101
|
Yong KW, Yuen D, Chen MZ, Porter CJH, Johnston APR. Pointing in the Right Direction: Controlling the Orientation of Proteins on Nanoparticles Improves Targeting Efficiency. NANO LETTERS 2019; 19:1827-1831. [PMID: 30773887 DOI: 10.1021/acs.nanolett.8b04916] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Protein-conjugated nanoparticles have the potential to precisely deliver therapeutics to target sites in the body by specifically binding to cell surface receptors. To maximize targeting efficiency, the three-dimensional presentation of ligands toward these receptors is crucial. Herein, we demonstrate significantly enhanced targeting of nanoparticles to cancer cells by controlling the protein orientation on the nanoparticle surface. To engineer the point of attachment, we used amber codon reassignment to incorporate a synthetic amino acid, p-azidophenylalanine (azPhe), at specific locations within a single domain antibody (sdAb or nanobody) that recognizes the human epidermal growth factor receptor (EGFR). The azPhe modified sdAb can be tethered to the nanoparticle in a specific orientation using a bioorthogonal click reaction with a strained cyclooctyne. The crystal structure of the sdAb bound to EGFR was used to rationally select sites likely to optimally display the sdAb upon conjugation to a fluorescent nanocrystal (Qdot). Qdots with sdAb attached at the azPhe13 position showed 6 times greater binding affinity to EGFR expressing A549 cells, compared to Qdots with conventionally (succinimidyl ester) conjugated sdAb. As ligand-targeted delivery systems move toward clinical application, this work shows that nanoparticle targeting can be optimized by engineering the site of protein conjugation.
Collapse
Affiliation(s)
- Ken W Yong
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , Victoria 3052 , Australia
| | - Daniel Yuen
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , Victoria 3052 , Australia
| | - Moore Z Chen
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , Victoria 3052 , Australia
| | - Christopher J H Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , Victoria 3052 , Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , Monash University , Parkville , Victoria 3052 , Australia
| | - Angus P R Johnston
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , Victoria 3052 , Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , Monash University , Parkville , Victoria 3052 , Australia
| |
Collapse
|
102
|
Cell-Free Protein Synthesis Using S30 Extracts from Escherichia coli RFzero Strains for Efficient Incorporation of Non-Natural Amino Acids into Proteins. Int J Mol Sci 2019; 20:ijms20030492. [PMID: 30678326 PMCID: PMC6387211 DOI: 10.3390/ijms20030492] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 12/01/2022] Open
Abstract
Cell-free protein synthesis is useful for synthesizing difficult targets. The site-specific incorporation of non-natural amino acids into proteins is a powerful protein engineering method. In this study, we optimized the protocol for cell extract preparation from the Escherichia coli strain RFzero-iy, which is engineered to lack release factor 1 (RF-1). The BL21(DE3)-based RFzero-iy strain exhibited quite high cell-free protein productivity, and thus we established the protocols for its cell culture and extract preparation. In the presence of 3-iodo-l-tyrosine (IY), cell-free protein synthesis using the RFzero-iy-based S30 extract translated the UAG codon to IY at various sites with a high translation efficiency of >90%. In the absence of IY, the RFzero-iy-based cell-free system did not translate UAG to any amino acid, leaving UAG unassigned. Actually, UAG was readily reassigned to various non-natural amino acids, by supplementing them with their specific aminoacyl-tRNA synthetase variants (and their specific tRNAs) into the system. The high incorporation rate of our RFzero-iy-based cell-free system enables the incorporation of a variety of non-natural amino acids into multiple sites of proteins. The present strategy to create the RFzero strain is rapid, and thus promising for RF-1 deletions of various E. coli strains genomically engineered for specific requirements.
Collapse
|
103
|
Abstract
One of the most remarkable, but typically unremarked, aspects of the translation apparatus is the pleiotropic pliability of tRNA. This humble cloverleaf/L-shaped molecule must implement the first genetic code, via base pairing and wobble interactions, but is also largely responsible for the specificity of the second genetic code, the pairings between amino acids, tRNA synthetases, and tRNAs. Despite the overarching similarities between tRNAs, they must nonetheless be specifically recognized by cognate tRNA synthetases and largely rejected by noncognate synthetases. Conversely, despite the differences between tRNAs that allow such discrimination, they must be uniformly accepted by the ribosome, in part via the machinations of the translation elongation factors, which work with a diverse coterie of tRNA-amino acid conjugates to balance binding and loading. While it is easy to ascribe both discrimination and acceptance to the individual proteins (synthetases and EF-Tu/eEF-1) that recognize tRNAs, there is a large body of evidence that suggests that the sequences, structures, and dynamics of tRNAs are instrumental in the choices these proteins make.
Collapse
Affiliation(s)
- Ross Thyer
- Department of Molecular Biosciences , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Andrew D Ellington
- Department of Molecular Biosciences , The University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
104
|
Chemla Y, Ozer E, Algov I, Alfonta L. Context effects of genetic code expansion by stop codon suppression. Curr Opin Chem Biol 2018; 46:146-155. [DOI: 10.1016/j.cbpa.2018.07.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/01/2018] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
|
105
|
Takahashi M, Sakamoto K. Engineering of Escherichia coli β-lactamase TEM-1 variants showing higher activity under acidic conditions than at the neutral pH. Biochem Biophys Res Commun 2018; 505:333-337. [DOI: 10.1016/j.bbrc.2018.09.096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 09/14/2018] [Indexed: 01/26/2023]
|
106
|
Vargas-Rodriguez O, Sevostyanova A, Söll D, Crnković A. Upgrading aminoacyl-tRNA synthetases for genetic code expansion. Curr Opin Chem Biol 2018; 46:115-122. [PMID: 30059834 PMCID: PMC6214156 DOI: 10.1016/j.cbpa.2018.07.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/04/2018] [Accepted: 07/13/2018] [Indexed: 01/06/2023]
Abstract
Synthesis of proteins with non-canonical amino acids via genetic code expansion is at the forefront of synthetic biology. Progress in this field has enabled site-specific incorporation of over 200 chemically and structurally diverse amino acids into proteins in an increasing number of organisms. This has been facilitated by our ability to repurpose aminoacyl-tRNA synthetases to attach non-canonical amino acids to engineered tRNAs. Current efforts in the field focus on overcoming existing limitations to the simultaneous incorporation of multiple non-canonical amino acids or amino acids that differ from the l-α-amino acid structure (e.g. d-amino acid or β-amino acid). Here, we summarize the progress and challenges in developing more selective and efficient aminoacyl-tRNA synthetases for genetic code expansion.
