101
|
Matsui H, Takahashi R. Parkinson's disease pathogenesis from the viewpoint of small fish models. J Neural Transm (Vienna) 2017; 125:25-33. [PMID: 28770388 DOI: 10.1007/s00702-017-1772-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/26/2017] [Indexed: 02/06/2023]
Abstract
Parkinson's disease is a neurodegenerative disorder that involves movement discloses, degeneration of dopaminergic neurons, and presence of cytoplasmic inclusion bodies. Various animal models have been developed and small fish including zebrafish and medaka fish have recently been employed as a new model for Parkinson disease. In this review, we summarize fish models of Parkinson's disease mainly using our own findings and explain two major hypotheses of PD: lysosome dysfunction theory and mitochondrial dysfunction theory. Finally, we discuss the potential for future application of small fish model.
Collapse
Affiliation(s)
- Hideaki Matsui
- Department of Neuroscience of Disease, Center for Transdisciplinary Research, Niigata University, Niigata, Japan.
- Brain Research Institute, Niigata University, Niigata, Japan.
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
102
|
Mathai BJ, Meijer AH, Simonsen A. Studying Autophagy in Zebrafish. Cells 2017; 6:E21. [PMID: 28698482 PMCID: PMC5617967 DOI: 10.3390/cells6030021] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/01/2017] [Accepted: 07/03/2017] [Indexed: 12/26/2022] Open
Abstract
Autophagy is an evolutionarily conserved catabolic process which allows lysosomal degradation of complex cytoplasmic components into basic biomolecules that are recycled for further cellular use. Autophagy is critical for cellular homeostasis and for degradation of misfolded proteins and damaged organelles as well as intracellular pathogens. The role of autophagy in protection against age-related diseases and a plethora of other diseases is now coming to light; assisted by several divergent eukaryotic model systems ranging from yeast to mice. We here give an overview of different methods used to analyse autophagy in zebrafish-a relatively new model for studying autophagy-and briefly discuss what has been done so far and possible future directions.
Collapse
Affiliation(s)
- Benan John Mathai
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0317 Oslo, Norway.
| | - Annemarie H Meijer
- Institute of Biology Leiden, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0317 Oslo, Norway.
| |
Collapse
|
103
|
Khajuria DK, Kumar VB, Karasik D, Gedanken A. Fluorescent Nanoparticles with Tissue-Dependent Affinity for Live Zebrafish Imaging. ACS APPLIED MATERIALS & INTERFACES 2017; 9:18557-18565. [PMID: 28503921 DOI: 10.1021/acsami.7b04668] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Carbon quantum dots (CDs) are widely investigated because of their low toxicity, outstanding water solubility, and high biocompatibility. Specifically, fluorescent CDs have attracted ever-increasing interest. However, so far, only a few studies have focused on assessing the fluorescence of nitrogen-doped CDs (N@CDs) during in vivo exposure. Here, we describe a strategy for low-cost, one-pot synthesis of N@CDs. The low toxicity and suitability of the N@CDs for fluorescence imaging are validated using zebrafish (ZF) as a model. Strong fluorescence emission from ZF embryos and larvae confirms the distribution of N@CDs in ZF. The retention of N@CDs is very stable, long lasting, and with no detectable toxicity. The presence of a strong fluorescence at the yolk sac, especially in the vicinity of the intestine, suggests that a high content of N@CDs entered the digestive system. This indicates that N@CDs may have potential imaging applications in elucidating different aspects of lipoprotein and nutritional biology, in a ZF yolk lipid transport and metabolism model. On the other hand, the presence of a strong selective fluorescence at the eyes and melanophore strips at the trunk and tail region of ZF larvae suggests that N@CDs has a high melanin-binding affinity. These observations support a novel and revolutionary use of N@CDs as highly specific bioagents for eye and skin imaging and diagnosis of defects in them. N@CDs are known for their multifunctional applications as highly specific bioagents for various biomedical applications because of their exceptional biocompatibility, photostability, and selective affinity. These characteristics were validated in the developmental ZF model.
