101
|
Ong LTC, Schibeci SD, Fewings NL, Booth DR, Parnell GP. Age-dependent VDR peak DNA methylation as a mechanism for latitude-dependent multiple sclerosis risk. Epigenetics Chromatin 2021; 14:9. [PMID: 33541415 PMCID: PMC7863270 DOI: 10.1186/s13072-021-00383-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/28/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The mechanisms linking UV radiation and vitamin D exposure to the risk of acquiring the latitude and critical period-dependent autoimmune disease, multiple sclerosis, is unclear. We examined the effect of vitamin D on DNA methylation and DNA methylation at vitamin D receptor binding sites in adult and paediatric myeloid cells. This was accomplished through differentiating CD34+ haematopoietic progenitors into CD14+ mononuclear phagocytes, in the presence and absence of calcitriol. RESULTS Few DNA methylation changes occurred in cells treated with calcitriol. However, several VDR-binding sites demonstrated increased DNA methylation in cells of adult origin when compared to cells of paediatric origin. This phenomenon was not observed at other transcription factor binding sites. Genes associated with these sites were enriched for intracellular signalling and cell activation pathways involved in myeloid cell differentiation and adaptive immune system regulation. CONCLUSION These results suggest vitamin D exposure at critical periods during development may contribute to latitude-related differences in autoimmune disease incidence.
Collapse
Affiliation(s)
- Lawrence T C Ong
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, The University of Sydney, 176 Hawkesbury Rd, Westmead, NSW, 2145, Australia. .,Department of Immunology, Westmead Hospital, Cnr Darcy and Hawkesbury Rds, Westmead, NSW, 2145, Australia.
| | - Stephen D Schibeci
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, The University of Sydney, 176 Hawkesbury Rd, Westmead, NSW, 2145, Australia
| | - Nicole L Fewings
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, The University of Sydney, 176 Hawkesbury Rd, Westmead, NSW, 2145, Australia
| | - David R Booth
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, The University of Sydney, 176 Hawkesbury Rd, Westmead, NSW, 2145, Australia
| | - Grant P Parnell
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, The University of Sydney, 176 Hawkesbury Rd, Westmead, NSW, 2145, Australia
| |
Collapse
|
102
|
Maeda Y, Tidyman WE, Ander BP, Pritchard CA, Rauen KA. Ras/MAPK dysregulation in development causes a skeletal myopathy in an activating Braf L597V mouse model for cardio-facio-cutaneous syndrome. Dev Dyn 2021; 250:1074-1095. [PMID: 33522658 DOI: 10.1002/dvdy.309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/03/2021] [Accepted: 01/19/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cardio-facio-cutaneous (CFC) syndrome is a human multiple congenital anomaly syndrome that is caused by activating heterozygous mutations in either BRAF, MEK1, or MEK2, three protein kinases of the Ras/mitogen-activated protein kinase (MAPK) pathway. CFC belongs to a group of syndromes known as RASopathies. Skeletal muscle hypotonia is a ubiquitous phenotype of RASopathies, especially in CFC syndrome. To better understand the underlying mechanisms for the skeletal myopathy in CFC, a mouse model with an activating BrafL597V allele was utilized. RESULTS The activating BrafL597V allele resulted in phenotypic alterations in skeletal muscle characterized by a reduction in fiber size which leads to a reduction in muscle size which are functionally weaker. MAPK pathway activation caused inhibition of myofiber differentiation during embryonic myogenesis and global transcriptional dysregulation of developmental pathways. Inhibition in differentiation can be rescued by MEK inhibition. CONCLUSIONS A skeletal myopathy was identified in the CFC BrafL597V mouse validating the use of models to study the effect of Ras/MAPK dysregulation on skeletal myogenesis. RASopathies present a novel opportunity to identify new paradigms of myogenesis and further our understanding of Ras in development. Rescue of the phenotype by inhibitors may help advance the development of therapeutic options for RASopathy patients.
Collapse
Affiliation(s)
- Yoshiko Maeda
- Department of Pediatrics, University of California Davis, Sacramento, California, USA.,UC Davis MIND Institute, Sacramento, California, USA
| | - William E Tidyman
- Department of Pediatrics, University of California Davis, Sacramento, California, USA.,UC Davis MIND Institute, Sacramento, California, USA
| | - Bradley P Ander
- UC Davis MIND Institute, Sacramento, California, USA.,Department of Neurology, University of California Davis, Sacramento, California, USA
| | - Catrin A Pritchard
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| | - Katherine A Rauen
- Department of Pediatrics, University of California Davis, Sacramento, California, USA.,UC Davis MIND Institute, Sacramento, California, USA
| |
Collapse
|
103
|
Fojtík P, Beckerová D, Holomková K, Šenfluk M, Rotrekl V. Both Hypoxia-Inducible Factor 1 and MAPK Signaling Pathway Attenuate PI3K/AKT via Suppression of Reactive Oxygen Species in Human Pluripotent Stem Cells. Front Cell Dev Biol 2021; 8:607444. [PMID: 33553145 PMCID: PMC7859355 DOI: 10.3389/fcell.2020.607444] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
Mild hypoxia (5% O2) as well as FGFR1-induced activation of phosphatidylinositol-4,5-bisphosphate 3-kinase/protein kinase B (PI3K/AKT) and MAPK signaling pathways markedly support pluripotency in human pluripotent stem cells (hPSCs). This study demonstrates that the pluripotency-promoting PI3K/AKT signaling pathway is surprisingly attenuated in mild hypoxia compared to the 21% O2 environment. Hypoxia is known to be associated with lower levels of reactive oxygen species (ROS), which are recognized as intracellular second messengers capable of upregulating the PI3K/AKT signaling pathway. Our data denote that ROS downregulation results in pluripotency upregulation and PI3K/AKT attenuation in a hypoxia-inducible factor 1 (HIF-1)-dependent manner in hPSCs. Using specific MAPK inhibitors, we show that the MAPK pathway also downregulates ROS and therefore attenuates the PI3K/AKT signaling—this represents a novel interaction between these signaling pathways. This inhibition of ROS initiated by MEK1/2–ERK1/2 may serve as a negative feedback loop from the MAPK pathway toward FGFR1 and PI3K/AKT activation. We further describe the molecular mechanism resulting in PI3K/AKT upregulation in hPSCs—ROS inhibit the PI3K's primary antagonist PTEN and upregulate FGFR1 phosphorylation. These novel regulatory circuits utilizing ROS as second messengers may contribute to the development of enhanced cultivation and differentiation protocols for hPSCs. Since the PI3K/AKT pathway often undergoes an oncogenic transformation, our data could also provide new insights into the regulation of cancer stem cell signaling.
Collapse
Affiliation(s)
- Petr Fojtík
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia.,International Clinical Research Center (ICRC), St. Anne's University Hospital, Brno, Czechia
| | - Deborah Beckerová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia.,International Clinical Research Center (ICRC), St. Anne's University Hospital, Brno, Czechia
| | - Katerina Holomková
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Martin Šenfluk
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia.,International Clinical Research Center (ICRC), St. Anne's University Hospital, Brno, Czechia
| | - Vladimir Rotrekl
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia.,International Clinical Research Center (ICRC), St. Anne's University Hospital, Brno, Czechia
| |
Collapse
|
104
|
Rahman I, Athar MT, Islam M. Type 2 Diabetes, Obesity, and Cancer Share Some Common and Critical Pathways. Front Oncol 2021; 10:600824. [PMID: 33552973 PMCID: PMC7855858 DOI: 10.3389/fonc.2020.600824] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetes and cancer are among the most frequent and complex diseases. Epidemiological evidence showed that the patients suffering from diabetes are significantly at higher risk for a number of cancer types. There are a number of evidence that support the hypothesis that these diseases are interlinked, and obesity may aggravate the risk(s) of type 2 diabetes and cancer. Multi-level unwanted alterations such as (epi-)genetic alterations, changes at the transcriptional level, and altered signaling pathways (receptor, cytoplasmic, and nuclear level) are the major source which promotes a number of complex diseases and such heterogeneous level of complexities are considered as the major barrier in the development of therapeutic agents. With so many known challenges, it is critical to understand the relationships and the commonly shared causes between type 2 diabetes and cancer, which is difficult to unravel and understand. Furthermore, the real complexity arises from contended corroborations that specific drug(s) (individually or in combination) during the treatment of type 2 diabetes may increase or decrease the cancer risk or affect cancer prognosis. In this review article, we have presented the recent and most updated evidence from the studies where the origin, biological background, the correlation between them have been presented or proved. Furthermore, we have summarized the methodological challenges and tasks that are frequently encountered. We have also outlined the physiological links between type 2 diabetes and cancers. Finally, we have presented and summarized the outline of the hallmarks for both these diseases, diabetes and cancer.
Collapse
Affiliation(s)
- Ishrat Rahman
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Md Tanwir Athar
- Scientific Research Center, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Mozaffarul Islam
- Scientific Research Center, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
105
|
Fabi F, Adam P, Parent S, Tardif L, Cadrin M, Asselin E. Pharmacologic inhibition of Akt in combination with chemotherapeutic agents effectively induces apoptosis in ovarian and endometrial cancer cell lines. Mol Oncol 2021; 15:2106-2119. [PMID: 33338300 PMCID: PMC8334290 DOI: 10.1002/1878-0261.12888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/29/2020] [Accepted: 12/16/2020] [Indexed: 01/03/2023] Open
Abstract
The PI3K/Akt signaling pathway, the most frequently altered signaling system in human cancer, is a crucial inducer of dysregulated proliferation and neoplastic processes; however, few therapeutic strategies using PI3K/Akt inhibitors singly have been shown to be effective. The purpose of this paper was to underline the potential benefit of pharmacological modulation of the PI3K/Akt pathway when combined with specific chemotherapeutic regimens. We have studied the ability of NVP‐BEZ235 (PI3K/mTOR inhibitor) and AZD5363 (Akt inhibitor) in the sensitization of cancer cells to cisplatin and doxorubicin. Our results show that NVP‐BEZ235 sensitizes cells preferentially to cisplatin while AZD5363 sensitizes cells to doxorubicin. At equal concentrations (5 μm), both inhibitors reduce ribosomal protein S6 phosphorylation, but AZD5363 is more effective in reducing GSK3β phosphorylation as well as S6 phosphorylation. Additionally, AZD5363 is capable of inducing FOXO1 and p53 nuclear localization and reduces BAD phosphorylation, which is generally increased by cisplatin and doxorubicin. Finally, the combination of AZD5363 and doxorubicin induces apoptosis in cells and robustly reduces cell ability to clonally replicate, which underlines a potential cooperative effect of the studied compounds.
Collapse
Affiliation(s)
- François Fabi
- Department of Medical Biology, Université du Québec à Trois-Rivières, Canada
| | - Pascal Adam
- Department of Medical Biology, Université du Québec à Trois-Rivières, Canada
| | - Sophie Parent
- Department of Medical Biology, Université du Québec à Trois-Rivières, Canada
| | - Laurence Tardif
- Department of Medical Biology, Université du Québec à Trois-Rivières, Canada
| | - Monique Cadrin
- Department of Medical Biology, Université du Québec à Trois-Rivières, Canada
| | - Eric Asselin
- Department of Medical Biology, Université du Québec à Trois-Rivières, Canada
| |
Collapse
|
106
|
Jiang H, Dai J, Zhang C, Sun H, Tang X. Circ_0045714 alleviates TNF-α-induced chondrocyte injury and extracellular matrix degradation through miR-218-5p/HRAS axis. J Bioenerg Biomembr 2021; 53:97-107. [PMID: 33394311 DOI: 10.1007/s10863-020-09868-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/15/2020] [Indexed: 10/22/2022]
Abstract
Emerging evidence suggests that dysregulated circular RNAs (circRNAs) play a pivotal role in osteoarthritis (OA). Circ_0045714 is a functional circRNAs, and has been revealed to involve in the process of OA. However, the molecular mechanisms by which circ_0045714 regulates OA progression are not thoroughly elucidated. Circ_0045714 expression was decreased in OA and TNF-α-induced chondrocytes, ectopic overexpression of circ_0045714 abolished TNF-α-induced cell apoptosis, inflammation, extracellular matrix (ECM) degradation promotion and proliferation inhibition. In a mechanical study, circ_0045714 targeted miR-218-5p, and miR-218-5p overexpression reversed the effects of circ_0045714 on TNF-α-induced chondrocytes. Besides that, HRAS was a target of miR-218-5p, and HRAS knockdown attenuated the protective effects of miR-218-5p inhibition on TNF-α-induced chondrocyte dysfunction. Additionally, circ_0045714 could regulate HRAS expression via miR-218-5p in chondrocytes. Up-regulation of circ_0045714 suppressed TNF-α-induced chondrocyte growth inhibition, inflammation, and ECM degradation via miR-218-5p/HRAS axis, suggesting a novel insight into the pathogenesis of OA and the potential protective role of circ_0045714 in the occurrence and development of OA.