Collapse
Affiliation(s)
- Oscar Vargas-Rodriguez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| | - Anastasia Sevostyanova
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Ana Crnković
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
107
|
Ohtake K, Mukai T, Iraha F, Takahashi M, Haruna KI, Date M, Yokoyama K, Sakamoto K. Engineering an Automaturing Transglutaminase with Enhanced Thermostability by Genetic Code Expansion with Two Codon Reassignments. ACS Synth Biol 2018; 7:2170-2176. [PMID: 30063837 DOI: 10.1021/acssynbio.8b00157] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the present study, we simultaneously incorporated two types of synthetic components into microbial transglutaminase (MTG) from Streptoverticillium mobaraense to enhance the utility of this industrial enzyme. The first amino acid, 3-chloro-l-tyrosine, was incorporated into MTG in response to in-frame UAG codons to substitute for the 15 tyrosine residues separately. The two substitutions at positions 20 and 62 were found to each increase thermostability of the enzyme, while the seven substitutions at positions 24, 34, 75, 146, 171, 217, and 310 exhibited neutral effects. Then, these two stabilizing chlorinations were combined with one of the neutral ones, and the most stabilized variant was found to contain 3-chlorotyrosines at positions 20, 62, and 171, exhibiting a half-life 5.1-fold longer than that of the wild-type enzyme at 60 °C. Next, this MTG variant was further modified by incorporating the α-hydroxy acid analogue of Nε-allyloxycarbonyl-l-lysine (AlocKOH), specified by the AGG codon, at the end of the N-terminal inhibitory peptide. We used an Escherichia coli strain previously engineered to have a synthetic genetic code with two codon reassignments for synthesizing MTG variants containing both 3-chlorotyrosine and AlocKOH. The ester bond, thus incorporated into the main chain, efficiently self-cleaved under alkaline conditions (pH 11.0), achieving the autonomous maturation of the thermostabilized MTG. The results suggested that synthetic genetic codes with multiple codon reassignments would be useful for developing the novel designs of enzymes.
Collapse
Affiliation(s)
| | | | | | | | - Ken-ichi Haruna
- Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan
| | - Masayo Date
- Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan
| | - Keiichi Yokoyama
- Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan
| | | |
Collapse
|
108
|
Kim S, Lee HS. Genetic Incorporation of Biosynthesized L-dihydroxyphenylalanine (DOPA) and Its Application to Protein Conjugation. J Vis Exp 2018. [PMID: 30199031 DOI: 10.3791/58383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
L-dihydroxyphenylalanine (DOPA) is an amino acid found in the biosynthesis of catecholamines in animals and plants. Because of its particular biochemical properties, the amino acid has multiple uses in biochemical applications. This report describes a protocol for the genetic incorporation of biosynthesized DOPA and its application to protein conjugation. DOPA is biosynthesized by a tyrosine phenol-lyase (TPL) from catechol, pyruvate, and ammonia, and the amino acid is directly incorporated into proteins by the genetic incorporation method using an evolved aminoacyl-tRNA and aminoacyl-tRNA synthetase pair. This direct incorporation system efficiently incorporates DOPA with little incorporation of other natural amino acids and with better protein yield than the previous genetic incorporation system for DOPA. Protein conjugation with DOPA-containing proteins is efficient and site-specific and shows its usefulness for various applications. This protocol provides protein scientists with detailed procedures for the efficient biosynthesis of mutant proteins containing DOPA at desired sites and their conjugation for industrial and pharmaceutical applications.
Collapse
|
109
|
Loh CT, Adams LA, Graham B, Otting G. Genetically encoded amino acids with tert-butyl and trimethylsilyl groups for site-selective studies of proteins by NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2018; 71:287-293. [PMID: 29197976 DOI: 10.1007/s10858-017-0157-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/24/2017] [Indexed: 06/07/2023]
Abstract
The amino acids 4-(tert-butyl)phenylalanine (Tbf) and 4-(trimethylsilyl)phenylalanine (TMSf), as well as a partially deuterated version of Tbf (dTbf), were chemically synthesized and site-specifically incorporated into different proteins, using an amber stop codon, suppressor tRNA and the broadband aminoacyl-tRNA synthetase originally evolved for the incorporation of p-cyano-phenylalanine. The 1H-NMR signals of the tert-butyl and TMS groups were compared to the 1H-NMR signal of tert-butyltyrosine (Tby) in protein systems with molecular weights ranging from 8 to 54 kDa. The 1H-NMR resonance of the TMS group appeared near 0 ppm in a spectral region with few protein resonances, facilitating the observation of signal changes in response to ligand binding. In all proteins, the R 2 relaxation rate of the tert-butyl group of Tbf was only little greater than that of Tby (less than two-fold). Deuteration of the phenyl ring of Tbf made only a relatively small difference. The effective T 2 relaxation time of the TMS signal was longer than 140 ms even in the 54 kDa system.
Collapse
Affiliation(s)
- Choy Theng Loh
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
- Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology of Farm Products, Zhejiang University of Science and Technology, Hangzhou, 310023, People's Republic of China
| | - Luke A Adams
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Bim Graham
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Gottfried Otting
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
110
|
Muzika M, Muskat NH, Sarid S, Ben-David O, Mehl RA, Arbely E. Chemically-defined lactose-based autoinduction medium for site-specific incorporation of non-canonical amino acids into proteins. RSC Adv 2018; 8:25558-25567. [PMID: 30713681 PMCID: PMC6333248 DOI: 10.1039/c8ra04359k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/08/2018] [Indexed: 11/21/2022] Open
Abstract
Genetic code expansion technology enables the site-specific incorporation of dozens of non-canonical amino acids (NCAAs) into proteins expressed in live cells. The NCAAs can introduce various chemical functionalities into proteins, ranging from natural post-translational modifications, to spectroscopic probes and chemical handles for bioorthogonal reactions. These chemical groups provide powerful tools for structural, biochemical, and biophysical studies, which may require significant quantities of recombinantly expressed proteins. NCAAs are usually encoded by an in-frame stop codon, such as the TAG (amber) stop codon, which leads to the expression of C-terminally truncated proteins. In addition, the incubation medium should be supplemented with the NCAA at a final concentration of 1-10 mM, which may be challenging when the availability of the NCAA is limited. Hence, bacterial expression of proteins carrying NCAAs can benefit from improvement in protein yield per given amount of added NCAA. Here, we demonstrate the applicability of an optimized chemically-defined lactose-based autoinduction (AI) medium to the expression of proteins carrying a NCAA, using the archaeal pyrrolysyl-tRNA synthetase/tRNA pair from the Methanosarcina genus. Per given amount of added NCAA, the use of AI medium improved protein expression levels by up to 3-fold, compared to IPTG induction, without an increase in misincorporation of canonical amino acids in response to the in-frame stop codon. The suggested medium composition can be used with various Escherichia coli variants transformed with different expression vectors and incubated at different temperatures.
