotransmitter systems involved in schizophrenia and their link to cognitive and behavioural disturbances such as psychosis. Mapping such abnormalities in patients, however, cannot fully capture the strong neurodevelopmental component of schizophrenia that pre-dates manifest illness. A recent strategy to address this issue has been to focus on mechanisms of disease risk. Imaging genetics techniques have made it possible to define neural systems that mediate heritable risk linked to candidate and genome-wide-supported common variants, and mechanisms for environmental risk and gene-environment interactions are emerging. Characterizing the neural risk architecture of schizophrenia provides a translational research strategy for future treatments.
Collapse
|
103
|
Baharnoori M, Bartholomeusz C, Boucher AA, Buchy L, Chaddock C, Chiliza B, Föcking M, Fornito A, Gallego JA, Hori H, Huf G, Jabbar GA, Kang SH, El Kissi Y, Merchán-Naranjo J, Modinos G, Abdel-Fadeel NA, Neubeck AK, Ng HP, Novak G, Owolabi O, Prata DP, Rao NP, Riecansky I, Smith DC, Souza RP, Thienel R, Trotman HD, Uchida H, Woodberry KA, O'Shea A, DeLisi LE. The 2nd Schizophrenia International Research Society Conference, 10-14 April 2010, Florence, Italy: summaries of oral sessions. Schizophr Res 2010; 124:e1-62. [PMID: 20934307 PMCID: PMC4182935 DOI: 10.1016/j.schres.2010.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 08/30/2010] [Accepted: 09/01/2010] [Indexed: 01/06/2023]
Abstract
The 2nd Schizophrenia International Research Society Conference, was held in Florence, Italy, April 10-15, 2010. Student travel awardees served as rapporteurs of each oral session and focused their summaries on the most significant findings that emerged from each session and the discussions that followed. The following report is a composite of these reviews. It is hoped that it will provide an overview for those who were present, but could not participate in all sessions, and those who did not have the opportunity to attend, but who would be interested in an update on current investigations ongoing in the field of schizophrenia research.
Collapse
Affiliation(s)
- Moogeh Baharnoori
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, 6875 LaSalle Blvd, Montreal, Quebec, Canada H4H 1R3, phone (514) 761-6131 ext 3346,
| | - Cali Bartholomeusz
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Level 2-3, Alan Gilbert Building, 161 Barry St, Carlton South, Victoria 3053, Australia, phone +61 3 8344 1878, fax +61 3 9348 0469,
| | - Aurelie A. Boucher
- Brain and Mind Research Institute, 100 Mallett Street, Camperdown NSW 2050, Australia, phone +61 (0)2 9351 0948, fax +61 (0)2 9351 0652,
| | - Lisa Buchy
- Douglas Hospital Research Centre, 6875 LaSalle Blvd, Verdun, Québec, Canada, H4H 1R3 phone: 514-761-6131 x 3386, fax: 514-888-4064,
| | - Christopher Chaddock
- PO67, Section of Neuroimaging, Division of Psychological Medicine, Institute of Psychiatry, De Crespigny Park, London, SE5 8AF, phone 020 7848 0919, mobile 07734 867854 fax 020 7848 0976,
| | - Bonga Chiliza
- Department of Psychiatry, University of Stellenbosch, Tygerberg, 7505, South Africa, phone: +27 (0)21 9389227, fax +27 (0)21 9389738,
| | - Melanie Föcking
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland, phone +353 1 809 3857, fax +353 1 809 3741,
| | - Alex Fornito
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Downing Site, Downing St, Cambridge, UK, CB2 3EB, phone +44 (0) 1223 764670, fax +44 (0) 1223 336581,
| | - Juan A. Gallego
- The Zucker Hillside Hospital, Psychiatry Research, 75-59 263rd St, Glen Oaks, NY 11004, phone 718-470-8177, fax 718-343-1659,
| | - Hiroaki Hori
- Department of Mental Disorder Research, National Institute of Neuroscience, NCNP, 4-1-1, Ogawahigashi, Kodaira, Tokyo, 187-8502, JAPAN, phone: +81 42 341 2711; fax: +81 42 346 1744,
| | - Gisele Huf
- National Institute of Quality Control in Health - Oswaldo Cruz Foundation.Av. Brasil 4365 Manguinhos Rio de Janeiro RJ BRAZIL 21045-900, phone + 55 21 38655112, fax + 55 21 38655139,
| | - Gul A. Jabbar
- Clinical Research Coordinator, Harvard Medical School Department of Psychiatry, 940 Belmont Street 2-B, Brockton, MA 02301, office (774) 826-1624, cell (845) 981-9514, fax (774) 286-1076,
| | - Shi Hyun Kang
- Seoul National Hospital, 30-1 Junggok3-dong Gwangjin-gu, Seoul, 143-711, Korea, phone +82-2-2204-0326, fax +82-2-2204-0394,
| | - Yousri El Kissi
- Psychiatry department, Farhat Hached Hospital. Ibn Jazzar Street, 4002 Sousse. Tunisia. phone + 216 98468626, fax + 216 73226702,
| | - Jessica Merchán-Naranjo
- Adolescent Unit. Department of Psychiatry. Hospital General Universitario Gregorio Marañón. Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain. C/Ibiza 43, C.P:28009, phone +34 914265005, fax +34 914265004,
| | - Gemma Modinos
- Department of Psychosis Studies (PO67), Institute of Psychiatry, King's College London, King's Health Partners, De Crespigny Park, SE5 8AF London, United Kingdo, phone +44 (0)20 78480917, fax +44 (0)20 78480976,
| | - Nashaat A.M. Abdel-Fadeel
- Minia University, Egypt, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, phone 617 953 0414, fax 617-998-5007, ,
| | - Anna-Karin Neubeck
- Project Manager at Karolinska Institute, Skinnarviksringen 12, 117 27 Stockholm, Sweden, phone +46708777908,
| | - Hsiao Piau Ng
- Singapore Bioimaging Consortium, A*STAR, Singapore; Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, phone 857-544-0192, fax 617-525-6150,
| | - Gabriela Novak
- University of Toronto, Medical Sciences Building, Room 4345, 1 King's College Circle, Toronto, Ontario, M5S 1A8, phone (416) 946-8219, fax (416) 971-2868,
| | - Olasunmbo.O. Owolabi
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Science University of Ilorin, Ilorin, Nigeria, phone +2348030764811,
| | - Diana P. Prata
- Department of Psychosis Studies, King’s College London, King’s Health Partners, Institute of Psychiatry, De Crespigny Park, London, SE5 8AF, UK, phone +44(0)2078480917, fax +44(0)2078480976,
| | - Naren P. Rao
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, 560029 Karnataka, India, phone +91 9448342379,
| | - Igor Riecansky
- Address: Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia, phone +421-2-52 92 62 76, fax +421-2-52 96 85 16,
| | - Darryl C. Smith
- 3336 Mt Pleasant St. NW #2, Washington, DC 20010, phone 202.494.3892,
| | - Renan P. Souza
- Centre for Addiction and Mental Health 250 College St R31 Toronto - Ontario - Canada M5T1R8, phone +14165358501 x4883, fax +14169794666,
| | - Renate Thienel
- Postdoctoral Research Fellow, PRC Brain and Mental Health, University of Newcastle, Mc Auley Centre Level 5, Mater Hospital, Edith Street, Waratah NSW 2298, phone +61 (2) 40335636,
| | - Hanan D. Trotman
- 36 Eagle Row, Atlanta, GA 30322, phone 404-727-8384, fax 404-727-1284,
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Psychopharmacology Research Program, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan, phone +81.3.3353.1211(x62454), fax +81.3.5379.0187,
| | - Kristen A. Woodberry
- Landmark Center 2 East, 401 Park Drive, Boston, MA 02215, phone 617-998-5022, fax 617-998-5007,
| | - Anne O'Shea
- Coordinator of reports. Harvard Medical School, VA Boston Healthcare System, 940 Belmont Street, Brockton, MA 02301, phone 774-826-1374, anne_o’
| | - Lynn E. DeLisi
- VA Boston Healthcare System and Harvard Medical School, 940 Belmont Street, Brockton, MA 02301, phone 774-826-1355, fax 774-826-2721
| |
Collapse
|
104
|
Dysconnectivity in schizophrenia: where are we now? Neurosci Biobehav Rev 2010; 35:1110-24. [PMID: 21115039 DOI: 10.1016/j.neubiorev.2010.11.004] [Citation(s) in RCA: 500] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 11/02/2010] [Accepted: 11/20/2010] [Indexed: 01/14/2023]
Abstract
The disconnection hypothesis suggests that the core symptoms of schizophrenia (SZ) are related to aberrant, or 'dys-', connectivity between distinct brain regions. A proliferation of functional and structural neuroimaging studies have been conducted to investigate this hypothesis, across the full course of the disorder; from people at Ultra-High-Risk of developing psychosis to patients with chronic SZ. However the results of these studies have not always been consistent, and to date, there have been no attempts to summarise the results of both methodologies in conjunction. In this article, we systematically review both the structural and functional connectivity literature in SZ. The main trends to emerge are that schizophrenia is associated with connectivity reductions, as opposed to increases, relative to healthy controls, and that this is particularly evident in the connections involving the frontal lobe. These two trends appear to apply across all stages of the disorder, and to be independent of the neuroimaging methodology employed. We discuss the potential implications of these trends, and identify possible future investigative directions.