Collapse
Affiliation(s)
- Haitao Jiang
- Department of Orthopedics, The Affiliated No. 1 People's Hospital of Nangjing Medical University, No.1, Huanghe West Road, Huaiyin District, Huai'an, 223300, China
| | - Jian Dai
- Department of Orthopedics, The Affiliated No. 1 People's Hospital of Nangjing Medical University, No.1, Huanghe West Road, Huaiyin District, Huai'an, 223300, China
| | - Cheng Zhang
- Department of Orthopedics, The Affiliated No. 1 People's Hospital of Nangjing Medical University, No.1, Huanghe West Road, Huaiyin District, Huai'an, 223300, China
| | - Hailang Sun
- Department of Orthopedics, The Affiliated No. 1 People's Hospital of Nangjing Medical University, No.1, Huanghe West Road, Huaiyin District, Huai'an, 223300, China
| | - Xiaoming Tang
- Department of Orthopedics, The Affiliated No. 1 People's Hospital of Nangjing Medical University, No.1, Huanghe West Road, Huaiyin District, Huai'an, 223300, China.
| |
Collapse
|
107
|
Gustafsson KL, Farman HH, Nilsson KH, Henning P, Movérare-Skrtic S, Lionikaite V, Lawenius L, Engdahl C, Ohlsson C, Lagerquist MK. Arginine site 264 in murine estrogen receptor-α is dispensable for the regulation of the skeleton. Am J Physiol Endocrinol Metab 2021; 320:E160-E168. [PMID: 33225718 DOI: 10.1152/ajpendo.00349.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mutation of arginine 264 in ERα has been shown to abrogate rapid membrane ERα-mediated endothelial effects. Our novel finding that mutation of R264 is dispensable for ERα-mediated skeletal effects supports the concept that R264 determines tissue specificity of ERα. Estrogen protects against bone loss but is not a suitable treatment due to adverse effects in other tissues. Therefore, increased knowledge regarding estrogen signaling in estrogen-responsive tissues is warranted to aid the development of bone-specific estrogen treatments. Estrogen receptor-α (ERα), the main mediator of estrogenic effects in bone, is widely subjected to posttranslational modifications (PTMs). In vitro studies have shown that methylation at site R260 in the human ERα affects receptor localization and intracellular signaling. The corresponding amino acid R264 in murine ERα has been shown to have a functional role in endothelium in vivo, although the methylation of R264 in the murine gene is yet to be empirically demonstrated. The aim of this study was to investigate whether R264 in ERα is involved in the regulation of the skeleton in vivo. Dual-energy X-ray absorptiometry (DEXA) analysis at 3, 6, 9, and 12 mo of age showed no differences in total body areal bone mineral density (BMD) between R264A and wild type (WT) in either female or male mice. Furthermore, analyses using computed tomography (CT) demonstrated that trabecular bone mass in tibia and vertebra and cortical thickness in tibia were similar between R264A and WT mice. In addition, R264A females displayed a normal estrogen treatment response in trabecular bone mass as well as in cortical thickness. Furthermore, uterus, thymus, and adipose tissue responded similarly in R264A and WT female mice after estrogen treatment. In conclusion, our novel finding that mutation of R264 in ERα does not affect the regulation of the skeleton, together with the known role of R264 for ERα-mediated endothelial effects, supports the concept that R264 determines tissue specificity of ERα.NEW & NOTEWORTHY Mutation of arginine 264 in ERα has been shown to abrogate rapid membrane ERα-mediated endothelial effects. Our novel finding that mutation of R264 is dispensable for ERα-mediated skeletal effects supports the concept that R264 determines tissue specificity of ERα.
Collapse
Affiliation(s)
- Karin L Gustafsson
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Helen H Farman
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Karin H Nilsson
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Petra Henning
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Sofia Movérare-Skrtic
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Vikte Lionikaite
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Lina Lawenius
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Engdahl
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Pharmacology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marie K Lagerquist
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
108
|
Massaro C, Safadeh E, Sgueglia G, Stunnenberg HG, Altucci L, Dell’Aversana C. MicroRNA-Assisted Hormone Cell Signaling in Colorectal Cancer Resistance. Cells 2020; 10:cells10010039. [PMID: 33396628 PMCID: PMC7823834 DOI: 10.3390/cells10010039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 12/17/2022] Open
Abstract
Despite substantial progress in cancer therapy, colorectal cancer (CRC) is still the third leading cause of cancer death worldwide, mainly due to the acquisition of resistance and disease recurrence in patients. Growing evidence indicates that deregulation of hormone signaling pathways and their cross-talk with other signaling cascades inside CRC cells may have an impact on therapy resistance. MicroRNAs (miRNAs) are small conserved non-coding RNAs thatfunction as negative regulators in many gene expression processes. Key studies have identified miRNA alterations in cancer progression and drug resistance. In this review, we provide a comprehensive overview and assessment of miRNAs role in hormone signaling pathways in CRC drug resistance and their potential as future targets for overcoming resistance to treatment.
Collapse
Affiliation(s)
- Crescenzo Massaro
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy; (C.M.); (E.S.); (G.S.)
| | - Elham Safadeh
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy; (C.M.); (E.S.); (G.S.)
| | - Giulia Sgueglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy; (C.M.); (E.S.); (G.S.)
| | | | - Lucia Altucci
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy; (C.M.); (E.S.); (G.S.)
- Correspondence: (L.A.); (C.D.); Tel.: +39-081-566-7564 (L.A.); +39-081-566-7566 (C.D.)
| | - Carmela Dell’Aversana
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy; (C.M.); (E.S.); (G.S.)
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS)-National Research Council (CNR), Via Sergio Pansini 5, 80131 Naples, Italy
- Correspondence: (L.A.); (C.D.); Tel.: +39-081-566-7564 (L.A.); +39-081-566-7566 (C.D.)
| |
Collapse
|
109
|
Li H, Long C, Xiang J, Liang P, Li X, Zuo Y. Dppa2/4 as a trigger of signaling pathways to promote zygote genome activation by binding to CG-rich region. Brief Bioinform 2020; 22:6034044. [PMID: 33316032 DOI: 10.1093/bib/bbaa342] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/30/2020] [Accepted: 10/27/2020] [Indexed: 12/23/2022] Open
Abstract
Developmental pluripotency-associated 2 (Dppa2) and developmental pluripotency-associated 4 (Dppa4) as positive drivers were helpful for transcriptional regulation of zygotic genome activation (ZGA). Here, we systematically assessed the cooperative interplay of Dppa2 and Dppa4 in regulating cell pluripotency and found that simultaneous overexpression of Dppa2/4 can make induced pluripotent stem cells closer to embryonic stem cells (ESCs). Compared with other pluripotency transcription factors, Dppa2/4 can regulate majorities of signaling pathways by binding on CG-rich region of proximal promoter (0-500 bp), of which 85% and 77% signaling pathways were significantly activated by Dppa2 and Dppa4, respectively. Notably, Dppa2/4 also can dramatically trigger the decisive signaling pathways for facilitating ZGA, including Hippo, MAPK and TGF-beta signaling pathways and so on. At last, we found alkaline phosphatase, placental-like 2 (Alppl2) was completely silenced when Dppa2 and 4 single- or double-knockout in ESC, which is consistent with Dux. Moreover, Alppl2 was significantly activated in mouse 2-cell embryos and 4-8 cells stage of human embryos, further predicted that Alppl2 was directly regulated by Dppa2/4 as a ZGA candidate driver to facilitate pre-embryonic development.
Collapse
Affiliation(s)
- Hanshuang Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Chunshen Long
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Jinzhu Xiang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Pengfei Liang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xueling Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yongchun Zuo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
110
|
Ni S, Wei Q, Yang L. ADORA1 Promotes Hepatocellular Carcinoma Progression via PI3K/AKT Pathway. Onco Targets Ther 2020; 13:12409-12419. [PMID: 33293832 PMCID: PMC7719345 DOI: 10.2147/ott.s272621] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/15/2020] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) is a common malignancy worldwide. Although the contradictory role of ADORA1 has been explored in certain types of cancers, its clinical significance and function in hepatocellular carcinoma cells are largely unknown. MATERIALS AND METHODS The level of ADORA1 in HCC tissues and cells was evaluated by RT-PCR. The function of ADORA1 overexpression on HCC cell proliferation and invasion was assessed by MTS, transwell analysis, and colony formation assay. In addition, a mouse subcutaneous xenograft model was used to study in vivo effects. The efficacy of knockdown of ADORA1 sensitizes to chemotherapy was assessed by staining with Annexin V/propidium iodide followed with flow cytometry and nuclei fragmentation. RESULTS In this study, ADORA1 was identified to be up-regulated in HCC tissues compared with adjacent normal tissue. High ADORA1 mRNA expression predicted poor survival in hepatocellular carcinoma patients. Ectopic expression of ADORA1 increased hepatocellular carcinoma cell proliferation and invasion. ADORA1 knockdown inhibited HCC cell growth and sensitized to chemotherapy. Furthermore, ADORA1 activated PI3K/AKT oncogenic signaling pathways. Treatment with PI3K inhibitor LY294002 blocked the effects of ADORA1 on tumor growth in either ADORA1-overexpressing or -deficiency cells. Finally, overexpression of ADORA1 stimulates HCC tumor growth in vivo. Treatment of ADORA1 antagonist oppositely suppressed HCC xenograft tumor growth. CONCLUSION ADORA1 serves as an important oncoprotein and a promoter of cell proliferation through PI3K/AKT signaling pathway in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Sheng Ni
- Department of Occupational Health and Occupational Medicine, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region530021, People’s Republic of China
| | - Qian Wei
- Behavioral Style Construction Office, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region530021, People’s Republic of China
| | - Li Yang
- Department of Occupational Health and Occupational Medicine, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region530021, People’s Republic of China
| |
Collapse
|
111
|
Gilon C, Gitlin-Domagalska A, Lahiani A, Yehoshua-Alshanski S, Shumacher-Klinger A, Gilon D, Taha M, Sekler I, Hoffman A, Lazarovici P. Novel humanin analogs confer neuroprotection and myoprotection to neuronal and myoblast cell cultures exposed to ischemia-like and doxorubicin-induced cell death insults. Peptides 2020; 134:170399. [PMID: 32889021 DOI: 10.1016/j.peptides.2020.170399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022]
Abstract
Humanin (HN) is a 24-amino acid mitochondrial-derived peptide, best known for its ability to protect neurons from damage caused by ischemic stroke and neurodegenerative insults and cardiomyocytes from myocardial infarction or doxorubicin (Dox)-induced cardiotoxicity. This study examines the neuroprotective and myoprotective effects of HN novel synthetic analogs HUJInin and c(D-Ser14-HN), prepared by solid-phase peptide synthesis. The cellular models employed were oxygen-glucose-deprivation (OGD) followed by reoxygenation (R)-induced neurotoxicity in PC12 and SH-SY5Y neuronal cell cultures and Dox-induced cardiotoxicity in H9c2 and C2C12 myoblast cell cultures, respectively. Necrotic and apoptotic cell death was measured by LDH release and caspase-3 activity. Erk 1/2 and AKT phosphorylations were examined by western blotting. Mitochondrial calcium and mitochondrial membrane potential were measured using the fluorescent dye tetramethylrhodamine-methyl ester. It was found that HUJInin and c(D-Ser14-HN) conferred significant dose-dependent neuroprotection, a phenomenon related to attenuation of OGD insult-induced Erk 1/2 phosphorylation, stimulation of AKT phosphorylation and improvement of mitochondrial functions. These peptides also conferred myoprotective effect towards Dox-induced apo-necrotic cell death insults. HUJInin and c(D-Ser14-HN) synthetic analogs may provide new lead compounds for the development of a potential candidate drug for stroke treatment and/or Dox-induced cardiotoxicity therapy in cancer patients.
Collapse
Affiliation(s)
- Chaim Gilon
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Agata Gitlin-Domagalska
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Adi Lahiani
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Shiran Yehoshua-Alshanski
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Adi Shumacher-Klinger
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Dan Gilon
- Echocardiography Unit, Department of Cardiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Mahmoud Taha
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Israel Sekler
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Amnon Hoffman
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Philip Lazarovici
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| |
Collapse
|
112
|
Hart V, Gautrey H, Kirby J, Tyson-Capper A. HER2 splice variants in breast cancer: investigating their impact on diagnosis and treatment outcomes. Oncotarget 2020; 11:4338-4357. [PMID: 33245725 PMCID: PMC7679030 DOI: 10.18632/oncotarget.27789] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/10/2020] [Indexed: 02/07/2023] Open
Abstract
Overexpression of the HER2 receptor occurs in approximately 20% of breast cancer patients. HER2 positivity is associated with poor prognosis and aggressive tumour phenotypes, which led to rapid progress in HER2 targeted therapeutics and diagnostic testing. Whilst these advances have greatly increased patients' chances of survival, resistance to HER2 targeted therapies, be that intrinsic or acquired, remains a problem. Different forms of the HER2 protein exist within tumours in tandem and can display altered biological activities. Interest in HER2 variants in breast cancer increased when links between resistance to anti-HER2 therapies and a particular variant, Δ16-HER2, were identified. Moreover, the P100 variant potentially reduces the efficacy of the anti-HER2 therapy trastuzumab. Another variant, Herstatin, exhibits 'auto-inhibitory' behaviour. More recently, new HER2 variants have been identified and are currently being assessed for their pro- and anti-cancer properties. It is important when directing the care of patients to consider HER2 variants collectively. This review considers HER2 variants in the context of the tumour environment where multiple variants are co-expressed at altered ratios. This study also provides an up to date account of the landscape of HER2 variants and links this to patterns of resistance against HER2 therapies and treatment plans.
Collapse
Affiliation(s)
- Vic Hart
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Hannah Gautrey
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - John Kirby
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Alison Tyson-Capper
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
113
|
Jebelli A, Baradaran B, Mosafer J, Baghbanzadeh A, Mokhtarzadeh A, Tayebi L. Recent developments in targeting genes and pathways by RNAi-based approaches in colorectal cancer. Med Res Rev 2020; 41:395-434. [PMID: 32990372 DOI: 10.1002/med.21735] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/16/2020] [Accepted: 09/16/2020] [Indexed: 12/18/2022]
Abstract
A wide spectrum of genetic and epigenetic variations together with environmental factors has made colorectal cancer (CRC), which involves the colon and rectum, a challenging and heterogeneous cancer. CRC cannot be effectively overcomed by common conventional therapies including surgery, chemotherapy, targeted therapy, and hormone replacement which highlights the need for a rational design of novel anticancer therapy. Accumulating evidence indicates that RNA interference (RNAi) could be an important avenue to generate great therapeutic efficacy for CRC by targeting genes that are responsible for the viability, cell cycle, proliferation, apoptosis, differentiation, metastasis, and invasion of CRC cells. In this review, we underline the documented benefits of small interfering RNAs and short hairpin RNAs to target genes and signaling pathways related to CRC tumorigenesis. We address the synergistic effects of RNAi-mediated gene knockdown and inhibitors/chemotherapy agents to increase the sensitivity of CRC cells to common therapies. Finally, this review points new delivery systems/materials for improving the cellular uptake efficiency and reducing off-target effects of RNAi.
Collapse
Affiliation(s)
- Asiyeh Jebelli
- Department of Biological Science, Faculty of Basic Science, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Mosafer
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, Wisconsin, USA
| |
Collapse
|
114
|
Dozio V, Daali Y, Desmeules J, Sanchez JC. Deep proteomics and phosphoproteomics reveal novel biological pathways perturbed by morphine, morphine-3-glucuronide and morphine-6-glucuronide in human astrocytes. J Neurosci Res 2020; 100:220-236. [PMID: 32954564 DOI: 10.1002/jnr.24731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/06/2020] [Accepted: 08/31/2020] [Indexed: 01/08/2023]
Abstract
Tolerance and hyperalgesia associated with chronic exposure to morphine are major limitations in the clinical management of chronic pain. At a cellular level, neuronal signaling can in part account for these undesired side effects, but unknown mechanisms mediated by central nervous system glial cells are likely also involved. Here we applied data-independent acquisition mass spectrometry to perform a deep proteome and phosphoproteome analysis of how human astrocytes responds to opioid stimulation. We unveil time- and dose-dependent effects induced by morphine and its major active metabolites morphine-3-glucuronide (M3G) and morphine-6-glucuronide that converging on activation of mitogen-activated protein kinase and mammalian target of rapamycin signaling pathways. We also find that especially longer exposure to M3G leads to significant dysregulation of biological pathways linked to extracellular matrix organization, antigen presentation, cell adhesion, and glutamate homeostasis, which are crucial for neuron- and leukocyte-astrocyte interactions.
