101
|
Affiliation(s)
- Ameer Elbuluk
- Department of Orthopaedic Surgery, NYU Langone Medical Center, Hospital for Joint Diseases, New York, NY
| | | | | |
Collapse
|
102
|
Fu R, Han F, Liu L, Yu F, Gui Z, Wang X, Li B, Fang B, Xia L. The Effects of Leptin on the Proliferation and Differentiation of Primary Chondrocytes in Vitro and Cartilage Regeneration in Vivo. ACS Biomater Sci Eng 2019; 5:1907-1919. [PMID: 33405564 DOI: 10.1021/acsbiomaterials.8b01168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Runqing Fu
- Department of Orthodontics, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Fengxuan Han
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lu Liu
- Department of Orthodontics, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Fei Yu
- Department of Orthodontics, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Zhipeng Gui
- Department of Oral Surgery, Shanghai Ninth People’s Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xiaoting Wang
- Department of Orthodontics, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Bin Li
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Bing Fang
- Department of Orthodontics, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Lunguo Xia
- Department of Orthodontics, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
103
|
Cheng A, Schwartz Z, Kahn A, Li X, Shao Z, Sun M, Ao Y, Boyan BD, Chen H. Advances in Porous Scaffold Design for Bone and Cartilage Tissue Engineering and Regeneration. TISSUE ENGINEERING. PART B, REVIEWS 2019; 25:14-29. [PMID: 30079807 PMCID: PMC6388715 DOI: 10.1089/ten.teb.2018.0119] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/01/2018] [Indexed: 12/11/2022]
Abstract
IMPACT STATEMENT Challenges in musculoskeletal tissue regeneration affect millions of patients globally. Scaffolds for tissue engineering bone and cartilage provide promising solutions that increase healing and decrease need for complicated surgical procedures. Porous scaffolds have emerged as an attractive alternative to traditional scaffolds. However, the success of advanced materials, use of biological factors, and manufacturing techniques can vary depending on use case. This review provides perspective on porous scaffold manufacturing, characterization and application, and can be used to inform future scaffold design.
Collapse
Affiliation(s)
- Alice Cheng
- Department of Biomedical Engineering, Peking University, Beijing, China
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
- Department of Periodontology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Adrian Kahn
- Department of Oral and Maxillofacial Surgery, University of Tel Aviv, Tel Aviv, Israel
| | - Xiyu Li
- Department of Biomedical Engineering, Peking University, Beijing, China
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Zhenxing Shao
- Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Muyang Sun
- Department of Biomedical Engineering, Peking University, Beijing, China
| | - Yingfang Ao
- Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Barbara D. Boyan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Haifeng Chen
- Department of Biomedical Engineering, Peking University, Beijing, China
| |
Collapse
|
104
|
Mao Y, Block T, Singh-Varma A, Sheldrake A, Leeth R, Griffey S, Kohn J. Extracellular matrix derived from chondrocytes promotes rapid expansion of human primary chondrocytes in vitro with reduced dedifferentiation. Acta Biomater 2019; 85:75-83. [PMID: 30528605 DOI: 10.1016/j.actbio.2018.12.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/26/2018] [Accepted: 12/04/2018] [Indexed: 12/21/2022]
Abstract