Collapse
Affiliation(s)
- Michael Muzika
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel. ; ; Tel: +972-(0)8-6428739
| | - Natali H Muskat
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel. ; ; Tel: +972-(0)8-6428739
| | - Shani Sarid
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel. ; ; Tel: +972-(0)8-6428739
| | - Oshrit Ben-David
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel. ; ; Tel: +972-(0)8-6428739
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, 97331, Oregon, USA
| | - Eyal Arbely
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel. ; ; Tel: +972-(0)8-6428739
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| |
Collapse
|
111
|
Baldridge KC, Jora M, Maranhao AC, Quick MM, Addepalli B, Brodbelt JS, Ellington AD, Limbach PA, Contreras LM. Directed Evolution of Heterologous tRNAs Leads to Reduced Dependence on Post-transcriptional Modifications. ACS Synth Biol 2018; 7:1315-1327. [PMID: 29694026 DOI: 10.1021/acssynbio.7b00421] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Heterologous tRNA:aminoacyl tRNA synthetase pairs are often employed for noncanonical amino acid incorporation in the quest for an expanded genetic code. In this work, we investigated one possible mechanism by which directed evolution can improve orthogonal behavior for a suite of Methanocaldococcus jannaschii ( Mj) tRNATyr-derived amber suppressor tRNAs. Northern blotting demonstrated that reduced expression of heterologous tRNA variants correlated with improved orthogonality. We suspected that reduced expression likely minimized nonorthogonal interactions with host cell machinery. Despite the known abundance of post-transcriptional modifications in tRNAs across all domains of life, few studies have investigated how host enzymes may affect behavior of heterologous tRNAs. Therefore, we measured tRNA orthogonality using a fluorescent reporter assay in several modification-deficient strains, demonstrating that heterologous tRNAs with high expression are strongly affected by some native E. coli RNA-modifying enzymes, whereas low abundance evolved heterologous tRNAs are less affected by these same enzymes. We employed mass spectrometry to map ms2i6A37 and Ψ39 in the anticodon arm of two high abundance tRNAs (Nap1 and tRNAOptCUA), which provides (to our knowledge) the first direct evidence that MiaA and TruA post-transcriptionally modify evolved heterologous amber suppressor tRNAs. Changes in total tRNA modification profiles were observed by mass spectrometry in cells hosting these and other evolved suppressor tRNAs, suggesting that the demonstrated interactions with host enzymes might disturb native tRNA modification networks. Together, these results suggest that heterologous tRNAs engineered for specialized amber suppression can evolve highly efficient suppression capacity within the native post-transcriptional modification landscape of host RNA processing machinery.
Collapse
Affiliation(s)
- Kevin C. Baldridge
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Manasses Jora
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Andre C. Maranhao
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Matthew M. Quick
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | | | - Jennifer S. Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Andrew D. Ellington
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Patrick A. Limbach
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Lydia M. Contreras
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
112
|
Abstract
Our understanding of the complex molecular processes of living organisms at the molecular level is growing exponentially. This knowledge, together with a powerful arsenal of tools for manipulating the structures of macromolecules, is allowing chemists to to harness and reprogram the cellular machinery in ways previously unimaged. Here we review one example in which the genetic code itself has been expanded with new building blocks that allow us to probe and manipulate the structures and functions of proteins with unprecedented precision.
Collapse
Affiliation(s)
- Douglas D. Young
- Department of Chemistry, College of William & Mary,
P.O. Box 8795, Williamsburg, VA 23187 (USA)
| | - Peter G. Schultz
- Department of Chemistry, The Scripps Research Institute,
La Jolla, CA 92037 (USA),
| |
Collapse
|
113
|
Orthogonal Protein Translation Using Pyrrolysyl-tRNA Synthetases for Single- and Multiple-Noncanonical Amino Acid Mutagenesis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 162:1-19. [PMID: 27783132 DOI: 10.1007/10_2016_37] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
To date, the two systems most extensively used for noncanonical amino acid (ncAA) incorporation via orthogonal translation are based on the Methanococcus jannaschii TyrRS/tRNA CUATyr and the Methanosarcina barkeri/Methanosarcina mazei PylRS/tRNA CUAPyl pairs. Here, we summarize the development and usage of the pyrrolysine-based system for orthogonal translation, a process that allows for the recombinant production of site-specifically labeled proteins and peptides. Via stop codon suppression in Escherichia coli and mammalian cells, genetically encoded biomolecules can be equipped with a great diversity of chemical functionalities including click chemistry handles, post-translational modifications, and photocaged sidechains.
Collapse
|
114
|
Bartholomae M, Baumann T, Nickling JH, Peterhoff D, Wagner R, Budisa N, Kuipers OP. Expanding the Genetic Code of Lactococcus lactis and Escherichia coli to Incorporate Non-canonical Amino Acids for Production of Modified Lantibiotics. Front Microbiol 2018; 9:657. [PMID: 29681891 PMCID: PMC5897534 DOI: 10.3389/fmicb.2018.00657] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/21/2018] [Indexed: 12/19/2022] Open
Abstract
The incorporation of non-canonical amino acids (ncAAs) into ribosomally synthesized and post-translationally modified peptides, e.g., nisin from the Gram-positive bacterium Lactococcus lactis, bears great potential to expand the chemical space of various antimicrobials. The ncAA Nε-Boc-L-lysine (BocK) was chosen for incorporation into nisin using the archaeal pyrrolysyl-tRNA synthetase–tRNAPyl pair to establish orthogonal translation in L. lactis for read-through of in-frame amber stop codons. In parallel, recombinant nisin production and orthogonal translation were combined in Escherichia coli cells. Both organisms synthesized bioactive nisin(BocK) variants. Screening of a nisin amber codon library revealed suitable sites for ncAA incorporation and two variants displayed high antimicrobial activity. Orthogonal translation in E. coli and L. lactis presents a promising tool to create new-to-nature nisin derivatives.
Collapse
Affiliation(s)
- Maike Bartholomae
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Tobias Baumann
- Biocatalysis Group, Department of Chemistry, Technische Universität Berlin (Berlin Institute of Technology), Berlin, Germany
| | - Jessica H Nickling
- Biocatalysis Group, Department of Chemistry, Technische Universität Berlin (Berlin Institute of Technology), Berlin, Germany
| | - David Peterhoff
- Institute of Medical Microbiology and Hygiene, Universität Regensburg, Regensburg, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, Universität Regensburg, Regensburg, Germany
| | - Nediljko Budisa
- Biocatalysis Group, Department of Chemistry, Technische Universität Berlin (Berlin Institute of Technology), Berlin, Germany
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
115
|
Kim S, Sung BH, Kim SC, Lee HS. Genetic incorporation of l-dihydroxyphenylalanine (DOPA) biosynthesized by a tyrosine phenol-lyase. Chem Commun (Camb) 2018; 54:3002-3005. [PMID: 29508865 DOI: 10.1039/c8cc00281a] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
l-Dihydroxyphenylalanine (DOPA) was biosynthesized by a tyrosine-phenol lyase from catechol, pyruvate, and ammonia in Escherichia coli, and the biosynthesized amino acid was directly incorporated into proteins. Three biochemical experiments with mutant proteins containing DOPA confirmed the genetic incorporation of biosynthesized DOPA, and revealed its potential for various biochemical applications.
Collapse
Affiliation(s)
- Sanggil Kim
- Department of Chemistry, Sogang University, Seoul 121-742, Republic of Korea.
| | - Bong Hyun Sung
- Bioenergy and Biochemical Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Republic of Korea
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, Seoul 121-742, Republic of Korea.