Collapse
Affiliation(s)
- Vito Dozio
- Department of Medicine, University of Geneva, Geneva, Switzerland.,Swiss Centre for Applied Human Toxicology, Basel, Switzerland
| | - Youssef Daali
- Swiss Centre for Applied Human Toxicology, Basel, Switzerland.,Division of Clinical Pharmacology and Toxicology, Department of Anesthesiology, Pharmacology, Emergency Medicine and Intensive Cares, Geneva University Hospitals, Geneva, Switzerland
| | - Jules Desmeules
- Swiss Centre for Applied Human Toxicology, Basel, Switzerland.,Division of Clinical Pharmacology and Toxicology, Department of Anesthesiology, Pharmacology, Emergency Medicine and Intensive Cares, Geneva University Hospitals, Geneva, Switzerland
| | - Jean-Charles Sanchez
- Department of Medicine, University of Geneva, Geneva, Switzerland.,Swiss Centre for Applied Human Toxicology, Basel, Switzerland
| |
Collapse
|
115
|
Hlisníková H, Petrovičová I, Kolena B, Šidlovská M, Sirotkin A. Effects and Mechanisms of Phthalates' Action on Reproductive Processes and Reproductive Health: A Literature Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6811. [PMID: 32961939 PMCID: PMC7559247 DOI: 10.3390/ijerph17186811] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022]
Abstract
The production of plastic products, which requires phthalate plasticizers, has resulted in the problems for human health, especially that of reproductive health. Phthalate exposure can induce reproductive disorders at various regulatory levels. The aim of this review was to compile the evidence concerning the association between phthalates and reproductive diseases, phthalates-induced reproductive disorders, and their possible endocrine and intracellular mechanisms. Phthalates may induce alterations in puberty, the development of testicular dysgenesis syndrome, cancer, and fertility disorders in both males and females. At the hormonal level, phthalates can modify the release of hypothalamic, pituitary, and peripheral hormones. At the intracellular level, phthalates can interfere with nuclear receptors, membrane receptors, intracellular signaling pathways, and modulate gene expression associated with reproduction. To understand and to treat the adverse effects of phthalates on human health, it is essential to expand the current knowledge concerning their mechanism of action in the organism.
Collapse
Affiliation(s)
- Henrieta Hlisníková
- Department of Zoology and Anthropology, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (I.P.); (B.K.); (M.Š.); (A.S.)
| | | | | | | | | |
Collapse
|
116
|
Lettau K, Zips D, Toulany M. Simultaneous Targeting of RSK and AKT Efficiently Inhibits YB-1-Mediated Repair of Ionizing Radiation-Induced DNA Double-Strand Breaks in Breast Cancer Cells. Int J Radiat Oncol Biol Phys 2020; 109:567-580. [PMID: 32931865 DOI: 10.1016/j.ijrobp.2020.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/16/2020] [Accepted: 09/06/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE Y-box binding protein 1 (YB-1) overexpression is associated with chemotherapy- and radiation therapy resistance. Ionizing radiation (IR), receptor tyrosine kinase ligands, and mutation in KRAS gene stimulate activation of YB-1. YB-1 accelerates the repair of IR-induced DNA double-strand breaks (DSBs). Ribosomal S6 kinase (RSK) is the main kinase inducing YB-1 phosphorylation. We investigated the impact of RSK targeting on DSB repair and radiosensitivity. MATERIALS AND METHODS The triple negative breast cancer (TNBC) cell lines MDA-MB-231, MDA-MB-468, and Hs 578T, in addition to non-TNBC cell lines MCF7, HBL-100, and SKBR3, were used. MCF-10A cells were included as normal breast epithelial cells. The RSK inhibitor LJI308 was used to investigate the role of RSK activity in S102 phosphorylation of YB-1 and YB-1-associated signaling pathways. The activation status of the underlying pathways was investigated by Western blotting after treatment with pharmacologic inhibitors or transfection with siRNA. The impact of LJI308 on DSB repair and postirradiation cell survival was tested by the γH2AX foci and the standard clonogenic assays, respectively. RESULTS LJI308 inhibited the phosphorylation of RSK (T359/S363) and YB-1 (S102) after irradiation, treatment with EGF, and in cells expressing a KRAS mutation. LJI308 treatment slightly inhibited DSB repair only in some of the cell lines tested. This was shown to be due to PI3K-dependent stimulation of AKT or constitutive AKT activity mainly in cancer cells but not in normal breast epithelial MCF-10A cells. Simultaneous targeting of AKT and RSK strongly blocked DSB repair in all cancer cell lines, independent of TNBC status or KRAS mutation, with a minor effect in MCF-10A cells. Cotargeting of RSK- and AKT-induced radiation sensitivity in TNBC MDA-MB-231 and non-TNBC MCF7 cells but not in MCF-10A cells. CONCLUSIONS Simultaneous targeting of RSK and AKT might be an efficient approach to block the repair of DSBs after irradiation and to induce radiosensitization of breast cancer cells.
Collapse
Affiliation(s)
- Konstanze Lettau
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tübingen, Tübingen, Germany; German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Zips
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tübingen, Tübingen, Germany; German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tübingen, Tübingen, Germany; German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
117
|
Zhao Z, Zhang N, Li A, Zhou B, Chen Y, Chen S, Huang M, Wu F, Zhang L. Insulin-like growth factor-1 receptor induces immunosuppression in lung cancer by upregulating B7-H4 expression through the MEK/ERK signaling pathway. Cancer Lett 2020; 485:14-26. [PMID: 32417396 DOI: 10.1016/j.canlet.2020.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 04/04/2020] [Accepted: 04/10/2020] [Indexed: 12/24/2022]
Abstract
The Insulin-like growth factor-1/Insulin-like growth factor-1 receptor (IGF1/IGF1R) axis contributes to immunosuppression during tumor progression; however, the underlying mechanism remains unclear. In the present study, we found that IGF1 stimulation or IGF1R overexpression (IGF1R-OE) could upregulate the expression of B7-H4, while IGF1R inhibition downregulated B7-H4 in both A549 and SPC-A-1 lung cancer cell lines. IGF1R-OE conferred the inhibition of CD8+ T cells by cancer cells in vitro, and induction of B7-H4 expression was mediated by the activation of the MEK/ERK1/2 signaling pathway. The in vitro findings were further confirmed in vivo using a Lewis lung cancer mouse model. IGF1R-OE promoted tumor growth and inhibited tumor infiltration by CD8+ T cells in the mouse model. However, this effect was suppressed when B7-H4 was knocked down in IGF1R-OE cells. Our findings suggest that IGF1R could induce immunosuppression in lung cancer by upregulating the expression of B7-H4 through the MEK/ERK pathway. B7-H4 may therefore be a potential therapeutic target for lung cancer immunotherapy.
Collapse
Affiliation(s)
- Zhiming Zhao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Ningyue Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Anqi Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Bin Zhou
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu, China; Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, Soochow University, Suzhou, Jiangsu, China
| | - Yali Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Shaomu Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Moli Huang
- Department of Bioinformatics, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Fengying Wu
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Liang Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China; Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu, China; Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
118
|
Vukelić I, Detel D, Batičić L, Potočnjak I, Domitrović R. Luteolin ameliorates experimental colitis in mice through ERK-mediated suppression of inflammation, apoptosis and autophagy. Food Chem Toxicol 2020; 145:111680. [PMID: 32783997 DOI: 10.1016/j.fct.2020.111680] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease with increasing incidence and prevalence worldwide. Currently used treatments of UC are unsatisfactory, while natural bioactive compounds are considered to be emerging therapeutic agents. Luteolin (Lut) is a natural compound with beneficial effects in a variety of diseases, however, its effect in UC has been poorly studied. In this study we investigated the effect of Lut in posttreatment and cotreatment of dextran sulfate sodium (DSS)-induced experimental colitis in mice. In addition, the role of extracellular signal-regulated kinases 1/2 (ERK1/2) in the mechanism of action of Lut in experimental colitis was investigated using the ERK inhibitor PD0325901. Lut attenuated symptoms of DSS-induced colitis in mice, ameliorated colon tissue damage and reduced inflammation, apoptosis and autophagy. The effect was more pronounced if Lut was administered simultaneously with DSS. The administration of ERK inhibitor exacerbated DSS-induced colitis symptoms and prevented the protective effects of Lut. The results provide new mechanistic details underlying the anti-inflammatory, anti-apoptotic and anti-autophagic effects of Lut through the activation of the ERK signaling pathway. This suggested that Lut can be used as a novel therapeutic candidate in the treatment of UC or could be used as a supplement to existing therapy.
Collapse
Affiliation(s)
- Iva Vukelić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Dijana Detel
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Lara Batičić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Iva Potočnjak
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Robert Domitrović
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
119
|
CCT128930 induces G1-phase arrest and apoptosis and synergistically enhances the anticancer efficiency of VS5584 in human osteosarcoma cells. Biomed Pharmacother 2020; 130:110544. [PMID: 32721630 DOI: 10.1016/j.biopha.2020.110544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/07/2020] [Accepted: 07/20/2020] [Indexed: 11/24/2022] Open
Abstract
Osteosarcoma is a highly invasive primary malignant bone tumor. PI3K/mTOR pathway plays a key role in tumor progression, and inhibition of PI3K/mTOR pathway represents a novel strategy in therapy of osteosarcoma. CCT128930 and VS5584 are both inhibitors of PI3K/mTOR, but the anticancer mechanism of CCT128930 or/and VS5584 against human osteosarcoma cells remains unclear. Herein, U2OS and MG63 human osteosarcoma cells were cultured, and the anticancer effects of CCT128930 alone and the combined effect of CCT128930 and VS5584 against human osteosarcoma cells were explored. The results showed that CCT128930 as PI3K/mTOR inhibitor effectively inhibited p-p70 and p-AKT expression and dose-dependently inhibited U2OS cells and MG63 human osteosarcoma cells growth. Further studies found that CCT128930 triggered significant G-1 phase arrest and apoptosis, as convinced by the dysfunction of p27, Cyclin B1, Cyclin D1 and Cdc2, and PARP cleavage and caspase-3 activation. Moreover, CCT128930 treatment obviously enhanced VS5584-induced growth inhibition and apoptosis in human osteosarcoma cells, followed by enhanced PARP cleavage and caspase-3 activation. Taken together, CCT128930 alone or combined treatment with CCT128930 and VS5584 both effectively inhibited human osteosarcoma cells growth by induction of G1-phase arrest and apoptosis through regulating PI3K/mTOR and MAPKs pathways.
Collapse
|
120
|
Salicylidene acylhydrazides attenuate survival of SH-SY5Y neuroblastoma cells through affecting mitotic regulator Speedy/RINGO and ERK/MAPK-PI3K/AKT signaling. Med Oncol 2020; 37:65. [PMID: 32691165 DOI: 10.1007/s12032-020-01391-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022]
Abstract
Salicylidene acylhydrazide group synthetic compounds ME0053, ME005 and ME0192 are known for their iron chelating properties and due to these properties they are primarily used for blocking the bacterial type 3 secretory virulence system. On the other side, targeting the metabolic pathways of iron can provide new tools for cancer prognosis and treatment. Therefore, in this study, considering their iron chelating function, the effects of the compounds ME0053, ME0055 and ME0192 were investigated in SH-SY5Y neuroblastoma cell line. Iron chelating compounds are generally known to be effective in tumor development and metastasis by targeting iron in the cell. They can exert this effect through molecules such as cyclin, CDKs, as well as signaling pathways such as PI3K/AKT and ERK/MAPK. For this reason, we analyzed the effect of the iron chelating compounds of ME0053, ME0055 and ME0192 on cell viability and proliferation rate both through ERK/MAPK and PI3K/AKT signal paths, and through the oncogenic Speedy/RINGO protein that is likely to have a regulatory effect on these two signaling pathways. Apoptosis was also investigated by measuring the amount of active caspase-3, an apoptotic marker. Along with the decrease observed in the Speedy/RINGO level, it was observed that the PI3K/AKT and ERK/MAPK signaling were decreased. This suggests that ME0053, ME0055 and ME0192 compounds significantly decrease the Speedy/RINGO expression which has a regulatory effect on the ERK/MAPK and PI3K/AKT signaling. Besides, analyzing active caspase-3 levels showed that the compounds ME0053, ME0055 and ME0192 increased its level by 218%, 60% and 175% in SH-SY5Y cells, respectively. The results of this study will pave the way for better understanding of the regulation of cancer-related ERK/MAPK and PI3K/AKT pathways and the oncogenic Speedy/RINGO which potentially affects these pathways, through synthetic salicylidene acylhydrazides and their therapeutic use in cancer.
Collapse
|
121
|
Speedy/RINGO protein interacts with ERK/MAPK and PI3K/AKT pathways in SH-SY5Y neuroblastoma cells. Mol Cell Biochem 2020; 473:133-141. [PMID: 32602013 DOI: 10.1007/s11010-020-03813-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 06/19/2020] [Indexed: 10/24/2022]
Abstract
Abnormal activity of ERK/MAPK and PI3K/AKT pathways is one of the most important factors for the development of many cancer types including neuroblastoma cancer. Apart from these two pathways, some cell cycle regulators such as Speedy/RINGO also contribute to neuroblastoma development. There is data reinforcing the possible communication of the components of ERK/MAPK and PI3K/AKT pathways in carcinogenic process. In addition to this, there are studies about the direct/indirect interaction of Speedy/RINGO with these pathways in different cell types other than neuroblastoma. However, there is not any study available showing the interaction of Speedy/RINGO with both pathways in neuroblastoma cells. Therefore, the aim of this study is to determine the possible effect of Speedy/RINGO on PI3K/AKT and ERK/MAPK pathways in SH-SY5Y neuroblastoma cells. For this aim, Speedy/RINGO was silenced by siRNA technique to analyze the effects of direct inhibition of Speedy/RINGO on these pathways. Results showed that Speedy/RINGO silencing caused a significant decrease in MEK1/2 expression and AKT phosphorylation. Afterward, MEK1/2 was inhibited using a specific inhibitor U0126. Data reveal a corresponding decrease in the Speedy/RINGO expression and AKT phosphorylation indicating a reciprocal interaction between ERK/MAPK and Speedy/RINGO. In addition, MTS analysis showed that both ERK/MAPK inhibition and Speedy/RINGO silencing significantly reduced the viability of SH-SY5Y cells. This study provides information about a possible interaction of Speedy/RINGO with PI3K/AKT and ERK/MAPK pathways in SH-SY5Y cells for the first time. It will not only help to better understand the cancer-prone interactions of these pathways but also enable us to identify the appropriate molecular targets for developing efficient treatment strategies.
