101
|
Investigation of higher-order RNA G-quadruplex structures in vitro and in living cells by 19F NMR spectroscopy. Nat Protoc 2018. [PMID: 29517770 DOI: 10.1038/nprot.2017.156] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Growing evidence indicates that RNA G-quadruplexes have important roles in various processes such as transcription, translation, regulation of telomere length, and formation of telomeric heterochromatin. Investigation of RNA G-quadruplex structures associated with biological events is therefore essential to understanding the functions of these RNA molecules. We recently demonstrated that the sensitivity and simplicity of 19F NMR can be used to directly observe higher-order telomeric G-quadruplexes of labeled RNA molecules in vitro and in living cells, as well as their interactions with ligands and proteins. This protocol describes detailed procedures for preparing 19F-labeled RNA, the evaluation of 19F-labeled RNA G-quadruplexes in vitro and in living Xenopus laevis oocytes by 19F NMR spectroscopy, the quantitative characterization of thermodynamic properties of the G-quadruplexes, and monitoring of RNA G-quadruplex interactions with ligand molecules and proteins. This approach has several advantages over existing techniques. First, it is relatively easy to prepare 19F-labeled RNA molecules by introducing a 3,5-bis(trifluoromethyl) benzene moiety into its 5' terminus. Second, the absence of any natural fluorine background signal in RNA and cells results in a simple and clear 19F NMR spectrum and does not suffer from high background signals as does 1H NMR. Finally, the simplicity and sensitivity of 19F NMR can be used to easily distinguish different RNA G-quadruplex conformations under various conditions, even in living cells, and to obtain the precise thermodynamic parameters of higher-order G-quadruplexes. This protocol can be completed in 2 weeks.
Collapse
|
102
|
Sato N, Takahashi S, Tateishi-Karimata H, Hazemi ME, Chikuni T, Onizuka K, Sugimoto N, Nagatsugi F. Alkylating probes for the G-quadruplex structure and evaluation of the properties of the alkylated G-quadruplex DNA. Org Biomol Chem 2018; 16:1436-1441. [PMID: 29412214 DOI: 10.1039/c7ob03179c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The G-quadruplex structure has been found in biologically significant regions of the genomic DNA, including the telomere and promoter regions, and is known to play an important role in a number of biological processes. In this paper, we report the development of alkylating probes for the G-quadruplex structure and evaluation of the properties of the modified G-quadruplex structure.
Collapse
Affiliation(s)
- Norihiro Sato
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai-shi, 980-8577, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Direct visualization of nucleolar G-quadruplexes in live cells by using a fluorescent light-up probe. Biochim Biophys Acta Gen Subj 2018; 1862:1101-1106. [PMID: 29410183 DOI: 10.1016/j.bbagen.2018.01.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/23/2018] [Accepted: 01/31/2018] [Indexed: 11/24/2022]
Abstract
BACKGROUND Direct detection of G-quadruplexes in human cells has become an important issue due to the vital role of G-quadruplex related to biological functions. Despite several probes have been developed for detection of the G-quadruplexes in cytoplasm or whole cells, the probe being used to monitor the nucleolar G-quadruplexes is still lacking. METHODS Formation of the nucleolar G-quadruplex structures was confirmed by using circular dichroism (CD) spectroscopy. The binding affinity and selectivity of Thioflavin T (ThT) towards various DNA/RNA motifs in solution and gel system were measured by using fluorescence spectroscopy and polyacrylamide gel electrophoresis (PAGE), respectively. G-quadruplex imaging in live cells was directly captured by using confocal laser scanning microscopy (CLSM). RESULTS Formation of the rDNA and rRNA G-quadruplex structures is demonstrated in vitro. ThT is found to show much higher affinity and selectivity towards these G-quadruplex structures versus other nucleic acid motifs either in solution or in gel system. The nucleolar G-quadruplexes in living cells are visualized by using ThT as a fluorescent probe. G-quadruplex-ligand treatments in live cells lead to sharp decrease of ThT signal. CONCLUSIONS The natural existence of the G-quadruplexes structure in the nucleoli of living cells is directly visualized by using ThT as an indicator. GENERAL SIGNIFICANCE The research provides substantive evidence for formation of the rRNA G-quadruplex structures, and also offers an effective probe for direct visualization of the nucleolar G-quadruplexes in living cells.
Collapse
|
104
|
Wei ZZ, Qin QP, Meng T, Deng CX, Liang H, Chen ZF. 5-Bromo-oxoisoaporphine platinum(II) complexes exhibit tumor cell cytotoxcicity via inhibition of telomerase activity and disruption of c-myc G-quadruplex DNA and mitochondrial functions. Eur J Med Chem 2018; 145:360-369. [DOI: 10.1016/j.ejmech.2017.12.092] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 11/20/2017] [Accepted: 12/29/2017] [Indexed: 01/01/2023]
|
105
|
HnRNPA1 Specifically Recognizes the Base of Nucleotide at the Loop of RNA G-Quadruplex. Molecules 2018; 23:molecules23010237. [PMID: 29361764 PMCID: PMC6017123 DOI: 10.3390/molecules23010237] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/05/2018] [Accepted: 01/16/2018] [Indexed: 11/23/2022] Open
Abstract
Human telomere RNA performs various cellular functions, such as telomere length regulation, heterochromatin formation, and end protection. We recently demonstrated that the loops in the RNA G-quadruplex are important in the interaction of telomere RNA with heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1). Here, we report on a detailed analysis of hnRNPA1 binding to telomere RNA G-quadruplexes with a group of loop variants using an electrophoretic mobility shift assay (EMSA) and circular dichroism (CD) spectroscopy. We found that the hnRNPA1 binds to RNA G-quadruplexes with the 2’-O-methyl and DNA loops, but fails to bind with the abasic RNA and DNA loops. These results suggested that hnRNPA1 binds to the loop of the RNA G-quadruplex by recognizing the base of the loop’s nucleotides. The observation provides the first evidence that the base of the loop’s nucleotides is a key factor for hnRNPA1 specifically recognizing the RNA G-quadruplex.
Collapse
|
106
|
Chen Y, Wang J, Zhang Y, Xu L, Gao T, Wang B, Pei R. Selection and characterization of a DNA aptamer to crystal violet. Photochem Photobiol Sci 2018; 17:800-806. [DOI: 10.1039/c7pp00457e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A shortened 42-mer aptamer with high affinity and good specificity for crystal violet, which showed higher fluorescence enhancement than G-quadruplexes was successfully selected.
Collapse
Affiliation(s)
- Yang Chen
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Jine Wang
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Yajie Zhang
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Lijun Xu
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Tian Gao
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Bing Wang
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an
- China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| |
Collapse
|
107
|
Kovalev VI, Vekshin NL. Fluorescence Analysis of 7-Aminoactinomycin–Telomeric Oligonucleotide d[AGGG(TTAGGG)3] Complexes. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s0006350918010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
108
|
Ihmels H, Löhl K, Paululat T, Uebach S. NMR-spectroscopic investigation of the complex between tetraazoniapentapheno[6,7-h]pentaphene and quadruplex DNA Tel26. NEW J CHEM 2018. [DOI: 10.1039/c8nj01931b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The tetraazoniapentapheno[6,7-h]pentaphene binds to the hybrid-1 quadruplex structure of the oligonucleotide Tel26 by terminal π stacking, likely on top of the A3–A9–A21 triplet.
Collapse
Affiliation(s)
- Heiko Ihmels
- Department of Chemistry and Biology
- University of Siegen
- Siegen 57068
- Germany
| | - Katharina Löhl
- Department of Chemistry and Biology
- University of Siegen
- Siegen 57068
- Germany
| | - Thomas Paululat
- Department of Chemistry and Biology
- University of Siegen
- Siegen 57068
- Germany
| | - Sandra Uebach
- Department of Chemistry and Biology
- University of Siegen
- Siegen 57068
- Germany
| |
Collapse
|
109
|
Ishizuka T, Yamashita A, Asada Y, Xu Y. Studying DNA G-Quadruplex Aptamer by 19F NMR. ACS OMEGA 2017; 2:8843-8848. [PMID: 30023592 PMCID: PMC6045382 DOI: 10.1021/acsomega.7b01405] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/22/2017] [Indexed: 06/08/2023]
Abstract
In this study, we demonstrated that 19F NMR can be used to study the thrombin-binding aptamer (TBA) DNA G-quadruplex, widely used as a model structure for studying G-quadruplex aptamers. We systematically examined the structural feature of the TBA G-quadruplex aptamer with fluorine-19 (19F) labels at all of the thymidine positions. We successfully observed the structural change between the G-quadruplex and the unstructured single strand by 19F NMR spectroscopy. The thermodynamic parameters of these DNA G-quadruplex aptamers were also determined from the 19F NMR signals. We further showed that the 19F NMR method can be used to observe the complex formed by TBA G-quadruplex and thrombin. Our results suggest that 19F NMR spectroscopy is a useful approach to study the aptamer G-quadruplex structure.