A significant expansion of autologous chondrocytes in vitro is required for cell-based cartilage repair. However, the in vitro expansion of chondrocytes under standard culture conditions inevitably leads to the dedifferentiation of chondrocytes and contributes to suboptimal clinical outcomes. To address this challenge, we focused our efforts on developing an improved in vitro expansion protocol, which shortens the expansion time with decreased dedifferentiation. It is known that the tissue microenvironment plays a critical role in regulating the cellular functions of resident cells and provides guidance in tissue-specific regeneration. We hypothesized that chondrocyte extracellular matrix (ECM) mimics a native microenvironment and that it may support chondrocyte expansion in vitro. To test this hypothesis, we prepared decellularized ECMs from allogeneic human articular chondrocytes (HAC) (AC-ECM) and bone marrow stromal cells (BM-ECM) and studied their effects on the in vitro expansion of primary HAC. The differential composition and physical properties of these two ECMs were revealed by mass spectrometry and atomic force microscopy. Compared with standard tissue culture polystyrene (TCP) or BM-ECM, HAC cultured on AC-ECM proliferated faster and maintained the highest ratio of COL2A1/COL1A1. Furthermore, a pellet culture study demonstrated that cells expanded on AC-ECM produced a more cartilage-like ECM than cells expanded on BM-ECM or TCP. This is the first report on modulating chondrocyte expansion and dedifferentiation using cell type-specific ECM and on identifying AC-ECM as a preferred substrate for in vitro expansion of HAC cell-based therapies. STATEMENT OF SIGNIFICANCE: To reduce the dedifferentiation of chondrocytes during in vitro expansion, cell type-specific extracellular matrix (ECM), which mimics a native microenvironment, was prepared from human articular chondrocytes (AC-ECM) or bone marrow stromal cells (BM-ECM). As demonstrated by mass spectrometry and atomic force microscopy, AC-ECM and BM-ECM have differential ECM compositions and physical characteristics. Human articular chondrocytes (HAC) expanded faster and maintained a better chondrocyte phenotype on AC-ECM than on BM-ECM or a standard culture surface. AC-ECM has potential to be developed for expanding HAC for cell-based therapies.
Collapse
|
105
|
Rux D, Decker RS, Koyama E, Pacifici M. Joints in the appendicular skeleton: Developmental mechanisms and evolutionary influences. Curr Top Dev Biol 2018; 133:119-151. [PMID: 30902250 PMCID: PMC6988388 DOI: 10.1016/bs.ctdb.2018.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The joints are a diverse group of skeletal structures, and their genesis, morphogenesis, and acquisition of specialized tissues have intrigued biologists for decades. Here we review past and recent studies on important aspects of joint development, including the roles of the interzone and morphogenesis of articular cartilage. Studies have documented the requirement of interzone cells in limb joint initiation and formation of most, if not all, joint tissues. We highlight these studies and also report more detailed interzone dissection experiments in chick embryos. Articular cartilage has always received special attention owing to its complex architecture and phenotype and its importance in long-term joint function. We pay particular attention to mechanisms by which neonatal articular cartilage grows and thickens over time and eventually acquires its multi-zone structure and becomes mechanically fit in adults. These and other studies are placed in the context of evolutionary biology, specifically regarding the dramatic changes in limb joint organization during transition from aquatic to land life. We describe previous studies, and include new data, on the knee joints of aquatic axolotls that unlike those in higher vertebrates, are not cavitated, are filled with rigid fibrous tissues and resemble amphiarthroses. We show that when axolotls metamorph to life on land, their intra-knee fibrous tissue becomes sparse and seemingly more flexible and the articular cartilage becomes distinct and acquires a tidemark. In sum, there have been considerable advances toward a better understanding of limb joint development, biological responsiveness, and evolutionary influences, though much remains unclear. Future progress in these fields should also lead to creation of new developmental biology-based tools to repair and regenerate joint tissues in acute and chronic conditions.
Collapse
Affiliation(s)
- Danielle Rux
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, United States.