| |
Collapse
|
116
|
Matsuda T, Ito T, Takemoto C, Katsura K, Ikeda M, Wakiyama M, Kukimoto-Niino M, Yokoyama S, Kurosawa Y, Shirouzu M. Cell-free synthesis of functional antibody fragments to provide a structural basis for antibody-antigen interaction. PLoS One 2018; 13:e0193158. [PMID: 29462206 PMCID: PMC5819829 DOI: 10.1371/journal.pone.0193158] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/05/2018] [Indexed: 11/19/2022] Open
Abstract
Growing numbers of therapeutic antibodies offer excellent treatment strategies for many diseases. Elucidation of the interaction between a potential therapeutic antibody and its target protein by structural analysis reveals the mechanism of action and offers useful information for developing rational antibody designs for improved affinity. Here, we developed a rapid, high-yield cell-free system using dialysis mode to synthesize antibody fragments for the structural analysis of antibody–antigen complexes. Optimal synthesis conditions of fragments (Fv and Fab) of the anti-EGFR antibody 059–152 were rapidly determined in a day by using a 30-μl-scale unit. The concentration of supplemented disulfide isomerase, DsbC, was critical to obtaining soluble antibody fragments. The optimal conditions were directly applicable to a 9-ml-scale reaction, with linear scalable yields of more than 1 mg/ml. Analyses of purified 059-152-Fv and Fab showed that the cell-free synthesized antibody fragments were disulfide-bridged, with antigen binding activity comparable to that of clinical antibodies. Examination of the crystal structure of cell-free synthesized 059-152-Fv in complex with the extracellular domain of human EGFR revealed that the epitope of 059-152-Fv broadly covers the EGF binding surface on domain III, including residues that formed critical hydrogen bonds with EGF (Asp355EGFR, Gln384EGFR, H409EGFR, and Lys465EGFR), so that the antibody inhibited EGFR activation. We further demonstrated the application of the cell-free system to site-specific integration of non-natural amino acids for antibody engineering, which would expand the availability of therapeutic antibodies based on structural information and rational design. This cell-free system could be an ideal antibody-fragment production platform for functional and structural analysis of potential therapeutic antibodies and for engineered antibody development.
Collapse
Affiliation(s)
- Takayoshi Matsuda
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumiku, Yokohama, Japan
| | - Takuhiro Ito
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumiku, Yokohama, Japan
| | - Chie Takemoto
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumiku, Yokohama, Japan
| | - Kazushige Katsura
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumiku, Yokohama, Japan
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumiku, Yokohama, Japan
| | - Mariko Ikeda
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumiku, Yokohama, Japan
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumiku, Yokohama, Japan
| | - Motoaki Wakiyama
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumiku, Yokohama, Japan
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumiku, Yokohama, Japan
| | - Mutsuko Kukimoto-Niino
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumiku, Yokohama, Japan
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumiku, Yokohama, Japan
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumiku, Yokohama, Japan
- RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumiku, Yokohama, Japan
| | - Yoshikazu Kurosawa
- Innovation Center for Advanced Medicine, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Mikako Shirouzu
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumiku, Yokohama, Japan
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumiku, Yokohama, Japan
- * E-mail:
| |
Collapse
|
117
|
Abstract
Efforts are underway to construct several recoded genomes anticipated to exhibit multivirus resistance, enhanced nonstandard amino acid (nsAA) incorporation, and capability for synthetic biocontainment. Although our laboratory pioneered the first genomically recoded organism (Escherichia coli strain C321.∆A), its fitness is far lower than that of its nonrecoded ancestor, particularly in defined media. This fitness deficit severely limits its utility for nsAA-linked applications requiring defined media, such as live cell imaging, metabolic engineering, and industrial-scale protein production. Here, we report adaptive evolution of C321.∆A for more than 1,000 generations in independent replicate populations grown in glucose minimal media. Evolved recoded populations significantly exceeded the growth rates of both the ancestral C321.∆A and nonrecoded strains. We used next-generation sequencing to identify genes mutated in multiple independent populations, and we reconstructed individual alleles in ancestral strains via multiplex automatable genome engineering (MAGE) to quantify their effects on fitness. Several selective mutations occurred only in recoded evolved populations, some of which are associated with altering the translation apparatus in response to recoding, whereas others are not apparently associated with recoding, but instead correct for off-target mutations that occurred during initial genome engineering. This report demonstrates that laboratory evolution can be applied after engineering of recoded genomes to streamline fitness recovery compared with application of additional targeted engineering strategies that may introduce further unintended mutations. In doing so, we provide the most comprehensive insight to date into the physiology of the commonly used C321.∆A strain.
Collapse
|
118
|
Seki E, Yanagisawa T, Yokoyama S. Cell-Free Protein Synthesis for Multiple Site-Specific Incorporation of Noncanonical Amino Acids Using Cell Extracts from RF-1 Deletion E. coli Strains. Methods Mol Biol 2018; 1728:49-65. [PMID: 29404990 DOI: 10.1007/978-1-4939-7574-7_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cell-free protein synthesis (CFPS) is an effective method for the site-specific incorporations of noncanonical amino acids (ncAAs) into proteins. The nature of in vitro synthesis enables the use of experimental conditions that are toxic or reduce cellular uptake during in vivo site-specific incorporations of ncAAs. Using the Escherichia coli cell extract (S30) from the highly reproductive RF-1 deletion strains, B-60.∆A::Z and B-95.∆A, with orthogonal tRNA and aminoacyl-tRNA synthetase (aaRS) pairs from Methanosarcina mazei, we have developed CFPS methods for the highly productive and efficient multiple incorporation of ncAAs. In this chapter, we describe our methods for the preparation of the S30 and the orthogonal tRNAPyl and PylRS pair, and two CFPS protocols for ncAA incorporation.
Collapse
Affiliation(s)
- Eiko Seki
- RIKEN Structural Biology Laboratory, Yokohama, Japan
| | | | | |
Collapse
|
119
|
Lammers M. Expression and Purification of Site-Specifically Lysine-Acetylated and Natively-Folded Proteins for Biophysical Investigations. Methods Mol Biol 2018; 1728:169-190. [PMID: 29404998 DOI: 10.1007/978-1-4939-7574-7_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
N-(ε)-lysine-acetylation (short: lysine-acetylation) is a dynamic and powerful posttranslational modification to regulate protein function. Mutational approaches are often poor to access the real mechanistic impact of lysine-acetylation at the molecular level. Therefore, the ability to site-specifically incorporate N-(ε)-acetyl-L-lysine (short: AcK) into proteins dramatically increased our understanding how lysine-acetylation regulates protein function by using diverse molecular mechanisms going far beyond neutralizing a positive charge at the lysine-side chain. Genetically encoding AcK is a powerful way to introduce AcK into proteins, resulting in homogenously, quantitatively, and site-specifically lysine-acetylated proteins. Thereby, lysine-acetylated proteins can be produced in their natively-folded state in a high quality and in a yield sufficient to perform biophysical studies, including X-ray crystallography. This protocol describes the expression and purification of site-specifically lysine-acetylated proteins in Escherichia coli using the genetic-code expansion concept (GCEC) and subsequent steps to assess the successful incorporation of AcK by immunoblotting and mass-spectrometry.
Collapse
Affiliation(s)
- Michael Lammers
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
120
|
Mahawaththa MC, Lee MD, Giannoulis A, Adams LA, Feintuch A, Swarbrick JD, Graham B, Nitsche C, Goldfarb D, Otting G. Small neutral Gd(iii) tags for distance measurements in proteins by double electron–electron resonance experiments. Phys Chem Chem Phys 2018; 20:23535-23545. [DOI: 10.1039/c8cp03532f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Small Gd(iii) tags based on DO3A deliver narrow and readily predictable distances by double electron–electron resonance (DEER) measurements.