Collapse
|
105
|
Reinvang I, Deary IJ, Fjell AM, Steen VM, Espeseth T, Parasuraman R. Neurogenetic effects on cognition in aging brains: a window of opportunity for intervention? Front Aging Neurosci 2010; 2:143. [PMID: 21103005 PMCID: PMC2987509 DOI: 10.3389/fnagi.2010.00143] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 09/17/2010] [Indexed: 12/15/2022] Open
Abstract
Knowledge of genetic influences on cognitive aging can constrain and guide interventions aimed at limiting age-related cognitive decline in older adults. Progress in understanding the neural basis of cognitive aging also requires a better understanding of the neurogenetics of cognition. This selective review article describes studies aimed at deriving specific neurogenetic information from three parallel and interrelated phenotype-based approaches: psychometric constructs, cognitive neuroscience-based processing measures, and brain imaging morphometric data. Developments in newer genetic analysis tools, including genome wide association, are also described. In particular, we focus on models for establishing genotype-phenotype associations within an explanatory framework linking molecular, brain, and cognitive levels of analysis. Such multiple-phenotype approaches indicate that individual variation in genes central to maintaining synaptic integrity, neurotransmitter function, and synaptic plasticity are important in affecting age-related changes in brain structure and cognition. Investigating phenotypes at multiple levels is recommended as a means to advance understanding of the neural impact of genetic variants relevant to cognitive aging. Further knowledge regarding the mechanisms of interaction between genetic and preventative procedures will in turn help in understanding the ameliorative effect of various experiential and lifestyle factors on age-related cognitive decline.
Collapse
Affiliation(s)
- Ivar Reinvang
- Department of Psychology, University of OsloOslo, Norway
| | - Ian J. Deary
- Department of Psychology, University of EdinburghEdinburgh, UK
| | | | - Vidar M. Steen
- Department of Clinical Medicine, University of BergenBergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University HospitalBergen, Norway
| | | | - Raja Parasuraman
- Department of Psychology, George Mason UniversityFairfax, VA, USA
| |
Collapse
|
106
|
Peters BD, Blaas J, de Haan L. Diffusion tensor imaging in the early phase of schizophrenia: what have we learned? J Psychiatr Res 2010; 44:993-1004. [PMID: 20554292 DOI: 10.1016/j.jpsychires.2010.05.003] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 04/13/2010] [Accepted: 05/05/2010] [Indexed: 01/08/2023]
Abstract
The dysconnectivity model suggests that disturbed integration of neural communication is central to schizophrenia. The integrity of macro-structural brain circuits can be examined with diffusion tensor imaging (DTI), an MRI application sensitive to microstructural abnormalities of brain white matter. DTI studies in first-episode schizophrenia patients and individuals at high-risk of psychosis can provide insight into the role of structural dysconnectivity in the liability, onset and early course of psychosis. This review discusses (i) views on the role of white matter abnormalities in schizophrenia, (ii) DTI and its application in schizophrenia, (iii) DTI findings in first-episode patients and subjects at high-risk of psychosis; their timing, anatomical location and early course, (iv) the hypothesized underlying pathological substrate and possible causes of DTI white matter alterations, including effects of adolescent cannabis use, and (v) some methodological issues and future recommendations. In summary, there is evidence that DTI abnormalities convey a liability for psychosis and additional abnormalities occur around onset of psychosis. However, findings in first-episode patients are less robust than in chronic patients, and progression of disturbances may occur in the early course of poor-outcome patients. In addition, acceleration of the normal aging process may occur. Adolescent cannabis use has specific effects on DTI measures. An unresolved issue is the underlying pathology of DTI abnormalities, and combining DTI with other MRI indices can provide more insight. More research is needed on which genetic and environmental factors play a role in the variability of current results.
Collapse
Affiliation(s)
- Bart D Peters
- Rivierduinen, Langevelderweg 27, 2211 AB Noordwijkerhout, The Netherlands.
| | | | | |
Collapse
|
107
|
Abstract
The structure of the brain is constantly changing from birth throughout the lifetime, meaning that normal aging, free from dementia, is associated with structural brain changes. This paper reviews recent evidence from magnetic resonance imaging (MRI) studies about age-related changes in the brain. The main conclusions are that (1) the brain shrinks in volume and the ventricular system expands in healthy aging. However, the pattern of changes is highly heterogeneous, with the largest changes seen in the frontal and temporal cortex, and in the putamen, thalamus, and accumbens. With modern approaches to analysis of MRI data, changes in cortical thickness and subcortical volume can be tracked over periods as short as one year, with annual reductions of between 0.5% and 1.0% in most brain areas. (2) The volumetric brain reductions in healthy aging are likely only to a minor extent related to neuronal loss. Rather, shrinkage of neurons, reductions of synaptic spines, and lower numbers of synapses probably account for the reductions in grey matter. In addition, the length of myelinated axons is greatly reduced, up to almost 50%. (3) Reductions in specific cognitive abilities--for instance processing speed, executive functions, and episodic memory--are seen in healthy aging. Such reductions are to a substantial degree mediated by neuroanatomical changes, meaning that between 25% and 100% of the differences between young and old participants in selected cognitive functions can be explained by group differences in structural brain characteristics.
Collapse
Affiliation(s)
- Anders M Fjell
- Center for the Study of Human Cognition, Department of Psychology, University of Oslo, Norway.
| | | |
Collapse
|
108
|
Buonanno A. The neuregulin signaling pathway and schizophrenia: from genes to synapses and neural circuits. Brain Res Bull 2010; 83:122-31. [PMID: 20688137 PMCID: PMC2958213 DOI: 10.1016/j.brainresbull.2010.07.012] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 07/14/2010] [Accepted: 07/20/2010] [Indexed: 02/07/2023]
Abstract
Numerous genetic linkage and association studies implicate members of the Neuregulin-ErbB receptor (NRG-ErbB) signaling pathway as schizophrenia "at risk" genes. An emphasis of this review is to propose plausible neurobiological mechanisms, regulated by the Neuregulin-ErbB signaling network, that may be altered in schizophrenia and contribute to its etiology. To this end, the distinct neurotransmitter pathways, neuronal subtypes and neural network systems altered in schizophrenia are initially discussed. Next, the review focuses on the possible significance of genetic studies associating NRG1 and ErbB4 with schizophrenia, in light of the functional role of this signaling pathway in regulating glutamatergic, GABAergic and dopaminergic neurotransmission, as well as modulating synaptic plasticity and gamma oscillations. The importance of restricted ErbB4 receptor expression in GABAergic interneurons is emphasized, particularly their expression at glutamatergic synapses of parvalbumin-positive fast-spiking interneurons where modulation of inhibitory drive could account for the dramatic effects of NRG-ErbB signaling on gamma oscillations and pyramidal neuron output. A case is made for reasons that the NRG-ErbB signaling pathway constitutes a "biologically plausible" system for understanding the pathogenic mechanisms that may underlie the complex array of positive, negative and cognitive deficits associated with schizophrenia during development.
Collapse
Affiliation(s)
- Andrés Buonanno
- National Institutes of Health, Eunice Shriver Kennedy NICHD, Section on Molecular Neurobiology, Program of Developmental Neurobiology, 35 Lincoln Drive, Bethesda, MD 20892-3714, USA.
| |
Collapse
|
109
|
Selected summaries from the XVII World Congress of Psychiatric Genetics, San Diego, California, USA, 4-8 November 2009. Psychiatr Genet 2010; 20:229-68. [PMID: 20706171 DOI: 10.1097/ypg.0b013e32833d17c3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The XVII World Congress of Psychiatric Genetics, sponsored by The International Society of Psychiatric Genetics (ISPG) took place in San Diego, California from 4 to 8 November 2009. Approximately 550 participants gathered to discuss the latest molecular genetic findings relevant to serious mental illness, including schizophrenia, mood disorders, substance abuse, autism, and attention deficit disorder. Recent advances in the field were discussed, including the genome-wide association studies results, copy number variation (CNV) in the genome, genomic imaging, and large multicenter collaborations. The following report, written by junior travel awardees who were assigned sessions as rapporteurs represents some of the areas covered in oral presentation during the conference, and reports on some of the notable major new findings described at this 2009 World Congress of Psychiatric Genetics.
Collapse
|
110
|
Chen J, Huang XF. The PI3K/Akt pathway may play a key role in social isolation-caused schizophrenia comment re: Increased dopamine D2(High) receptors in rats reared in social isolation. Synapse 2010; 64:486-7. [PMID: 20175223 DOI: 10.1002/syn.20751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
111
|
Karam CS, Ballon JS, Bivens NM, Freyberg Z, Girgis RR, Lizardi-Ortiz JE, Markx S, Lieberman JA, Javitch JA. Signaling pathways in schizophrenia: emerging targets and therapeutic strategies. Trends Pharmacol Sci 2010; 31:381-90. [PMID: 20579747 DOI: 10.1016/j.tips.2010.05.004] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 05/17/2010] [Accepted: 05/20/2010] [Indexed: 02/07/2023]
Abstract
Dopamine D(2) receptor antagonism is a unifying property of all antipsychotic drugs in use for schizophrenia. While often effective at ameliorating psychosis, these drugs are largely ineffective at treating negative and cognitive symptoms. Increasing attention is being focused on the complex genetics of the illness and the signaling pathways implicated in its pathophysiology. We review targeted approaches for pharmacotherapy involving the glutamatergic, GABAergic and cholinergic pathways. We also describe several of the major genetic findings that identify signaling pathways representing potential targets for novel pharmacological intervention. These include genes in the 22q11 locus, DISC1, Neuregulin 1/ErbB4, and components of the Akt/GSK-3 pathway.