| | - Rebekah S Decker
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, United States
| | - Eiki Koyama
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
106
|
Velmurugan BK, Bharathi Priya L, Poornima P, Lee LJ, Baskaran R. Biomaterial aided differentiation and maturation of induced pluripotent stem cells. J Cell Physiol 2018; 234:8443-8454. [PMID: 30565686 DOI: 10.1002/jcp.27769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 10/30/2018] [Indexed: 12/11/2022]
Abstract
Engineering/reprogramming differentiated adult somatic cells to gain the ability to differentiate into any type of cell lineage are called as induced pluripotent stem cells (iPSCs). Offering unlimited self-renewal and differentiation potential, these iPSC are aspired to meet the growing demands in the field of regenerative medicine, tissue engineering, disease modeling, nanotechnology, and drug discovery. Biomaterial fabrication with the rapid evolution of technology increased their versatility and utility in regenerative medicine and tissue engineering, revolutionizing the stem cell biology research with the property to guide the process of proliferation, differentiation, and morphogenesis. Combining traditional culture platforms of iPSC with biomaterials aids to overcome the limitations associated with derivation, proliferation, and maturation, thereby could improve the clinical translation of iPSC. The present review discusses in brief about the reprogramming techniques for the derivation iPSC and details on several biomaterial guided differentiation of iPSC to different cell types with specific relevance to tissue engineering/regenerative medicine.
Collapse
Affiliation(s)
| | - Lohanathan Bharathi Priya
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Paramasivan Poornima
- Molecular and Cellular Pharmacology Laboratory, School of Science, Engineering and Technology, University of Abertay, Dundee, UK
| | - Li-Jen Lee
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Rathinasamy Baskaran
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
107
|
Graceffa V, Vinatier C, Guicheux J, Stoddart M, Alini M, Zeugolis DI. Chasing Chimeras - The elusive stable chondrogenic phenotype. Biomaterials 2018; 192:199-225. [PMID: 30453216 DOI: 10.1016/j.biomaterials.2018.11.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 12/27/2022]
Abstract
The choice of the best-suited cell population for the regeneration of damaged or diseased cartilage depends on the effectiveness of culture conditions (e.g. media supplements, three-dimensional scaffolds, mechanical stimulation, oxygen tension, co-culture systems) to induce stable chondrogenic phenotype. Herein, advances and shortfalls in in vitro, preclinical and clinical setting of various in vitro microenvironment modulators on maintaining chondrocyte phenotype or directing stem cells towards chondrogenic lineage are critically discussed. Chondrocytes possess low isolation efficiency, limited proliferative potential and rapid phenotypic drift in culture. Mesenchymal stem cells are relatively readily available, possess high proliferation potential, exhibit great chondrogenic differentiation capacity, but they tend to acquire a hypertrophic phenotype when exposed to chondrogenic stimuli. Embryonic and induced pluripotent stem cells, despite their promising in vitro and preclinical data, are still under-investigated. Although a stable chondrogenic phenotype remains elusive, recent advances in in vitro microenvironment modulators are likely to develop clinically- and commercially-relevant therapies in the years to come.
Collapse
Affiliation(s)
- Valeria Graceffa
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Claire Vinatier
- INSERMU1229, Regenerative Medicine and Skeleton (RMeS), University of Nantes, UFR Odontologie & CHU Nantes, PHU 4 OTONN, 44042 Nantes, France
| | - Jerome Guicheux
- INSERMU1229, Regenerative Medicine and Skeleton (RMeS), University of Nantes, UFR Odontologie & CHU Nantes, PHU 4 OTONN, 44042 Nantes, France
| | - Martin Stoddart
- AO Research Institute, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Mauro Alini
- AO Research Institute, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.