Collapse
Affiliation(s)
| | - Michael D. Lee
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - Angeliki Giannoulis
- Department of Chemical Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - Luke A. Adams
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - Akiva Feintuch
- Department of Chemical Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - James D. Swarbrick
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - Bim Graham
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - Christoph Nitsche
- Research School of Chemistry
- The Australian National University
- Canberra
- Australia
| | - Daniella Goldfarb
- Department of Chemical Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - Gottfried Otting
- Research School of Chemistry
- The Australian National University
- Canberra
- Australia
| |
Collapse
|
121
|
Abstract
Nature uses a limited, conservative set of amino acids to synthesize proteins. The ability to genetically encode an expanded set of building blocks with new chemical and physical properties is transforming the study, manipulation and evolution of proteins, and is enabling diverse applications, including approaches to probe, image and control protein function, and to precisely engineer therapeutics. Underpinning this transformation are strategies to engineer and rewire translation. Emerging strategies aim to reprogram the genetic code so that noncanonical biopolymers can be synthesized and evolved, and to test the limits of our ability to engineer the translational machinery and systematically recode genomes.
Collapse
Affiliation(s)
- Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
- Department of Chemistry, Cambridge University, Cambridge CB2 1EW, UK
| |
Collapse
|
122
|
Völler JS, Thi To TM, Biava H, Koksch B, Budisa N. Global substitution of hemeproteins with noncanonical amino acids in Escherichia coli with intact cofactor maturation machinery. Enzyme Microb Technol 2017; 106:55-59. [PMID: 28859810 DOI: 10.1016/j.enzmictec.2017.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/23/2017] [Accepted: 06/28/2017] [Indexed: 12/19/2022]
Abstract
Global substitution of canonical amino acids (cAAs) with noncanonical (ncAAs) counterparts in proteins whose function is dependent on post-translational events such as cofactor binding is still a methodically challenging and difficult task as ncAA insertion generally interferes with the cofactor biosynthesis machinery. Here, we report a technology for the expression of fully substituted and functionally active cofactor-containing hemeproteins. The maturation process which yields an intact cofactor is timely separated from cAA→ncAA substitutions. This is achieved by an optimised expression and fermentation procedure which includes pre-induction of the heme cofactor biosynthesis followed by an incorporation experiment at multiple positions in the protein sequence. This simple strategy can be potentially applied for engineering of other cofactor-containing enzymes.
Collapse
Affiliation(s)
- Jan-Stefan Völler
- Department of Chemistry, Technische Universität Berlin, Müller-Breslau-Strasse 10, 10623 Berlin, Germany; Institute of Chemistry and Biochemistry - Organic Chemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Tuyet Mai Thi To
- Department of Chemistry, Technische Universität Berlin, Müller-Breslau-Strasse 10, 10623 Berlin, Germany; Institute of Chemistry and Biochemistry - Organic Chemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Hernan Biava
- Department of Chemistry, Technische Universität Berlin, Müller-Breslau-Strasse 10, 10623 Berlin, Germany
| | - Beate Koksch
- Institute of Chemistry and Biochemistry - Organic Chemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Nediljko Budisa
- Department of Chemistry, Technische Universität Berlin, Müller-Breslau-Strasse 10, 10623 Berlin, Germany.
| |
Collapse
|
123
|
Agostini F, Völler J, Koksch B, Acevedo‐Rocha CG, Kubyshkin V, Budisa N. Biocatalysis with Unnatural Amino Acids: Enzymology Meets Xenobiology. Angew Chem Int Ed Engl 2017; 56:9680-9703. [DOI: 10.1002/anie.201610129] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 12/13/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Federica Agostini
- Institut für ChemieTechnische Universität Berlin Müller-Breslau-Strasse 10 10623 Berlin Germany
- Institute of Chemistry and Biochemistry—Organic ChemistryFreie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | - Jan‐Stefan Völler
- Institut für ChemieTechnische Universität Berlin Müller-Breslau-Strasse 10 10623 Berlin Germany
| | - Beate Koksch
- Institute of Chemistry and Biochemistry—Organic ChemistryFreie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | | | - Vladimir Kubyshkin
- Institut für ChemieTechnische Universität Berlin Müller-Breslau-Strasse 10 10623 Berlin Germany
| | - Nediljko Budisa
- Institut für ChemieTechnische Universität Berlin Müller-Breslau-Strasse 10 10623 Berlin Germany
| |
Collapse
|
124
|
Hauf M, Richter F, Schneider T, Faidt T, Martins BM, Baumann T, Durkin P, Dobbek H, Jacobs K, Möglich A, Budisa N. Photoactivatable Mussel-Based Underwater Adhesive Proteins by an Expanded Genetic Code. Chembiochem 2017. [DOI: 10.1002/cbic.201700327] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Matthias Hauf
- Institut für Chemie; Technische Universität Berlin; Müller-Breslau-Strasse 10 10623 Berlin Germany
| | - Florian Richter
- Institut für Biologie; Biophysikalische Chemie; Humboldt-Universität zu Berlin; Unter den Linden 6 10099 Berlin Germany
| | - Tobias Schneider
- Institut für Chemie; Technische Universität Berlin; Müller-Breslau-Strasse 10 10623 Berlin Germany
| | - Thomas Faidt
- Experimental Physics; Saarland University; Campus E2 9 66123 Saarbrücken Germany
| | - Berta M. Martins
- Institut für Biologie, Strukturbiologie/Biochemie; Humboldt-Universität zu Berlin; Unter den Linden 6 10099 Berlin Germany
| | - Tobias Baumann
- Institut für Chemie; Technische Universität Berlin; Müller-Breslau-Strasse 10 10623 Berlin Germany
| | - Patrick Durkin
- Institut für Chemie; Technische Universität Berlin; Müller-Breslau-Strasse 10 10623 Berlin Germany
| | - Holger Dobbek
- Institut für Biologie, Strukturbiologie/Biochemie; Humboldt-Universität zu Berlin; Unter den Linden 6 10099 Berlin Germany
| | - Karin Jacobs
- Experimental Physics; Saarland University; Campus E2 9 66123 Saarbrücken Germany
| | - Andreas Möglich
- Institut für Biologie; Biophysikalische Chemie; Humboldt-Universität zu Berlin; Unter den Linden 6 10099 Berlin Germany
- Lehrstuhl für Biochemie; Universität Bayreuth; Universitätsstrasse 30 95440 Bayreuth Germany
| | - Nediljko Budisa
- Institut für Chemie; Technische Universität Berlin; Müller-Breslau-Strasse 10 10623 Berlin Germany
| |
Collapse
|
125
|
Kato A, Kuratani M, Yanagisawa T, Ohtake K, Hayashi A, Amano Y, Kimura K, Yokoyama S, Sakamoto K, Shiraishi Y. Extensive Survey of Antibody Invariant Positions for Efficient Chemical Conjugation Using Expanded Genetic Codes. Bioconjug Chem 2017; 28:2099-2108. [DOI: 10.1021/acs.bioconjchem.7b00265] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | - Mitsuo Kuratani
- RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Tatsuo Yanagisawa
- RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Kazumasa Ohtake
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22
Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Akiko Hayashi
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22
Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yoshimi Amano
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22
Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | - Shigeyuki Yokoyama
- RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Kensaku Sakamoto
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22
Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | |
Collapse
|
126
|
Biokatalyse mit nicht‐natürlichen Aminosäuren: Enzymologie trifft Xenobiologie. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201610129] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
127
|
Abstract
The genetic code-the language used by cells to translate their genomes into proteins that perform many cellular functions-is highly conserved throughout natural life. Rewriting the genetic code could lead to new biological functions such as expanding protein chemistries with noncanonical amino acids (ncAAs) and genetically isolating synthetic organisms from natural organisms and viruses. It has long been possible to transiently produce proteins bearing ncAAs, but stabilizing an expanded genetic code for sustained function in vivo requires an integrated approach: creating recoded genomes and introducing new translation machinery that function together without compromising viability or clashing with endogenous pathways. In this review, we discuss design considerations and technologies for expanding the genetic code. The knowledge obtained by rewriting the genetic code will deepen our understanding of how genomes are designed and how the canonical genetic code evolved.
