101
|
Chapman R, Stenzel MH. All Wrapped up: Stabilization of Enzymes within Single Enzyme Nanoparticles. J Am Chem Soc 2019; 141:2754-2769. [PMID: 30621398 DOI: 10.1021/jacs.8b10338] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Enzymes are extremely useful in many industrial and pharmaceutical areas due to their ability to catalyze reactions with high selectivity. In order to extend their lifetime, significant efforts have been made to increase their stability using protein- or medium engineering as well as by chemical modification. Many researchers have explored the immobilization of enzymes onto carriers, or entrapment within a matrix, framework or nanoparticle with the hope of constricting the movement of the enzyme and shielding it from aggressive environments, thus delaying the denaturation. These strategies often balance three competing interests: (i) maintaining high enzymatic activity, (ii) ensuring good long-term stability against temperature, dehydration, organic solvents, and or aggressive pH, and (iii) enabling a tuning or reversible switching of enzyme activity. In most cases, multiple enzymes will be contained within a single nanoparticle or matrix, but in recent years researchers have begun to wrap up individual enzymes within single enzyme nanoparticles (SENs). In these nanoparticles the enzyme is stabilized by a thin shell, typically a polymer, prepared either by in situ polymerization from the enzyme surface or by assembling a preformed polymer around it. Because of the increased control over the environment directly around the enzyme, and the possibility of more directly controlling substrate diffusion, many SENs show remarkable stability while retaining high initial activities even for quite fragile enzymes. Moreover, the activity of the enzyme can often be more easily fine-tuned by adjusting the layer properties. We postulate that this emerging field will offer exciting and elegant opportunities to both extend the catalytic lifetime of enzymes in aggressive solvents, temperatures and pH, and enable their activity to be switched on and off on demand by modulation of the outer material layer.
Collapse
Affiliation(s)
- Robert Chapman
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry , University of New South Wales , Sydney , New South Wales 2052 , Australia
| | - Martina H Stenzel
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry , University of New South Wales , Sydney , New South Wales 2052 , Australia
| |
Collapse
|
102
|
Zhang G, Schmidt-Dannert S, Quin MB, Schmidt-Dannert C. Protein-based scaffolds for enzyme immobilization. Methods Enzymol 2019; 617:323-362. [PMID: 30784408 DOI: 10.1016/bs.mie.2018.12.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Biocatalysis is emerging as an alternative approach to chemical synthesis of industrially relevant complex molecules. To obtain suitable yields of compounds in a cost-effective manner, biocatalytic reaction cascades must be efficient, robust, and self-sufficient. One approach is to immobilize biocatalysts on a solid support, stabilizing the enzymes and providing optimal microenvironments for reaction sequences. Protein-based scaffolds can be designed as immobilization platforms for biocatalysts, enabling the genetically encoded spatial organization of single enzymes and multistep enzyme cascades. Additionally, protein scaffolds are versatile, are easily adapted, and remain robust under different reaction conditions. In this chapter, we describe methods for the design and production of a self-assembling protein scaffold system for in vitro coimmobilization of biocatalytic cascade enzymes. We provide detailed methods for the characterization of the protein scaffolds, as well as approaches to load biocatalytic cargo enzymes and test activity of immobilized cascades. In addition, we also discuss methods for the development of a scaffold building block toolbox with different surface properties, which could be adapted for a diversity of biocatalysts requiring alternative microenvironments for function.
Collapse
Affiliation(s)
- Guoqiang Zhang
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN, United States
| | - Sarah Schmidt-Dannert
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN, United States
| | - Maureen B Quin
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN, United States.
| | - Claudia Schmidt-Dannert
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN, United States.
| |
Collapse
|
103
|
Hirschi S, Fischer N, Kalbermatter D, Laskowski PR, Ucurum Z, Müller DJ, Fotiadis D. Design and assembly of a chemically switchable and fluorescently traceable light-driven proton pump system for bionanotechnological applications. Sci Rep 2019; 9:1046. [PMID: 30705382 PMCID: PMC6355921 DOI: 10.1038/s41598-018-37260-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/29/2018] [Indexed: 02/07/2023] Open
Abstract
Energy-supplying modules are essential building blocks for the assembly of functional multicomponent nanoreactors in synthetic biology. Proteorhodopsin, a light-driven proton pump, is an ideal candidate to provide the required energy in form of an electrochemical proton gradient. Here we present an advanced proteoliposome system equipped with a chemically on-off switchable proteorhodopsin variant. The proton pump was engineered to optimize the specificity and efficiency of chemical deactivation and reactivation. To optically track and characterize the proteoliposome system using fluorescence microscopy and nanoparticle tracking analysis, fluorescenlty labelled lipids were implemented. Fluorescence is a highly valuable feature that enables detection and tracking of nanoreactors in complex media. Cryo-transmission electron microscopy, and correlative atomic force and confocal microscopy revealed that our procedure yields polylamellar proteoliposomes, which exhibit enhanced mechanical stability. The combination of these features makes the presented energizing system a promising foundation for the engineering of complex nanoreactors.