Collapse
Affiliation(s)
- Takumi Ishizuka
- Division
of Chemistry, Department of Medical Sciences, Faculty of
Medicine and Department of Pathology, Division of Pathophysiology, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Atsushi Yamashita
- Division
of Chemistry, Department of Medical Sciences, Faculty of
Medicine and Department of Pathology, Division of Pathophysiology, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Yujiro Asada
- Division
of Chemistry, Department of Medical Sciences, Faculty of
Medicine and Department of Pathology, Division of Pathophysiology, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Yan Xu
- Division
of Chemistry, Department of Medical Sciences, Faculty of
Medicine and Department of Pathology, Division of Pathophysiology, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| |
Collapse
|
110
|
Mass spectrometry as a powerful tool to study therapeutic metallodrugs speciation mechanisms: Current frontiers and perspectives. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.02.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
111
|
Garci A, Castor KJ, Fakhoury J, Do JL, Di Trani J, Chidchob P, Stein RS, Mittermaier AK, Friščić T, Sleiman H. Efficient and Rapid Mechanochemical Assembly of Platinum(II) Squares for Guanine Quadruplex Targeting. J Am Chem Soc 2017; 139:16913-16922. [PMID: 29058892 DOI: 10.1021/jacs.7b09819] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We present a rapid and efficient method to generate a family of platinum supramolecular square complexes, including previously inaccessible targets, through the use of ball milling mechanochemistry. This one-pot, two-step process occurs in minutes and enables the synthesis of the squares [Pt4(en)4(N∩N)4][CF3SO3]8 (en= ethylenediamine, N∩N = 4,4'-bipyridine derivatives) from commercially available precursor K2PtCl4 in good to excellent yields. In contrast, solution-based assembly requires heating the reagents for weeks and gives lower yields. Mechanistic investigations into this remarkable rate acceleration revealed that solution-based assembly (refluxing for days) results in the formation of large oligomeric side-products that are difficult to break down into the desired squares. On the other hand, ball milling in the solid state is rapid and appears to involve smaller intermediates. We examined the binding of the new supramolecular squares to guanine quadruplexes, including oncogene and telomere-associated DNA and RNA sequences. Sub-micromolar binding affinities were obtained by fluorescence displacement assays (FID) and isothermal titration calorimetry (ITC), with binding preference to telomere RNA (TERRA) sequences. ITC showed a 1:1 binding stoichiometry of the metallosquare to TERRA, while the stoichiometry was more complex for telomeric quadruplex DNA and a double-stranded DNA control.
Collapse
Affiliation(s)
- Amine Garci
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Katherine J Castor
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Johans Fakhoury
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Jean-Louis Do
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Justin Di Trani
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Pongphak Chidchob
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Robin S Stein
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Anthony K Mittermaier
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Tomislav Friščić
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Hanadi Sleiman
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| |
Collapse
|
112
|
Triplex-quadruplex structural scaffold: a new binding structure of aptamer. Sci Rep 2017; 7:15467. [PMID: 29133961 PMCID: PMC5684193 DOI: 10.1038/s41598-017-15797-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/02/2017] [Indexed: 11/08/2022] Open
Abstract
Apart from the canonical Watson-Crick duplex, nucleic acids can often form other structures, e.g. G-quadruplex and triplex. These structures give nucleic acid additional functions besides coding for genetic information. Aptamers are one type of functional nucleic acids that bind to specific targets with high selectivity and affinity by folding into special tertiary structures. Despite the fact that numerous aptamers have been reported, only a few different types of aptamer structures are identified. Here we report a novel triplex-quadruplex hybrid scaffold formed by a codeine binding aptamer (CBA). CBA and its derivatives are G-rich DNA sequences. Codeine binding can induce the formation of a complex structure for this aptamer containing a G-quadruplex and a G·GC triplex, while codeine is located at the junction of the triplex and quadruplex. When split CBA into two moieties, codeine does not bind either moieties individually, but can bind them together by inducing the formation of the triplex-quadruplex scaffold. This structure formation induced by codeine binding is shown to inhibit polymerase reaction, which shows a potential application of the aptamer sequence in gene regulations.
Collapse
|
113
|
Lim CJ, Zaug AJ, Kim HJ, Cech TR. Reconstitution of human shelterin complexes reveals unexpected stoichiometry and dual pathways to enhance telomerase processivity. Nat Commun 2017; 8:1075. [PMID: 29057866 PMCID: PMC5651854 DOI: 10.1038/s41467-017-01313-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/07/2017] [Indexed: 01/24/2023] Open
Abstract
The human shelterin proteins associate with telomeric DNA to confer telomere protection and length regulation. They are thought to form higher-order protein complexes for their functions, but studies of shelterin proteins have been mostly limited to pairs of proteins. Here we co-express various human shelterin proteins and find that they form defined multi-subunit complexes. A complex harboring both TRF2 and POT1 has the strongest binding affinity to telomeric DNA substrates comprised of double-stranded DNA with a 3′ single-stranded extension. TRF2 interacts with TIN2 with an unexpected 2:1 stoichiometry in the context of shelterin (RAP12:TRF22:TIN21:TPP11:POT11). Tethering of TPP1 to the telomere either via TRF2–TIN2 or via POT1 gives equivalent enhancement of telomerase processivity. We also identify a peptide region from TPP1 that is both critical and sufficient for TIN2 interaction. Our findings reveal new information about the architecture of human shelterin and how it performs its functions at telomeres. The human shelterin complex protects telomere ends from being recognized as damaged DNA sites and regulates telomere length in conjunction with telomerase. Here the authors establish the stoichiometries of human shelterin complexes of various compositions and show shelterin provides dual pathways to stimulate telomerase processivity.
Collapse
Affiliation(s)
- Ci Ji Lim
- Howard Hughes Medical Institute, University of Colorado BioFrontiers Institute, Boulder, CO, 80309, USA.,Department of Chemistry & Biochemistry, University of Colorado, Boulder, CO, 80309, USA
| | - Arthur J Zaug
- Howard Hughes Medical Institute, University of Colorado BioFrontiers Institute, Boulder, CO, 80309, USA.,Department of Chemistry & Biochemistry, University of Colorado, Boulder, CO, 80309, USA
| | - Hee Jin Kim
- Howard Hughes Medical Institute, University of Colorado BioFrontiers Institute, Boulder, CO, 80309, USA.,Department of Chemistry & Biochemistry, University of Colorado, Boulder, CO, 80309, USA
| | - Thomas R Cech
- Howard Hughes Medical Institute, University of Colorado BioFrontiers Institute, Boulder, CO, 80309, USA. .,Department of Chemistry & Biochemistry, University of Colorado, Boulder, CO, 80309, USA.
| |
Collapse
|
114
|
Bao HL, Ishizuka T, Sakamoto T, Fujimoto K, Uechi T, Kenmochi N, Xu Y. Characterization of human telomere RNA G-quadruplex structures in vitro and in living cells using 19F NMR spectroscopy. Nucleic Acids Res 2017; 45:5501-5511. [PMID: 28180296 PMCID: PMC5435947 DOI: 10.1093/nar/gkx109] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/06/2017] [Indexed: 11/12/2022] Open
Abstract
Human telomeric RNA has been identified as a key component of the telomere machinery. Recently, the growing evidence suggests that the telomeric RNA forms G-quadruplex structures to play an important role in telomere protection and regulation. In the present studies, we developed a 19F NMR spectroscopy method to investigate the telomeric RNA G-quadruplex structures in vitro and in living cells. We demonstrated that the simplicity and sensitivity of 19F NMR approach can be used to directly observe the dimeric and two-subunits stacked G-quadruplexes in vitro and in living cells and quantitatively characterize the thermodynamic properties of the G-quadruplexes. By employing the 19F NMR in living cell experiment, we confirmed for the first time that the higher-order G-quadruplex exists in cells. We further demonstrated that telomere RNA G-quadruplexes are converted to the higher-order G-quadruplex under molecular crowding condition, a cell-like environment. We also show that the higher-order G-quadruplex has high thermal stability in crowded solutions. The finding provides new insight into the structural behavior of telomere RNA G-quadruplex in living cells. These results open new avenues for the investigation of G-quadruplex structures in vitro and in living cells.