Collapse
|
122
|
Wu Q, Mao Z, Liu J, Huang J, Wang N. Ligustilide Attenuates Ischemia Reperfusion-Induced Hippocampal Neuronal Apoptosis via Activating the PI3K/Akt Pathway. Front Pharmacol 2020; 11:979. [PMID: 32676033 PMCID: PMC7333531 DOI: 10.3389/fphar.2020.00979] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
Ligustilide (LIG), a main lipophilic component isolated from Cnidii Rhizoma (Cnidium officinale, rhizome) and Angelicae Gigantis Radix (Angelica gigas Nakai, root), has been shown to alleviate cerebral ischemia injury and paly a neuroprotective role. We investigated mechanisms underlying the antiapoptotic effects of LIG in vitro and in vivo, respectively, using cultured primary hippocampal neurons under oxygen-glucose deprivation/reperfusion (OGD/R) and rats under cerebral ischemia reperfusion(I/R) conditions. In vitro studies revealed that the suppressed apoptosis in hippocampal neurons upon LIG treatment was associated with reduced calcium influx and generation of reactive oxygen species. The LIG-treated hippocampal neurons exhibited decreased the ratio of Bax/Bcl-2, and the release of CytC from mitochondria as well as the expression of cleaved caspase-3, which were accompanied with enhanced the phosphorylation of Akt protein, in a PI3K-dependent manner. In vivo studies demonstrated a neuroprotective role of LIG in attenuating cerebral infarction volume, neurological injury and hippocampal neuron injury, suggesting that LIG could reverse ischemia reperfusion(I/R)-induced apoptosis of hippocampal neurons. These results together suggest that LIG may be considered as a neuroprotectant in the treatment of ischemia stroke.
Collapse
Affiliation(s)
- Qian Wu
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China.,College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Zhiguo Mao
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China
| | - Jiao Liu
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China
| | - Jinling Huang
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Ning Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China.,Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei, China
| |
Collapse
|
123
|
Cao S, Aboelkassem Y, Wang A, Valdez-Jasso D, Saucerman JJ, Omens JH, McCulloch AD. Quantification of model and data uncertainty in a network analysis of cardiac myocyte mechanosignalling. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190336. [PMID: 32448062 PMCID: PMC7287329 DOI: 10.1098/rsta.2019.0336] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/14/2020] [Indexed: 05/21/2023]
Abstract
Cardiac myocytes transduce changes in mechanical loading into cellular responses via interacting cell signalling pathways. We previously reported a logic-based ordinary differential equation model of the myocyte mechanosignalling network that correctly predicts 78% of independent experimental results not used to formulate the original model. Here, we use Monte Carlo and polynomial chaos expansion simulations to examine the effects of uncertainty in parameter values, model logic and experimental validation data on the assessed accuracy of that model. The prediction accuracy of the model was robust to parameter changes over a wide range being least sensitive to uncertainty in time constants and most affected by uncertainty in reaction weights. Quantifying epistemic uncertainty in the reaction logic of the model showed that while replacing 'OR' with 'AND' reactions greatly reduced model accuracy, replacing 'AND' with 'OR' reactions was more likely to maintain or even improve accuracy. Finally, data uncertainty had a modest effect on assessment of model accuracy. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'.
Collapse
Affiliation(s)
- Shulin Cao
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Yasser Aboelkassem
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Ariel Wang
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Daniela Valdez-Jasso
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Jeffrey H. Omens
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrew D. McCulloch
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
124
|
Zhang Q, Wang X, Cao S, Sun Y, He X, Jiang B, Yu Y, Duan J, Qiu F, Kang N. Berberine represses human gastric cancer cell growth in vitro and in vivo by inducing cytostatic autophagy via inhibition of MAPK/mTOR/p70S6K and Akt signaling pathways. Biomed Pharmacother 2020; 128:110245. [PMID: 32454290 DOI: 10.1016/j.biopha.2020.110245] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 12/21/2022] Open
Abstract
Berberine, an isoquinoline alkaloid from Coptidis Rhizoma, has been characterized as a potential anticancer drug due to its good anti-tumor effects. However, the molecular mechanisms involved in anti-gastric cancer remain poorly understood. Herein, the role of berberine in gastric cancer suppression by inducing cytostatic autophagy in vitro and in vivo was first investigated. Results showed that berberine induced an obvious growth inhibitory effect on gastric cancer BGC-823 cells without toxicity to human peripheral blood mononuclear cells. Treatment with berberine triggered cell autophagy, as demonstrated by the punctuate distribution of monodansylcadaverine staining and GFP-LC3, as well as the LC3-II, Beclin-1 and p-ULK1 promotion, and p62 degradation. Inhibition of autophagy by 3-MA, CQ, Baf-A1 and BECN1 siRNA obviously increased cell viability of berberine-exposed gastric cancer cells, which confirmed the anti-cancer role of autophagy induced by berberine. Mechanistic studies showed that berberine inhibited mTOR, Akt and MAPK (ERK, JNK and p38) pathways thereby inducing autophagy. Inhibition of above pathways increases berberine induced autophagy and cytotoxicity. Interestingly, mTOR/p70S6K was inhibited by the MAPK but not Akt. Furthermore, inhibition of autophagy reversed berberine down-regulated mTOR, Akt and MAPK. In xenografts, the berberine induced autophagy leads to suppression of tumor proliferation with no side-effect, and western blotting displayed an apparent attenuation of p-mTOR, p-p70S6K, p-Akt, p-ERK, p-JNK and p-p38 in tumors from berberine treated mice. Briefly, these results indicated that berberine repressed human gastric cancer cell growth in vitro and in vivo by inducing cytostatic autophagy via inhibition of MAPK/mTOR/p70S6K and Akt, and provided a molecular basis for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Qiang Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaobing Wang
- Department of Biochemistry and Molecular Biology, Shenyang Pharmaceutical University, Shenyang, China
| | - Shijie Cao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yujie Sun
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinya He
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Benke Jiang
- Department of Biochemistry and Molecular Biology, Shenyang Pharmaceutical University, Shenyang, China
| | - Yaqin Yu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingshi Duan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Feng Qiu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ning Kang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
125
|
Sun Y, Xu J, Jia X. The Diagnosis, Treatment, Prognosis and Molecular Pathology of Borderline Ovarian Tumors: Current Status and Perspectives. Cancer Manag Res 2020; 12:3651-3659. [PMID: 32547202 PMCID: PMC7246309 DOI: 10.2147/cmar.s250394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/24/2020] [Indexed: 11/24/2022] Open
Abstract
Borderline ovarian tumors (BOTs) are a type of low malignant potential tumor that is typically associated with better outcomes than ovarian cancer. Indeed, its 10-year survival rate is as high as 95%. However, there is a small subset of patients who experience relapse and eventually die. It has been shown that the prognosis of BOTs was based on pathological diagnosis, the age at diagnosis, pre-operative carbohydrate antigen 125 level, invasive implants, and micropapillary patterns. Now the molecular-targeted therapy and molecular-genetic diagnosis have developed into a form of precision medicine. Recent studies on extensive molecular characterizations and molecular pathological mechanisms of BOTs have helped us understand the genomic landscapes of BOTs, and therefore BOTs could be reclassified into biologically and clinically more accurate and effective subtypes. The purpose of this review is to summarize current status for the diagnosis and treatment of BOTs and to describe the research progress on molecular pathologies, with a goal of providing a theoretical perspective for the diagnosis and treatment of BOTs.
Collapse
Affiliation(s)
- Yu Sun
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, People's Republic of China
| | - Juan Xu
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, People's Republic of China
| | - Xuemei Jia
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, People's Republic of China
| |
Collapse
|
126
|
Bjeije H, Soltani BM, Behmanesh M, Zali MR. YWHAE long non-coding RNA competes with miR-323a-3p and miR-532-5p through activating K-Ras/Erk1/2 and PI3K/Akt signaling pathways in HCT116 cells. Hum Mol Genet 2020; 28:3219-3231. [PMID: 31238337 DOI: 10.1093/hmg/ddz146] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/25/2019] [Accepted: 06/16/2019] [Indexed: 12/21/2022] Open
Abstract
YWHAE gene product belongs to the 14-3-3 protein family that mediates signal transduction in plants and mammals. Protein-coding and non-coding RNA (lncRNA) transcripts have been reported for this gene in human. Here, we aimed to functionally characterize YWHAE-encoded lncRNA in colorectal cancer-originated cells. RNA-seq analysis showed that YWHAE gene is upregulated in colorectal cancer specimens. Additionally, bioinformatics analysis suggested that YWHAE lncRNA sponges miR-323a-3p and miR-532-5p that were predicted to target K-Ras 3'UTR sequence. Overexpression of YWHAE lncRNA resulted in upregulation of K-Ras gene expression, while overexpression of both miR-323a-3p and miR-532-5p had an inverse effect, detected by RT-qPCR. Consistently, western blot analysis confirmed that YWHAE lncRNA overexpression upregulated K-Ras/Erk1/2 and PI3K/Akt signaling pathways, while miR-323a-3p and miR-532-5p overexpression suppressed both pathways in HCT116 cells. Furthermore, dual luciferase assay validated the direct interaction of miR-323a-3p and miR-532-5p with K-Ras 3'UTR sequence and supported the sponging effect of YWHAE lncRNA over both miRNAs. These results suggested YWHAE lncRNA as an oncogene that exerts its effect through sponging miR-323a-3p and miR-532-5p and in turn, upregulates K-Ras/Erk1/2 and PI3K/Akt signaling pathways. Consistently, flow cytometry analysis, MTT assay and measuring cyclin D1 gene expression, confirmed the cell cycle stimulatory effect of YWHAE lncRNA, while miR-323a-3p and miR-532-5p showed an inhibitory effect on cell cycle progression. Finally, wound-healing assay supported the cell migratory effect of YWHAE lncRNA in HCT116 cells. This study identified a novel mechanism involving YWHAE-encoded lncRNA, miR-323a-3p and miR-532-5p in regulating HCT116 cell survival and suggested a potential therapeutic avenue for colorectal cancer.
Collapse
Affiliation(s)
- Hassan Bjeije
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahram Mohammad Soltani
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehrdad Behmanesh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
127
|
Zhang H, Zhang W, Yun D, Li L, Zhao W, Li Y, Liu X, Liu Z. Alternate-day fasting alleviates diabetes-induced glycolipid metabolism disorders: roles of FGF21 and bile acids. J Nutr Biochem 2020; 83:108403. [PMID: 32497958 DOI: 10.1016/j.jnutbio.2020.108403] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/27/2020] [Accepted: 04/23/2020] [Indexed: 12/28/2022]
Abstract
Glycolipid metabolism disorder is one of the causes of type 2 diabetes (T2D). Alternate-day fasting (ADF) is an effective dietary intervention to counteract T2D. The present study is aimed to determine the underlying mechanisms of the benefits of ADF metabolic on diabetes-induced glycolipid metabolism disorders in db/db mice. Here, leptin receptor knock-out diabetic mice were subjected to 28 days of isocaloric ADF. We found that ADF prevented insulin resistance and bodyweight gain in diabetic mice. ADF promoted glycogen synthesis in both liver and muscle. ADF also activated recombinant insulin receptor substrate-1 (IRS-1)/protein kinase B (AKT/PKB) signaling,inactivated inflammation related AMP-activated protein kinase (AMPK) and the inflammation-regulating nuclear factor kappa-B (NF-κB) signaling in the liver. ADF also suppressed lipid accumulation by inactivating the expression of peroxisome proliferator-activated receptor gamma (PPAR-γ) and sterol regulatory element-binding protein-1c (SREBP-1c). Furthermore, ADF elevated the expression of fibroblast growth factor 21 (FGF21) and down-stream signaling AMPK/silent mating type information regulation 2 homolog 1 (SIRT1)/peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) in the liver of diabetic mice. The mitochondrial biogenesis and autophagy were also stimulated by ADF. Interestingly, ADF also enhanced the bile acids (BAs) metabolism by generating more cholic acid (CA), deoxycholic acid (DCA) and tauroursodeoxycholic acid (TUDCA) in db/db mice. In conclusion, ADF could significantly inhibit T2D induced insulin resistance and obesity, promote insulin signaling,reduce inflammation, as well as promote glycogen synthesis and lipid metabolism. It possibly depends on FGF21 and BA metabolism to enhance mitochondrial biosynthesis and energy metabolism.