Collapse
Affiliation(s)
- Caline S Karam
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Extending genetic linkage analysis to diffusion tensor images to map single gene effects on brain fiber architecture. ACTA ACUST UNITED AC 2010. [PMID: 20426150 DOI: 10.1007/978-3-642-04271-3_62] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
We extended genetic linkage analysis--an analysis widely used in quantitative genetics--to 3D images to analyze single gene effects on brain fiber architecture. We collected 4 Tesla diffusion tensor images (DTI) and genotype data from 258 healthy adult twins and their non-twin siblings. After high-dimensional fluid registration, at each voxel we estimated the genetic linkage between the single nucleotide polymorphism (SNP), Val66Met (dbSNP number rs6265), of the BDNF gene (brain-derived neurotrophic factor) with fractional anisotropy (FA) derived from each subject's DTI scan, by fitting structural equation models (SEM) from quantitative genetics. We also examined how image filtering affects the effect sizes for genetic linkage by examining how the overall significance of voxelwise effects varied with respect to full width at half maximum (FWHM) of the Gaussian smoothing applied to the FA images. Raw FA maps with no smoothing yielded the greatest sensitivity to detect gene effects, when corrected for multiple comparisons using the false discovery rate (FDR) procedure. The BDNF polymorphism significantly contributed to the variation in FA in the posterior cingulate gyrus, where it accounted for around 90-95% of the total variance in FA. Our study generated the first maps to visualize the effect of the BDNF gene on brain fiber integrity, suggesting that common genetic variants may strongly determine white matter integrity.
Collapse
|
113
|
Measurement and comparison of serum neuregulin 1 immunoreactivity in control subjects and patients with schizophrenia: an influence of its genetic polymorphism. J Neural Transm (Vienna) 2010; 117:887-95. [DOI: 10.1007/s00702-010-0418-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 05/02/2010] [Indexed: 02/07/2023]
|
114
|
Abstract
Numerous genetic studies associated the Neuregulin 1 (NRG1) Icelandic haplotype (HAP(ice)), and its single nucleotide polymorphism SNP8NRG243177 [T/T], with schizophrenia. Because SNP8NRG243177 [T/T] has characteristics of a functional polymorphism that maps close to NRG1 type IV coding sequences, our initial goal was to map precisely the human type IV transcription initiation site. We determined that the initiation site is 23 bp upstream of the previously reported type IV exon, and that no other transcripts map to the SNP8NRG243177 region. Because NRG1 type IV transcripts are specific to human, we isolated full-length NRG1 type IV cDNAs from human hippocampi and expressed them in non-neural cells and dissociated rat hippocampal neurons to study protein expression, processing and function. Using an antiserum we generated against the NRG1 type IV-specific N-terminus, we found that the protein is targeted to the cell surface where PKC activation promotes its cleavage and release of the extracellular domain. Conditioned medium derived from type IV expressing cells stimulates ErbB receptor phosphorylation, as well as downstream Akt and Erk signaling, demonstrating that NRG1 type IV possesses biological activity similar to other releasable NRG1 isoforms. To study the subcellular targeting of distinct isoforms, neurons were transfected with the Ig-domain-containing NRG1 types I and IV, or the cysteine-rich domain type III isoform. Three dimensional confocal images from transfected neurons indicate that, whereas all isoforms are expressed on somato-dendritic membranes, only the type III-cysteine-rich domain isoform is detectable in distal axons. These results suggest that NRG1 type IV expression levels associated with SNP8NRG243177 [T/T] can selectively modify signaling of NRG1 released from somato-dendritic compartments, in contrast to the type III NRG1 that is also associated with axons.
Collapse
Affiliation(s)
- Alon Shamir
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Andres Buonanno
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| |
Collapse
|
115
|
Wahl M, Li YO, Ng J, LaHue SC, Cooper SR, Sherr EH, Mukherjee P. Microstructural correlations of white matter tracts in the human brain. Neuroimage 2010; 51:531-41. [PMID: 20206699 PMCID: PMC2856800 DOI: 10.1016/j.neuroimage.2010.02.072] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 02/10/2010] [Accepted: 02/25/2010] [Indexed: 02/03/2023] Open
Abstract
The purpose of this study is to investigate whether specific patterns of correlation exist in diffusion tensor imaging (DTI) parameters across different white matter tracts in the normal human brain, and whether the relative strengths of these putative microstructural correlations might reflect phylogenetic and functional similarities between tracts. We performed quantitative DTI fiber tracking on 44 healthy adult volunteers to obtain tract-based measures of mean diffusivity (MD), fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD) from four homologous pairs of neocortical association pathways (arcuate fasciculi, inferior fronto-occipital fasciculi, inferior longitudinal fasciculi, and uncinate fasciculi bilaterally), a homologous pair of limbic association pathways (left and right dorsal cingulum bundles), and a homologous pair of cortical-subcortical projection pathways (left and right corticospinal tracts). From the resulting inter-tract correlation matrices, we show that there are statistically significant correlations of DTI parameters between tracts, and that there are statistically significant variations among these inter-tract correlations. Furthermore, we observe that many, but by no means all, of the strongest correlations are between homologous tracts in the left and right hemispheres. Even among homologous pairs of tracts, there are wide variations in the degree of coupling. Finally, we generate a data-driven hierarchical clustering of the fiber pathways based on pairwise FA correlations to demonstrate that the neocortical association pathways tend to group separately from the limbic pathways at trend-level statistical significance, and that the projection pathways of the left and right corticospinal tracts comprise the most distant outgroup with high confidence (p<0.01). Hence, specific patterns of microstructural correlation exist between tracts and may reflect phylogenetic and functional similarities between tracts. The study of these microstructural relationships between white matter pathways might aid research on the genetic basis and on the behavioral effects of axonal connectivity, as well as provide a revealing new perspective with which to investigate neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Michael Wahl
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Yi-Ou Li
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Joshua Ng
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Sara C. LaHue
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Shelly R. Cooper
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Elliott H. Sherr
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Pratik Mukherjee
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA
- Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, CA, USA
| |
Collapse
|
116
|
Watanabe Y, Someya T, Nawa H. Cytokine hypothesis of schizophrenia pathogenesis: evidence from human studies and animal models. Psychiatry Clin Neurosci 2010; 64:217-30. [PMID: 20602722 DOI: 10.1111/j.1440-1819.2010.02094.x] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The pathogenesis of schizophrenia has yet to be fully characterized. Gene-environment interactions have been found to play a crucial role in the vulnerability to this disease. Among various environmental factors, inflammatory immune processes have been most clearly implicated in the etiology and pathology of schizophrenia. Cytokines, regulators of immune/inflammatory reactions and brain development, emerge as part of a common pathway of genetic and environmental components of schizophrenia. Maternal infection, obstetric complications, neonatal hypoxia and brain injury all recruit cytokines to mediate inflammatory processes. Abnormal expression levels of specific cytokines such as epidermal growth factor, interleukins (IL) and neuregulin-1 are found both in the brain and peripheral blood of patients with schizophrenia. Accordingly, cytokines have been proposed to transmit peripheral immune/inflammatory signals to immature brain tissue through the developing blood-brain barrier, perturbing structural and phenotypic development of the brain. This cytokine hypothesis of schizophrenia is also supported by modeling experiments in animals. Animals treated with specific cytokines of epidermal growth factor, IL-1, IL-6, and neuregulin-1 as embryos or neonates exhibit schizophrenia-like behavioral abnormalities after puberty, some of which are ameliorated by treatment with antipsychotics. In this review, we discuss the neurobiological mechanisms underlying schizophrenia and novel antipsychotic candidates based on the cytokine hypothesis.
Collapse
Affiliation(s)
- Yuichiro Watanabe
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | | | | |
Collapse
|
117
|
Abstract
BACKGROUND Bipolar affective disorder is a common psychiatric illness with an often episodic nature, the neurobiological basis of which remains elusive. Symptom clusters in bipolar disorder can be conceptualized in terms of disordered brain networks, and doing so may aid our understanding of the varied presentations, differing illness courses and treatment responses. AIMS To review the rationale behind proposed disordered brain network function in bipolar disorder and the evidence of network dysfunction from imaging studies together with an overview of more novel techniques pertinent to this field. METHODS Medline databases were searched using the terms bipolar disorder, imaging, connectivity and brain networks. Relevant articles were reviewed and bibliographic cross-referencing was used to focus on key areas of interest, supplemented by additional Medline searches as required. RESULTS Structural and functional imaging studies support the concept of brain network dysfunction in bipolar disorder. Novel techniques such as diffusion tensor imaging and resting state network analysis can assess such dysfunction more directly, but there are few studies specific to bipolar disorder. CONCLUSIONS Brain network dysfunction is a useful framework for considering the varied presentations of bipolar disorder. Advanced imaging techniques are increasingly available, with the potential to provide insights into this important area.
Collapse
Affiliation(s)
- Lena Palaniyappan
- Department of Psychiatry, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.
| | | |
Collapse
|
118
|
Abstract
BACKGROUND Despite the substantial heritability of the psychoses and their genuine public health burden, the applicability of the genomic approach in psychiatry has been strongly questioned or prematurely dismissed. METHODS selective review of the recent literature on molecular genetic and genomic approaches to the psychoses including the early output from genome-wide association studies and the genomic analysis of DNA structural variation. RESULTS Susceptibility variants at strong candidate genes have been identified including neuregulin, dysbindin, DISC1 and neurexin 1. Rare but highly penetrant copy number variants and new mutations affecting genes involved in neurodevelopment, cell signalling and synaptic function have been described showing some overlapping genetic architecture with other developmental disorders including autism. The de-novo mutations described offer an explanation for the familial sporadic divide and the persistence of schizophrenia in the population. The functional effects of risk variants at the level of cognition and connectivity has been described and recently, ZNF804A has been identified, and the MHC re-identified as risk loci, and it has been shown that at least a third of the variation in liability is due to multiple common risk variants of small effect with a substantial shared genetic liability between schizophrenia and bipolar affective disorder. CONCLUSIONS The genomics have done much for the psychoses to date and more is anticipated.