Collapse
Affiliation(s)
- S Hirschi
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - N Fischer
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - D Kalbermatter
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - P R Laskowski
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Z Ucurum
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - D J Müller
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - D Fotiadis
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.
| |
Collapse
|
104
|
van der Helm MP, Bracco P, Busch H, Szymańska K, Jarzębski AB, Hanefeld U. Hydroxynitrile lyases covalently immobilized in continuous flow microreactors. Catal Sci Technol 2019. [DOI: 10.1039/c8cy02192a] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzymes are supreme catalysts when it comes to high enantiopurities and their immobilization will pave the way for continuous operation.
Collapse
Affiliation(s)
| | - Paula Bracco
- Biokatalyse
- Afdeling Biotechnologie
- Technische Universiteit Delft
- 2629HZ Delft
- The Netherlands
| | - Hanna Busch
- Biokatalyse
- Afdeling Biotechnologie
- Technische Universiteit Delft
- 2629HZ Delft
- The Netherlands
| | - Katarzyna Szymańska
- Department of Chemical Engineering and Process Design
- Silesian University of Technology
- 44-100 Gliwice
- Poland
| | - Andrzej B. Jarzębski
- Department of Chemical Engineering and Process Design
- Silesian University of Technology
- 44-100 Gliwice
- Poland
- Institute of Chemical Engineering
| | - Ulf Hanefeld
- Biokatalyse
- Afdeling Biotechnologie
- Technische Universiteit Delft
- 2629HZ Delft
- The Netherlands
| |
Collapse
|
105
|
Zheng H, Yu WL, Guo X, Zhao YZ, Cui Y, Hu T, Zhong JY. An effective immobilized haloalkane dehalogenase DhaA from Rhodococcus rhodochrous by adsorption, crosslink and PEGylation on meso-cellular foam. Int J Biol Macromol 2018; 125:1016-1023. [PMID: 30576728 DOI: 10.1016/j.ijbiomac.2018.12.127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/01/2018] [Accepted: 12/16/2018] [Indexed: 12/30/2022]
Abstract
Haloalkane dehalogenase DhaA catalyzes the hydrolysis of halogenated compounds by cleavage of the carbon-halogen bond. However, DhaA suffers from poor environmental stability and difficult recovery, which significantly increase the cost of DhaA. Here, an effective enzyme immobilization strategy was developed to overcome the disadvantages of DhaA. DhaA was physically absorbed with amine-functionalized meso-cellular foam (MCF). The MCF-absorbed DhaA (MD) was intermolecularly crosslinked with 8-arm PEG N‑hydroxysuccinimide ester and then PEGylated by maleimide-thiol chemistry. DhaA from Rhodococcus rhodochrous was absorbed at a loading capacity of 100 mg/g in MD. The bulk crystallinity and morphology of MCF were largely maintained. The immobilized DhaA (MD-P1-P2) showed a lower Michaelis constant (Km, 0.588 mM) than DhaA (0.905 mM), along with an extremely low leaching ratio of DhaA (1.1%) from MCF. MD-P1-P2 exhibited a high stability in the extreme environmental conditions, as reflected by the remaining activity of 99.8% in 40% (v/v) DMSO for 5 h, 87.3% in 3 M urea solution for 1 h, 25.9% at pH 3.0, and 51.8% at room temperature for 30 days. Thus, our study was expected to develop an effective immobilized DhaA for practical application.