Collapse
Affiliation(s)
- Hong-Liang Bao
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Takumi Ishizuka
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Takashi Sakamoto
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahi-dai, Nomi, Ishikawa 923-1292, Japan
| | - Kenzo Fujimoto
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahi-dai, Nomi, Ishikawa 923-1292, Japan
| | - Tamayo Uechi
- Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Naoya Kenmochi
- Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| |
Collapse
|
115
|
Chen L, Zhang YH, Huang G, Pan X, Wang S, Huang T, Cai YD. Discriminating cirRNAs from other lncRNAs using a hierarchical extreme learning machine (H-ELM) algorithm with feature selection. Mol Genet Genomics 2017; 293:137-149. [DOI: 10.1007/s00438-017-1372-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 09/07/2017] [Indexed: 12/15/2022]
|
116
|
Zhao A, Howson SE, Zhao C, Ren J, Scott P, Wang C, Qu X. Chiral metallohelices enantioselectively target hybrid human telomeric G-quadruplex DNA. Nucleic Acids Res 2017; 45:5026-5035. [PMID: 28398500 PMCID: PMC5435910 DOI: 10.1093/nar/gkx244] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/30/2017] [Indexed: 02/05/2023] Open
Abstract
The design and synthesis of metal complexes that can specifically target DNA secondary structure has attracted considerable attention. Chiral metallosupramolecular complexes (e.g. helicates) in particular display unique DNA-binding behavior, however until recently few examples which are both water-compatible and enantiomerically pure have been reported. Herein we report that one metallohelix enantiomer Δ1a, available from a diastereoselective synthesis with no need for resolution, can enantioselectively stabilize human telomeric hybrid G-quadruplex and strongly inhibit telomerase activity with IC50 of 600 nM. In contrast, no such a preference is observed for the mirror image complex Λ1a. More intriguingly, neither of the two enantiomers binds specifically to human telomeric antiparallel G-quadruplex. To the best of our knowledge, this is the first example of one pair of enantiomers with contrasting selectivity for human telomeric hybrid G-quadruplex. Further studies show that Δ1a can discriminate human telomeric G-quadruplex from other telomeric G-quadruplexes.
Collapse
Affiliation(s)
- Andong Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Chinese Academy of Science, Beijing 100039, China
| | - Suzanne E. Howson
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Chuanqi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- To whom correspondence should be addressed. Tel: +86 431 8526 2656; Fax: +86 431 8526 2656; . Correspondence may also be addressed to Chuanqi Zhao. Tel: +86 431 8526 2656; Fax: +86 431 8526 2656;
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Peter Scott
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Chunyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Avenue, Changchun 130012, China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- To whom correspondence should be addressed. Tel: +86 431 8526 2656; Fax: +86 431 8526 2656; . Correspondence may also be addressed to Chuanqi Zhao. Tel: +86 431 8526 2656; Fax: +86 431 8526 2656;
| |
Collapse
|
117
|
Ye MY, Zhu RT, Li X, Zhou XS, Yin ZZ, Li Q, Shao Y. Adaptively Recognizing Parallel-Stranded Duplex Structure for Fluorescent DNA Polarity Analysis. Anal Chem 2017; 89:8604-8608. [DOI: 10.1021/acs.analchem.7b02467] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mei-Yun Ye
- Institute
of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Rui-Tao Zhu
- Department
of Chemistry, Taiyuan Normal University, Taiyuan 030031, China
| | - Xiang Li
- Langzhong People’s Hospital, Langzhong 637400, Sichuan, China
| | - Xiao-Shun Zhou
- Institute
of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Zheng-Zhi Yin
- College
of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Qian Li
- Institute
of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yong Shao
- Institute
of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| |
Collapse
|
118
|
Antiparallel RNA G-quadruplex Formed by Human Telomere RNA Containing 8-Bromoguanosine. Sci Rep 2017; 7:6695. [PMID: 28751647 PMCID: PMC5532209 DOI: 10.1038/s41598-017-07050-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/21/2017] [Indexed: 11/09/2022] Open
Abstract
In this study, by combining nuclear magnetic resonance (NMR), circular dichroism (CD), liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS), and gel electrophoresis, we report an unusual topological structure of the RNA G-quadruplex motif formed by human telomere RNA r(UAGGGU) containing 8-bromoguanosine. Results showed that the RNA sequence formed an antiparallel tetramolecular G-quadruplex, in which each pair of diagonal strands run in opposite directions. Furthermore, guanosines were observed both in syn- and anti-conformations. In addition, two of these G-quadruplex subunits were found to be stacking on top of each other, forming a dimeric RNA G-quadruplex. Our findings provide a new insight into the behavior of RNA G-quadruplex structures.
Collapse
|
119
|
Qin QP, Qin JL, Chen M, Li YL, Meng T, Zhou J, Liang H, Chen ZF. Chiral platinum (II)-4-(2,3-dihydroxypropyl)- formamide oxo-aporphine (FOA) complexes promote tumor cells apoptosis by directly targeting G-quadruplex DNA in vitro and in vivo. Oncotarget 2017; 8:61982-61997. [PMID: 28977920 PMCID: PMC5617480 DOI: 10.18632/oncotarget.18778] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/06/2017] [Indexed: 11/25/2022] Open
Abstract
Three platinum(II) complexes, 4 (LC-004), 5 (LC-005), and 6 (LC-006), with the chiral FOA ligands R/S-(±)-FOA (1), R-(+)-FOA (2) and S-(–)-FOA (3), respectively, were synthesized and characterized. As potential anti-tumor agents, these complexes show higher cytotoxicity to BEL-7404 cells than the HL-7702 normal cells. They are potential telomerase inhibitors that target c-myc and human telomeric G-quadruplex DNA. Compared to complexes 4 and 5, 6 exhibited higher binding affinities towards telomeric, c-myc G-quadruplex DNA and caspase-3/9, thereby inducing senescence and apoptosis to a greater extent in tumor cells. Moreover, our in vivo studies showed that complex 6 can effectively inhibit tumor growth in the BEL-7404 and BEL-7402 xenograft mouse models and is less toxic than 5-fluorouracil and cisplatin. The effective inhibition of tumor growth is attributed to its interactions with 53BP1, TRF1, c-myc, TRF2, and hTERT. Thus, complex 6 can serve as a novel lead compound and a potential drug candidate for anticancer chemotherapy.
Collapse
Affiliation(s)
- Qi-Pin Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| | - Jiao-Lan Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| | - Ming Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| | - Yu-Lan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| | - Ting Meng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| | - Jie Zhou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
120
|
Chen C, Wei M, Liu Y, Xu E, Wei W, Zhang Y, Liu S. Visual and fluorometric determination of telomerase activity by using a cationic conjugated polymer and fluorescence resonance energy transfer. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2362-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
121
|
Zhou J, Amrane S, Rosu F, Salgado GF, Bian Y, Tateishi-Karimata H, Largy E, Korkut DN, Bourdoncle A, Miyoshi D, Zhang J, Ju H, Wang W, Sugimoto N, Gabelica V, Mergny JL. Unexpected Position-Dependent Effects of Ribose G-Quartets in G-Quadruplexes. J Am Chem Soc 2017; 139:7768-7779. [PMID: 28523907 DOI: 10.1021/jacs.7b00648] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To understand the role of ribose G-quartets and how they affect the properties of G-quadruplex structures, we studied three systems in which one, two, three, or four deoxyribose G-quartets were substituted with ribose G-quartets. These systems were a parallel DNA intramolecular G-quadruplex, d(TTGGGTGGGTTGGGTGGGTT), and two tetramolecular G-quadruplexes, d(TGGGT) and d(TGGGGT). Thermal denaturation experiments revealed that ribose G-quartets have position-dependent and cumulative effects on G-quadruplex stability. An unexpected destabilization was observed when rG quartets were presented at the 5'-end of the G stack. This observation challenges the general belief that RNA residues stabilize G-quadruplexes. Furthermore, in contrast to past proposals, hydration is not the main factor determining the stability of our RNA/DNA chimeric G-quadruplexes. Interestingly, the presence of rG residues in a central G-quartet facilitated the formation of additional tetramolecular G-quadruplex topologies showing positive circular dichroism signals at 295 nm. 2D NMR analysis of the tetramolecular TGgGGT (lowercase letter indicates ribose) indicates that Gs in the 5'-most G-quartet adopt the syn conformation. These analyses highlight several new aspects of the role of ribose G-quartets on G-quadruplex structure and stability, and demonstrate that the positions of ribose residues are critical for tuning G-quadruplex properties.