Collapse
Affiliation(s)
- Takahito Mukai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511;
| | - Marc J Lajoie
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - Markus Englert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511;
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511; .,Department of Chemistry, Yale University, New Haven, Connecticut 06511
| |
Collapse
|
128
|
Völler JS, Budisa N. Coupling genetic code expansion and metabolic engineering for synthetic cells. Curr Opin Biotechnol 2017; 48:1-7. [PMID: 28237511 DOI: 10.1016/j.copbio.2017.02.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 11/16/2022]
Abstract
Orthogonal protein translation with noncanonical amino acids (ncAAs) has become a standard method in biosciences. Whereas much effort is made to broaden the chemical space of ncAAs, only few attempts on their systematic low-cost in situ production are reported until now. The main aim is to engineer cells with newly designed biosynthetic pathways coupled with orthogonal aminoacyl-tRNA synthetase/tRNA pairs (o-pairs). These should provide cost-effective solutions to industrially relevant bio-production problems, such as peptide/protein production beyond the canonical set of natural molecules and to expand the arsenal of chemistries available for living cells. Therefore, coupling genetic code expansion (GCE) with metabolic engineering is the basic prerequisite to transform orthogonal translation from a standard technique in academic research to industrial biotechnology.
Collapse
Affiliation(s)
- Jan-Stefan Völler
- Department of Chemistry, Technische Universität Berlin, Müller-Breslau-Straße 10, 10623 Berlin, Germany
| | - Nediljko Budisa
- Department of Chemistry, Technische Universität Berlin, Müller-Breslau-Straße 10, 10623 Berlin, Germany.
| |
Collapse
|
129
|
Kipper K, Lundius EG, Ćurić V, Nikić I, Wiessler M, Lemke EA, Elf J. Application of Noncanonical Amino Acids for Protein Labeling in a Genomically Recoded Escherichia coli. ACS Synth Biol 2017; 6:233-255. [PMID: 27775882 DOI: 10.1021/acssynbio.6b00138] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Small synthetic fluorophores are in many ways superior to fluorescent proteins as labels for imaging. A major challenge is to use them for a protein-specific labeling in living cells. Here, we report on our use of noncanonical amino acids that are genetically encoded via the pyrrolysyl-tRNA/pyrrolysyl-RNA synthetase pair at artificially introduced TAG codons in a recoded E. coli strain. The strain is lacking endogenous TAG codons and the TAG-specific release factor RF1. The amino acids contain bioorthogonal groups that can be clicked to externally supplied dyes, thus enabling protein-specific labeling in live cells. We find that the noncanonical amino acid incorporation into the target protein is robust for diverse amino acids and that the usefulness of the recoded E. coli strain mainly derives from the absence of release factor RF1. However, the membrane permeable dyes display high nonspecific binding in intracellular environment and the electroporation of hydrophilic nonmembrane permeable dyes severely impairs growth of the recoded strain. In contrast, proteins exposed on the outer membrane of E. coli can be labeled with hydrophilic dyes with a high specificity as demonstrated by labeling of the osmoporin OmpC. Here, labeling can be made sufficiently specific to enable single molecule studies as exemplified by OmpC single particle tracking.
Collapse
Affiliation(s)
- Kalle Kipper
- Department
of Molecular and Cell Biology, Science for Life Laboratory, Uppsala University, Se-751 24 Uppsala, Sweden
| | - Ebba G. Lundius
- Department
of Molecular and Cell Biology, Science for Life Laboratory, Uppsala University, Se-751 24 Uppsala, Sweden
| | - Vladimir Ćurić
- Department
of Molecular and Cell Biology, Science for Life Laboratory, Uppsala University, Se-751 24 Uppsala, Sweden
| | - Ivana Nikić
- Structural
and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, 69117, Germany
| | - Manfred Wiessler
- Biological
Chemistry, Deutsche Krebsforschungszentrum, Heidelberg, 69120, Germany
| | - Edward A. Lemke
- Structural
and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, 69117, Germany
| | - Johan Elf
- Department
of Molecular and Cell Biology, Science for Life Laboratory, Uppsala University, Se-751 24 Uppsala, Sweden
| |
Collapse
|
130
|
Völler JS, Biava H, Hildebrandt P, Budisa N. An expanded genetic code for probing the role of electrostatics in enzyme catalysis by vibrational Stark spectroscopy. Biochim Biophys Acta Gen Subj 2017; 1861:3053-3059. [PMID: 28229928 DOI: 10.1016/j.bbagen.2017.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/03/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND To find experimental validation for electrostatic interactions essential for catalytic reactions represents a challenge due to practical limitations in assessing electric fields within protein structures. SCOPE OF REVIEW This review examines the applications of non-canonical amino acids (ncAAs) as genetically encoded probes for studying the role of electrostatic interactions in enzyme catalysis. MAJOR CONCLUSIONS ncAAs constitute sensitive spectroscopic probes to detect local electric fields by exploiting the vibrational Stark effect (VSE) and thus have the potential to map the protein electrostatics. GENERAL SIGNIFICANCE Mapping the electrostatics in proteins will improve our understanding of natural catalytic processes and, in beyond, will be helpful for biocatalyst engineering. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
Affiliation(s)
- Jan-Stefan Völler
- Department of Chemistry, Technische Universität Berlin, Müller-Breslau-Strasse 10, D-10623 Berlin, Germany.
| | - Hernan Biava
- Department of Chemistry, Technische Universität Berlin, Müller-Breslau-Strasse 10, D-10623 Berlin, Germany; Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Peter Hildebrandt
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany.
| | - Nediljko Budisa
- Department of Chemistry, Technische Universität Berlin, Müller-Breslau-Strasse 10, D-10623 Berlin, Germany.
| |
Collapse
|
131
|
Ayyar BV, Arora S, Ravi SS. Optimizing antibody expression: The nuts and bolts. Methods 2017; 116:51-62. [PMID: 28163103 DOI: 10.1016/j.ymeth.2017.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/28/2017] [Accepted: 01/28/2017] [Indexed: 01/07/2023] Open
Abstract
Antibodies are extensively utilized entities in biomedical research, and in the development of diagnostics and therapeutics. Many of these applications require high amounts of antibodies. However, meeting this ever-increasing demand of antibodies in the global market is one of the outstanding challenges. The need to maintain a balance between demand and supply of antibodies has led the researchers to discover better means and methods for optimizing their expression. These strategies aim to increase the volumetric productivity of the antibodies along with the reduction of associated manufacturing costs. Recent years have witnessed major advances in recombinant protein technology, owing to the introduction of novel cloning strategies, gene manipulation techniques, and an array of cell and vector engineering techniques, together with the progress in fermentation technologies. These innovations were also highly beneficial for antibody expression. Antibody expression depends upon the complex interplay of multiple factors that may require fine tuning at diverse levels to achieve maximum yields. However, each antibody is unique and requires individual consideration and customization for optimizing the associated expression parameters. This review provides a comprehensive overview of several state-of-the-art approaches, such as host selection, strain engineering, codon optimization, gene optimization, vector modification and process optimization that are deemed suitable for enhancing antibody expression.