Collapse
Affiliation(s)
- He Zheng
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Wei-Li Yu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuan Guo
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Yuan-Zhong Zhao
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Yan Cui
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Tao Hu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jin-Yi Zhong
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China.
| |
Collapse
|
106
|
Hitaishi VP, Mazurenko I, Harb M, Clément R, Taris M, Castano S, Duché D, Lecomte S, Ilbert M, de Poulpiquet A, Lojou E. Electrostatic-Driven Activity, Loading, Dynamics, and Stability of a Redox Enzyme on Functionalized-Gold Electrodes for Bioelectrocatalysis. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03443] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Ievgen Mazurenko
- School of Biomedical Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Malek Harb
- Aix-Marseille Univ, CNRS, BIP, UMR 7281, 31 Chemin Aiguier, 13009 Marseille, France
| | - Romain Clément
- Aix-Marseille Univ, CNRS, BIP, UMR 7281, 31 Chemin Aiguier, 13009 Marseille, France
| | - Marion Taris
- Institute for Chemistry and Biology of Membrane and Nano-objects, Allée Geoffroy St. Hilaire, 33600 Pessac, France
| | - Sabine Castano
- Institute for Chemistry and Biology of Membrane and Nano-objects, Allée Geoffroy St. Hilaire, 33600 Pessac, France
| | - David Duché
- Aix Marseille Univ, CNRS, University of Toulon, IM2NP UMR 7334, 13397 Marseille, France
| | - Sophie Lecomte
- Institute for Chemistry and Biology of Membrane and Nano-objects, Allée Geoffroy St. Hilaire, 33600 Pessac, France
| | - Marianne Ilbert
- Aix-Marseille Univ, CNRS, BIP, UMR 7281, 31 Chemin Aiguier, 13009 Marseille, France
| | - Anne de Poulpiquet
- Aix-Marseille Univ, CNRS, BIP, UMR 7281, 31 Chemin Aiguier, 13009 Marseille, France
| | - Elisabeth Lojou
- Aix-Marseille Univ, CNRS, BIP, UMR 7281, 31 Chemin Aiguier, 13009 Marseille, France
| |
Collapse
|
107
|
de Oliveira Noman L, Sant'Ana AC. The control of the adsorption of bovine serum albumin on mercaptan-modified gold thin films investigated by SERS spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 204:119-124. [PMID: 29920414 DOI: 10.1016/j.saa.2018.06.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 06/08/2023]
Abstract
Nanostructured gold thin films were built from deposition of colloidal gold nanoparticles on silanized glass slides, and used to study the adsorption of bovine serum albumin (BSA) after chemical treatment of gold surface with the mercaptans 2-mercaptoethanol, 3-mercaptoproprionic acid, 1,3-propanedithiol and 1-propanethiol. Surface-enhanced Raman scattering (SERS) spectroscopy was used for investigating the chemical interactions of BSA with the modified gold surfaces. In the presence of the surface modifier 2-mercaptoethanol, a promoter of hydrogen bonds, the stable interactions among BSA and gold surfaces led to high reproducibility of the SERS spectral pattern in the most monitored points of the mapped surface. The vibrational assignment endorsed the assumption that lysine residue, majority present in the molecular structure, were the principal anchor site of BSA involved in the interactions with 2-mercaptoethanol-modified gold surface.
Collapse
Affiliation(s)
- Lucas de Oliveira Noman
- Laboratório de Nanoestruturas Plasmônicas, Universidade Federal de Juiz de Fora, 36036-900 Juiz de Fora, MG, Brazil
| | - Antonio Carlos Sant'Ana
- Laboratório de Nanoestruturas Plasmônicas, Universidade Federal de Juiz de Fora, 36036-900 Juiz de Fora, MG, Brazil.