Collapse
Affiliation(s)
- M Gill
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, School of Medicine, Trinity College Dublin 8, Ireland.
| | | | | |
Collapse
|
119
|
Heritability of DTI and MTR in nine-year-old children. Neuroimage 2010; 53:1085-92. [PMID: 20298793 DOI: 10.1016/j.neuroimage.2010.03.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Revised: 03/05/2010] [Accepted: 03/05/2010] [Indexed: 02/02/2023] Open
Abstract
Overall brain size is strikingly heritable throughout life. The influence of genes on variation in focal gray and white matter density is less pronounced and may vary with age. This paper describes the relative influences of genes and environment on variation in white matter microstructure, measured along fiber tracts with diffusion tensor imaging and magnetization transfer imaging, in a sample of 185 nine-year old children from monozygotic and dizygotic twin pairs. Fractional anisotropy, a measure of microstructural directionality, was not significantly influenced by genetic factors. In contrast, studying longitudinal and radial diffusivity separately, we found significant genetic effects for both radial and longitudinal diffusivity in the genu and splenium of the corpus callosum and the right superior longitudinal fasciculus. Moreover, genetic factors influencing the magnetization transfer ratio (MTR), putatively representing myelination, were most pronounced in the splenium of the corpus callosum and the superior longitudinal fasciculi, located posterior in the brain. The differences in the extent to which genetic and environmental factors influence the various diffusion parameters and MTR, suggest that different physiological mechanisms (either genetic or environmental) underlie these traits at nine years of age.
Collapse
|
120
|
Keshavan MS, Kulkarni S, Bhojraj T, Francis A, Diwadkar V, Montrose DM, Seidman LJ, Sweeney J. Premorbid cognitive deficits in young relatives of schizophrenia patients. Front Hum Neurosci 2010; 3:62. [PMID: 20300465 PMCID: PMC2839849 DOI: 10.3389/neuro.09.062.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Accepted: 11/20/2009] [Indexed: 02/05/2023] Open
Abstract
Neurocognitive deficits in schizophrenia (SZ) are thought to be stable trait markers that predate the illness and manifest in relatives of patients. Adolescence is the age of maximum vulnerability to the onset of SZ and may be an opportune "window" to observe neurocognitive impairments close to but prior to the onset of psychosis. We reviewed the extant studies assessing neurocognitive deficits in young relatives at high risk (HR) for SZ and their relation to brain structural alterations. We also provide some additional data pertaining to the relation of these deficits to psychopathology and brain structural alterations from the Pittsburgh Risk Evaluation Program (PREP). Cognitive deficits are noted in the HR population, which are more severe in first-degree relatives compared to second-degree relatives and primarily involve psychomotor speed, memory, attention, reasoning, and social-cognition. Reduced general intelligence is also noted, although its relationship to these specific domains is underexplored. Premorbid cognitive deficits may be related to brain structural and functional abnormalities, underlining the neurobiological basis of this illness. Cognitive impairments might predict later emergence of psychopathology in at-risk subjects and may be targets of early remediation and preventive strategies. Although evidence for neurocognitive deficits in young relatives abounds, further studies on their structural underpinnings and on their candidate status as endophenotypes are needed.
Collapse
Affiliation(s)
- Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Massachusetts Mental Health Center, Harvard Medical School Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Mechelli A, Viding E, Pettersson-Yeo W, Tognin S, McGuire PK. Genetic variation in neuregulin1 is associated with differences in prefrontal engagement in children. Hum Brain Mapp 2010; 30:3934-43. [PMID: 19449332 DOI: 10.1002/hbm.20818] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The majority of psychopathology is rooted early in life and first emerges during childhood and adolescence. However, little is known about how risk genes affect brain function to increase biological vulnerability to psychopathology in childhood, because most imaging genetic studies published so far have been conducted on adult participants. We examined the impact of neuregulin1 (NRG1), a probable susceptibility gene for schizophrenia and bipolar disorder, on brain function in a sample of 102 ten- to twelve-year-old children. Each participant performed a Go/Nogo task, whereas brain responses were measured using functional magnetic resonance imaging. Statistical parametric mapping was used to estimate the impact of genetic variation in NRG1 on brain activation. Response accuracy and reaction times did not differ as a function of NRG1 genotype. However, individuals with the high-risk variant expressed greater brain activation for both Go and Nogo stimuli in the right posterior orbital gyrus, where NRG1 genotype accounted for 11% of interindividual variance. There were no regions showing a significant interaction between NRG1 genotype and stimulus type even at trend level, suggesting that the impact of NRG1 on brain activation was not specific to either response inhibition or motor execution. These results suggest that that genetic variation in NRG1 is associated with different levels of prefrontal engagement in children as young as 10-12 years of age. Our investigation provides support to the idea that genetic factors may affect brain function to moderate vulnerability to psychopathology from childhood.
Collapse
Affiliation(s)
- Andrea Mechelli
- Department of Psychology, Institute of Psychiatry, King's College London, London, United Kingdom.
| | | | | | | | | |
Collapse
|
122
|
Haraldsson HM, Ettinger U, Magnusdottir BB, Ingason A, Hutton SB, Sigmundsson T, Sigurdsson E, Petursson H. Neuregulin-1 genotypes and eye movements in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2010; 260:77-85. [PMID: 19575259 DOI: 10.1007/s00406-009-0032-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 06/15/2009] [Indexed: 01/26/2023]
Abstract
Neuregulin-1 (NRG-1) is a putative susceptibility gene for schizophrenia but the neurocognitive processes that may involve NRG-1 in schizophrenia are unknown. Deficits in antisaccade (AS) and smooth pursuit eye movements (SPEM) are promising endophenotypes, which may be associated with brain dysfunctions underlying the pathophysiology of schizophrenia. The aim of this study was to investigate the associations of NRG-1 genotypes with AS and SPEM in schizophrenia patients and healthy controls. Patients (N = 113) and controls (N = 106) were genotyped for two NRG-1 single nucleotide polymorphisms (SNPs); SNP8NRG222662, a surrogate marker for the originally described Icelandic NRG-1 risk haplotype, and SNP8NRG243177, which has recently been associated with individual differences in brain function. Subjects underwent infrared oculographic assessment of AS and SPEM. The study replicates previous findings of impaired AS and SPEM performance in schizophrenia patients (all P < 0.005; all d = 0.5-1.5). SNP8NRG243177 risk allele carriers had marginally increased variability of AS spatial error (P = 0.050, d = 0.3), but there were no significant genotype effects on other eye movement variables and no significant diagnosis-by-genotype interactions. Generally, risk allele carriers (G allele for SNP8NRG222662 and T allele for SNP8NRG243177) had numerically worse performance than non-carriers on most AS and SPEM variables. The results do not suggest that NRG-1 genotype significantly affects AS and SPEM task performance. However, the power of the sample to identify small effects is limited and the possibility of a type II error must be kept in mind. Larger samples may be needed to reliably investigate such gene effects on oculomotor endophenotypes.
Collapse
Affiliation(s)
- H Magnus Haraldsson
- Division of Psychiatry, Landspitali University Hospital, Hringbraut, 101, Reykjavik, Iceland.
| | | | | | | | | | | | | | | |
Collapse
|
123
|
Genetics of microstructure of cerebral white matter using diffusion tensor imaging. Neuroimage 2010; 53:1109-16. [PMID: 20117221 DOI: 10.1016/j.neuroimage.2010.01.078] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 01/20/2010] [Accepted: 01/22/2010] [Indexed: 11/23/2022] Open
Abstract
We analyzed the degree of genetic control over intersubject variability in the microstructure of cerebral white matter (WM) using diffusion tensor imaging (DTI). We performed heritability, genetic correlation and quantitative trait loci (QTL) analyses for the whole-brain and 10 major cerebral WM tracts. Average measurements for fractional anisotropy (FA), radial (L( perpendicular)) and axial (L( vertical line)) diffusivities served as quantitative traits. These analyses were done in 467 healthy individuals (182 males/285 females; average age 47.9+/-13.5 years; age range: 19-85 years), recruited from randomly-ascertained pedigrees of extended families. Significant heritability was observed for FA (h(2)=0.52+/-0.11; p=10(-7)) and L( perpendicular) (h(2)=0.37+/-0.14; p=0.001), while L( vertical line) measurements were not significantly heritable (h(2)=0.09+/-0.12; p=0.20). Genetic correlation analysis indicated that the FA and L( perpendicular) shared 46% of the genetic variance. Tract-wise analysis revealed a regionally diverse pattern of genetic control, which was unrelated to ontogenic factors, such as tract-wise age-of-peak FA values and rates of age-related change in FA. QTL analysis indicated linkages for whole-brain average FA (LOD=2.36) at the marker D15S816 on chromosome 15q25, and for L( perpendicular) (LOD=2.24) near the marker D3S1754 on the chromosome 3q27. These sites have been reported to have significant co-inheritance with two psychiatric disorders (major depression and obsessive-compulsive disorder) in which patients show characteristic alterations in cerebral WM. Our findings suggest that the microstructure of cerebral white matter is under a strong genetic control and further studies in healthy as well as patients with brain-related illnesses are imperative to identify the genes that may influence cerebral white matter.
Collapse
|
124
|
White matter abnormalities in bipolar disorder: insights from diffusion tensor imaging studies. J Neural Transm (Vienna) 2010; 117:639-54. [PMID: 20107844 DOI: 10.1007/s00702-010-0368-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 01/07/2010] [Indexed: 10/19/2022]
Abstract
Diffusion tensor imaging (DTI) is a neuroimaging technique with the potential to elucidate white matter abnormalities. Recently, it has been applied to help in better understanding of the pathophysiology of bipolar disorder (BD). This review sought to synthesise existing literature on DTI studies in BD, summarise current findings and highlight brain regions that have consistently been implicated in BD, as well as posit possible future directions for DTI research in BD. The extant findings from this review suggest loss of white matter network connectivity as a possible phenomenon associated with bipolar disorder, involving prefrontal and frontal regions, projection, associative and commissural fibres, with sparse and less consistent evidence implicating the subcortical and non-frontal lobes of the brain. There are some differences in the direction of changes observed in white matter indices, and these may be attributed to factors including sample heterogeneity and limitations of DTI techniques. The possible roles of the parietal, temporal and occipital lobes and subcortical regions in BD await further investigation. Studies of bipolar disorder using DTI lag behind other neuropsychiatric diseases such as schizophrenia, but DTI research in BD is fast gaining pace. The emerging trends from these DTI findings underscore the importance of further research to unravel the underlying neural mechanisms and clinico-anatomical correlations involving white matter in BD.