Collapse
Affiliation(s)
- Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University , Nanjing 210023, China.,Université de Bordeaux , INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, F-33600 Pessac, France
| | - Samir Amrane
- Université de Bordeaux , INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, F-33600 Pessac, France
| | - Frédéric Rosu
- Université de Bordeaux , CNRS UMS 3033, INSERM US001, IECB, F-33600 Pessac, France
| | - Gilmar F Salgado
- Université de Bordeaux , INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, F-33600 Pessac, France
| | - Yunqiang Bian
- Shandong Provincial Key Laboratory of Functional Macromolecular Biophysics, Institute of Biophysics, Dezhou University , Dezhou 253023, China
| | - Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER) and Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University , 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Eric Largy
- Université de Bordeaux , INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, F-33600 Pessac, France
| | - Dursun Nizam Korkut
- Université de Bordeaux , INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, F-33600 Pessac, France
| | - Anne Bourdoncle
- Université de Bordeaux , INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, F-33600 Pessac, France
| | - Daisuke Miyoshi
- Frontier Institute for Biomolecular Engineering Research (FIBER) and Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University , 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Jian Zhang
- Collaborative Innovation Center of Advanced Microstructures and Department of Physics, Nanjing University , Nanjing 210093, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University , Nanjing 210023, China
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures and Department of Physics, Nanjing University , Nanjing 210093, China
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER) and Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University , 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Valérie Gabelica
- Université de Bordeaux , INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, F-33600 Pessac, France
| | - Jean-Louis Mergny
- Université de Bordeaux , INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, F-33600 Pessac, France.,Institute of Biophysics of the CAS , v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
122
|
Liu X, Ishizuka T, Bao HL, Wada K, Takeda Y, Iida K, Nagasawa K, Yang D, Xu Y. Structure-Dependent Binding of hnRNPA1 to Telomere RNA. J Am Chem Soc 2017; 139:7533-7539. [PMID: 28510424 DOI: 10.1021/jacs.7b01599] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Telomeric repeat-containing RNA is a new noncoding RNA molecule that performs various biofunctions. Heterogeneous nuclear ribonucleoprotein (hnRNP) A1 is an RNA-binding protein involved in the telomere maintenance machinery. To date, little is known about how hnRNPA1 binds to telomeric RNA. In this study, we investigated the binding affinity and recognition mechanism of telomere RNA with the RNA recognition motif of hnRNPA1. Using the photochemical cross-linking method, we showed that the telomere RNA G-quadruplex with loops is important in the interaction of telomere RNA with hnRNPA1. Using small-molecule probes, we directly visualized the complex formed by the telomere RNA G-quadruplex and hnRNPA1 in vitro and in live cells. The results suggested that the structure-dependent binding of hnRNPA1 to telomere RNA regulates the telomere function. Therefore, our study provides new insights into the interactions between the RNA G-quadruplex and proteins at the telomere.
Collapse
Affiliation(s)
- Xiao Liu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki , 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Takumi Ishizuka
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki , 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Hong-Liang Bao
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki , 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Kei Wada
- Organization for Promotion of Tenure Track, University of Miyazaki , 1-1 Gakuenkibanadai-nishi, Kiyotake, Miyazaki 889-2192, Japan
| | - Yuma Takeda
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki , 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Keisuke Iida
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology , 2-24-16 Naka-cho, Koganei City, Tokyo 184-8588, Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology , 2-24-16 Naka-cho, Koganei City, Tokyo 184-8588, Japan
| | - Danzhou Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University , 201 South University Street, West Lafayette, Indiana 47907, United States
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki , 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| |
Collapse
|
123
|
Bao H, Ishizuka T, Iwanami A, Oyoshi T, Xu Y. A Simple and Sensitive
19
F NMR Approach for Studying the Interaction of RNA G‐Quadruplex with Ligand Molecule and Protein. ChemistrySelect 2017. [DOI: 10.1002/slct.201700711] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Hong‐Liang Bao
- Division of Chemistry, Department of Medical Sciences Department, Faculty of MedicineUniversity of Miyazaki 5200 Kihara, Kiyotake Miyazaki 889-1692 Japan
| | - Takumi Ishizuka
- Division of Chemistry, Department of Medical Sciences Department, Faculty of MedicineUniversity of Miyazaki 5200 Kihara, Kiyotake Miyazaki 889-1692 Japan
| | - Ayaka Iwanami
- Faculty of Science, Department of ChemistryShizuoka University 836 Ohya Suruga Shizuoka 422-8529 Japan
| | - Takanori Oyoshi
- Faculty of Science, Department of ChemistryShizuoka University 836 Ohya Suruga Shizuoka 422-8529 Japan
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences Department, Faculty of MedicineUniversity of Miyazaki 5200 Kihara, Kiyotake Miyazaki 889-1692 Japan
| |
Collapse
|
124
|
Wang LJ, Ma F, Tang B, Zhang CY. Sensing telomerase: From in vitro detection to in vivo imaging. Chem Sci 2017; 8:2495-2502. [PMID: 28553482 PMCID: PMC5431678 DOI: 10.1039/c6sc04801c] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/12/2016] [Indexed: 01/12/2023] Open
Abstract
Telomerase is a ribonucleoprotein reverse transcriptase that is responsible for maintaining the telomere length in cells. Telomerase overexpresses in almost all malignant tumor cells, and it has become a promising biomarker and a potential therapy target for cancers. Consequently, accurate and efficient quantification of the telomerase is highly essential to medical diagnostics and therapeutics. Recently, a series of novel telomerase detection methods with excellent performance have been developed, but a overview of in vivo telomerase detection methods is lacking. In this Minireview, we summarize the emerging strategies for telomerase assays in the last five years, including both in vitro assays and in vivo imaging methods, and discuss their future directions as well.
Collapse
Affiliation(s)
- Li-Juan Wang
- College of Chemistry , Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China . ; ; ; Tel: +86 0531 86186033
| | - Fei Ma
- College of Chemistry , Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China . ; ; ; Tel: +86 0531 86186033
| | - Bo Tang
- College of Chemistry , Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China . ; ; ; Tel: +86 0531 86186033
| | - Chun-Yang Zhang
- College of Chemistry , Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China . ; ; ; Tel: +86 0531 86186033
| |
Collapse
|
125
|
Zou BQ, Qin QP, Bai YX, Cao QQ, Zhang Y, Liu YC, Chen ZF, Liang H. Synthesis and antitumor mechanism of a new iron(iii) complex with 5,7-dichloro-2-methyl-8-quinolinol as ligands. MEDCHEMCOMM 2017; 8:633-639. [PMID: 30108780 PMCID: PMC6072324 DOI: 10.1039/c6md00644b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 01/26/2017] [Indexed: 11/21/2022]
Abstract
A new iron(iii) complex with 5,7-dichloro-2-methyl-8-quinolinol (HClMQ) as ligands, i.e., [Fe(ClMQ)2Cl] (1), was synthesized and evaluated for its anticancer activity. Compared to the HClMQ ligand, complex 1 showed a higher cytotoxicity towards a series of tumor cell lines, including Hep-G2, BEL-7404, NCI-H460, A549, and T-24, with IC50 values in the range of 5.04-14.35 μM. Notably, the Hep-G2 cell line was the most sensitive to complex 1. Mechanistic studies indicated that complex 1 is a telomerase inhibitor targeting c-myc G-quadruplex DNA and can trigger cell apoptosis via inducing cell cycle arrest and DNA damage.
Collapse
Affiliation(s)
- Bi-Qun Zou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , Guilin , Guangxi 541004 , P. R. China . ; ; ; ; Tel: +86 773 2120958
- Department of Chemistry , Guilin Normal College , Guilin , Guangxi 541001 , P. R. China
| | - Qi-Pin Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , Guilin , Guangxi 541004 , P. R. China . ; ; ; ; Tel: +86 773 2120958
| | - Yu-Xia Bai
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , Guilin , Guangxi 541004 , P. R. China . ; ; ; ; Tel: +86 773 2120958
| | - Qian-Qian Cao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , Guilin , Guangxi 541004 , P. R. China . ; ; ; ; Tel: +86 773 2120958
| | - Ye Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , Guilin , Guangxi 541004 , P. R. China . ; ; ; ; Tel: +86 773 2120958
- Department of Chemistry , Guilin Normal College , Guilin , Guangxi 541001 , P. R. China
- College of Pharmacy , Guilin Medical University , North Ring 2rd Road 109 , Guilin 541004 , P. R. China
| | - Yan-Cheng Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , Guilin , Guangxi 541004 , P. R. China . ; ; ; ; Tel: +86 773 2120958
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , Guilin , Guangxi 541004 , P. R. China . ; ; ; ; Tel: +86 773 2120958
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , Guilin , Guangxi 541004 , P. R. China . ; ; ; ; Tel: +86 773 2120958
| |
Collapse
|
126
|
Rebič M, Mocci F, Uličný J, Lyubartsev AP, Laaksonen A. Coarse-Grained Simulation of Rodlike Higher-Order Quadruplex Structures at Different Salt Concentrations. ACS OMEGA 2017; 2:386-396. [PMID: 31457446 PMCID: PMC6641151 DOI: 10.1021/acsomega.6b00419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/19/2017] [Indexed: 05/03/2023]
Abstract
We present a coarse-grained (CG) model of a rodlike higher-order quadruplex with explicit monovalent salts, which was developed from radial distribution functions of an underlying reference atomistic molecular dynamics simulation using inverse Monte Carlo technique. This work improves our previous CG model and extends its applicability beyond the minimal salt conditions, allowing its use at variable ionic strengths. The strategies necessary for the model development are clearly explained and discussed. The effects of the number of stacked quadruplexes and varied salt concentration on the elasticity of the rodlike higher-order quadruplex structures are analyzed. The CG model reproduces the deformations of the terminal parts in agreement with experimental observations without introducing any special parameters for terminal beads and reveals slight differences in the rise and twist of the G-quartet arrangement along the studied biopolymer. The conclusions of our study can be generalized for other G-quartet-based structures.