| |
Collapse
|
108
|
Nanoimmobilization of β-glucosidase onto hydroxyapatite. Int J Biol Macromol 2018; 119:1042-1051. [DOI: 10.1016/j.ijbiomac.2018.08.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/03/2018] [Accepted: 08/08/2018] [Indexed: 11/19/2022]
|
109
|
Enhancement of catalytic performance of porcine pancreatic lipase immobilized on functional ionic liquid modified Fe3O4-Chitosan nanocomposites. Int J Biol Macromol 2018; 119:624-632. [DOI: 10.1016/j.ijbiomac.2018.07.187] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/24/2018] [Accepted: 07/29/2018] [Indexed: 02/05/2023]
|
110
|
Zhang Y, Lu P, Sun Q, Li T, Zhao L, Gao X, Wang F, Liu J. Lipase-mediated direct in situ ring-opening polymerization of ε-caprolactone formed by a chemo-enzymatic method. J Biotechnol 2018; 281:74-80. [PMID: 29908204 DOI: 10.1016/j.jbiotec.2018.06.338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 06/07/2018] [Accepted: 06/12/2018] [Indexed: 12/27/2022]
Abstract
A novel method to synthesize poly(ε-caprolactone) (PCL) through a three-step, lipase-mediated chemo-enzymatic reaction from cyclohexanone using an immobilized lipase from Trichosporon laibacchii (T. laibacchii) CBS5791 was developed. The immobilized preparation with 1280 U· g-1 used here was obtained by a method of purification and in situ immobilization where the crude intracellular lipase (cell homogenate) was subjected to partial purification by an aqueous two-phase system (ATPS) consisting of 12% (w/w) polyethylene glycol (PEG) 4000 and 13% (w/w) potassium phosphate (K2HPO4) and then in situ immobilization directly on diatomite from the top PEG-rich phase of ATPS. In this multi-step process, the ε-caprolactone (ε-CL) produced by lipase-mediated one-pot two-step chemo-enzymatic oxidation of cyclohexanone was directly subjected to in situ ring-opening polymerization (ROP) started by adding highly hydrophobic solvents. It is necessary to note that ε-CL synthesis and its subsequent ROP were catalyzed by the same lipase. The impact of various reaction parameters, e.g., solvent, cyclohexanone: hydrogen peroxide molar ratio, hydrogen peroxide forms and reaction temperature were investigated. Toluene was selected as a preferred solvent due to supporting the highest molecular weight (Mn = 2168) and moderate ε-CL conversion (65.42%). Through the optimization of reaction conditions, PCL was produced with a Mn of 2283 at 50 °C for 24 h. These results reveal that this lipase-mediated direct ring-opening polymerization of in situ formed ε-CL is an alternative route to the conventional synthesis of PCL.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Pharmaceutics, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Peiyu Lu
- Department of Pharmaceutics, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Qinghua Sun
- Department of Pharmaceutics, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Tao Li
- Department of Pharmaceutics, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Lanjie Zhao
- Department of Pharmaceutics, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Xin Gao
- Department of Pharmaceutics, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Fanye Wang
- Department of Pharmaceutics, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China.
| | - Junhong Liu
- Department of Pharmaceutics, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China.
| |
Collapse
|
111
|
Wong JX, Rehm BHA. Design of Modular Polyhydroxyalkanoate Scaffolds for Protein Immobilization by Directed Ligation. Biomacromolecules 2018; 19:4098-4112. [DOI: 10.1021/acs.biomac.8b01093] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jin Xiang Wong
- Institute of Fundamental Sciences, Massey University, Private Bag, 11222 Palmerston North, New Zealand
- MacDiarmid Institute of Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Bernd H. A. Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, 4111 Queensland, Australia
| |
Collapse
|
112
|
Kienle DF, Falatach RM, Kaar JL, Schwartz DK. Correlating Structural and Functional Heterogeneity of Immobilized Enzymes. ACS NANO 2018; 12:8091-8103. [PMID: 30067333 DOI: 10.1021/acsnano.8b02956] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Many nanobiotechnology applications rely on stable and efficient integration of functional biomacromolecules with synthetic nanomaterials. Unfortunately, the reasons for the ubiquitous loss of activity of immobilized enzymes remain poorly understood due to the difficulty in distinguishing between distinct molecular-level mechanisms. Here, we employ complementary single-molecule fluorescence methods that independently measure the impact of immobilization on the structure and function ( i. e., substrate binding kinetics) of nitroreductase (NfsB). Stochastic statistical modeling methods were used to unambiguously quantify the effects of immobilized NfsB structural dynamics on function, allowing us to explicitly separate effects due to conformation and accessibility. Interestingly, we found that nonspecifically tethered NfsB exhibited enhanced stability compared to site-specifically tethered NfsB; however, the folded state of site-specifically tethered NfsB had faster substrate binding rates, suggesting improved active site accessibility. This demonstrated an unexpected intrinsic trade-off associated with competing bioconjugation methods, suggesting that it may be necessary to balance conformational stability versus active site accessibility. This nuanced view of the impact of immobilization will facilitate a rational approach to the integration of enzymes with synthetic nanomaterials.