Collapse
Affiliation(s)
- Hongbo Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Wentong Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Duo Yun
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Ling Li
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Weiyang Zhao
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - Yitong Li
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China; Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
128
|
Quan JH, Ismail HAHA, Cha GH, Jo YJ, Gao FF, Choi IW, Chu JQ, Yuk JM, Lee YH. VEGF Production Is Regulated by the AKT/ERK1/2 Signaling Pathway and Controls the Proliferation of Toxoplasma gondii in ARPE-19 Cells. Front Cell Infect Microbiol 2020; 10:184. [PMID: 32432052 PMCID: PMC7216739 DOI: 10.3389/fcimb.2020.00184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/06/2020] [Indexed: 11/13/2022] Open
Abstract
The retina is the primary site of Toxoplasma gondii infection in the eye, and choroidal neovascularization in ocular toxoplasmosis is one of the most important causes of visual impairment. Vascular endothelial growth factor (VEGF) is one of the key regulators of blood vessel development, however, little is known about the mechanisms of T. gondii-induced VEGF production in ocular toxoplasmosis. Here, we investigate the effect of T. gondii on VEGF production regulation in human retinal pigment epithelium ARPE-19 cells and attempted to unveil the underlying mechanism of this event by focusing on the interaction between parasite and the selected host intracellular signaling pathways. T. gondii infection increased the expression of VEGF mRNA and protein in ARPE-19 cells in parasite burden- and infection time-dependent manner. The proportional increase of VEGF upstream regulators, HIF-1α and HO-1, was also observed. T. gondii induced the activation of host p-AKT, p-ERK1/2, and p-p38 MAPK in ARPE-19 cells in a parasite-burden dependent manner. However, VEGF expression decreased after the pre-treatment with PI3K inhibitors (LY294002 and GDC-0941), ERK1/2 inhibitor (PD098059), and p38 MAPK inhibitor (SB203580), but not JNK inhibitor (SP600125), in a dose-dependent manner. The anti-VEGF agent bevacizumab or VEGF siRNA transfection prominently inhibited the activation of p-AKT and p-ERK1/2, but not p-p38 MAPK and JNK1/2 in T. gondii-infected ARPE-19 cells. Bevacizumab treatment or VEGF siRNA transfection significantly inhibited the proliferation of T. gondii tachyzoites in the host cell, dose-dependently, but not invasion of parasites. VEGF-receptor 2 (VEGF-R2) antagonist, SU5416, attenuated VEGF production and tachyzoite proliferation in T. gondii-infected ARPE-19 cells in a dose-dependent manner. Collectively, T. gondii prominently induces VEGF production in ARPE-19 cells, and VEGF and AKT/ERK1/2 signaling pathways mutually regulate each other in T. gondii-infected ARPE-19 cells, but not p38 MAPK and JNK1/2 signaling pathways. VEGF and VEGF-R2 control the parasite proliferation in T. gondii-infected ARPE-19 cells. From this study, we revealed the putative mechanisms for VEGF induction as well as the existence of positive feedback between VEGF and PI3K/MAPK signaling pathways in T. gondii-infected retinal pigment epithelium.
Collapse
Affiliation(s)
- Juan-Hua Quan
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | | | - Guang-Ho Cha
- Department of Infection Biology and Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Young-Joon Jo
- Department of Ophthalmology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Fei Fei Gao
- Department of Infection Biology and Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - In-Wook Choi
- Department of Infection Biology and Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Jia-Qi Chu
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jae-Min Yuk
- Department of Infection Biology and Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Young-Ha Lee
- Department of Infection Biology and Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| |
Collapse
|
129
|
Euscaphic acid and Tormentic acid protect vascular endothelial cells against hypoxia-induced apoptosis via PI3K/AKT or ERK 1/2 signaling pathway. Life Sci 2020; 252:117666. [PMID: 32298737 DOI: 10.1016/j.lfs.2020.117666] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/03/2020] [Accepted: 04/09/2020] [Indexed: 01/05/2023]
Abstract
AIMS Euscaphic acid and Tormentic acid are aglycones of Kaji-ichigoside F1 and Rosamultin, respectively. These four compounds are pentacyclic triterpenoid, isolated from the subterranean root of the Potentilla anserina L. Based on the protective roles against hypoxia-induced apoptosis of Euscaphic acid and Tormentic acid in vascular endothelial cells, this study was designed to determine the mechanisms. MAIN METHODS The model of hypoxic injuries in EA. hy926 cells was established. Through applications of PI3K/AKT inhibitor, LY294002 and ERK1/2 inhibitor, PD98059, we explored the relationships between pharmacodynamic mechanisms and PI3K/AKT or ERK 1/2 signaling pathway. The anti-hypoxic effects were studied by methyl-thiazolyl-tetrazolium (MTT) assay, Hematoxylin-Eosin (HE) staining, DAPI staining, and flow cytometry. The mechanisms of anti-mitochondrial apoptosis were explored by western blot. The expressions of p-ERK 1/2, ERK 1/2, p-AKT, AKT, p-NF-κB, NF-κB, Bcl-2, Bax, Cyt C, cleaved caspase-9 and cleaved caspase-3 were detected. KEY FINDINGS Euscaphic acid protected vascular endothelial cells against hypoxia-induced apoptosis via ERK1/2 signaling pathway, and Tormentic acid brought its efficacy into full play via PI3K/AKT and ERK1/2 signaling pathways. In addition, PI3K/AKT signaling pathway positively regulated ERK1/2 pathway, and ERK1/2 pathway negatively regulated PI3K/AKT pathway. SIGNIFICANCE This evidence provides theoretical and experimental basis for the following research on anti-hypoxic drugs of Potentilla anserina L.
Collapse
|
130
|
Kaji-Ichigoside F1 and Rosamultin Protect Vascular Endothelial Cells against Hypoxia-Induced Apoptosis via the PI3K/AKT or ERK1/2 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6837982. [PMID: 32318240 PMCID: PMC7153006 DOI: 10.1155/2020/6837982] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/14/2020] [Accepted: 03/10/2020] [Indexed: 01/23/2023]
Abstract
As a pair of differential isomers, Kaji-ichigoside F1 and Rosamultin are both pentacyclic triterpenoids isolated from the subterranean root of Potentilla anserina L., a plant used in folk medicine in western China as antihypoxia and anti-inflammatory treatments. We demonstrated that Kaji-ichigoside F1 and Rosamultin effectively prevented hypoxia-induced apoptosis in vascular endothelial cells. We established a hypoxia model, using EA.hy926 cells, to further explore the mechanisms. Hypoxia promoted the phosphorylation of AKT, ERK1/2, and NF-κB. In hypoxic cells treated with Kaji-ichigoside F1, p-ERK1/2 and p-NF-κB levels were increased, while the level of p-AKT was decreased. Treatment with Rosamultin promoted phosphorylation of ERK1/2, NF-κB, and AKT in hypoxic cells. Following the addition of LY294002, the levels of p-AKT, p-ERK1/2, and p-NF-κB decreased significantly. Addition of PD98059 resulted in reduced levels of p-ERK1/2 and p-NF-κB, while p-AKT levels were increased. Pharmacodynamic analysis demonstrated that both LY294002 and PD98059 significantly inhibited the positive effects of Kaji-ichigoside F1 on cell viability during hypoxia, consistent with the results of hematoxylin-eosin (H&E) staining, DAPI staining, and flow cytometry. The antihypoxia effects of Rosamultin were remarkably inhibited by LY294002 but promoted by PD98059. In Kaji-ichigoside F1- and Rosamultin-treated cells, Bcl2 expression was significantly upregulated, while expression of Bax and cytochrome C and levels of cleaved caspase-9 and cleaved caspase-3 were reduced. Corresponding to pharmacodynamic analysis, LY294002 inhibited the regulatory effects of Kaji-ichigoside F1 and Rosamultin on the above molecules, while PD98059 inhibited the regulatory effects of Kaji-ichigoside F1 but enhanced the regulatory effects of Rosamultin. In conclusion, Kaji-ichigoside F1 protected vascular endothelial cells against hypoxia-induced apoptosis by activating the ERK1/2 signaling pathway, which positively regulated the NF-κB signaling pathway and negatively regulated the PI3K/AKT signaling pathway. Rosamultin protected vascular endothelial cells against hypoxia-induced apoptosis by activating the PI3K/AKT signaling pathway and positively regulating ERK1/2 and NF-κB signaling pathways.
Collapse
|
131
|
Pottier C, Fresnais M, Gilon M, Jérusalem G, Longuespée R, Sounni NE. Tyrosine Kinase Inhibitors in Cancer: Breakthrough and Challenges of Targeted Therapy. Cancers (Basel) 2020; 12:cancers12030731. [PMID: 32244867 PMCID: PMC7140093 DOI: 10.3390/cancers12030731] [Citation(s) in RCA: 296] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are key regulatory signaling proteins governing cancer cell growth and metastasis. During the last two decades, several molecules targeting RTKs were used in oncology as a first or second line therapy in different types of cancer. However, their effectiveness is limited by the appearance of resistance or adverse effects. In this review, we summarize the main features of RTKs and their inhibitors (RTKIs), their current use in oncology, and mechanisms of resistance. We also describe the technological advances of artificial intelligence, chemoproteomics, and microfluidics in elaborating powerful strategies that could be used in providing more efficient and selective small molecules inhibitors of RTKs. Finally, we discuss the interest of therapeutic combination of different RTKIs or with other molecules for personalized treatments, and the challenge for effective combination with less toxic and off-target effects.
Collapse
Affiliation(s)
- Charles Pottier
- Laboratory of Tumor and Development Biology, GIGA-Cancer and GIGA-I3, GIGA-Research, University Hospital of Liège, 4000 Liège, Belgium; (M.G.); (N.E.S.)
- Department of Medical Oncology, University Hospital of Liège, 4000 Liège, Belgium;
- Correspondence:
| | - Margaux Fresnais
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital of Heidelberg, 69120 Heidelberg, Germany; (M.F.); (R.L.)
- German Cancer Consortium (DKTK)-German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marie Gilon
- Laboratory of Tumor and Development Biology, GIGA-Cancer and GIGA-I3, GIGA-Research, University Hospital of Liège, 4000 Liège, Belgium; (M.G.); (N.E.S.)
| | - Guy Jérusalem
- Department of Medical Oncology, University Hospital of Liège, 4000 Liège, Belgium;
| | - Rémi Longuespée
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital of Heidelberg, 69120 Heidelberg, Germany; (M.F.); (R.L.)
| | - Nor Eddine Sounni
- Laboratory of Tumor and Development Biology, GIGA-Cancer and GIGA-I3, GIGA-Research, University Hospital of Liège, 4000 Liège, Belgium; (M.G.); (N.E.S.)
| |
Collapse
|
132
|
Duan Y, Li J, Jing X, Ding X, Yu Y, Zhao Q. Fucoidan Induces Apoptosis and Inhibits Proliferation of Hepatocellular Carcinoma via the p38 MAPK/ERK and PI3K/Akt Signal Pathways. Cancer Manag Res 2020; 12:1713-1723. [PMID: 32210612 PMCID: PMC7069570 DOI: 10.2147/cmar.s243495] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/20/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose Fucoidan is a natural bioactive product with broad therapeutic applications. Hepatocellular carcinoma (HCC) is a common malignancy of the liver associated with a relatively high mortality rate; thus, effective treatments are urgently needed. Here, the effects of fucoidan on HCC and the underlying mechanism were explored. Methods The proliferation and apoptosis of two HCC cell lines (BEL-7402 and LM3) treated with different concentrations of fucoidan or saline were assessed. The levels of proliferating cell nuclear antigen (PCNA) and CCK8 assay were used to determine proliferative capabilities of BEL-7402 and LM3 cells. Apoptosis of LM3 cells was assessed by Hoechst 33342 staining, Western blotting and flow cytometry. The capability of fucoidan to inhibit the growth of LM3 cells was investigated by monitoring of the p38 MAPK/ERK pathways and the upstream kinases, PI3K/Akt. LM3 xenograft tumors were used for in vivo verification. Results Cell proliferation and apoptosis assays consistently showed that fucoidan has an inhibitory effect on cell growth. Fucoidan significantly promoted apoptosis of LM3 cells through a mechanism involving activation of caspases 8, 9, and 3 accompanied by changes in B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X protein (Bax), as well as changes in the phosphorylation of p38 MAPK and ERK. Fucoidan also altered the phosphorylation of its upstream kinase, Akt. Fucoidan treatment markedly reduced the growth of LM3 xenograft tumors, consistent with the in vitro results. Conclusion Fucoidan conveys antitumor effects and, thus, should be further explored as a potential treatment option for HCC.
Collapse
Affiliation(s)
- Yifei Duan
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266003, People's Republic of China
| | - Jingjing Li
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266003, People's Republic of China
| | - Xue Jing
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266003, People's Republic of China
| | - Xueli Ding
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266003, People's Republic of China
| | - Yanan Yu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266003, People's Republic of China
| | - Qingxi Zhao
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266003, People's Republic of China
| |
Collapse
|
133
|
Resistance of melanoma cells to anticancer treatment: a role of vascular endothelial growth factor. Postepy Dermatol Alergol 2020; 37:11-18. [PMID: 32467677 PMCID: PMC7247075 DOI: 10.5114/ada.2020.93378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/21/2019] [Indexed: 12/18/2022] Open
Abstract
Melanoma is one of the most aggressive and resistant to treatment neoplasms. There are still many challenges despite many promising advances in anticancer treatment. Currently, the main problem for all types of treatment is associated with heterogeneity. Due to heterogeneity of cancer cells, "precise" targeting of a medicine against a single phenotype limits the efficacy of treatment and affects resistance to applied therapy. Therefore it is important to understand aetiology and reasons for heterogeneity in order to develop effective and long-lasting treatment. This review summarises roles of vascular endothelial growth factor (VEGF) that may stimulate growth of a melanoma tumour irrespective of its proangiogenic effects, contributing to cancer heterogeneity. VEGF triggers processes associated with extracellular matrix remodelling, cell migration, invasion, angiogenesis, inhibition of immune responses and favours phenotypic plasticity and epithelial-mesenchymal transition. Consequently, it participates in mechanisms of interactions between melanoma cancer cells and microenvironment and it can modify sensitivity to therapeutic factors.
Collapse
|
134
|
Ning X, Sun L. Gene network analysis reveals a core set of genes involved in the immune response of Japanese flounder (Paralichthys olivaceus) against Vibrio anguillarum infection. FISH & SHELLFISH IMMUNOLOGY 2020; 98:800-809. [PMID: 31743762 DOI: 10.1016/j.fsi.2019.11.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/30/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Japanese flounder (Paralichthys olivaceus) is one of the most economically important marine fish cultured in north Asia. Vibrio anguillarum is a severe bacterial pathogen to Japanese flounder and many other aquaculture species. In order to understand the immune response of flounder during bacterial infection, we systematically examined the transcriptome profiles of flounder spleen at three time points after V. anguillarum challenge. More than one billion high quality reads were obtained, approximately 80.70% of which were successfully mapped to the reference genome of flounder. A total of 6060, 4688 and 4235 differentially expressed genes (DEGs) were captured at 6, 12 and 24-h post-infection, respectively. The DEGs exhibited dynamic changes in expression and were assigned into four different profiles based on expression trend. GO and KEGG analysis showed that the DEGs were enriched in various immune-related terms, including response to stimulation, immune system and pathways of cytokine-cytokine receptor interaction, Jak-STAT signaling and Toll-like receptor signaling. Furthermore, a network of highly interactive DEGs involved in 11 immune-related pathways was detected by utilizing the weighted co-expressing network analysis (WGCNA). Accordingly, 26 hub genes were discovered that constituted an elaborate immune regulatory network and functioned mainly in pathogen recognition, antigen processing, and molecular signaling. The results of this study provided the first systematical transcriptome profile of flounder in association with V. anguillarum infection and can serve as a valuable resource of target genes for future studies on the molecular mechanisms underlying the immune defense of flounder against bacterial infection.