Collapse
Affiliation(s)
- Matúš Rebič
- Division
of Physical Chemistry, Department of Materials and Environmental Chemistry,
Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden
- Department of Biophysics, Faculty
of Science and Centre for Multimodal Imaging (CMI),
Department of Biophysics, Institute of Physics, P. J. Šafárik University, Jesenná 5, 041 54 Košice, Slovakia
- Science
for Life Laboratory (SciLifeLab), 17121 Solna, Sweden
| | - Francesca Mocci
- Division
of Physical Chemistry, Department of Materials and Environmental Chemistry,
Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden
- Science
for Life Laboratory (SciLifeLab), 17121 Solna, Sweden
- Department
of Chemical and Geological Sciences, University
of Cagliari, I-09042 Monserrato, Italy
| | - Jozef Uličný
- Department of Biophysics, Faculty
of Science and Centre for Multimodal Imaging (CMI),
Department of Biophysics, Institute of Physics, P. J. Šafárik University, Jesenná 5, 041 54 Košice, Slovakia
| | - Alexander P. Lyubartsev
- Division
of Physical Chemistry, Department of Materials and Environmental Chemistry,
Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden
| | - Aatto Laaksonen
- Division
of Physical Chemistry, Department of Materials and Environmental Chemistry,
Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden
- Science
for Life Laboratory (SciLifeLab), 17121 Solna, Sweden
- Department
of Chemical and Geological Sciences, University
of Cagliari, I-09042 Monserrato, Italy
- Stellenbosch
Institute of Advanced Study (STIAS), Wallenberg
Research Centre at Stellenbosch University, 7600 Stellenbosch, South Africa
- E-mail: . Phone: +46 8 162372 (A.L.)
| |
Collapse
|
127
|
Xiao CD, Ishizuka T, Zhu XQ, Li Y, Sugiyama H, Xu Y. Unusual Topological RNA Architecture with an Eight-Stranded Helical Fragment Containing A-, G-, and U-Tetrads. J Am Chem Soc 2017; 139:2565-2568. [DOI: 10.1021/jacs.6b12274] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chao-Da Xiao
- Division
of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Takumi Ishizuka
- Division
of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Xiao-Qing Zhu
- Division
of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Yue Li
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho,
Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho,
Sakyo-ku, Kyoto 606-8502, Japan
| | - Yan Xu
- Division
of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| |
Collapse
|
128
|
Saadallah D, Bellakhal M, Amor S, Lefebvre JF, Chavarot-Kerlidou M, Baussanne I, Moucheron C, Demeunynck M, Monchaud D. Selective Luminescent Labeling of DNA and RNA Quadruplexes by π-Extended Ruthenium Light-Up Probes. Chemistry 2017; 23:4967-4972. [DOI: 10.1002/chem.201605948] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Indexed: 01/26/2023]
Affiliation(s)
- Dounia Saadallah
- Laboratoire de Chimie Organique et Photochimie; Université Libre de Bruxelles; 1050 Bruxelles Belgium
- Departement de Pharmacochimie Moléculaire; Université Grenoble Alpes, CNRS UMR5063; 38041 Grenoble France
| | - Mehdi Bellakhal
- Institut de Chimie Moléculaire; ICMUB CNRS UMR6302, UBFC; 21078 Dijon France
| | - Souheila Amor
- Institut de Chimie Moléculaire; ICMUB CNRS UMR6302, UBFC; 21078 Dijon France
| | - Jean-François Lefebvre
- Departement de Pharmacochimie Moléculaire; Université Grenoble Alpes, CNRS UMR5063; 38041 Grenoble France
- Laboratoire de Chimie et Biologie des Métaux; Université Grenoble Alpes, CNRS UMR5249, CEA; 38054 Grenoble France
| | - Murielle Chavarot-Kerlidou
- Laboratoire de Chimie et Biologie des Métaux; Université Grenoble Alpes, CNRS UMR5249, CEA; 38054 Grenoble France
| | - Isabelle Baussanne
- Departement de Pharmacochimie Moléculaire; Université Grenoble Alpes, CNRS UMR5063; 38041 Grenoble France
| | - Cécile Moucheron
- Laboratoire de Chimie Organique et Photochimie; Université Libre de Bruxelles; 1050 Bruxelles Belgium
| | - Martine Demeunynck
- Departement de Pharmacochimie Moléculaire; Université Grenoble Alpes, CNRS UMR5063; 38041 Grenoble France
| | - David Monchaud
- Institut de Chimie Moléculaire; ICMUB CNRS UMR6302, UBFC; 21078 Dijon France
| |
Collapse
|
129
|
Yashchuk VM, Kudrya VY. The spectral properties of DNA and RNA macromolecules at low temperatures: fundamental and applied aspects. Methods Appl Fluoresc 2017; 5:014001. [PMID: 28099165 DOI: 10.1088/2050-6120/aa50c9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This paper summarizes the results of studies of the spectral properties-optical absorption, fluorescence and phosphorescence-of DNA and RNA macromolecules and synthetic poly-, oligo- and mono-nucleotides, which have been carried out in our laboratory. The system of first excited singlet and triplet energy levels for DNA and RNA is evaluated using low-temperature (4.2 K-77 K) luminescent measurements. The traps of the singlet and triplet electronic excitations in these compounds are identified. An important self-protection mechanism against photo-damage of DNA and RNA by UV photons or penetrative radiation based on the capture of triplet electronic-energy excitations by the most photostable centers-in DNA, the complex formed by neighboring adenosine (A) and thymidine (T) links; in RNA, the adenosine links-is described. It is confirmed that despite similarities in the chemical and partly energy structures DNA is more stable than RNA. The spectral manifestation of the telomeres (the important functional system) in DNA macromolecules is examined. The results obtained on telomere fragments provide the possibility of finding the configuration peculiarities of the triplet excitations traps in DNA macromolecules. The resulting spreading length of the migrating singlet (l s) and triplet (l t) excitations for DNA and RNA macromolecules are evaluated.
Collapse
Affiliation(s)
- Valeriy M Yashchuk
- Physics Faculty, Kyiv National Taras Shevchenko University, prosp. Glushkova, 4, Kyiv 03022, Ukraine
| | | |
Collapse
|
130
|
Wang Y, Yang L, Wang Y, Liu W, Li B, Jin Y. An ultra-sensitive colorimetric assay for reliable visual detection of telomerase activity. Analyst 2017; 142:3235-3240. [DOI: 10.1039/c7an00950j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We proposed a sensitive colorimetric assay for detecting telomerase activity. The telomerase activity of 5 and 20 HeLa cell lysates can be detected via UV-vis spectroscopy and the naked eye, respectively.
Collapse
Affiliation(s)
- Yaocai Wang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
| | - Luzhu Yang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
| | - Yanjun Wang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
| | - Wei Liu
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
| | - Baoxin Li
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
| | - Yan Jin
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
| |
Collapse
|
131
|
Pithan PM, Decker D, Druzhinin SI, Ihmels H, Schönherr H, Voß Y. 8-Styryl-substituted coralyne derivatives as DNA binding fluorescent probes. RSC Adv 2017; 7:10660-10667. [PMID: 28496973 PMCID: PMC5361113 DOI: 10.1039/c6ra27684a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/30/2017] [Indexed: 12/16/2022] Open
Abstract
8-Styryl-substituted coralyne derivatives bind to duplex and quadruplex DNA and may be used for fluorimetric staining of nucleoli in cells.
Six new 8-styryl-substituted coralyne derivatives 4a–f were synthesized from coralyne (2) by a base catalysed Knoevenagel type reaction. It was shown by photometric and fluorimetric titrations of double stranded and quadruplex DNA to 4b–d as well as by fluorimetric DNA denaturation experiments that these ligands bind to DNA with different binding modes at varying ligand-DNA ratios (LDR). Specifically, the addition of DNA caused initially a hypochromic effect in absorbance and, at a particular LDR, the development of a new red shifted absorption band with a hyperchromic effect. Furthermore, 4b–d induced a significant and selective stabilization of quadruplex DNA towards unfolding (ΔTm = 31.6–32.9 °C at LDR = 5), which is even more pronounced as compared to the parent compound coralyne (2). Most notably, the addition of DNA to the dimethylamino-substituted derivative 4b leads to a new, strongly red-shifted emission band at 695 nm. Hence, this derivative is a fluorescent probe that changes its fluorescence colour from green to red in the presence of DNA and even allows the fluorimetric analysis of living cells by staining of the nucleoli.