Collapse
Affiliation(s)
- Daniel F Kienle
- Department of Chemical and Biological Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| | - Rebecca M Falatach
- Department of Chemical and Biological Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| | - Joel L Kaar
- Department of Chemical and Biological Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| |
Collapse
|
113
|
Building a toolbox of protein scaffolds for future immobilization of biocatalysts. Appl Microbiol Biotechnol 2018; 102:8373-8388. [DOI: 10.1007/s00253-018-9252-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 10/28/2022]
|
114
|
Chaparro Sosa AF, Kienle DF, Falatach RM, Flanagan J, Kaar JL, Schwartz DK. Stabilization of Immobilized Enzymes via the Chaperone-Like Activity of Mixed Lipid Bilayers. ACS APPLIED MATERIALS & INTERFACES 2018; 10:19504-19513. [PMID: 29767959 DOI: 10.1021/acsami.8b05523] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Biomimetic lipid bilayers represent intriguing materials for enzyme immobilization, which is critical for many biotechnological applications. Here, through the creation of mixed lipid bilayers, the retention of immobilized enzyme structures and catalytic activity are dramatically enhanced. The enhancement in the retention of enzyme structures, which correlated with an increase in enzyme activity, is observed using dynamic single-molecule (SM) fluorescence methods. The results of SM analysis specifically show that lipid bilayers composed of mixtures of 1,2-dioleoyl- sn-glycero-3-phosphocholine (DOPC) and 1,2-dioleoyl- sn-glycero-3-phospho-(1'- rac-glycerol) (DOPG) stabilize the folded state of nitroreductase (NfsB), increasing the rate of refolding relative to unfolding of enzyme molecules on the bilayer surface. Remarkably, for optimal compositions with 15-50% DOPG, over 95% of NfsB remains folded while the activity of the enzyme is increased as much as 2 times over that in solution. Within this range of DOPG, the strength of the interaction of folded and unfolded NfsB with the bilayer surface was also significantly altered, which was evident by the change in the diffusion of folded and unfolded NfsB in the bilayer. Ultimately, these findings provide direct evidence for the chaperone-like activity of mixed DOPG/DOPC lipid bilayers, which can be controlled by tuning the fraction of DOPG in the bilayer.
Collapse
Affiliation(s)
- Andres F Chaparro Sosa
- Department of Chemical and Biological Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| | - Daniel F Kienle
- Department of Chemical and Biological Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| | - Rebecca M Falatach
- Department of Chemical and Biological Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| | - Jessica Flanagan
- Department of Chemical and Biological Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| | - Joel L Kaar
- Department of Chemical and Biological Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| |
Collapse
|
115
|
Zhang G, Quin MB, Schmidt-Dannert C. Self-Assembling Protein Scaffold System for Easy in Vitro Coimmobilization of Biocatalytic Cascade Enzymes. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00986] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Guoqiang Zhang
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 1479 Gortner Avenue, St. Paul, Minnesota 55108, United States
| | - Maureen B. Quin
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 1479 Gortner Avenue, St. Paul, Minnesota 55108, United States
| | - Claudia Schmidt-Dannert
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 1479 Gortner Avenue, St. Paul, Minnesota 55108, United States
| |
Collapse
|
116
|
Abstract
Redox enzymes, which catalyze reactions involving electron transfers in living organisms, are very promising components of biotechnological devices, and can be envisioned for sensing applications as well as for energy conversion. In this context, one of the most significant challenges is to achieve efficient direct electron transfer by tunneling between enzymes and conductive surfaces. Based on various examples of bioelectrochemical studies described in the recent literature, this review discusses the issue of enzyme immobilization at planar electrode interfaces. The fundamental importance of controlling enzyme orientation, how to obtain such orientation, and how it can be verified experimentally or by modeling are the three main directions explored. Since redox enzymes are sizable proteins with anisotropic properties, achieving their functional immobilization requires a specific and controlled orientation on the electrode surface. All the factors influenced by this orientation are described, ranging from electronic conductivity to efficiency of substrate supply. The specificities of the enzymatic molecule, surface properties, and dipole moment, which in turn influence the orientation, are introduced. Various ways of ensuring functional immobilization through tuning of both the enzyme and the electrode surface are then described. Finally, the review deals with analytical techniques that have enabled characterization and quantification of successful achievement of the desired orientation. The rich contributions of electrochemistry, spectroscopy (especially infrared spectroscopy), modeling, and microscopy are featured, along with their limitations.
Collapse
|
117
|
Magnetic silica/titania xerogel applied as electrochemical biosensor for catechol and catecholamines. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.01.127] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|