Collapse
|
125
|
Abstract
After decades of research aimed at elucidating the pathophysiology and etiology of schizophrenia, it has become increasingly apparent that it is an illness knowing few boundaries. Psychopathological manifestations extend across several domains, impacting multiple facets of real-world functioning for the affected individual. Even within one such domain, arguably the most enduring, difficult to treat, and devastating to long-term functioning-executive impairment-there are not only a host of disrupted component processes, but also a complex underlying dysfunctional neural architecture. Further, just as implicated brain structures (eg, dorsolateral prefrontal cortex) through postmortem and neuroimaging techniques continue to show alterations in multiple, interacting signaling pathways, so too does evolving understanding of genetic risk factors suggest multiple molecular entry points to illness liability. With this expansive network of interactions in mind, the present chapter takes a systems-level approach to executive dysfunction in schizophrenia, by identifying key regions both within and outside of the frontal lobes that show changes in schizophrenia and are important in cognitive control neural circuitry, summarizing current knowledge of their relevant functional interactions, and reviewing emerging links between schizophrenia risk genetics and characteristic executive circuit aberrancies observed with neuroimaging methods.
Collapse
|
126
|
Abstract
A three-marker C-A-T dysbindin haplotype identified by Williams et al (PMID: 15066891) is associated with increased risk for schizophrenia, decreased mRNA expression, poorer cognitive performance, and early sensory processing deficits. We investigated whether this same dysbindin risk haplotype was also associated with structural variation in the gray matter volume (GMV). Using voxel-based morphometry, whole-volume analysis revealed significantly reduced GMVs in both the right dorsolateral prefrontal and left occipital cortex, corresponding to the behavioral findings of impaired spatial working memory and EEG findings of impaired visual processing already reported. These data provide important evidence of the influence of dysbindin risk variants on brain structure, and suggest a possible mechanism by which disease risk is being increased.
Collapse
|
127
|
Krug A, Markov V, Krach S, Jansen A, Zerres K, Eggermann T, Stöcker T, Shah NJ, Nöthen MM, Treutlein J, Rietschel M, Kircher T. The effect of Neuregulin 1 on neural correlates of episodic memory encoding and retrieval. Neuroimage 2009; 53:985-91. [PMID: 20036336 DOI: 10.1016/j.neuroimage.2009.12.062] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 12/14/2009] [Accepted: 12/15/2009] [Indexed: 12/21/2022] Open
Abstract
Neuregulin 1 (NRG1) has been found to be associated with schizophrenia. Impaired performance in episodic memory tasks is an often replicated finding in this disorder. In functional neuroimaging studies, this dysfunction has been linked to signal changes in prefrontal and medial temporal areas. Therefore, it is of interest whether genes associated with the disorder, such as NRG1, modulate episodic memory performance and its neural correlates. Ninety-four healthy individuals performed an episodic memory encoding and a retrieval task while brain activation was measured with functional MRI. All subjects were genotyped for the single nucleotide polymorphism (SNP) rs35753505 in the NRG1 gene. The effect of genotype on brain activation was assessed with fMRI during the two tasks. While there were no differences in performance, brain activation in the cingulate gyrus (BA 24), the left middle frontal gyrus (BA 9), the bilateral fusiform gyrus and the left middle occipital gyrus (BA 19) was positively correlated with the number of risk alleles in NRG1 during encoding. During retrieval brain activation was positively correlated with the number of risk alleles in the left middle occipital gyrus (BA 19). NRG1 genotype does modulate brain activation during episodic memory processing in key areas for memory encoding and retrieval. The results suggest that subjects with risk alleles show hyperactivations in areas associated with elaborate encoding strategies.
Collapse
Affiliation(s)
- Axel Krug
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Influence of Neuregulin1 Genotype on Neural Substrate of Perceptual Matching in Children. Behav Genet 2009; 40:157-66. [DOI: 10.1007/s10519-009-9317-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 11/18/2009] [Indexed: 11/25/2022]
|
129
|
Cocchi L, Walterfang M, Testa R, Wood SJ, Seal ML, Suckling J, Takahashi T, Proffitt TM, Brewer WJ, Adamson C, Soulsby B, Velakoulis D, McGorry PD, Pantelis C. Grey and white matter abnormalities are associated with impaired spatial working memory ability in first-episode schizophrenia. Schizophr Res 2009; 115:163-72. [PMID: 19837566 DOI: 10.1016/j.schres.2009.09.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 08/03/2009] [Accepted: 09/07/2009] [Indexed: 11/16/2022]
Abstract
Spatial working memory (SWM) dysfunction has been suggested as a trait marker of schizophrenia and implicates a diffuse network involving prefrontal, temporal and parietal cortices. However, structural abnormalities in both grey and white matter in relation to SWM deficits are largely unexplored. The current magnetic resonance imaging (MRI) study examined this relationship in a sample of young first-episode schizophrenia (FES) patients using a whole-brain voxel-based method. SWM ability of 21 FES patients and 41 comparable controls was assessed by the CANTAB SWM task. Using an automated morphometric analysis of brain MRI scans, we assessed the relationship between SWM abilities and both grey matter volume and white matter density in both groups. Our findings demonstrated the different directionality of the association between SWM errors and grey matter volume in left frontal regions and white matter tracts connecting these regions with temporal and occipital areas between FES patients and controls. This suggests that the substrate underpinning the normal variability in SWM function in healthy individuals may be abnormal in FES, and that the normal neurodevelopmental processes that drive the development of SWM networks are disrupted in schizophrenia.
Collapse
Affiliation(s)
- Luca Cocchi
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne & Melbourne Health, Melbourne, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Abstract
Although the pathogenesis of bipolar disorder is still not completely understood, there is evidence from imaging studies that abnormalities in inter-hemispheric communication may play a major role in the pathophysiology of bipolar disorder. In the present review, we discuss the most consistent findings from diffusion imaging studies exploring corpus callosum integrity in bipolar disorder.
Collapse
|
131
|
Kircher T, Krug A, Markov V, Whitney C, Krach S, Zerres K, Eggermann T, Stöcker T, Shah NJ, Treutlein J, Nöthen MM, Becker T, Rietschel M. Genetic variation in the schizophrenia-risk gene neuregulin 1 correlates with brain activation and impaired speech production in a verbal fluency task in healthy individuals. Hum Brain Mapp 2009; 30:3406-16. [PMID: 19350564 DOI: 10.1002/hbm.20761] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Impaired performance in verbal fluency tasks is an often replicated finding in schizophrenia. In functional neuroimaging studies, this dysfunction has been linked to signal changes in prefrontal and temporal areas. Since schizophrenia has a high heritability, it is of interest whether susceptibility genes for the disorder, such as NRG1, modulate verbal fluency performance and its neural correlates. Four hundred twenty-nine healthy individuals performed a semantic and a lexical verbal fluency task. A subsample of 85 subjects performed an overt semantic verbal fluency task while brain activation was measured with functional magnetic resonance imaging (MRI). NRG1 (SNP8NRG221533; rs35753505) status was determined and correlated with verbal fluency performance and brain activation. For the behavioral measure, there was a linear effect of NRG1 status on semantic but not on lexical verbal fluency. Performance decreased with number of risk-alleles. In the fMRI experiment, decreased activation in the left inferior frontal and the right middle temporal gyri as well as the anterior cingulate gyrus was correlated with the number of risk-alleles in the semantic verbal fluency task. NRG1 genotype does influence language production on a semantic level in conjunction with the underlying neural systems. These findings are in line with results of studies in schizophrenia and may explain some of the cognitive and brain activation variation found in the disorder. More generally, NRG1 might be one of several genes that influence semantic language capacities.
Collapse
Affiliation(s)
- Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Marenco S, Radulescu E. Imaging genetics of structural brain connectivity and neural integrity markers. Neuroimage 2009; 53:848-56. [PMID: 19932755 DOI: 10.1016/j.neuroimage.2009.11.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/12/2009] [Accepted: 11/13/2009] [Indexed: 01/15/2023] Open
Abstract
We review studies that have used diffusion imaging (DI) and magnetic resonance spectroscopy (MRS) to investigate genetic associations. A brief description of the measures obtainable with these methods and of some methodological and interpretability limitations is given. The usefulness of DI and MRS in defining intermediate phenotypes and in demonstrating the effects of common genetic variants known to increase risk for psychiatric manifestations on anatomical and metabolic phenotypes is reviewed. The main focus is on schizophrenia where the greatest amount of data has been collected. Moreover, we present an example coming from a different approach, where the genetic alteration is known (the deletion that causes Williams syndrome) and the DI phenotype can shed new light on the function of genes affected by the mutation. We conclude that, although these are still early days of this type of research and many findings remain controversial, both techniques can significantly contribute to the understanding of genetic effects in the brain and the pathophysiology of psychiatric disorders.