Collapse
Affiliation(s)
- Xianhui Ning
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
135
|
Yang F, Cai HH, Feng XE, Li QS. A novel marine halophenol derivative attenuates lipopolysaccharide-induced inflammation in RAW264.7 cells via activating phosphoinositide 3-kinase/Akt pathway. Pharmacol Rep 2020; 72:1021-1031. [PMID: 32112362 DOI: 10.1007/s43440-019-00018-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/22/2019] [Accepted: 08/25/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND 2,4',5'-Trihydroxyl-5,2'-dibromo diphenylmethanone (LM49), a novel active halophenol derivative synthesized by our group from marine plants, exhibits strong anti-inflammatory activities. However, molecular machineries involved in its effect have not been fully identified. The study was aimed to investigate the anti-inflammatory effect of LM49 on lipopolysaccharide (LPS)-stimulated RAW264.7 cells and its underlying mechanism. METHODS RAW264.7 cells were treated with LPS (10 μg/mL) and then exposed to different concentrations of LM49 (i.e., 5, 10, and 15 μM) for 24 h. Cytokine release in culture medium of RAW264.7 cells was measured by enzyme-linked immunosorbent assay (ELISA). Phagocytic capacity (FITC-dextran uptake) was determined by flow cytometry. The protein level of phosphoinositide 3-kinase (PI3K), AKT and p-AKT was measured by western blot analysis. RESULTS Our findings revealed that LM49 reduced the production and mRNA levels of cytokines related to inflammation such as interleukin (IL)-6, IL-1β, and tumor necrosis factor-α (TNF-α), and increased the level of IL-10, an anti-inflammatory cytokine. In addition, LM49 decreased the production of nitric oxide and reactive oxygen species. Moreover, flow cytometry showed that LM49 significantly enhanced the phagocytic capacity (FITC-dextran uptake) of macrophages. The effects of LM49 were significantly inhibited by the phosphoinositide 3-kinase (PI3K) inhibitor, LY294002. In particular, LY294002 attenuated the phagocytic capacity of RAW264.7 cells induced by LM49 and prevented the effects on cytokines. CONCLUSION These findings suggest that LM49 possesses anti-inflammatory activity on LPS-stimulated RAW264.7 cells, in which the PI3K/Akt pathway plays an essential role. LM49 may have clinical utility as an anti-inflammatory agent. In this study, we demonstrated that a halophenol derivative (LM49) could possess anti-inflammatory activity on LPS-stimulated RAW264.7 cells by reducing pro-inflammatory cytokines and enhancing the phagocytic capacity, in which the PI3K/Akt pathway plays an essential role. LM49 may have clinical utility as an anti-inflammatory agent.
Collapse
Affiliation(s)
- Fan Yang
- School of Pharmaceutical Science, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Hong-Hong Cai
- School of Pharmaceutical Science, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Xiu-E Feng
- School of Pharmaceutical Science, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Qing-Shan Li
- School of Pharmaceutical Science, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, People's Republic of China.
- Shanxi Key Laboratory of Chronic Inflammatory Targeted Drugs, School of Traditional Chinese Materia Medical, Shanxi University of Chinese Medicine, Taiyuan, 030619, People's Republic of China.
| |
Collapse
|
136
|
Eduati F, Jaaks P, Wappler J, Cramer T, Merten CA, Garnett MJ, Saez‐Rodriguez J. Patient-specific logic models of signaling pathways from screenings on cancer biopsies to prioritize personalized combination therapies. Mol Syst Biol 2020; 16:e8664. [PMID: 32073727 PMCID: PMC7029724 DOI: 10.15252/msb.20188664] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/22/2022] Open
Abstract
Mechanistic modeling of signaling pathways mediating patient-specific response to therapy can help to unveil resistance mechanisms and improve therapeutic strategies. Yet, creating such models for patients, in particular for solid malignancies, is challenging. A major hurdle to build these models is the limited material available that precludes the generation of large-scale perturbation data. Here, we present an approach that couples ex vivo high-throughput screenings of cancer biopsies using microfluidics with logic-based modeling to generate patient-specific dynamic models of extrinsic and intrinsic apoptosis signaling pathways. We used the resulting models to investigate heterogeneity in pancreatic cancer patients, showing dissimilarities especially in the PI3K-Akt pathway. Variation in model parameters reflected well the different tumor stages. Finally, we used our dynamic models to efficaciously predict new personalized combinatorial treatments. Our results suggest that our combination of microfluidic experiments and mathematical model can be a novel tool toward cancer precision medicine.
Collapse
Affiliation(s)
- Federica Eduati
- European Molecular Biology Laboratory (EMBL)Genome Biology UnitHeidelbergGermany
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI)HinxtonUK
- Joint Research Centre for Computational Biomedicine (JRC‐COMBINE)Faculty of MedicineRWTH Aachen UniversityAachenGermany
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | | | - Jessica Wappler
- Department SurgeryMolecular Tumor BiologyRWTH University HospitalAachenGermany
| | - Thorsten Cramer
- Department SurgeryMolecular Tumor BiologyRWTH University HospitalAachenGermany
- ESCAM – European Surgery Center Aachen MaastrichtAachenGermany
- ESCAM – European Surgery Center Aachen MaastrichtMaastrichtThe Netherlands
| | - Christoph A Merten
- European Molecular Biology Laboratory (EMBL)Genome Biology UnitHeidelbergGermany
| | | | - Julio Saez‐Rodriguez
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI)HinxtonUK
- Joint Research Centre for Computational Biomedicine (JRC‐COMBINE)Faculty of MedicineRWTH Aachen UniversityAachenGermany
- Institute for Computational BiomedicineFaculty of MedicineBIOQUANT‐CenterHeidelberg UniversityHeidelbergGermany
| |
Collapse
|
137
|
Dimri M, Humphries A, Laknaur A, Elattar S, Lee TJ, Sharma A, Kolhe R, Satyanarayana A. NAD(P)H Quinone Dehydrogenase 1 Ablation Inhibits Activation of the Phosphoinositide 3-Kinase/Akt Serine/Threonine Kinase and Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated Kinase Pathways and Blocks Metabolic Adaptation in Hepatocellular Carcinoma. Hepatology 2020; 71:549-568. [PMID: 31215069 PMCID: PMC6920612 DOI: 10.1002/hep.30818] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 06/13/2019] [Indexed: 12/12/2022]
Abstract
Cancer cells undergo metabolic adaptation to sustain uncontrolled proliferation. Aerobic glycolysis and glutaminolysis are two of the most essential characteristics of cancer metabolic reprogramming. Hyperactivated phosphoinositide 3-kinase (PI3K)/Akt serine/threonine kinase (Akt) and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling pathways play central roles in cancer cell metabolic adaptation given that their downstream effectors, such as Akt and c-Myc, control most of the glycolytic and glutaminolysis genes. Here, we report that the cytosolic flavoprotein, NAD(P)H quinone dehydrogenase 1 (Nqo1), is strongly overexpressed in mouse and human hepatocellular carcinoma (HCC). Knockdown of Nqo1 enhanced activity of the serine/threonine phosphatase, protein phosphatase 2A, which operates at the intersection of the PI3K/Akt and MAPK/ERK pathways and dephosphorylates and inactivates pyruvate dehydrogenase kinase 1, Akt, Raf, mitogen-activated protein kinase kinase, and ERK1/2. Nqo1 ablation also induced the expression of phosphatase and tensin homolog, a dual protein/lipid phosphatase that blocks PI3K/Akt signaling, through the ERK/cAMP-responsive element-binding protein/c-Jun pathway. Together, Nqo1 ablation triggered simultaneous inhibition of the PI3K/Akt and MAPK/ERK pathways, suppressed the expression of glycolysis and glutaminolysis genes and blocked metabolic adaptation in liver cancer cells. Conversely, Nqo1 overexpression caused hyperactivation of the PI3K/Akt and MAPK/ERK pathways and promoted metabolic adaptation. Conclusion: In conclusion, Nqo1 functions as an upstream activator of both the PI3K/Akt and MAPK/ERK pathways in liver cancer cells, and Nqo1 ablation blocked metabolic adaptation and inhibited liver cancer cell proliferation and HCC growth in mice. Therefore, our results suggest that Nqo1 may function as a therapeutic target to inhibit liver cancer cell proliferation and inhibit HCC.
Collapse
Affiliation(s)
- Manali Dimri
- Department of Biochemistry and Molecular Biology, Molecular Oncology & Biomarkers Program, Georgia Cancer Center, Augusta University, Room-CN3150, 1410 Laney Walker Blvd., Augusta, GA 30912
| | - Ashley Humphries
- Department of Biochemistry and Molecular Biology, Molecular Oncology & Biomarkers Program, Georgia Cancer Center, Augusta University, Room-CN3150, 1410 Laney Walker Blvd., Augusta, GA 30912
| | - Archana Laknaur
- Department of Biochemistry and Molecular Biology, Molecular Oncology & Biomarkers Program, Georgia Cancer Center, Augusta University, Room-CN3150, 1410 Laney Walker Blvd., Augusta, GA 30912
| | - Sawsan Elattar
- Department of Biochemistry and Molecular Biology, Molecular Oncology & Biomarkers Program, Georgia Cancer Center, Augusta University, Room-CN3150, 1410 Laney Walker Blvd., Augusta, GA 30912
| | - Tae Jin Lee
- Center for Biotechnology and Genomic Medicine, Department of Population Health Sciences, Augusta University, GA, 30912
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Department of Population Health Sciences, Augusta University, GA, 30912
| | - Ravindra Kolhe
- Department of Pathology, Section of Anatomic Pathology, Augusta University, Augusta, GA 30912
| | - Ande Satyanarayana
- Department of Biochemistry and Molecular Biology, Molecular Oncology & Biomarkers Program, Georgia Cancer Center, Augusta University, Room-CN3150, 1410 Laney Walker Blvd., Augusta, GA 30912
| |
Collapse
|
138
|
Wei L, Zhou Q, Tian H, Su Y, Fu GH, Sun T. Integrin β3 promotes cardiomyocyte proliferation and attenuates hypoxia-induced apoptosis via regulating the PTEN/Akt/mTOR and ERK1/2 pathways. Int J Biol Sci 2020; 16:644-654. [PMID: 32025212 PMCID: PMC6990915 DOI: 10.7150/ijbs.39414] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022] Open
Abstract
Objective: Integrin β3 is one of the main integrin heterodimer receptors on the surface of cardiac myocytes. Our previous studies showed that hypoxia induces apoptosis and increases integrin β3 expression in cardiomyocytes. However, the exact mechanism by which integrin β3 protects against apoptosis remains unclear. Hence, the present investigation aimed to explore the mechanism of integrin β3 in cardiomyocyte proliferation and hypoxia-induced cardiomyocyte apoptosis. Methods: Stable cells and in vivo acute and chronic heart failure rat models were generated to reveal the essential role of integrin β3 in cardiomyocyte proliferation and apoptosis. Western blotting and immunohistochemistry were employed to detect the expression of integrin β3 in the stable cells and rat cardiac tissue. Flow cytometer was used to investigate the role of integrin β3 in hypoxia-induced cardiomyocyte apoptosis. Confocal microscopy was used to detect the localization of integrin β3 and integrin αv in cardiomyocytes. Results: A cobaltous chloride-induced hypoxic microenvironment stimulated cardiomyocyte apoptosis and increased integrin β3 expression in H9C2 cells, AC16 cells, and cardiac tissue from acute and chronic heart failure rats. The overexpression of integrin β3 promoted cardiomyocyte proliferation, whereas silencing integrin β3 expression resulted in decreased cell proliferation in vitro. Furthermore, knocking down integrin β3 expression using shRNA or the integrin β3 inhibitor cilengitide exacerbated cobaltous chloride-induced cardiomyocyte apoptosis, whereas overexpression of integrin β3 weakened cobaltous chloride-induced cardiomyocytes apoptosis. We found that integrin β3 promoted cardiomyocytes proliferation through the regulation of the PTEN/Akt/mTOR and ERK1/2 signaling pathways. In addition, we found that knockdown of integrin αv or integrin β1 weakened the effect of integrin β3 in cardiomyocyte proliferation. Conclusion: Our findings revealed the molecular mechanism of the role of integrin β3 in cardiomyocyte proliferation and hypoxia-induced cardiomyocyte apoptosis, providing new insights into the mechanisms underlying myocardial protection.
Collapse
Affiliation(s)
- Lijiang Wei
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine. Shanghai, 200025, China
| | - Qingqing Zhou
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 20032, China
| | - Hua Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 20032, China
| | - Yifan Su
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine. Shanghai, 200025, China
| | - Guo-Hui Fu
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, No.280, South Chong-Qing Road, Shanghai 200025, People's Republic of China
| | - Ting Sun
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine. Shanghai, 200025, China
| |
Collapse
|
139
|
Zanini S, Renzi S, Giovinazzo F, Bermano G. mTOR Pathway in Gastroenteropancreatic Neuroendocrine Tumor (GEP-NETs). Front Endocrinol (Lausanne) 2020; 11:562505. [PMID: 33304317 PMCID: PMC7701056 DOI: 10.3389/fendo.2020.562505] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022] Open
Abstract
Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) originate from neuroendocrine cells in the gastrointestinal tract. They are heterogeneous, and though initially considered rare tumors, the incidence of GEP-NENs has increased in the last few decades. Therapeutic approaches for the metastatic disease include surgery, radiological intervention by chemoembolisation, radiofrequency ablation, biological therapy in addition to somatostatin analogs, and PRRT therapy (177Lu-DOTATATE). The PI3K-AKT-mTOR pathway is essential in the regulation of protein translation, cell growth, and metabolism. Evidence suggests that the mTOR pathway is involved in malignant progression and resistance to treatment through over-activation of several mechanisms. PI3K, one of the main downstream of the Akt-mTOR axis, is mainly involved in the neoplastic process. This pathway is frequently deregulated in human tumors, making it a central target in the development of new anti-cancer treatments. Recent molecular studies identify potential targets within the PI3K/Akt/mTOR pathway in GEP-NENs. However, the use of target therapy has been known to lead to resistance due to several mechanisms such as feedback activation of alternative pathways, inactivation of protein kinases, and deregulation of the downstream mTOR components. Therefore, the specific role of targeted drugs for the management of GEP-NENs is yet to be well-defined. The variable clinical presentation of advanced neuroendocrine tumors is a significant challenge for designing studies. This review aims to highlight the role of the PI3K/Akt/mTOR pathway in the development of neuroendocrine tumors and further specify its potential as a therapeutic target in advanced stages.