Collapse
Affiliation(s)
- B Vijayalakshmi Ayyar
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sushrut Arora
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Shiva Shankar Ravi
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
132
|
Baumann T, Nickling JH, Bartholomae M, Buivydas A, Kuipers OP, Budisa N. Prospects of In vivo Incorporation of Non-canonical Amino Acids for the Chemical Diversification of Antimicrobial Peptides. Front Microbiol 2017; 8:124. [PMID: 28210246 PMCID: PMC5288337 DOI: 10.3389/fmicb.2017.00124] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/18/2017] [Indexed: 12/14/2022] Open
Abstract
The incorporation of non-canonical amino acids (ncAA) is an elegant way for the chemical diversification of recombinantly produced antimicrobial peptides (AMPs). Residue- and site-specific installation methods in several bacterial production hosts hold great promise for the generation of new-to-nature AMPs, and can contribute to tackle the ongoing emergence of antibiotic resistance in pathogens. Especially from a pharmacological point of view, desirable improvements span pH and protease resistance, solubility, oral availability and circulation half-life. Although the primary focus of this report is on ribosomally synthesized and post-translationally modified peptides (RiPPs), we have included selected cases of peptides produced by solid phase peptide synthesis to comparatively show the potential and impact of ncAA introduction. Generally speaking, the introduction of ncAAs in recombinant AMPs delivers novel levels of chemical diversification. Cotranslationally incorporated, they can take part in AMP biogenesis either through direction interaction with elements of the post-translational modification (PTM) machinery or as untargeted sites with unique physicochemical properties and chemical handles for further modification. Together with genetic libraries, genome mining and processing by PTM machineries, ncAAs present not a mere addition to this process, but a highly diverse pool of building blocks to significantly broaden the chemical space of this valuable class of molecules. This perspective summarizes new developments of ncAA containing peptides. Challenges to be resolved in order to reach large-scale pharmaceutical production of these promising compounds and prospects for future developments are discussed.
Collapse
Affiliation(s)
- Tobias Baumann
- Biocatalysis Group, Department of Chemistry, Technische Universität Berlin (Berlin Institute of Technology) Berlin, Germany
| | - Jessica H Nickling
- Biocatalysis Group, Department of Chemistry, Technische Universität Berlin (Berlin Institute of Technology) Berlin, Germany
| | - Maike Bartholomae
- Molecular Genetics Group, Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, Rijksuniversiteit Groningen (University of Groningen) Groningen, Netherlands
| | - Andrius Buivydas
- Molecular Genetics Group, Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, Rijksuniversiteit Groningen (University of Groningen) Groningen, Netherlands
| | - Oscar P Kuipers
- Molecular Genetics Group, Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, Rijksuniversiteit Groningen (University of Groningen) Groningen, Netherlands
| | - Nediljko Budisa
- Biocatalysis Group, Department of Chemistry, Technische Universität Berlin (Berlin Institute of Technology) Berlin, Germany
| |
Collapse
|
133
|
Acevedo-Rocha CG, Budisa N. Xenomicrobiology: a roadmap for genetic code engineering. Microb Biotechnol 2016; 9:666-76. [PMID: 27489097 PMCID: PMC4993186 DOI: 10.1111/1751-7915.12398] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 07/12/2016] [Indexed: 11/27/2022] Open
Abstract
Biology is an analytical and informational science that is becoming increasingly dependent on chemical synthesis. One example is the high‐throughput and low‐cost synthesis of DNA, which is a foundation for the research field of synthetic biology (SB). The aim of SB is to provide biotechnological solutions to health, energy and environmental issues as well as unsustainable manufacturing processes in the frame of naturally existing chemical building blocks. Xenobiology (XB) goes a step further by implementing non‐natural building blocks in living cells. In this context, genetic code engineering respectively enables the re‐design of genes/genomes and proteins/proteomes with non‐canonical nucleic (XNAs) and amino (ncAAs) acids. Besides studying information flow and evolutionary innovation in living systems, XB allows the development of new‐to‐nature therapeutic proteins/peptides, new biocatalysts for potential applications in synthetic organic chemistry and biocontainment strategies for enhanced biosafety. In this perspective, we provide a brief history and evolution of the genetic code in the context of XB. We then discuss the latest efforts and challenges ahead for engineering the genetic code with focus on substitutions and additions of ncAAs as well as standard amino acid reductions. Finally, we present a roadmap for the directed evolution of artificial microbes for emancipating rare sense codons that could be used to introduce novel building blocks. The development of such xenomicroorganisms endowed with a ‘genetic firewall’ will also allow to study and understand the relation between code evolution and horizontal gene transfer.
Collapse
Affiliation(s)
- Carlos G Acevedo-Rocha
- Biosyntia ApS, 2970, Hørsholm, Denmark.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2970, Hørsholm, Denmark
| | - Nediljko Budisa
- Department of Chemistry, Technical University Berlin, Müller-Breslau-Str. 10, Berlin, 10623, Germany
| |
Collapse
|
134
|
George S, Aguirre JD, Spratt DE, Bi Y, Jeffery M, Shaw GS, O'Donoghue P. Generation of phospho-ubiquitin variants by orthogonal translation reveals codon skipping. FEBS Lett 2016; 590:1530-42. [DOI: 10.1002/1873-3468.12182] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/10/2016] [Accepted: 04/11/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Susanna George
- Department of Biochemistry; The University of Western Ontario; London Canada
| | - Jacob D. Aguirre
- Department of Biochemistry; The University of Western Ontario; London Canada
| | - Donald E. Spratt
- Department of Biochemistry; The University of Western Ontario; London Canada
| | - Yumin Bi
- Department of Biochemistry; The University of Western Ontario; London Canada
| | - Madeline Jeffery
- Department of Biochemistry; The University of Western Ontario; London Canada
| | - Gary S. Shaw
- Department of Biochemistry; The University of Western Ontario; London Canada
- Department of Chemistry; The University of Western Ontario; London Canada
| | - Patrick O'Donoghue
- Department of Biochemistry; The University of Western Ontario; London Canada
- Department of Chemistry; The University of Western Ontario; London Canada
| |
Collapse
|
135
|
Lajoie MJ, Söll D, Church GM. Overcoming Challenges in Engineering the Genetic Code. J Mol Biol 2016; 428:1004-21. [PMID: 26348789 PMCID: PMC4779434 DOI: 10.1016/j.jmb.2015.09.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/19/2015] [Accepted: 09/01/2015] [Indexed: 11/24/2022]
Abstract
Withstanding 3.5 billion years of genetic drift, the canonical genetic code remains such a fundamental foundation for the complexity of life that it is highly conserved across all three phylogenetic domains. Genome engineering technologies are now making it possible to rationally change the genetic code, offering resistance to viruses, genetic isolation from horizontal gene transfer, and prevention of environmental escape by genetically modified organisms. We discuss the biochemical, genetic, and technological challenges that must be overcome in order to engineer the genetic code.