Collapse
Affiliation(s)
- Deepak Kumar Khajuria
- The Musculoskeletal Genetics Laboratory, Faculty of Medicine in the Galilee, The Musculoskeletal Genetics Laboratory, Bar-Ilan University , Safed 1311502, Israel
| | - Vijay Bhooshan Kumar
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University , Ramat-Gan 5290002, Israel
| | - David Karasik
- The Musculoskeletal Genetics Laboratory, Faculty of Medicine in the Galilee, The Musculoskeletal Genetics Laboratory, Bar-Ilan University , Safed 1311502, Israel
| | - Aharon Gedanken
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University , Ramat-Gan 5290002, Israel
| |
Collapse
|
104
|
Matsui H. Dopamine system, cerebellum, and nucleus ruber in fish and mammals. Dev Growth Differ 2017; 59:219-227. [PMID: 28547762 DOI: 10.1111/dgd.12357] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 04/09/2017] [Accepted: 04/09/2017] [Indexed: 12/26/2022]
Abstract
Small teleost fish including zebrafish and medaka have been used as animal models for research because of their small body size, vast amounts of eggs produced, their rapid development, low husbandry costs, and transparency during embryogenesis. Although the body size and appearance seem different, fish and mammals including human still possess anatomical and functional similarities in their brains. This review summarizes the similarities of brain structures and functions between teleost fish and mammalian brains, focusing on the dopamine system, functional regionalization of the cerebellum, and presence of the nucleus ruber.
Collapse
Affiliation(s)
- Hideaki Matsui
- Department of Neuroscience of Disease, Center for Transdisciplinary Research, Niigata University, 757, Ichibancho, Asahimachidori, Chuo-ku, Niigata-shi, Niigata, 951-8585, Japan.,Brain Research Institute, Niigata University, 757, Ichibancho, Asahimachidori, Chuo-ku, Niigata-shi, Niigata, 951-8585, Japan
| |
Collapse
|
105
|
de Alvarenga KAF, Sacramento EK, Rosa DV, Souza BR, de Rezende VB, Romano-Silva MA. Effects of antipsychotics on intestinal motility in zebrafish larvae. Neurogastroenterol Motil 2017; 29. [PMID: 27981679 DOI: 10.1111/nmo.13006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/09/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Antipsychotics are essential for the treatment of schizophrenia. However, due to side effects, both continuity of treatment and patients' general health can be jeopardized. Some of these drugs, especially clozapine, have a class of side effects attributed to their antimuscarinic properties, such as dysmotility, a condition in which muscles of the digestive system become impaired. Dysmotility may also alter the speed, strength or coordination of the digestive organs, causing distention, disturbing gastrointestinal transit, leading to symptoms such as bloating, nausea, vomiting, and even malnutrition. In this study, our aim was to develop an in vivo assay capable of identifying and studying the antimuscarinic effects of antipsychotics in a zebrafish model. METHODS We performed video recordings of in vivo 5-day postfertilization (dpf) zebrafish larvae gastrointestinal tracts and analyzed the frequency of spontaneous and regular cycles of contractions of the gut. KEY RESULTS The assay was first validated with treatment with atropine. We showed that this antimuscarinic drug reduces peristaltic cycles. Subsequently, the larvae were treated with the antipsychotics haloperidol, risperidone, and clozapine. Neither haloperidol nor risperidone reduced gut motility, but clozapine significantly reduced the frequency of cycles of contractions (P<.0001), which confirms the existing clinical data. CONCLUSIONS & INFERENCES We conclude that this zebrafish assay efficiently identifies anticholinergic side effects of antipsychotics, and can thus be a quick and useful way to screen for this property in new drugs.
Collapse
Affiliation(s)
- K A F de Alvarenga
- Laboratório de Neurociência, Departamento de Saúde Mental, Faculdade de Medicina, UFMG, Instituto Nacional de Ciência e Tecnologia de Medicina Molecular, Belo Horizonte, Brazil
| | - E K Sacramento
- Laboratório de Neurociência, Departamento de Saúde Mental, Faculdade de Medicina, UFMG, Instituto Nacional de Ciência e Tecnologia de Medicina Molecular, Belo Horizonte, Brazil
| | - D V Rosa
- Laboratório de Neurociência, Departamento de Saúde Mental, Faculdade de Medicina, UFMG, Instituto Nacional de Ciência e Tecnologia de Medicina Molecular, Belo Horizonte, Brazil
| | - B R Souza
- Laboratório de Neurociência, Departamento de Saúde Mental, Faculdade de Medicina, UFMG, Instituto Nacional de Ciência e Tecnologia de Medicina Molecular, Belo Horizonte, Brazil.,Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, UFMG, Belo Horizonte, Brazil
| | - V B de Rezende
- Laboratório de Neurociência, Departamento de Saúde Mental, Faculdade de Medicina, UFMG, Instituto Nacional de Ciência e Tecnologia de Medicina Molecular, Belo Horizonte, Brazil
| | - M A Romano-Silva
- Laboratório de Neurociência, Departamento de Saúde Mental, Faculdade de Medicina, UFMG, Instituto Nacional de Ciência e Tecnologia de Medicina Molecular, Belo Horizonte, Brazil
| |
Collapse
|
106
|
Chow RWY, Vermot J. The rise of photoresponsive protein technologies applications in vivo: a spotlight on zebrafish developmental and cell biology. F1000Res 2017; 6. [PMID: 28413613 PMCID: PMC5389412 DOI: 10.12688/f1000research.10617.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/06/2017] [Indexed: 12/24/2022] Open
Abstract
The zebrafish ( Danio rerio) is a powerful vertebrate model to study cellular and developmental processes in vivo. The optical clarity and their amenability to genetic manipulation make zebrafish a model of choice when it comes to applying optical techniques involving genetically encoded photoresponsive protein technologies. In recent years, a number of fluorescent protein and optogenetic technologies have emerged that allow new ways to visualize, quantify, and perturb developmental dynamics. Here, we explain the principles of these new tools and describe some of their representative applications in zebrafish.