Collapse
Affiliation(s)
- P M Pithan
- Department of Chemistry and Biology, University of Siegen, Center of Micro- and Nanochemistry and Engineering, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | - D Decker
- Department of Chemistry and Biology, University of Siegen, Center of Micro- and Nanochemistry and Engineering, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | - S I Druzhinin
- Department of Chemistry and Biology, University of Siegen, Center of Micro- and Nanochemistry and Engineering, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | - H Ihmels
- Department of Chemistry and Biology, University of Siegen, Center of Micro- and Nanochemistry and Engineering, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | - H Schönherr
- Department of Chemistry and Biology, University of Siegen, Center of Micro- and Nanochemistry and Engineering, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | - Y Voß
- Department of Chemistry and Biology, University of Siegen, Center of Micro- and Nanochemistry and Engineering, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| |
Collapse
|
132
|
Kerkour A, Mergny JL, Salgado GF. NMR based model of human telomeric repeat G-quadruplex in complex with 2,4,6-triarylpyridine family ligand. Biochim Biophys Acta Gen Subj 2016; 1861:1293-1302. [PMID: 28007578 DOI: 10.1016/j.bbagen.2016.12.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/12/2016] [Accepted: 12/17/2016] [Indexed: 11/25/2022]
Abstract
G-quadruplexes (G4) are one of the several different forms of non-canonical DNA structures that can occur in our genome. Their existence is thought to be implicated in important biological functions such as positive and negative transcription regulation or telomeric extension. The human telomeric sequence G4 formed by repetitive nucleotide sequences (T2AG3) at each chromosome end is an important example of intramolecular G4. Knowing the atomic details for different families of ligands targeting G-quadruplex structures hypothetically found in the telomeric repeat it is an important step for rational drug design. Especially if the aim is to prevent or interfere with telomerase extending the 3' end of telomeres. In this study, we report the structure of the complex formed between the telomeric repeat sequence (d[AG3(T2AG3)3]) intramolecular G-quadruplex and the 2,4,6-Triarylpyridine compound. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.
Collapse
Affiliation(s)
- Abdelaziz Kerkour
- Univ. Bordeaux, CNRS/Inserm, Laboratoire ARNA, Institut Européen de Chimie et de Biologie (IECB), 2 rue Robert Escarpit 33607, Pessac, France
| | - Jean-Louis Mergny
- Univ. Bordeaux, CNRS/Inserm, Laboratoire ARNA, Institut Européen de Chimie et de Biologie (IECB), 2 rue Robert Escarpit 33607, Pessac, France
| | - Gilmar F Salgado
- Univ. Bordeaux, CNRS/Inserm, Laboratoire ARNA, Institut Européen de Chimie et de Biologie (IECB), 2 rue Robert Escarpit 33607, Pessac, France.
| |
Collapse
|
133
|
Qin QP, Qin JL, Meng T, Yang GA, Wei ZZ, Liu YC, Liang H, Chen ZF. Preparation of 6/8/11-Amino/Chloro-Oxoisoaporphine and Group-10 Metal Complexes and Evaluation of Their in Vitro and in Vivo Antitumor Activity. Sci Rep 2016; 6:37644. [PMID: 27898051 PMCID: PMC5127189 DOI: 10.1038/srep37644] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/19/2016] [Indexed: 12/26/2022] Open
Abstract
A series of group-10 metal complexes 1–14 of oxoisoaporphine derivatives were designed and synthesized. 1–14 were more selectively cytotoxic to Hep-G2 cells comparing with normal liver cells. In vitro cytotoxicity results showed that complexes 1–6, 7, 8, 10 and 11, especially 3, were telomerase inhibitors targeting c-myc, telomeric, and bcl-2 G4s and triggered cell senescence and apoptosis; they also caused telomere/DNA damage and S phase arrest. In addition, 1–6 also caused mitochondrial dysfunction. Notably, 3 with 6-amino substituted ligand La exhibited less side effects than 6 with 8-amino substituted ligand Lb and cisplatin, but similar tumor growth inhibition efficacy in BEL-7402 xenograft model. Complex 3 has the potential to be developed as an effective anticancer agent.
Collapse
Affiliation(s)
- Qi-Pin Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, P.R. China
| | - Jiao-Lan Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, P.R. China
| | - Ting Meng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, P.R. China
| | - Gui-Ai Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, P.R. China
| | - Zu-Zhuang Wei
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, P.R. China
| | - Yan-Cheng Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, P.R. China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, P.R. China
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, P.R. China
| |
Collapse
|
134
|
Oxoisoaporphine as Potent Telomerase Inhibitor. Molecules 2016; 21:molecules21111534. [PMID: 27854257 PMCID: PMC6274343 DOI: 10.3390/molecules21111534] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 10/25/2016] [Accepted: 11/05/2016] [Indexed: 11/17/2022] Open
Abstract
Two compounds previously isolated from traditional Chinese medicine, Menispermum dauricum (DC), 6-hydroxyl-oxoisoaporphine (H-La), and 4,6-di(2-pyridinyl)benzo[h]isoindolo[4,5,6-de]quinolin-8(5H)-one (H-Lb), were known to have in vitro antitumor activity and to selectively bind human telomeric, c-myc, and bcl-2 G-quadruplexes (G4s). In this study, the binding properties of these two compounds to telomerase were investigated through molecular docking and telomeric repeat amplication protocol and silver staining assay (TRAP-silver staining assay). The binding energies bound to human telomerase RNA were calculated by molecular docking to be -6.43 and -9.76 kcal/mol for H-La and H-Lb, respectively. Compared with H-La, the ligand H-Lb more strongly inhibited telomerase activity in the SK-OV-3 cells model.
Collapse
|
135
|
Kumar V, kashav T, Islam A, Ahmad F, Hassan MI. Structural insight into C9orf72 hexanucleotide repeat expansions: Towards new therapeutic targets in FTD-ALS. Neurochem Int 2016; 100:11-20. [DOI: 10.1016/j.neuint.2016.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/12/2016] [Accepted: 08/12/2016] [Indexed: 12/12/2022]
|
136
|
Kawamoto Y, Sasaki A, Chandran A, Hashiya K, Ide S, Bando T, Maeshima K, Sugiyama H. Targeting 24 bp within Telomere Repeat Sequences with Tandem Tetramer Pyrrole–Imidazole Polyamide Probes. J Am Chem Soc 2016; 138:14100-14107. [DOI: 10.1021/jacs.6b09023] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yusuke Kawamoto
- Department
of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Asuka Sasaki
- Structural Biology Center, National Institute
of Genetics, and Department of Genetics, School of Life Science, Graduate University for Advanced Studies (Sokendai), Mishima, Shizuoka 411-8540, Japan
| | - Anandhakumar Chandran
- Department
of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kaori Hashiya
- Department
of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Satoru Ide
- Structural Biology Center, National Institute
of Genetics, and Department of Genetics, School of Life Science, Graduate University for Advanced Studies (Sokendai), Mishima, Shizuoka 411-8540, Japan
| | - Toshikazu Bando
- Department
of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kazuhiro Maeshima
- Structural Biology Center, National Institute
of Genetics, and Department of Genetics, School of Life Science, Graduate University for Advanced Studies (Sokendai), Mishima, Shizuoka 411-8540, Japan
| | - Hiroshi Sugiyama
- Department
of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material
Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| |
Collapse
|
137
|
Zhao A, Zhao C, Ren J, Qu X. Enantioselective targeting left-handed Z-G-quadruplex. Chem Commun (Camb) 2016; 52:1365-8. [PMID: 26616287 DOI: 10.1039/c5cc08401f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Herein, we report the first example where an M-enantiomer of a chiral metal complex can selectively stabilize a left-handed G-quadruplex, but its P-enantiomer cannot. The interactions between the chiral metal complexes and the left-handed G-quadruplex were evaluated by UV melting, circular dichroism, isothermal titration calorimetry, gel electrophoresis and NMR titrations.
Collapse
Affiliation(s)
- Andong Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Graduate School of the Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | - Chuanqi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Graduate School of the Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Graduate School of the Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Graduate School of the Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| |
Collapse
|
138
|
Computational understanding and experimental characterization of twice-as-smart quadruplex ligands as chemical sensors of bacterial nucleotide second messengers. Sci Rep 2016; 6:33888. [PMID: 27667717 PMCID: PMC5036188 DOI: 10.1038/srep33888] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/05/2016] [Indexed: 12/20/2022] Open
Abstract
A twice-as-smart ligand is a small molecule that experiences a structural switch upon interaction with its target (i.e., smart ligand) that concomitantly triggers its fluorescence (i.e., smart probe). Prototypes of twice-as-smart ligands were recently developed to track and label G-quadruplexes: these higher-order nucleic acid structures originate in the assembly of four guanine(G)-rich DNA or RNA strands, whose stability is imparted by the formation and the self-assembly of G-quartets. The first prototypes of twice-as-smart quadruplex ligands were designed to exploit the self-association of quartets, being themselves synthetic G-quartets. While their quadruplex recognition capability has been thoroughly documented, some doubts remain about the precise photophysical mechanism that underlies their peculiar spectroscopic properties. Here, we uncovered this mechanism via complete theoretical calculations. Collected information was then used to develop a novel application of twice-as-smart ligands, as efficient chemical sensors of bacterial signaling pathways via the fluorescent detection of naturally occurring extracellular quadruplexes formed by cyclic dimeric guanosine monophosphate (c-di-GMP).