Collapse
Affiliation(s)
- Stefano Marenco
- Unit for Multimodal Imaging Genetics, Clinical Brain Disorders Branch, GCAP, IRP, NIMH, 10 Center Drive, Building 10, Room 3C103, Bethesda, MD 20892, USA.
| | | |
Collapse
|
133
|
Mata I, Perez-Iglesias R, Roiz-Santiañez R, Tordesillas-Gutierrez D, Gonzalez-Mandly A, Berja A, Vazquez-Barquero JL, Crespo-Facorro B. Additive effect of NRG1 and DISC1 genes on lateral ventricle enlargement in first episode schizophrenia. Neuroimage 2009; 53:1016-22. [PMID: 19913623 DOI: 10.1016/j.neuroimage.2009.11.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 11/03/2009] [Accepted: 11/04/2009] [Indexed: 12/16/2022] Open
Abstract
Neuregulin 1 (NRG1) and Disrupted-in-schizophrenia (DISC1) genes, which are candidate genes for schizophrenia, are implicated in brain development. We have previously reported an association between the T allele of the rs6994992 SNP within NRG1 gene and lateral ventricle (LV) enlargement in first-episode schizophrenia patients. Moreover, transgenic mice with mutant DISC1 have also been reported as showing LV enlargement. In this study, we examined the possible interactive effects of NRG1 and DISC1 on brain volumes in a sample of first-episode schizophrenia patients. Ninety-one patients experiencing their first episode of schizophrenia underwent genotyping of three SNPs within DISC1 and structural brain MRI. These results were combined with our previously reported genotypes on three SNPs within NRG1. The T/T genotype of rs2793092 SNP in DISC1 was significantly associated with increased LV volume. However, taking into account the rs6994992 SNP in the NRG1 gene, which was also associated with LV volume in a previous study, the DISC1 SNP only predicted LV enlargement among those patients carrying the T allele in the NRG1 SNP. Those patients with the "at risk" allelic combinations in both genes had LV volumes which were 48% greater than those with none of the allelic combinations. Our findings suggest that NRG1 and DISC1 genes may be associated with brain abnormalities in schizophrenia through their influence on related pathways of brain development.
Collapse
Affiliation(s)
- Ignacio Mata
- Department of Psychiatry, University Hospital Marques de Valdecilla, School of Medicine, University of Cantabria, Santander, Spain, CIBERSAM
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Mahon K, Burdick KE, Szeszko PR. A role for white matter abnormalities in the pathophysiology of bipolar disorder. Neurosci Biobehav Rev 2009; 34:533-54. [PMID: 19896972 DOI: 10.1016/j.neubiorev.2009.10.012] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 09/22/2009] [Accepted: 10/21/2009] [Indexed: 12/15/2022]
Abstract
Bipolar disorder is a chronically disabling psychiatric disorder characterized by manic states that is often interspersed with periods of depression whose neurobiology remains largely unknown. There is, however, increasing evidence that white matter (WM) abnormalities may play an important role in the neurobiology of the disorder. In this review we critically evaluate evidence for WM abnormalities in bipolar disorder obtained from neuroimaging, neuropathological, and genetic research. Increased rates of white matter hyperintensities, regional volumetric abnormalities, abnormal water diffusion along prefrontal-subcortical tracts, fewer oligodendrocytes in prefrontal WM, and alterations in the expression of myelin- and oligodendrocyte-related genes are among the most consistent findings. Abnormalities converge in the prefrontal WM and, in particular, tracts that connect prefrontal regions and subcortical gray matter structures known to be involved in emotion. Taken together, the evidence supports and clarifies a model of BD that involves disconnectivity in regions implicated in emotion generation and regulation.
Collapse
Affiliation(s)
- Katie Mahon
- Feinstein Institute for Medical Research, North Shore - Long Island Jewish Health System, Manhasset, NY, USA.
| | | | | |
Collapse
|
135
|
Sexton CE, Mackay CE, Ebmeier KP. A systematic review of diffusion tensor imaging studies in affective disorders. Biol Psychiatry 2009; 66:814-23. [PMID: 19615671 DOI: 10.1016/j.biopsych.2009.05.024] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 04/16/2009] [Accepted: 05/20/2009] [Indexed: 11/26/2022]
Abstract
White matter abnormalities constitute one element of the network dysfunction that underlies affective disorders: differences between the white matter of subjects with affective disorders and control subjects have been identified using a range of neuroimaging and histological techniques. Diffusion tensor imaging (DTI) can uniquely study the orientation and integrity of white matter tracts and is thus an ideal tool to shed light on white matter abnormalities in subjects with affective disorders. Here, we systematically review DTI studies of affective disorders. We identified DTI studies of affective disorders from EMBASE and MEDLINE and searched the reference lists of relevant papers. Twenty-seven articles comparing subjects with affective disorders with control subjects were included in the review, with eight studies included in a meta-analysis of superior frontal regions. Twenty-one of 27 studies found significantly lower anisotropy in subjects with affective disorders compared with control subjects, more specifically within the frontal and temporal lobes or tracts. A large effect size was detected within the superior frontal gyrus, although heterogeneity and one index of publication bias were significant. Although there is significant heterogeneity of acquisition and analysis methods and subject properties, DTI studies of affective disorders consistently identify reduced anisotropy in the frontal and temporal lobes and tracts of subjects with affective disorders relative to control subjects.
Collapse
Affiliation(s)
- Claire E Sexton
- University Department of Psychiatry and Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
136
|
Meyer-Lindenberg A. Neural connectivity as an intermediate phenotype: brain networks under genetic control. Hum Brain Mapp 2009; 30:1938-46. [PMID: 19294651 DOI: 10.1002/hbm.20639] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Recent evidence suggests that default mode connectivity characterizes neural states that account for a sizable proportion of brain activity and energy expenditure, and therefore represent a plausible neural intermediate phenotype. This implies the possibility of genetic control over systems-level connectivity features. Imaging genetics is an approach to combine genetic assessment with multimodal neuroimaging to discover neural systems linked to genetic abnormalities or variation. In the present contribution, we report results obtained from applying this strategy to both structural connectivity and functional connectivity data. Using data for serotonergic (5-HTTLPR, MAO-A) and dopaminergic (DARPP-32) genes as examples, we show that systems-level connectivity networks under genetic control can be identified. Remarkable similarities are observed across modalities and scales of description. Features of connectivity often better account for behavioral effects of genetic variation than regional parameters of activation or structure. These data provide convergent evidence for genetic control in humans over connectivity systems, whose characterization has promise for identifying neural systems mediating genetic risk for complex human behavior and psychiatric disease.
Collapse
|
137
|
Wang F, Kalmar JH, He Y, Jackowski M, Chepenik LG, Edmiston EK, Tie K, Gong G, Shah MP, Jones M, Uderman J, Constable RT, Blumberg HP. Functional and structural connectivity between the perigenual anterior cingulate and amygdala in bipolar disorder. Biol Psychiatry 2009; 66:516-521. [PMID: 19427632 PMCID: PMC2830492 DOI: 10.1016/j.biopsych.2009.03.023] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 03/25/2009] [Accepted: 03/25/2009] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Abnormalities in the morphology and function of two gray matter structures central to emotional processing, the perigenual anterior cingulate cortex (pACC) and amygdala, have consistently been reported in bipolar disorder (BD). Evidence implicates abnormalities in their connectivity in BD. This study investigates the potential disruptions in pACC-amygdala functional connectivity and associated abnormalities in white matter that provides structural connections between the two brain regions in BD. METHODS Thirty-three individuals with BD and 31 healthy comparison subjects (HC) participated in a scanning session during which functional magnetic resonance imaging (fMRI) during processing of face stimuli and diffusion tensor imaging (DTI) were performed. The strength of pACC-amygdala functional connections was compared between BD and HC groups, and associations between these functional connectivity measures from the fMRI scans and regional fractional anisotropy (FA) from the DTI scans were assessed. RESULTS Functional connectivity was decreased between the pACC and amygdala in the BD group compared with HC group, during the processing of fearful and happy faces (p < .005). Moreover, a significant positive association between pACC-amygdala functional coupling and FA in ventrofrontal white matter, including the region of the uncinate fasciculus, was identified (p < .005). CONCLUSION This study provides evidence for abnormalities in pACC-amygdala functional connectivity during emotional processing in BD. The significant association between pACC-amygdala functional connectivity and the structural integrity of white matter that contains pACC-amygdala connections suggest that disruptions in white matter connectivity may contribute to disturbances in the coordinated responses of the pACC and amygdala during emotional processing in BD.
Collapse
Affiliation(s)
- Fei Wang
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut; Department of Psychiatry, Veterans Affairs, Connecticut Healthcare System, West Haven, Connecticut.
| | - Jessica H Kalmar
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut; Department of Psychiatry, Veterans Affairs, Connecticut Healthcare System, West Haven, Connecticut
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience, Beijing Normal University, Beijing, China; McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Marcel Jackowski
- Department of Diagnostic Radiology, Yale School of Medicine, New Haven, Connecticut; Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil
| | - Lara G Chepenik
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut; Department of Psychiatry, Veterans Affairs, Connecticut Healthcare System, West Haven, Connecticut
| | | | - Karen Tie
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut; Department of Psychiatry, Veterans Affairs, Connecticut Healthcare System, West Haven, Connecticut
| | - Gaolang Gong
- Biomedical Engineering Department, University of Alberta, Edmonton, Alberta, Canada
| | - Maulik P Shah
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut; Department of Psychiatry, Veterans Affairs, Connecticut Healthcare System, West Haven, Connecticut
| | - Monique Jones
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Jodi Uderman
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - R Todd Constable
- Department of Diagnostic Radiology, Yale School of Medicine, New Haven, Connecticut
| | - Hilary P Blumberg
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut; Department of Psychiatry, Veterans Affairs, Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
138
|
Pedrosa E, Locker J, Lachman HM. Survey of Schizophrenia and Bipolar Disorder Candidate Genes using Chromatin Immunoprecipitation and Tiled Microarrays (ChIP-chip). J Neurogenet 2009; 23:341-52. [DOI: 10.1080/01677060802669766] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
139
|
Kennedy KM, Rodrigue KM, Land SJ, Raz N. BDNF Val66Met polymorphism influences age differences in microstructure of the Corpus Callosum. Front Hum Neurosci 2009; 3:19. [PMID: 19738930 PMCID: PMC2737488 DOI: 10.3389/neuro.09.019.2009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Accepted: 07/31/2009] [Indexed: 12/25/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays an important role in neuroplasticity and promotes axonal growth, but its secretion, regulated by a BDNF gene, declines with age. The low-activity (met) allele of common polymorphism BDNF val66met is associated with reduced production of BDNF. We examined whether age-related reduction in the integrity of cerebral white matter (WM) depends on the BDNF val66met genotype. Forty-one middle-aged and older adults participated in the study. Regional WM integrity was assessed by fractional anisotropy (FA) computed from manually drawn regions of interest in the genu and splenium of the corpus callosum on diffusion tensor imaging scans. After controlling for effects of sex and hypertension, we found that only the BDNF 66met carriers displayed age-related declines in the splenium FA, whereas no age-related declines were shown by BDNF val homozygotes. No genotype-related differences were observed in the genu of the corpus callosum. This finding is consistent with a view that genetic risk for reduced BDNF affects posterior regions that otherwise are considered relatively insensitive to normal aging. Those individuals with a genetic predisposition for decreased BDNF expression may not be able to fully benefit from BDNF-based plasticity and repair mechanisms.