Collapse
Affiliation(s)
- Sara Zanini
- Centre for Obesity Research and Education (CORE), School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Serena Renzi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Francesco Giovinazzo
- Fondazione Policlinico Universitario A. Gemelli Istituto di ricovero e cura a carattere scientifico (IRCCS), Department of Surgery -Transplantation Service, Rome, Italy
- *Correspondence: Francesco Giovinazzo
| | - Giovanna Bermano
- Centre for Obesity Research and Education (CORE), School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
- Giovanna Bermano
| |
Collapse
|
140
|
Liu J, Zheng J, Lin X, Bai S, Deng Q, Gao W, Zhou H, Tong L. The Total Flavonoid Extract from Glycyrrhiza inflat Bat. Suppresses Atrophic Gastritis in Rats through the Akt/MAPK Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020. [DOI: 10.1155/2020/8396160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 11/11/2019] [Indexed: 01/06/2025]
Abstract
Ethnopharmacological Relevance. Glycyrrhiza inflat Bat. is widely used to treat gastric ulcer and gastritis in clinic in China. Aim of the Study. To investigate the protective effects and possible mechanisms of the total flavonoid extract (TFE) from G. inflat Bat. on atrophic gastritis (AG) rats. Materials and Methods. The rat AG model was established by providing sodium deoxycholate and alcohol, and then, AG rats were treated with TFE for 30 days. Pathologic changes in gastric specimens were observed using hematoxylin and eosin staining, and the capability of gastric mucosa to secrete mucus was examined by alcian blue‐periodic acid Schiff staining. Apoptosis induction in gastric tissues was measured by the TUNEL assay. The expressions of Bcl‐2, Bax, and proteins in the Akt/MAPK pathway in gastric tissues were examined by immunohistochemistry and/or Western blotting. Results. Compared with the AG group, TFE attenuated the damage of gastric mucosa as reflected by the thickening of the lamina propria and the thinning of the muscularis mucosae. Moreover, TFE induced apoptosis in gastric mucosa with increasing Bax/Bcl‐2 expression ratio. Concomitantly, the degrees of p‐ErkThr202/Tyr204 and p‐AktThr308 were decreased, whereas those of p‐p38Thr180/Tyr182 and p‐JNKThr183/Tyr185 were increased. Conclusion. We demonstrated the anti‐AG effect of G. inflat Bat. in vivo and elucidated the underlying mechanisms that involve gastric mucosa protection through the Akt/MAPK pathway. The study provides a rationale for the application of G. inflat Bat. in the treatment of AG.
Collapse
|
141
|
Ma X, Mei C, Huang L, Bai C, Xu J, Wan Y, Zhen J, Li Z, Cui L, Liu S, Liu T, Yu H, Gu X. Study of the Gastrointestinal Heat Retention Syndrome in Children: From Diagnostic Model to Biological Basis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:5303869. [PMID: 31929814 PMCID: PMC6942808 DOI: 10.1155/2019/5303869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/10/2019] [Accepted: 11/15/2019] [Indexed: 12/23/2022]
Abstract
Gastrointestinal heat retention syndrome (GHRS) refers to a condition that is associated with increased gastrointestinal heat caused by a metabolic block in energy. It is common in children and is closely related to the occurrence and development of recurrent respiratory tract infection, pneumonia, recurrent functional abdominal pain, etc. However, there are no standardized diagnostic criteria to differentiate the GHRS. Therefore, this study is aimed to establish a diagnostic model for children's GHRS and explore the possible biological basis by using systems biology to achieve. Furthermore, Delphi method and the clinical data of Lasso analysis were used to screen out the core symptoms. Nineteen core symptoms of GHRS in children were screened including digestive symptoms such as dry stool, poor appetite, vomiting, and some nervous system symptoms such as night restlessness and irritability. Based on the core symptoms, a GHRS diagnosis model was established using the eXtreme Gradient Boosting (XGBoost) method, and the accuracy of internal verification reached 93.03%. Relevant targets of the core symptoms in the Human Phenotype Ontology (HPO) were retrieved, and target interactions were linked through the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, and core targets were selected after topological analysis using Cytoscape. Relevant biological processes and pathways were analyzed by applying the DAVID and KEGG databases. The enriched biological processes focused on the cell proliferation, differentiation, apoptosis, and mitochondrial metabolism, which were mainly associated with PI3K-AKT, MAPK network pathways, and the Wnt signaling pathway. In conclusion, we established a diagnosis model of GHRS in children based on the core symptoms and provided an objective standard for its clinical diagnosis. And, the Wnt signaling pathway and the estrogen receptor-activated PI3K-AKT and MAPK network pathways may play important roles in the GHRS processing.
Collapse
Affiliation(s)
- Xueyan Ma
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chencheng Mei
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ling Huang
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chen Bai
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jingnan Xu
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuxiang Wan
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China
| | - Jianhua Zhen
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhuo Li
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lijun Cui
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Shaoyang Liu
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tiegang Liu
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - He Yu
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaohong Gu
- Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
142
|
Srisook K, Potiprasart K, Sarapusit S, Park CS, Srisook E. Etlingera pavieana extract attenuates TNF-α induced vascular adhesion molecule expression in human endothelial cells through NF-κB and Akt/JNK pathways. Inflammopharmacology 2019; 28:1649-1662. [PMID: 31832850 DOI: 10.1007/s10787-019-00676-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/25/2019] [Indexed: 11/30/2022]
Abstract
The aim of this study was to determine whether ethanol extracts of Etlingera pavieana rhizomes (EPE) can inhibit the expression of ICAM-1 and VCAM-1 in TNF-α-stimulated human vascular endothelial cells. EPE significantly reduced ICAM-1 and VCAM-1 expression in a concentration-dependent manner. EPE also suppressed phospho-IκB level and nuclear translocation of NF-κB. EPE significantly inhibited phosphorylation of JNK and c-Jun, a major component of AP-1, but had no effects on ERK and p38 MAPK pathways. Akt phosphorylation was increased in the presence of EPE, and wortmannin and SP600125 reversed the inhibitory effects of EPE on ICAM-1 and VCAM-1 expression. Furthermore, the active EPE constituents 4-methoxycinnamyl p-coumarate and trans-4-methoxycinnamaldehyde attenuated TNF-α-induced expression of ICAM-1 and VCAM-1. Taken together, our data indicate that EPE protects against vascular inflammation in endothelial cells, in part via NF-κB and Akt/JNK signalings. In future studies, E. pavieana may be developed as a therapeutic agent or dietary supplement for treating and preventing inflammatory diseases.
Collapse
Affiliation(s)
- Klaokwan Srisook
- Department of Biochemistry and Research Unit of Natural Bioactive Compounds for Healthcare Products Development, Faculty of Science, Burapha University, Chonburi, 20131, Thailand. .,Center of Excellence for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi, Thailand.
| | - Kamonporn Potiprasart
- Department of Biochemistry and Research Unit of Natural Bioactive Compounds for Healthcare Products Development, Faculty of Science, Burapha University, Chonburi, 20131, Thailand
| | - Songklod Sarapusit
- Department of Biochemistry and Research Unit of Natural Bioactive Compounds for Healthcare Products Development, Faculty of Science, Burapha University, Chonburi, 20131, Thailand.,Center of Excellence for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi, Thailand
| | - Chang-Shin Park
- Department of Pharmacology, Hypoxia-Related Disease Research Center, College of Medicine, Inha Research Institute for Medical Sciences, Inha University, Incheon, 22212, Republic of Korea
| | - Ekaruth Srisook
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi, Thailand.,Department of Chemistry and Research Unit of Natural Bioactive Compounds for Healthcare Products Development, Faculty of Science, Burapha University, Chonburi, Thailand
| |
Collapse
|
143
|
Kim MJ, Lee SJ, Ryu JH, Kim SH, Kwon IC, Roberts TM. Combination of KRAS gene silencing and PI3K inhibition for ovarian cancer treatment. J Control Release 2019; 318:98-108. [PMID: 31838203 DOI: 10.1016/j.jconrel.2019.12.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 12/04/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
The phosphoinositide 3-kinase (PI3K) and RAS signaling pathways are frequently co-activated and altered during oncogenesis. Owing to their regulatory cross-talk, the early attempts of targeting only one pathway have mostly ended up promoting the development of drug resistance. Here, we propose using small interfering RNA (siRNA) therapeutics to directly target the undruggable KRAS (siKRAS) in combination with the pan-PI3K inhibitor GDC-0941 (GDC) to simultaneously block both PI3K and RAS signaling, thereby exerting synergistic anti-tumor effects on ovarian cancers with PTEN deficiency and KRASG12D mutation. For successful delivery of siKRAS, tGC/psi-nanoparticle formulation of polymerized siRNA and thiol-modified glycol chitosan nanoparticle-was used for KRAS specific inhibition in vitro and in vivo. GDC or siKRAS monotherapy each impede downstream signaling, leading to some delay in cell proliferation and migration. When combined, however, they engender much higher inhibition of PI3K signaling and stimulation of apoptosis in an ovarian allograft model compared to monotherapies. Our results show the feasibility of developing new combination strategies for the management of multiple oncogenic mutations activating PI3K and RAS signaling.
Collapse
Affiliation(s)
- Min Ju Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - So Jin Lee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ju Hee Ryu
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sun Hwa Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Ick Chan Kwon
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| | - Thomas M Roberts
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
144
|
Ren S, Leng J, Xu XY, Jiang S, Wang YP, Yan XT, Liu Z, Chen C, Wang Z, Li W. Ginsenoside Rb1, A Major Saponin from Panax ginseng, Exerts Protective Effects Against Acetaminophen-Induced Hepatotoxicity in Mice. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:1815-1831. [PMID: 31786947 DOI: 10.1142/s0192415x19500927] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Acute liver injury (ALI) induced by acetaminophen (APAP) is the main cause of drug-induced liver injury. Previous reports indicated liver failure could be alleviated by saponins (ginsenosides) from Panax ginseng against APAP-induced inflammatory responses in vivo. However, validation towards ginsenoside Rb1 as a major and marker saponin may protect liver from APAP-induced ALI and its mechanisms are poorly elucidated. In this study, the protective effects and the latent mechanisms of Rb1 action against APAP-induced hepatotoxicity were investigated. Rb1 was administered orally with 10mg/kg and 20mg/kg daily for 1 week before a single injection of APAP (250mg/kg, i.p.) 1h after the last treatment of Rb1. Serum alanine/aspartate aminotransferases (ALT/AST), liver glutathione (GSH) depletion, as well as the inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), were analyzed to indicate the underlying protective effects of Rb1 against APAP-induced hepatotoxicity with significant inflammatory responses. Histological examination further proved Rb1's protective effects. Importantly, Rb1 mitigated the changes in the phosphorylation of MAPK and PI3K/Akt, as well as its downstream factor NF-κB. In conclusion, experimental data clearly demonstrated that Rb1 exhibited a remarkable liver protective effect against APAP-induced ALI, partly through regulating MAPK and PI3K/Akt signaling pathways-mediated inflammatory responses.
Collapse
Affiliation(s)
- Shen Ren
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China.,National & Local Joint Engineering Research, Center for Ginseng Breeding and Development, Changchun 130118, P. R. China
| | - Jing Leng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Xing-Yue Xu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Shuang Jiang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Ying-Ping Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China.,National & Local Joint Engineering Research, Center for Ginseng Breeding and Development, Changchun 130118, P. R. China
| | - Xiao-Tong Yan
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Zhi Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane 4072, Australia
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China.,National & Local Joint Engineering Research, Center for Ginseng Breeding and Development, Changchun 130118, P. R. China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China.,National & Local Joint Engineering Research, Center for Ginseng Breeding and Development, Changchun 130118, P. R. China
| |
Collapse
|
145
|
Peng X, Liu Y, Zhu S, Peng X, Li H, Jiao W, Lin P, Zhang Z, Qiu Y, Jin M, Wang R, Kong D. Co-targeting PI3K/Akt and MAPK/ERK pathways leads to an enhanced antitumor effect on human hypopharyngeal squamous cell carcinoma. J Cancer Res Clin Oncol 2019; 145:2921-2936. [PMID: 31620898 DOI: 10.1007/s00432-019-03047-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/04/2019] [Indexed: 01/16/2023]
Abstract
PURPOSE The present study aims to determine whether co-targeting PI3K/Akt and MAPK/ERK pathways in human hypopharyngeal squamous cell carcinoma (HSCC) is a potential anticancer strategy. METHODS We retrospectively analyzed the clinical data of HSCC patients, and the phosphorylation status of Akt and Erk in HSCC and tumor adjacent tissues was evaluated by immunohistochemistry. MTT and colony formation assay were performed to determine the anti-proliferative effect of PI3K/mTOR inhibitor GDC-0980 and MEK inhibitor Refametinib on HSCC cell line Fadu. Wound-healing and Transwell migration assay were used to analyze the anti-migrative capability of the two drugs. The involved anti-tumor mechanism was explored by flow cytometry, qRT-PCR and western blot. The combinational anticancer effect of GDC-0980 and Refametinib was evaluated according to Chou and Talalay's method. RESULTS The levels of p-Akt and p-Erk were increased significantly with the progression of clinical stage of HSCC, suggesting PI3K/Akt and MAPK/ERK pathways might be associated with HSCC occurrence and progression. Furthermore, both GDC-0980 and Refametinib showed obvious antitumor effects on FaDu cells. Treatment by the two drugs arrested FaDu cell cycle progression in G1 phase, with reduction of cyclin D1 and p-Rb, in contrast to enhancement of p27. GDC-0980 inhibited FaDu cell migration and reduced metastasis related proteins including p-PKCζ, p-Integrin β1 and uPA. Combination use of GDC-0980 and Refametinib exhibited strong synergistic anti-tumor effect. CONCLUSION Dual inhibition of PI3K/Akt and MAPK/ERK pathway by GDC-0980 and Refametinib might be a promising treatment strategy for HSCC patients.