Collapse
Affiliation(s)
- Renee Wei-Yan Chow
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique UMR8104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Julien Vermot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique UMR8104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
107
|
Xin X, Clark D, Ang KC, van Rossum DB, Copper J, Xiao X, La Riviere PJ, Cheng KC. Synchrotron microCT imaging of soft tissue in juvenile zebrafish reveals retinotectal projections. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2017; 10060. [PMID: 32733117 DOI: 10.1117/12.2267477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Biomedical research and clinical diagnosis would benefit greatly from full volume determinations of anatomical phenotype. Comprehensive tools for morphological phenotyping are central for the emerging field of phenomics, which requires high-throughput, systematic, accurate, and reproducible data collection from organisms affected by genetic, disease, or environmental variables. Theoretically, complete anatomical phenotyping requires the assessment of every cell type in the whole organism, but this ideal is presently untenable due to the lack of an unbiased 3D imaging method that allows histopathological assessment of any cell type despite optical opacity. Histopathology, the current clinical standard for diagnostic phenotyping, involves the microscopic study of tissue sections to assess qualitative aspects of tissue architecture, disease mechanisms, and physiological state. However, quantitative features of tissue architecture such as cellular composition and cell counting in tissue volumes can only be approximated due to characteristics of tissue sectioning, including incomplete sampling and the constraints of 2D imaging of 5 micron thick tissue slabs. We have used a small, vertebrate organism, the zebrafish, to test the potential of microCT for systematic macroscopic and microscopic morphological phenotyping. While cell resolution is routinely achieved using methods such as light sheet fluorescence microscopy and optical tomography, these methods do not provide the pancellular perspective characteristic of histology, and are constrained by the limited penetration of visible light through pigmented and opaque specimens, as characterizes zebrafish juveniles. Here, we provide an example of neuroanatomy that can be studied by microCT of stained soft tissue at 1.43 micron isotropic voxel resolution. We conclude that synchrotron microCT is a form of 3D imaging that may potentially be adopted towards more reproducible, large-scale, morphological phenotyping of optically opaque tissues. Further development of soft tissue microCT, visualization and quantitative tools will enhance its utility.
Collapse
Affiliation(s)
- Xuying Xin
- Department of Pathology, Penn State College of Medicine, Hershey, PA 17033, USA.,Jake Gittlen Laboratories for Cancer Research, Hershey, PA 17033, USA.,Penn State Consortium for Interdisciplinary Image Informatics and Visualization, USA
| | - Darin Clark
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC 27708, USA
| | - Khai Chung Ang
- Department of Pathology, Penn State College of Medicine, Hershey, PA 17033, USA.,Jake Gittlen Laboratories for Cancer Research, Hershey, PA 17033, USA.,Penn State Consortium for Interdisciplinary Image Informatics and Visualization, USA
| | - Damian B van Rossum
- Department of Pathology, Penn State College of Medicine, Hershey, PA 17033, USA.,Jake Gittlen Laboratories for Cancer Research, Hershey, PA 17033, USA.,Penn State Consortium for Interdisciplinary Image Informatics and Visualization, USA
| | - Jean Copper
- Department of Pathology, Penn State College of Medicine, Hershey, PA 17033, USA.,Jake Gittlen Laboratories for Cancer Research, Hershey, PA 17033, USA.,Penn State Consortium for Interdisciplinary Image Informatics and Visualization, USA
| | - Xianghui Xiao
- Advanced Photon Source, Argonne National Laboratory Argonne, IL 60439, USA
| | | | - Keith C Cheng
- Department of Pathology, Penn State College of Medicine, Hershey, PA 17033, USA.,Jake Gittlen Laboratories for Cancer Research, Hershey, PA 17033, USA.,Penn State Consortium for Interdisciplinary Image Informatics and Visualization, USA
| |
Collapse
|
108
|
Burggren WW, Dubansky B, Bautista NM. Cardiovascular Development in Embryonic and Larval Fishes. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/bs.fp.2017.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|