Collapse
Affiliation(s)
- Kristen M Kennedy
- Center for Brain Health, School of Behavioral and Brain Sciences, The University of Texas at Dallas Dallas, TX, USA
| | | | | | | |
Collapse
|
140
|
Pedrosa E, Nolan KA, Stefanescu R, Hershcovitz P, Novak T, Zukov I, Stopkova P, Lachman HM, Lachman HM. Analysis of a promoter polymorphism in the SMDF neuregulin 1 isoform in Schizophrenia. Neuropsychobiology 2009; 59:205-12. [PMID: 19521112 PMCID: PMC2790772 DOI: 10.1159/000223732] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 03/02/2009] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIMS Neuregulin 1 (NRG1) is a positional candidate gene in schizophrenia (SZ). Two major susceptibility loci in the NRG1 gene approximately one million nucleotides apart have been identified in genetic studies. Several candidate functional allelic variants have been described that might be involved in disease susceptibility. However, the findings are still preliminary. We recently mapped active promoters and other regulatory domains in several SZ and bipolar disorder (BD) candidate genes using ChIP-chip (chromatin immunoprecipitation hybridized to microarrays). One was the promoter for the NRG1 isoform, SMDF, which maps to the 3' end of the gene complex. Analysis of the SNP database revealed several polymorphisms within the approximate borders of the region immunoprecipitated in our ChIP-chip experiments, one of which is rs7825588. METHODS This SNP was analyzed in patients with SZ and BD and its effect on promoter function was assessed by electromobility gel shift assays and luciferase reporter constructs. RESULTS A significant increase in homozygosity for the minor allele was found in patients with SZ (genotype distribution chi(2) = 7.32, p = 0.03) but not in BD (genotype distribution chi(2) = 0.52, p = 0.77). Molecular studies demonstrated modest, but statistically significant allele-specific differences in protein binding and promoter function. CONCLUSION The findings suggest that homozygosity for rs725588 could be a risk genotype for SZ.
Collapse
Affiliation(s)
- Erika Pedrosa
- Division of Basic Research, Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, N.Y., USA
| | - Karen A. Nolan
- Nathan Kline Institute, Orangeburg, N.Y., and Department of Psychiatry, New York University School of Medicine, New York, N.Y., USA
| | - Radu Stefanescu
- Division of Basic Research, Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, N.Y., USA
| | - Pnina Hershcovitz
- Division of Basic Research, Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, N.Y., USA
| | - Tomas Novak
- Prague Psychiatric Center, Prague, Czech Republic
| | - Ilja Zukov
- Psychiatric Clinic, First Faculty of Medicine, Prague, Czech Republic
| | - Pavla Stopkova
- Prague Psychiatric Center, Prague, Czech Republic,Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Herbert M. Lachman
- Division of Basic Research, Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, N.Y., USA,*Dr. H. Lachman, Department of Psychiatry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (USA), Tel. +1 718 430 2428, Fax +1 718 430 8772, E-Mail
| | | |
Collapse
|
141
|
Neuregulin 1, brain region specificity and PI3K/Akt in schizophrenia: comment on "Neuregulin 1 ICE-single nucleotide polymorphism in first episode schizophrenia correlates with cerebral activation in fronto-temporal area". Eur Arch Psychiatry Clin Neurosci 2009; 259:307-8. [PMID: 19224109 DOI: 10.1007/s00406-008-0866-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 12/22/2008] [Indexed: 12/23/2022]
|
142
|
Kéri S. Genes for psychosis and creativity: a promoter polymorphism of the neuregulin 1 gene is related to creativity in people with high intellectual achievement. Psychol Sci 2009; 20:1070-3. [PMID: 19594860 DOI: 10.1111/j.1467-9280.2009.02398.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Why are genetic polymorphisms related to severe mental disorders retained in the gene pool of a population? A possible answer is that these genetic variations may have a positive impact on psychological functions. Here, I show that a biologically relevant polymorphism of the promoter region of the neuregulin 1 gene (SNP8NRG243177/rs6994992) is associated with creativity in people with high intellectual and academic performance. Intriguingly, the highest creative achievements and creative-thinking scores were found in people who carried the T/T genotype, which was previously shown to be related to psychosis risk and altered prefrontal activation.
Collapse
|
143
|
Tabarés-Seisdedos R, Rubenstein JLR. Chromosome 8p as a potential hub for developmental neuropsychiatric disorders: implications for schizophrenia, autism and cancer. Mol Psychiatry 2009; 14:563-89. [PMID: 19204725 DOI: 10.1038/mp.2009.2] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Defects in genetic and developmental processes are thought to contribute susceptibility to autism and schizophrenia. Presumably, owing to etiological complexity identifying susceptibility genes and abnormalities in the development has been difficult. However, the importance of genes within chromosomal 8p region for neuropsychiatric disorders and cancer is well established. There are 484 annotated genes located on 8p; many are most likely oncogenes and tumor-suppressor genes. Molecular genetics and developmental studies have identified 21 genes in this region (ADRA1A, ARHGEF10, CHRNA2, CHRNA6, CHRNB3, DKK4, DPYSL2, EGR3, FGF17, FGF20, FGFR1, FZD3, LDL, NAT2, NEF3, NRG1, PCM1, PLAT, PPP3CC, SFRP1 and VMAT1/SLC18A1) that are most likely to contribute to neuropsychiatric disorders (schizophrenia, autism, bipolar disorder and depression), neurodegenerative disorders (Parkinson's and Alzheimer's disease) and cancer. Furthermore, at least seven nonprotein-coding RNAs (microRNAs) are located at 8p. Structural variants on 8p, such as copy number variants, microdeletions or microduplications, might also contribute to autism, schizophrenia and other human diseases including cancer. In this review, we consider the current state of evidence from cytogenetic, linkage, association, gene expression and endophenotyping studies for the role of these 8p genes in neuropsychiatric disease. We also describe how a mutation in an 8p gene (Fgf17) results in a mouse with deficits in specific components of social behavior and a reduction in its dorsomedial prefrontal cortex. We finish by discussing the biological connections of 8p with respect to neuropsychiatric disorders and cancer, despite the shortcomings of this evidence.
Collapse
Affiliation(s)
- R Tabarés-Seisdedos
- Teaching Unit of Psychiatry and Psychological Medicine, Department of Medicine, CIBER-SAM, University of Valencia, Valencia, Spain.
| | | |
Collapse
|
144
|
Mata I, Perez-Iglesias R, Roiz-Santiañez R, Tordesillas-Gutierrez D, Gonzalez-Mandly A, Vazquez-Barquero JL, Crespo-Facorro B. A neuregulin 1 variant is associated with increased lateral ventricle volume in patients with first-episode schizophrenia. Biol Psychiatry 2009; 65:535-40. [PMID: 19058791 DOI: 10.1016/j.biopsych.2008.10.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 10/13/2008] [Accepted: 10/20/2008] [Indexed: 12/20/2022]
Abstract
BACKGROUND Structural brain abnormalities are already present at early phases of psychosis and might be the consequence of neurodevelopmental deviance. Neuregulin 1 gene (NRG1) is a candidate gene for schizophrenia, and its protein has different roles in nervous system development and plasticity. A single nucleotide polymorphism (SNP) within NRG1, SNP8NRG243177, has been associated with brain function among healthy and high-risk subjects and with reduced cell migration among patients with schizophrenia. We examined whether variations in this polymorphism influence brain volumes in first-episode schizophrenia subjects. METHODS Ninety-five minimally medicated patients experiencing their first episode of schizophrenia underwent genotyping of three SNPs within the NRG1 gene and structural brain magnetic resonance imaging (MRI). A comparison of volumes of lobar gray matter (GM), lateral ventricles, and cortical cerebrospinal fluid (CSF) was made between the groups according to their genotype after controlling for total intracranial volume. RESULTS The SNP8NRG243177 risk T allele was significantly associated, in an allele copy number-dependent fashion, with increased lateral ventricle volume. Genotype explained 7% of the variance of lateral ventricle volume. No significant differences in GM lobar or cortical CSF volumes were found among subgroups. CONCLUSIONS Our findings suggest that genetic variations of the NRG1 gene can contribute to the enlargement of the lateral ventricles described in early phases of schizophrenia. These results suggest novel lines of research into potential mechanisms by which schizophrenia susceptibility genes might exert their effect on brain structure.