Collapse
Affiliation(s)
- M J Lajoie
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Program in Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
| | - D Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - G M Church
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
136
|
Zhang B, Yang Q, Chen J, Wu L, Yao T, Wu Y, Xu H, Zhang L, Xia Q, Zhou D. CRISPRi-Manipulation of Genetic Code Expansion via RF1 for Reassignment of Amber Codon in Bacteria. Sci Rep 2016; 6:20000. [PMID: 26818534 PMCID: PMC4730227 DOI: 10.1038/srep20000] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/22/2015] [Indexed: 11/09/2022] Open
Abstract
The precise engineering of proteins in bacteria via the amber codon has been hampered by the poor incorporation of unnatural amino acid (UAA). Here we explored the amber assignment as a sense codon for UAA by CRISPRi targeting release factor 1 (RF1). Scanning of RF1 gene with sgRNAs identified target loci that differentiate RF1 repressions. Quantitation of RF1 repressions versus UAA incorporation indicated an increasing interrelation with the amber reassignment maximized upon RF1 knockdown to ~30%, disclosing the beneficial role of RF1 in amber assignment. However, further RF1 repression reversed this trend resulting from the detrimental effects on host cell growth, disclosing the harmful aspect of RF1 in reassignment of the amber codon. Our data indicate RF1 as a switch manipulating genetic code expansion and pave a direction via CRISPRi for precise engineering and efficient production of proteins in bacteria.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences
| | - Qi Yang
- Department of Chemical Biology, Peking University, Beijing 100191, China
| | - Jingxian Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences
| | - Ling Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences
| | - Tianzhuo Yao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences
| | - Yiming Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences
| | - Huan Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences
| | - Qing Xia
- Department of Chemical Biology, Peking University, Beijing 100191, China
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences
| |
Collapse
|
137
|
Bezerra AR, Guimarães AR, Santos MAS. Non-Standard Genetic Codes Define New Concepts for Protein Engineering. Life (Basel) 2015; 5:1610-28. [PMID: 26569314 PMCID: PMC4695839 DOI: 10.3390/life5041610] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/12/2015] [Accepted: 10/21/2015] [Indexed: 11/16/2022] Open
Abstract
The essential feature of the genetic code is the strict one-to-one correspondence between codons and amino acids. The canonical code consists of three stop codons and 61 sense codons that encode 20% of the amino acid repertoire observed in nature. It was originally designated as immutable and universal due to its conservation in most organisms, but sequencing of genes from the human mitochondrial genomes revealed deviations in codon assignments. Since then, alternative codes have been reported in both nuclear and mitochondrial genomes and genetic code engineering has become an important research field. Here, we review the most recent concepts arising from the study of natural non-standard genetic codes with special emphasis on codon re-assignment strategies that are relevant to engineering genetic code in the laboratory. Recent tools for synthetic biology and current attempts to engineer new codes for incorporation of non-standard amino acids are also reviewed in this article.
Collapse
Affiliation(s)
- Ana R Bezerra
- Health Sciences Department, Institute for Biomedicine-iBiMED, University of Aveiro, Campus de Santiago, Aveiro 3810-193, Portugal.
| | - Ana R Guimarães
- Health Sciences Department, Institute for Biomedicine-iBiMED, University of Aveiro, Campus de Santiago, Aveiro 3810-193, Portugal.
| | - Manuel A S Santos
- Health Sciences Department, Institute for Biomedicine-iBiMED, University of Aveiro, Campus de Santiago, Aveiro 3810-193, Portugal.
| |
Collapse
|
138
|
Quax TEF, Claassens NJ, Söll D, van der Oost J. Codon Bias as a Means to Fine-Tune Gene Expression. Mol Cell 2015; 59:149-61. [PMID: 26186290 DOI: 10.1016/j.molcel.2015.05.035] [Citation(s) in RCA: 459] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The redundancy of the genetic code implies that most amino acids are encoded by multiple synonymous codons. In all domains of life, a biased frequency of synonymous codons is observed at the genome level, in functionally related genes (e.g., in operons), and within single genes. Other codon bias variants include biased codon pairs and codon co-occurrence. Although translation initiation is the key step in protein synthesis, it is generally accepted that codon bias contributes to translation efficiency by tuning the elongation rate of the process. Moreover, codon bias plays an important role in controlling a multitude of cellular processes, ranging from differential protein production to protein folding. Here we review currently known types of codon bias and how they may influence translation. We discuss how understanding the principles of codon bias and translation can contribute to improved protein production and developments in synthetic biology.
Collapse
Affiliation(s)
- Tessa E F Quax
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, the Netherlands; Institut für Biologie II, Albert Ludwig Universität Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Nico J Claassens
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, the Netherlands
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520-8114, USA
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, the Netherlands.
| |
Collapse
|
139
|
Ling J, O'Donoghue P, Söll D. Genetic code flexibility in microorganisms: novel mechanisms and impact on physiology. Nat Rev Microbiol 2015; 13:707-721. [PMID: 26411296 DOI: 10.1038/nrmicro3568] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The genetic code, initially thought to be universal and immutable, is now known to contain many variations, including biased codon usage, codon reassignment, ambiguous decoding and recoding. As a result of recent advances in the areas of genome sequencing, biochemistry, bioinformatics and structural biology, our understanding of genetic code flexibility has advanced substantially in the past decade. In this Review, we highlight the prevalence, evolution and mechanistic basis of genetic code variations in microorganisms, and we discuss how this flexibility of the genetic code affects microbial physiology.
Collapse
Affiliation(s)
- Jiqiang Ling
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Patrick O'Donoghue
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada.,Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA.,Department of Chemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| |
Collapse
|
140
|
Mukai T, Yamaguchi A, Ohtake K, Takahashi M, Hayashi A, Iraha F, Kira S, Yanagisawa T, Yokoyama S, Hoshi H, Kobayashi T, Sakamoto K. Reassignment of a rare sense codon to a non-canonical amino acid in Escherichia coli. Nucleic Acids Res 2015; 43:8111-22. [PMID: 26240376 PMCID: PMC4652775 DOI: 10.1093/nar/gkv787] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/22/2015] [Indexed: 11/13/2022] Open
Abstract
The immutability of the genetic code has been challenged with the successful reassignment of the UAG stop codon to non-natural amino acids in Escherichia coli. In the present study, we demonstrated the in vivo reassignment of the AGG sense codon from arginine to L-homoarginine. As the first step, we engineered a novel variant of the archaeal pyrrolysyl-tRNA synthetase (PylRS) able to recognize L-homoarginine and L-N(6)-(1-iminoethyl)lysine (L-NIL). When this PylRS variant or HarRS was expressed in E. coli, together with the AGG-reading tRNA(Pyl) CCU molecule, these arginine analogs were efficiently incorporated into proteins in response to AGG. Next, some or all of the AGG codons in the essential genes were eliminated by their synonymous replacements with other arginine codons, whereas the majority of the AGG codons remained in the genome. The bacterial host's ability to translate AGG into arginine was then restricted in a temperature-dependent manner. The temperature sensitivity caused by this restriction was rescued by the translation of AGG to L-homoarginine or L-NIL. The assignment of AGG to L-homoarginine in the cells was confirmed by mass spectrometric analyses. The results showed the feasibility of breaking the degeneracy of sense codons to enhance the amino-acid diversity in the genetic code.
Collapse
Affiliation(s)
- Takahito Mukai
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Atsushi Yamaguchi
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Kazumasa Ohtake
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Mihoko Takahashi
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Akiko Hayashi
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Fumie Iraha
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Satoshi Kira
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Tatsuo Yanagisawa
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Hiroko Hoshi
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Takatsugu Kobayashi
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Kensaku Sakamoto
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| |
Collapse
|