Collapse
|
139
|
Direct visualization of both DNA and RNA quadruplexes in human cells via an uncommon spectroscopic method. Sci Rep 2016; 6:32141. [PMID: 27535322 PMCID: PMC4989495 DOI: 10.1038/srep32141] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/03/2016] [Indexed: 01/01/2023] Open
Abstract
Guanine-rich DNA or RNA sequences can fold into higher-order, four-stranded structures termed quadruplexes that are suspected to play pivotal roles in cellular mechanisms including the control of the genome integrity and gene expression. However, the biological relevance of quadruplexes is still a matter of debate owing to the paucity of unbiased evidences of their existence in cells. Recent reports on quadruplex-specific antibodies and small-molecule fluorescent probes help dispel reservations and accumulating evidences now pointing towards the cellular relevance of quadruplexes. To better assess and comprehend their biology, developing new versatile tools to detect both DNA and RNA quadruplexes in cells is essential. We report here a smart fluorescent probe that allows for the simple detection of quadruplexes thanks to an uncommon spectroscopic mechanism known as the red-edge effect (REE). We demonstrate that this effect could open avenues to greatly enhance the ability to visualize both DNA and RNA quadruplexes in human cells, using simple protocols and fluorescence detection facilities.
Collapse
|
140
|
Li W, Li Y, Liu Z, Lin B, Yi H, Xu F, Nie Z, Yao S. Insight into G-quadruplex-hemin DNAzyme/RNAzyme: adjacent adenine as the intramolecular species for remarkable enhancement of enzymatic activity. Nucleic Acids Res 2016; 44:7373-84. [PMID: 27422869 PMCID: PMC5009756 DOI: 10.1093/nar/gkw634] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/29/2016] [Indexed: 01/15/2023] Open
Abstract
G-quadruplex (G4) with stacked G-tetrads structure is able to bind hemin (iron (III)-protoporphyrin IX) to form a unique type of DNAzyme/RNAzyme with peroxidase-mimicking activity, which has been widely employed in multidisciplinary fields. However, its further applications are hampered by its relatively weak activity compared with protein enzymes. Herein, we report a unique intramolecular enhancement effect of the adjacent adenine (EnEAA) at 3' end of G4 core sequences that significantly improves the activity of G4 DNAzymes. Through detailed investigations of the EnEAA, the added 3' adenine was proved to accelerate the compound I formation in catalytic cycle and thus improve the G4 DNAzyme activity. EnEAA was found to be highly dependent on the unprotonated state of the N1 of adenine, substantiating that adenine might function as a general acid-base catalyst. Further adenine analogs analysis supported that both N1 and exocyclic 6-amino groups in adenine played key role in the catalysis. Moreover, we proved that EnEAA was generally applicable for various parallel G-quadruplex structures and even G4 RNAzyme. Our studies implied that adenine might act analogously as the distal histidine in protein peroxidases, which shed light on the fundamental understanding and rational design of G4 DNAzyme/RNAzyme catalysts with enhanced functions.
Collapse
Affiliation(s)
- Wang Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Yong Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Zhuoliang Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Bin Lin
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering & Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Haibo Yi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Feng Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Shouzhuo Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
141
|
Wang H, Wang J, Sun N, Cheng H, Chen H, Pei R. Selection and Characterization of Malachite Green Aptamers for the Development of Light-up Probes. ChemistrySelect 2016. [DOI: 10.1002/slct.201600154] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Hongyan Wang
- Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine; Suzhou Institute of Nano-Tech and Nano-Bionics; Chinese Academy of Sciences; Suzhou 215123 China
- School of Life Science; Shanghai University; Shanghai 200444 China
| | - Jine Wang
- Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine; Suzhou Institute of Nano-Tech and Nano-Bionics; Chinese Academy of Sciences; Suzhou 215123 China
| | - Na Sun
- Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine; Suzhou Institute of Nano-Tech and Nano-Bionics; Chinese Academy of Sciences; Suzhou 215123 China
| | - Hui Cheng
- Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine; Suzhou Institute of Nano-Tech and Nano-Bionics; Chinese Academy of Sciences; Suzhou 215123 China
- School of Life Science; Shanghai University; Shanghai 200444 China
| | - Hongxia Chen
- School of Life Science; Shanghai University; Shanghai 200444 China
| | - Renjun Pei
- Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine; Suzhou Institute of Nano-Tech and Nano-Bionics; Chinese Academy of Sciences; Suzhou 215123 China
| |
Collapse
|
142
|
Musumeci D, Platella C, Riccardi C, Merlino A, Marzo T, Massai L, Messori L, Montesarchio D. A first-in-class and a fished out anticancer platinum compound: cis-[PtCl2(NH3)2] and cis-[PtI2(NH3)2] compared for their reactivity towards DNA model systems. Dalton Trans 2016; 45:8587-600. [PMID: 27126508 DOI: 10.1039/c6dt00294c] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Contrary to what was believed for many years, cis-PtI2(NH3)2, the diiodido analogue of cisplatin, displays high in vitro antiproliferative activity toward a set of tumour cell lines, overcoming resistance to cisplatin in a platinum-resistant cancer cell line. In the context of a general reappraisal of iodinated Pt(ii) derivatives, aiming at a more systematic evaluation of their chemical and biological profiles, here we report on the reactivity of cis-PtI2(NH3)2 with selected DNA model systems, in single, double strand or G-quadruplex form, using cisplatin as a control. A combined approach has been exploited in this study, including circular dichroism (CD), UV-visible spectroscopy and electrospray mass spectrometry (ESI-MS) analyses. The data reveal that cis-PtI2(NH3)2 shows an overall reactivity towards the investigated oligonucleotides significantly higher than cisplatin.
Collapse
Affiliation(s)
- Domenica Musumeci
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 21, I-80126 Napoli, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
143
|
Wu S, Wang L, Zhang N, Liu Y, Zheng W, Chang A, Wang F, Li S, Shangguan D. A Bis(methylpiperazinylstyryl)phenanthroline as a Fluorescent Ligand for G-Quadruplexes. Chemistry 2016; 22:6037-47. [PMID: 26990217 DOI: 10.1002/chem.201505170] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Indexed: 11/08/2022]
Abstract
G-quadruplex (G4)-forming sequences are prevalent in the genome and are considered to play important roles in gene regulation, and hence have been viewed as potential therapeutic targets in oncology. However, the structures and functions of most G4s in the genome are poorly understood. Therefore, the development of fluorescent probes and ligands for G4s is important for G4 research and drug discovery. Herein, we report a new G4 ligand, 2,9-bis[4-(4-methylpiperazin-1-yl)styryl]-1,10-phenanthroline (BMSP), which was synthesized by a simple process. BMSP exhibits almost no fluorescence in aqueous buffer. The interaction of BMSP with G4s greatly enhances its fluorescence with a large Stokes' shift of 160 nm. Antiparallel human telomeric G4s exhibit the strongest binding affinity (Kd ≈0.13 μm) to BMSP and induce a fluorescence enhancement of up to 150-fold. BMSP binds to G4s through π-π stacking on the terminal G-quartets. BMSP can enter live cells, and it strongly inhibits the growth of cancer cells rather than causing cell death. Our results suggest that BMSP has the potential to serve both as a fluorescent probe for some G4s and as a chemotherapeutic agent for cancer treatment.
Collapse
Affiliation(s)
- Shangrong Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China), Fax: (+86) 10-62528509.,College of Chemistry, Xiangtan University, Xiangtan, 411100, China
| | - Linlin Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China), Fax: (+86) 10-62528509
| | - Nan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China), Fax: (+86) 10-62528509
| | - Ying Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China), Fax: (+86) 10-62528509
| | - Wei Zheng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China), Fax: (+86) 10-62528509
| | - Ang Chang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China), Fax: (+86) 10-62528509.,College of Chemistry, Xiangtan University, Xiangtan, 411100, China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China), Fax: (+86) 10-62528509
| | - Songqin Li
- College of Chemistry, Xiangtan University, Xiangtan, 411100, China
| | - Dihua Shangguan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China), Fax: (+86) 10-62528509.
| |
Collapse
|
144
|
Zheng C, Liu Y, Liu Y, Qin X, Zhou Y, Liu J. Dinuclear ruthenium complexes display loop isomer selectivity to c-MYC DNA G-quadriplex and exhibit anti-tumour activity. J Inorg Biochem 2016; 156:122-32. [DOI: 10.1016/j.jinorgbio.2016.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 12/30/2015] [Accepted: 01/07/2016] [Indexed: 12/18/2022]
|
145
|
Abstract
G-quadruplexes are non-canonical secondary structures found in guanine rich regions of DNA and RNA. Reports have indicated the wide occurrence of RNA G-quadruplexes across the transcriptome in various regions of mRNAs and non-coding RNAs. RNA G-quadruplexes have been implicated in playing an important role in translational regulation, mRNA processing events and maintenance of chromosomal end integrity. In this review, we summarize the structural and functional aspects of RNA G-quadruplexes with emphasis on recent progress to understand the protein/trans factors binding these motifs. With the revelation of the importance of these secondary structures as regulatory modules in biology, we have also evaluated the various advancements towards targeting these structures and the challenges associated with them. Apart from this, numerous potential applications of this secondary motif have also been discussed.