Collapse
Affiliation(s)
- Xiaolin Peng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, 300192, Tianjin, China
| | - Yao Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, 300192, Tianjin, China
| | - Shan Zhu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
| | - Xin Peng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
| | - Hui Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
| | - Wenhui Jiao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
| | - Peng Lin
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, 300192, Tianjin, China
| | - Zhe Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
| | - Yuling Qiu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
| | - Meihua Jin
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
| | - Ran Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China.
| | - Dexin Kong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China.
- School of Medicine, Tianjin Tianshi College, Tianyuan University, 301700, Tianjin, China.
| |
Collapse
|
146
|
Yue L, Ailin W, Jinwei Z, Leng L, Jianan W, Li L, Haiming C, Ling H, Chuanjian L. PSORI-CM02 ameliorates psoriasis in vivo and in vitro by inducing autophagy via inhibition of the PI3K/Akt/mTOR pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 64:153054. [PMID: 31401494 DOI: 10.1016/j.phymed.2019.153054] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/20/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Psoriasis is an inflammatory skin disease that affects an estimated 3% of the world's population. PSORI-CM02 is an empirically developed Chinese medicine formula optimised from Yin Xie Ling, summarised by national medical master Guo-Wei Xuan, that has been used for decades to treat psoriasis in the Guangdong Provincial Hospital of Chinese Medicine. However, its anti-psoriatic mechanisms are still poorly understood. In this study, we explored the effects of PSORI-CM02 on autophagy and the underlying mechanisms in TNF-α-stimulated HaCaT cells and in a mouse model of imiquimod-induced psoriasis. METHODS Cell viability was assessed by MTT assay. Apoptosis was detected by annexin V-FITC/PI double-staining and caspase-3 assays. Autophagy was detected by electron microscopy, RT-PCR and western blotting. The PI3K/Akt/mTOR pathway was analysed by western blotting and immunochemical analysis. RESULTS PSORI-CM02 induced autophagy and thus inhibited the proliferation of HaCaT cells via suppression of the PI3K/Akt/mTOR pathway. In mice with IMQ-induced psoriasis, PSORI-CM02 relieved psoriasis symptoms, induced autophagy and inhibited the phosphorylation of the PI3K/AKT/mTOR pathway in the skin. CONCLUSION These results suggest that PSORI-CM02 treats psoriasis by inducing autophagy via inhibition of the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Lu Yue
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China; Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, Guangdong, China; Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510120, Guangdong, China; Dermatology Department, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Wang Ailin
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China; Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, Guangdong, China; Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510120, Guangdong, China; Dermatology Department, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Zhang Jinwei
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China; Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, Guangdong, China; Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510120, Guangdong, China
| | - Li Leng
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China; Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, Guangdong, China; Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510120, Guangdong, China
| | - Wei Jianan
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China; Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, Guangdong, China; Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510120, Guangdong, China
| | - Li Li
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China; Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, Guangdong, China; Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510120, Guangdong, China
| | - Chen Haiming
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China; Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, Guangdong, China; Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510120, Guangdong, China
| | - Han Ling
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China; Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, Guangdong, China; Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510120, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou 510120, Guangdong, China.
| | - Lu Chuanjian
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China; Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, Guangdong, China; Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510120, Guangdong, China; Dermatology Department, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou 510120, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou 510120, Guangdong, China.
| |
Collapse
|
147
|
Xu Y, Lin S, Zhao H, Wang J, Zhang C, Dong Q, Hu C, Desi S, Wang L, Xu Y. Quantifying Risk Pathway Crosstalk Mediated by miRNA to Screen Precision drugs for Breast Cancer Patients. Genes (Basel) 2019; 10:E657. [PMID: 31466383 PMCID: PMC6770221 DOI: 10.3390/genes10090657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 12/13/2022] Open
Abstract
Breast cancer has become the most common cancer that leads to women's death. Breast cancer is a complex, highly heterogeneous disease classified into various subtypes based on histological features, which determines the therapeutic options. System identification of effective drugs for each subtype remains challenging. In this work, we present a computational network biology approach to screen precision drugs for different breast cancer subtypes by considering the impact intensity of candidate drugs on the pathway crosstalk mediated by miRNAs. Firstly, we constructed and analyzed the subtype-specific risk pathway crosstalk networks mediated by miRNAs. Then, we evaluated 36 Food and Drug Administration (FDA)-approved anticancer drugs by quantifying their effects on these subtype-specific pathway crosstalk networks and combining with survival analysis. Finally, some first-line treatments of breast cancer, such as Paclitaxel and Vincristine, were optimized for each subtype. In particular, we performed precision screening of subtype-specific therapeutic drugs and also confirmed some novel drugs suitable for breast cancer treatment. For example, Sorafenib was applicable for the basal subtype treatment, Irinotecan was optimum for Her2 subtype treatment, Vemurafenib was suitable for the LumA subtype treatment, and Vorinostat could apply to LumB subtype treatment. In addition, the mechanism of these optimal therapeutic drugs in each subtype of breast cancer was further dissected. In summary, our study offers an effective way to screen precision drugs for various breast cancer subtype treatments. We also dissected the mechanism of optimal therapeutic drugs, which may provide novel insight into the precise treatment of cancer and promote researches on the mechanisms of action of drugs.
Collapse
Affiliation(s)
- Yingqi Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Shuting Lin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Hongying Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Jingwen Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Chunlong Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Qun Dong
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Congxue Hu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Shang Desi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Li Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yanjun Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
148
|
Wright TD, Raybuck C, Bhatt A, Monlish D, Chakrabarty S, Wendekier K, Gartland N, Gupta M, Burow ME, Flaherty PT, Cavanaugh JE. Pharmacological inhibition of the MEK5/ERK5 and PI3K/Akt signaling pathways synergistically reduces viability in triple-negative breast cancer. J Cell Biochem 2019; 121:1156-1168. [PMID: 31464004 DOI: 10.1002/jcb.29350] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/13/2019] [Indexed: 01/12/2023]
Abstract
Triple-negative breast cancers (TNBCs) represent 15% to 20% of all breast cancers and are often associated with poor prognosis. The lack of targeted therapies for TNBCs contributes to higher mortality rates. Aberrations in the phosphoinositide-3-kinase (PI3K) and mitogen-activated protein kinase pathways have been linked to increased breast cancer proliferation and survival. It has been proposed that these survival characteristics are enhanced through compensatory signaling and crosstalk mechanisms. While the crosstalk between PI3K and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways has been characterized in several systems, new evidence suggests that MEK5/ERK5 signaling is a key component in the proliferation and survival of several aggressive cancers. In this study, we examined the effects of dual inhibition of PI3K/protein kinase B (Akt) and MEK5/ERK5 in the MDA-MB-231, BT-549, and MDA-MB-468 TNBC cell lines. We used the Akt inhibitor ipatasertib, ERK5 inhibitors XMD8-92 and AX15836, and the novel MEK5 inhibitor SC-1-181 to investigate the effects of dual inhibition. Our results indicated that dual inhibition of PI3K/Akt and MEK5/ERK5 signaling was more effective at reducing the proliferation and survival of TNBCs than single inhibition of either pathway alone. In particular, a loss of Bad phosphorylation at two distinct sites was observed with dual inhibition. Furthermore, the inhibition of both pathways led to p21 restoration, decreased cell proliferation, and induced apoptosis. In addition, the dual inhibition strategy was determined to be synergistic in MDA-MB-231 and BT-549 cells and was relatively nontoxic in the nonneoplastic MCF-10 cell line. In summary, the results from this study provide a unique prospective into the utility of a novel dual inhibition strategy for targeting TNBCs.
Collapse
Affiliation(s)
- Thomas D Wright
- Department of Pharmacology and Toxicology, Duquesne University, Pittsburgh, Pennsylvania
| | - Christopher Raybuck
- Department of Pharmacology and Toxicology, Duquesne University, Pittsburgh, Pennsylvania
| | - Akshita Bhatt
- Department of Pharmacology and Toxicology, Duquesne University, Pittsburgh, Pennsylvania
| | - Darlene Monlish
- Department of Pharmacology and Toxicology, Duquesne University, Pittsburgh, Pennsylvania.,Department of Pediatrics, Washington University in St Louis, St Louis, Missouri
| | - Suravi Chakrabarty
- Department of Medicinal Chemistry, Duquesne University, Pittsburgh, Pennsylvania.,Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Katy Wendekier
- Department of Pharmacology and Toxicology, Duquesne University, Pittsburgh, Pennsylvania
| | - Nathan Gartland
- Department of Pharmacology and Toxicology, Duquesne University, Pittsburgh, Pennsylvania
| | - Mohit Gupta
- Department of Medicinal Chemistry, Duquesne University, Pittsburgh, Pennsylvania
| | - Matthew E Burow
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Patrick T Flaherty
- Department of Medicinal Chemistry, Duquesne University, Pittsburgh, Pennsylvania
| | - Jane E Cavanaugh
- Department of Pharmacology and Toxicology, Duquesne University, Pittsburgh, Pennsylvania
| |
Collapse
|
149
|
Liu S, Li F, Pan L, Yang Z, Shu Y, Lv W, Dong P, Gong W. BRD4 inhibitor and histone deacetylase inhibitor synergistically inhibit the proliferation of gallbladder cancer in vitro and in vivo. Cancer Sci 2019; 110:2493-2506. [PMID: 31215139 PMCID: PMC6676267 DOI: 10.1111/cas.14102] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/08/2019] [Accepted: 06/15/2019] [Indexed: 02/05/2023] Open
Abstract
Gallbladder cancer (GBC) is the most common malignancy of the bile duct and has a high mortality rate. Here, we demonstrated that BRD4 inhibitor JQ1 and histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) synergistically inhibited the GBC cells in vitro and in vivo. Our results showed that cotreatment with JQ1 and SAHA significantly inhibited proliferation, cell viability and metastasis, and induced apoptosis and G2/M arrest in GBC cells, with only minor effects in benign cells. In vivo, tumor volumes and weights of GBC xenograft models were significantly decreased after treatment with JQ1 or SAHA; meanwhile, the cotreatment showed the strongest effect. Further study indicated that the above anticancer effects was associated with the downregulation of BRD4 and suppression of PI3K/AKT and MAPK/ERK pathways. These findings highlight JQ1 and SAHA as potential therapeutic agents and their combination as a promising therapeutic strategy for GBC.
Collapse
Affiliation(s)
- Shilei Liu
- Department of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Fengnan Li
- Department of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Lijia Pan
- Department of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Ziyi Yang
- Department of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Yijun Shu
- Department of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Wenjie Lv
- Department of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Ping Dong
- Department of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Wei Gong
- Department of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| |
Collapse
|
150
|
He C, Shan N, Xu P, Ge H, Yuan Y, Liu Y, Zhang P, Wen L, Zhang F, Xiong L, Peng C, Qi H, Tong C, Baker PN. Hypoxia-induced Downregulation of SRC-3 Suppresses Trophoblastic Invasion and Migration Through Inhibition of the AKT/mTOR Pathway: Implications for the Pathogenesis of Preeclampsia. Sci Rep 2019; 9:10349. [PMID: 31316078 PMCID: PMC6637123 DOI: 10.1038/s41598-019-46699-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 06/29/2019] [Indexed: 01/14/2023] Open
Abstract
Preeclampsia (PE) is characterized by poor placentation, consequent on aberrant extravillous trophoblast (EVT) cell function during placental development. The SRC family of proteins is important during pregnancy, especially SRC-3, which regulates placental morphogenesis and embryo survival. Although SRC-3 expression in mouse trophoblast giant cells has been documented, its role in the functional regulation of extravillous trophoblasts and the development of PE remains unknown. This study found that SRC-3 expression was significantly lower in placentas from PE pregnancies as compared to uncomplicated pregnancies. Additionally, both CoCl2-mimicked hypoxia and suppression of endogenous SRC-3 expression by lentivirus short hairpin RNA attenuated the migration and invasion abilities of HTR-8/SVneo cells. Moreover, we demonstrated that SRC-3 physically interacts with AKT to regulate the migration and invasion of HTR-8 cells, via the AKT/mTOR pathway. We also found that the inhibition of HTR-8 cell migration and invasion by CoCl2-mimicked hypoxia was through the SRC-3/AKT/mTOR axis. Our findings indicate that, in early gestation, accumulation of HIF-1α inhibits the expression of SRC-3, which impairs extravillous trophoblastic invasion and migration by directly interacting with AKT. This potentially leads to insufficient uterine spiral artery remodeling and placental hypoperfusion, and thus the development of PE.
Collapse
Affiliation(s)
- Chengjin He
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,International Collaborative Joint Laboratory of Reproduction and Development, Ministry of Education of China, Chongqing Medical University, Chongqing, 400016, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Nan Shan
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,International Collaborative Joint Laboratory of Reproduction and Development, Ministry of Education of China, Chongqing Medical University, Chongqing, 400016, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ping Xu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,International Collaborative Joint Laboratory of Reproduction and Development, Ministry of Education of China, Chongqing Medical University, Chongqing, 400016, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Huisheng Ge
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,International Collaborative Joint Laboratory of Reproduction and Development, Ministry of Education of China, Chongqing Medical University, Chongqing, 400016, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yu Yuan
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,International Collaborative Joint Laboratory of Reproduction and Development, Ministry of Education of China, Chongqing Medical University, Chongqing, 400016, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yangming Liu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,International Collaborative Joint Laboratory of Reproduction and Development, Ministry of Education of China, Chongqing Medical University, Chongqing, 400016, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Pu Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Li Wen
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,International Collaborative Joint Laboratory of Reproduction and Development, Ministry of Education of China, Chongqing Medical University, Chongqing, 400016, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Fumei Zhang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,International Collaborative Joint Laboratory of Reproduction and Development, Ministry of Education of China, Chongqing Medical University, Chongqing, 400016, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Liling Xiong
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,International Collaborative Joint Laboratory of Reproduction and Development, Ministry of Education of China, Chongqing Medical University, Chongqing, 400016, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chuan Peng
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hongbo Qi
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China. .,International Collaborative Joint Laboratory of Reproduction and Development, Ministry of Education of China, Chongqing Medical University, Chongqing, 400016, China. .,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Chao Tong
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China. .,International Collaborative Joint Laboratory of Reproduction and Development, Ministry of Education of China, Chongqing Medical University, Chongqing, 400016, China. .,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Philip N Baker
- International Collaborative Joint Laboratory of Reproduction and Development, Ministry of Education of China, Chongqing Medical University, Chongqing, 400016, China.,Liggins Institute, University of Auckland, Auckland, 1142, New Zealand.,College of Life Sciences, University of Leicester, Leicester, LE1 7RH, UK
| |
Collapse
|