Collapse
Affiliation(s)
- Ignacio Mata
- Department of Psychiatry, School of Medicine, University of Cantabria, University Hospital Marques de Valdecilla, CIBERSAM, Santander, Spain
| | | | | | | | | | | | | |
Collapse
|
145
|
Abstract
PURPOSE OF REVIEW Several lines of evidence suggest that the normal integration of cerebral function may be compromised in schizophrenia. Abnormalities in white matter tracts, which connect brain regions into functional networks, may be directly relevant to its pathophysiology. Diffusion tensor imaging (DTI) has increasingly been used to study white matter abnormalities in schizophrenia; in this review, we will discuss recent DTI findings focusing on the early stages of the disorder. RECENT FINDINGS Deficits in white matter integrity as inferred by DTI appear to be present in the early stages of schizophrenia, even in neuroleptic-naive patients, and may be the result of interaction between illness-related processes and normal development. The pattern of identified abnormalities is not totally consistent across all studies, with frontotemporal, frontoparietal and temporooccipital connections as well as projection fibers and cerebellar white matter being among the affected tracts. SUMMARY Recent DTI findings further support the hypothesis of structural dysconnectivity in schizophrenia. The presence of white matter abnormalities early in the course of the illness is suggestive of these being related to the emergence of the disorder.
Collapse
|
146
|
Sprooten E, Lymer GKS, Muñoz Maniega S, McKirdy J, Clayden JD, Bastin ME, Porteous D, Johnstone EC, Lawrie SM, Hall J, McIntosh AM. The relationship of anterior thalamic radiation integrity to psychosis risk associated neuregulin-1 variants. Mol Psychiatry 2009; 14:237-8, 233. [PMID: 19229203 DOI: 10.1038/mp.2008.136] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
147
|
Dickinson D, Harvey PD. Systemic hypotheses for generalized cognitive deficits in schizophrenia: a new take on an old problem. Schizophr Bull 2009; 35:403-14. [PMID: 18689868 PMCID: PMC2659304 DOI: 10.1093/schbul/sbn097] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The schizophrenia research community, including government, industry, and academia, has made development of procognitive treatment strategies a priority. Much current research is directed at dividing broad impairments in cognition into more delineated components that might correspond to relatively specific neural systems and serve as targets for intervention. Sometimes overlooked in this ambitious agenda is the substantial neuropsychological literature that signals a more broadly generalized dysfunction in higher order cognitive functions in this illness. In this article, we argue that a generalized cognitive deficit is at the core of the disorder, is not a methodological artifact, and deserves more focused consideration from cognitive specialists in the field. Further, we weigh evidence that this broad deficit may have systemic biological underpinnings. At the level of the central nervous system, examples of findings that might help to account for broad cognitive impairment include gray and white matter irregularities, poor signal integration by neurons and neural networks, and abnormalities in glutamate and gamma-aminobutyric acid neurotransmission. Other, more speculative hypotheses focus on even broader somatic systems, including energy metabolism and inflammatory processes. Treatment implications of systemic conceptualizations of schizophrenia are also considered.
Collapse
Affiliation(s)
| | - Philip D. Harvey
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
148
|
Chiang MC, Barysheva M, Shattuck DW, Lee AD, Madsen SK, Avedissian C, Klunder AD, Toga AW, McMahon KL, de Zubicaray GI, Wright MJ, Srivastava A, Balov N, Thompson PM. Genetics of brain fiber architecture and intellectual performance. J Neurosci 2009; 29:2212-24. [PMID: 19228974 PMCID: PMC2773128 DOI: 10.1523/jneurosci.4184-08.2009] [Citation(s) in RCA: 268] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 01/14/2009] [Accepted: 01/15/2009] [Indexed: 11/21/2022] Open
Abstract
The study is the first to analyze genetic and environmental factors that affect brain fiber architecture and its genetic linkage with cognitive function. We assessed white matter integrity voxelwise using diffusion tensor imaging at high magnetic field (4 Tesla), in 92 identical and fraternal twins. White matter integrity, quantified using fractional anisotropy (FA), was used to fit structural equation models (SEM) at each point in the brain, generating three-dimensional maps of heritability. We visualized the anatomical profile of correlations between white matter integrity and full-scale, verbal, and performance intelligence quotients (FIQ, VIQ, and PIQ). White matter integrity (FA) was under strong genetic control and was highly heritable in bilateral frontal (a(2)=0.55, p=0.04, left; a(2)=0.74, p=0.006, right), bilateral parietal (a(2)=0.85, p<0.001, left; a(2)=0.84, p<0.001, right), and left occipital (a(2)=0.76, p=0.003) lobes, and was correlated with FIQ and PIQ in the cingulum, optic radiations, superior fronto-occipital fasciculus, internal capsule, callosal isthmus, and the corona radiata (p=0.04 for FIQ and p=0.01 for PIQ, corrected for multiple comparisons). In a cross-trait mapping approach, common genetic factors mediated the correlation between IQ and white matter integrity, suggesting a common physiological mechanism for both, and common genetic determination. These genetic brain maps reveal heritable aspects of white matter integrity and should expedite the discovery of single-nucleotide polymorphisms affecting fiber connectivity and cognition.
Collapse
Affiliation(s)
- Ming-Chang Chiang
- Laboratory of Neuro Imaging, Department of Neurology, University of California, Los Angeles, School of Medicine, Los Angeles, California 90095-7334
| | - Marina Barysheva
- Laboratory of Neuro Imaging, Department of Neurology, University of California, Los Angeles, School of Medicine, Los Angeles, California 90095-7334
| | - David W. Shattuck
- Laboratory of Neuro Imaging, Department of Neurology, University of California, Los Angeles, School of Medicine, Los Angeles, California 90095-7334
| | - Agatha D. Lee
- Laboratory of Neuro Imaging, Department of Neurology, University of California, Los Angeles, School of Medicine, Los Angeles, California 90095-7334
| | - Sarah K. Madsen
- Laboratory of Neuro Imaging, Department of Neurology, University of California, Los Angeles, School of Medicine, Los Angeles, California 90095-7334
| | - Christina Avedissian
- Laboratory of Neuro Imaging, Department of Neurology, University of California, Los Angeles, School of Medicine, Los Angeles, California 90095-7334
| | - Andrea D. Klunder
- Laboratory of Neuro Imaging, Department of Neurology, University of California, Los Angeles, School of Medicine, Los Angeles, California 90095-7334
| | - Arthur W. Toga
- Laboratory of Neuro Imaging, Department of Neurology, University of California, Los Angeles, School of Medicine, Los Angeles, California 90095-7334
| | - Katie L. McMahon
- University of Queensland, Functional Magnetic Resonance Imaging Laboratory, Centre for Magnetic Resonance, Brisbane, Queensland 4072, Australia
| | - Greig I. de Zubicaray
- University of Queensland, Functional Magnetic Resonance Imaging Laboratory, Centre for Magnetic Resonance, Brisbane, Queensland 4072, Australia
| | - Margaret J. Wright
- Queensland Institute of Medical Research, Brisbane, Queensland 4029, Australia, and
| | - Anuj Srivastava
- Department of Statistics, Florida State University, Tallahassee, Florida 32306
| | - Nikolay Balov
- Department of Statistics, Florida State University, Tallahassee, Florida 32306
| | - Paul M. Thompson
- Laboratory of Neuro Imaging, Department of Neurology, University of California, Los Angeles, School of Medicine, Los Angeles, California 90095-7334
| |
Collapse
|
149
|
Kaymaz N, van Os J. Heritability of Structural Brain Traits. NOVEL APPROACHES TO STUDYING BASAL GANGLIA AND RELATED NEUROPSYCHIATRIC DISORDERS 2009; 89:85-130. [DOI: 10.1016/s0074-7742(09)89005-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
150
|
Schmitt A, Parlapani E, Gruber O, Wobrock T, Falkai P. Impact of neuregulin-1 on the pathophysiology of schizophrenia in human post-mortem studies. Eur Arch Psychiatry Clin Neurosci 2008; 258 Suppl 5:35-9. [PMID: 18985292 DOI: 10.1007/s00406-008-5019-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
To a large extend schizophrenia has been shown to be heritable, with neuregulin-1 (NRG1) one of the candidate genes considered to play a role in the pathophysiology of the disorder. While several polymorphisms within this gene have been reported to be associated with schizophrenia, the impact of NRG1 risk genotypes on disturbed brain function and symptoms of the disease is unknown and might be elucidated using post-mortem studies. Neuregulins are signalling proteins and the NRG1 family encodes at least 15 different splice variants, classified into four isoforms. They play an important role in cell differentiation, migration, myelination and proliferation of oligodendrocytes and neurons. Dysfunction in these processes may be related to neurodevelopmental disturbances in schizophrenia. NRG1 isoforms are differentially expressed in relevant brain regions of schizophrenia patients such as the prefrontal cortex and hippocampus and may contribute to pathophysiological processes. Different NRG1 genotypes have been shown to influence gene expression of isoforms and the risk-associated variants are in primarily non-coding and promoter regions, probably operating by altering gene expression or splicing. In addition, NRG1 regulates the expression of the nicotinic acetylcholine receptor, and expression of the gamma-aminobutyric acid (GABA(A)) and N-methyl-D: -aspartate receptor in the brain. However, the contribution of NRG1 risk genotypes to expression of isoforms and cognitive or psychotic symptoms in patients remain to be investigated in prospective post-mortem studies. In animal models of ischemia/hypoxia, NRG1 has been shown to act as a therapeutic, neuroprotective agent and should be investigated in more detail in transgenic animal models.
Collapse
Affiliation(s)
- Andrea Schmitt
- Dept. of Psychiatry and Psychotherapy, University of Goettingen, Von-Siebold-Strasse 5, Göttingen, Germany.
| | | | | | | | | |
Collapse
|