Collapse
Affiliation(s)
- Prachi Agarwala
- Proteomics and Structural Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India.
| | | | | |
Collapse
|
146
|
Wang J, Zhang Y, Wang H, Chen Y, Xu L, Gao T, Pei R. Selection and analysis of DNA aptamers to berberine to develop a label-free light-up fluorescent probe. NEW J CHEM 2016. [DOI: 10.1039/c6nj02290a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three DNA aptamers for berberine were successfully selected and the final shortened 21-mer aptamer showed higher fluorescence enhancement than G-quadruplexes.
Collapse
Affiliation(s)
- Jine Wang
- Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Yajie Zhang
- Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Hongyan Wang
- Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Yang Chen
- Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Lijun Xu
- Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Tian Gao
- Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Renjun Pei
- Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| |
Collapse
|
147
|
Spinello A, Barone G, Grunenberg J. Molecular recognition of naphthalene diimide ligands by telomeric quadruplex-DNA: the importance of the protonation state and mediated hydrogen bonds. Phys Chem Chem Phys 2016; 18:2871-7. [DOI: 10.1039/c5cp05576h] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
How important are mediated hydrogen bonds in terms of molecular recognition? Compliance Constants (relaxed force constants) give the answer.
Collapse
Affiliation(s)
- A. Spinello
- Università di Palermo
- Dipartimento di Scienze e Tecnologie Biologiche
- Chimiche e Farmaceutiche
- Italy
- Istituto Euro-Mediterraneo di Scienza e Tecnologia (IEMEST)
| | - G. Barone
- Università di Palermo
- Dipartimento di Scienze e Tecnologie Biologiche
- Chimiche e Farmaceutiche
- Italy
- Istituto Euro-Mediterraneo di Scienza e Tecnologia (IEMEST)
| | - J. Grunenberg
- Technische Universität Braunschweig
- Institut für Organische Chemie
- Germany
| |
Collapse
|
148
|
Flack T, Constantin T, Penasse S, Dejeu J, Gennaro B, Jourdan M, Laguerre A, Pirrotta M, Monchaud D, Spinelli N, Defrancq E. Prefolded Synthetic G-Quartets Display Enhanced Bioinspired Properties. Chemistry 2015; 22:1760-7. [DOI: 10.1002/chem.201504572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Indexed: 01/19/2023]
Affiliation(s)
- Theodore Flack
- Université Grenoble Alpes; Département de Chimie Moléculaire; CNRS UMR 5250; 38041 Grenoble France
| | - Thibaut Constantin
- Université Grenoble Alpes; Département de Chimie Moléculaire; CNRS UMR 5250; 38041 Grenoble France
| | - Sylvain Penasse
- Université Grenoble Alpes; Département de Chimie Moléculaire; CNRS UMR 5250; 38041 Grenoble France
| | - Jérôme Dejeu
- Université Grenoble Alpes; Département de Chimie Moléculaire; CNRS UMR 5250; 38041 Grenoble France
| | - Béatrice Gennaro
- Université Grenoble Alpes; Département de Chimie Moléculaire; CNRS UMR 5250; 38041 Grenoble France
| | - Muriel Jourdan
- Université Grenoble Alpes; Département de Chimie Moléculaire; CNRS UMR 5250; 38041 Grenoble France
| | - Aurélien Laguerre
- Institut de Chimie Moléculaire; Université de Bourgogne (ICMUB); CNRS UMR 6302; 21078 Dijon France
| | - Marc Pirrotta
- Institut de Chimie Moléculaire; Université de Bourgogne (ICMUB); CNRS UMR 6302; 21078 Dijon France
| | - David Monchaud
- Institut de Chimie Moléculaire; Université de Bourgogne (ICMUB); CNRS UMR 6302; 21078 Dijon France
| | - Nicolas Spinelli
- Université Grenoble Alpes; Département de Chimie Moléculaire; CNRS UMR 5250; 38041 Grenoble France
| | - Eric Defrancq
- Université Grenoble Alpes; Département de Chimie Moléculaire; CNRS UMR 5250; 38041 Grenoble France
| |
Collapse
|
149
|
Russo Krauss I, Spiridonova V, Pica A, Napolitano V, Sica F. Different duplex/quadruplex junctions determine the properties of anti-thrombin aptamers with mixed folding. Nucleic Acids Res 2015; 44:983-91. [PMID: 26673709 PMCID: PMC4737158 DOI: 10.1093/nar/gkv1384] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/26/2015] [Indexed: 11/26/2022] Open
Abstract
Mixed duplex/quadruplex oligonucleotides have attracted great interest as therapeutic targets as well as effective biomedical aptamers. In the case of thrombin-binding aptamer (TBA), the addition of a duplex motif to the G-quadruplex module improves the aptamer resistance to biodegradation and the affinity for thrombin. In particular, the mixed oligonucleotide RE31 is significantly more effective than TBA in anticoagulation experiments and shows a slower disappearance rate in human plasma and blood. In the crystal structure of the complex with thrombin, RE31 adopts an elongated structure in which the duplex and quadruplex regions are perfectly stacked on top of each other, firmly connected by a well-structured junction. The lock-and-key shape complementarity between the TT loops of the G-quadruplex and the protein exosite I gives rise to the basic interaction that stabilizes the complex. However, our data suggest that the duplex motif may have an active role in determining the greater anti-thrombin activity in biological fluids with respect to TBA. This work gives new information on mixed oligonucleotides and highlights the importance of structural data on duplex/quadruplex junctions, which appear to be varied, unpredictable, and fundamental in determining the aptamer functional properties.
Collapse
Affiliation(s)
- Irene Russo Krauss
- Department of Chemical Sciences, University of Naples 'Federico II', Naples, Italy Institute of Biostructures and Bioimages, C.N.R, Naples, Italy
| | - Vera Spiridonova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Andrea Pica
- Department of Chemical Sciences, University of Naples 'Federico II', Naples, Italy Institute of Biostructures and Bioimages, C.N.R, Naples, Italy
| | - Valeria Napolitano
- Department of Chemical Sciences, University of Naples 'Federico II', Naples, Italy
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples 'Federico II', Naples, Italy Institute of Biostructures and Bioimages, C.N.R, Naples, Italy
| |
Collapse
|
150
|
Chen CH, Hu TH, Huang TC, Chen YL, Chen YR, Cheng CC, Chen CT. Delineation of G-Quadruplex Alkylation Sites Mediated by 3,6-Bis(1-methyl-4-vinylpyridinium iodide)carbazole-Aniline Mustard Conjugates. Chemistry 2015; 21:17379-90. [PMID: 26769627 DOI: 10.1002/chem.201502595] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Indexed: 11/12/2022]
Abstract
A new G-quadruplex (G-4)-directing alkylating agent BMVC-C3M was designed and synthesized to integrate 3,6-bis(1-methyl-4-vinylpyridinium iodide)carbazole (BMVC) with aniline mustard. Various telomeric G-4 structures (hybrid-2 type and antiparallel) and an oncogene promoter, c-MYC (parallel), were constructed to react with BMVC-C3M, yielding 35 % alkylation yield toward G-4 DNA over other DNA categories (<6 %) and high specificity under competition conditions. Analysis of the intact alkylation adducts by electrospray ionization mass spectroscopy (ESI-MS) revealed the stepwise DNA alkylation mechanism of aniline mustard for the first time. Furthermore, the monoalkylation sites and intrastrand cross-linking sites were determined and found to be dependent on G-4 topology based on the results of footprinting analysis in combination with mass spectroscopic techniques and in silico modeling. The results indicated that BMVC-C3M preferentially alkylated at A15 (H26), G12 (H24), and G2 (c-MYC), respectively, as monoalkylated adducts and formed A15-C3M-A21 (H26), G12-C3M-G4 (H24), and G2-C3M-G4/G17 (c-MYC), respectively, as cross-linked dialkylated adducts. Collectively, the stability and site-selective cross-linking capacity of BMVC-C3M provides a credible tool for the structural and functional characterization of G-4 DNAs in biological systems.
Collapse
Affiliation(s)
- Chien-Han Chen
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan (R.O.C.), Fax: (+886) 2-23636359
| | - Tsung-Hao Hu
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan (R.O.C.), Fax: (+886) 2-23636359
| | - Tzu-Chiao Huang
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan (R.O.C.), Fax: (+886) 2-23636359
| | - Ying-Lan Chen
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Sec. 2, Academia Road, Taipei, 11529 Taiwan (R.O.C.).,Institute of Plant Biology and Department of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan (R.O.C.)
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Sec. 2, Academia Road, Taipei, 11529 Taiwan (R.O.C.)
| | - Chien-Chung Cheng
- Department of Applied Chemistry, Chia-Yi University, No. 300, Xuefu Road, Chiayi City, 60004 Taiwan (R.O.C.), Fax: (+886) 5-2717901.
| | - Chao-Tsen Chen
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan (R.O.C.), Fax: (+886) 2-23636359.
| |
Collapse
|