| |
Collapse
|
108
|
Xiao L, Xu S, Wang X, Jin Z, Wang J, Yang B, Xu H. Isolation and characterization of stem cells from differentially degenerated human lumbar zygapophyseal articular cartilage. Mol Med Rep 2018; 18:5751-5759. [PMID: 30365096 DOI: 10.3892/mmr.2018.9592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 09/28/2018] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to verify the presence of stem cells with multilineage differentiation potential in human lumbar zygapophyseal articular cartilage (LZAC) and to compare the chondrogenic potential of cells obtained from differentially degenerated articular cartilage samples. Surgically obtained human lumbar zygapophyseal joint tissues were classified into the normal, mildly degenerated and severely degenerated groups, according to their pathological characteristics. Primary chondrocytes from these groups were cultured, and stem cells were selected using a monoclonal cell culture method. Differences in stem cell morphology between the three groups were observed using inverted microscopy and phalloidin staining. In addition, stem cell chondrogenic potential was determined through induced differentiation and cellular staining. Gene and protein expression levels of the chondrogenic‑specific markers aggrecan, collagen type‑II and SRY‑related high‑mobility‑group box 9 were determined using reverse transcription‑quantitative polymerase chain reaction and western blotting. The clonogenic ability of stem cells in the three groups was determined using a clonogenic assay. It was revealed that stem cells with multilineage differentiation potential were isolated from all three cartilage groups; however, the cells obtained from severely degenerated articular cartilage resulted in severe fibrosis, whilst those obtained from mildly degenerated articular cartilage possessed stronger chondrogenic and clonogenic abilities. Taken together, stem cells with multilineage differentiation potential and clonal properties were identified in human LZAC, and these characteristics were more prominent in mildly degenerated as compared with severely degenerated articular cartilage.
Collapse
Affiliation(s)
- Liang Xiao
- Department of Orthopedic Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Shujuan Xu
- Department of Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Xiao Wang
- Department of Orthopedic Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Zhongxing Jin
- Department of Orthopedic Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Jing Wang
- Department of Orthopedic Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Bijing Yang
- Department of Orthopedic Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Hongguang Xu
- Department of Orthopedic Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| |
Collapse
|
109
|
Bergholt NL, Foss M, Saeed A, Gadegaard N, Lysdahl H, Lind M, Foldager CB. Surface chemistry, substrate, and topography guide the behavior of human articular chondrocytes cultured in vitro. J Biomed Mater Res A 2018; 106:2805-2816. [PMID: 29907992 DOI: 10.1002/jbm.a.36467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/22/2018] [Accepted: 05/22/2018] [Indexed: 01/18/2023]
Abstract
Understanding the behavior of chondrocytes in contact with artificial culture surfaces is becoming increasingly important in attaining appropriate ex vivo culture conditions of chondrocytes in cartilage regeneration. Chondrocyte transplantation-based cartilage repair requires efficiently expanded chondrocytes, and the culture surface plays an important role in guiding the behavior of the cell. Micro- and nano-engineered surfaces make it possible to modulate cell behavior. We hypothesized that the combined influence of topography, substrate, and surface chemistry may affect the chondrocyte culturing in terms of proliferation and phenotypic means. Human chondrocytes were cultured on polystyrene fabricated microstructures, flat polydimethylsiloxane (PDMS), or polystyrene treated with fibronectin or oxygen plasma and cultured for 1, 4, 7, and 10 days. The behavior of chondrocytes was evaluated by proliferation, viability, chondrogenic gene expression, and cell morphology. Contrary to our hypothesis, microstructures in polystyrene did not significantly influence the behavior of chondrocytes neither under normoxic- nor hypoxic conditions. However, changes in the substrate stiffness and surface chemistry were found to influence cell viability, gene expression, and morphology of human chondrocytes. Oxygen plasma treatment was the most important parameter followed by the softer substrate type PDMS. The findings indicate the culture of human chondrocytes on softer substratum and surface activation by oxygen plasma may prevent dedifferentiation and may improve chondrocyte transplantation-based cartilage repair. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2805-2816, 2018.
Collapse
Affiliation(s)
| | - Morten Foss
- Interdisciplinary Nanoscience Center, iNANO, University Aarhus, Aarhus, Denmark
| | - Anwer Saeed
- Division of Biomedical Engineering, University of Glasgow, Glasgow, G12 8LT, United Kingdom
| | - Nikolaj Gadegaard
- Division of Biomedical Engineering, University of Glasgow, Glasgow, G12 8LT, United Kingdom
| | - Helle Lysdahl
- Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Martin Lind
- Sports Trauma Clinic, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
110
|
Lam J, Bellayr IH, Marklein RA, Bauer SR, Puri RK, Sung KE. Functional Profiling of Chondrogenically Induced Multipotent Stromal Cell Aggregates Reveals Transcriptomic and Emergent Morphological Phenotypes Predictive of Differentiation Capacity. Stem Cells Transl Med 2018; 7:664-675. [PMID: 30084545 PMCID: PMC6127231 DOI: 10.1002/sctm.18-0065] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/07/2018] [Accepted: 05/17/2018] [Indexed: 12/20/2022] Open
Abstract
Multipotent stromal cells (MSCs) are an attractive cell source for bone and cartilage tissue repair strategies. However, the functional heterogeneity of MSCs derived from different donors and manufacturing conditions has limited clinical translation, emphasizing the need for improved methods to assess MSC chondrogenic capacity. We used functionally relevant morphological profiling to dynamically monitor emergent morphological phenotypes of chondrogenically induced MSC aggregates to identify morphological features indicative of MSC chondrogenesis. Toward this goal, we characterized the morphology of chondrogenically stimulated MSC aggregates from eight different human cell-lines at multiple passages and demonstrated that MSC aggregates exhibited unique morphological dynamics that were both cell line- and passage-dependent. This variation in 3D morphology was shown to be informative of long-term MSC chondrogenesis based on multiple quantitative functional assays. We found that the specific morphological features of spheroid area, radius, minimum feret diameter, and minor axis length to be strongly correlated with MSC chondrogenic synthetic activity but not gene expression as early as day 4 in 3D culture. Our high-throughput, nondestructive approach could potentially serve as a tool to identify MSC lines with desired chondrogenic capacity toward improving manufacturing strategies for MSC-based cellular products for cartilage tissue repair. Stem Cells Translational Medicine 2018;1-12.
Collapse
Affiliation(s)
- Johnny Lam
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ian H Bellayr
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ross A Marklein
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Steven R Bauer
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Raj K Puri
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Kyung E Sung
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
111
|
Liu Q, Wang J, Chen Y, Zhang Z, Saunders L, Schipani E, Chen Q, Ma PX. Suppressing mesenchymal stem cell hypertrophy and endochondral ossification in 3D cartilage regeneration with nanofibrous poly(l-lactic acid) scaffold and matrilin-3. Acta Biomater 2018; 76:29-38. [PMID: 29940371 DOI: 10.1016/j.actbio.2018.06.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 06/03/2018] [Accepted: 06/21/2018] [Indexed: 12/27/2022]
Abstract
Articular cartilage has a very limited ability to self-heal after injury or degeneration due to its low cellularity, poor proliferative activity, and avascular nature. Current clinical options are able to alleviate patient suffering, but cannot sufficiently regenerate the lost tissue. Biomimetic scaffolds that recapitulate the important features of the extracellular matrix (ECM) of cartilage are hypothesized to be advantageous in supporting cell growth, chondrogenic differentiation, and integration of regenerated cartilage with native cartilage, ultimately restoring the injured tissue to its normal function. It remains a challenge to support and maintain articular cartilage regenerated by bone marrow-derived mesenchymal stem cells (BMSCs), which are prone to hypertrophy and endochondral ossification after implantation in vivo. In the present work, a nanofibrous poly(l-lactic acid) (NF PLLA) scaffold developed by our group was utilized because of the desired highly porous structure, high interconnectivity, and collagen-like NF architecture to support rabbit BMSCs for articular cartilage regeneration. We further hypothesized that matrilin-3 (MATN3), a non-collagenous, cartilage-specific ECM protein, would enhance the microenvironment of the NF PLLA scaffold for cartilage regeneration and maintain the cartilage property. To test this hypothesis, we seeded BMSCs on the NF PLLA scaffold with or without MATN3. We found that MATN3 suppresses hypertrophy in this 3D culture system in vitro. Subcutaneous implantation of the chondrogenic cell/scaffold constructs in a nude mouse model showed that pretreatment with MATN3 was able to maintain chondrogenesis and prevent hypertrophy and endochondral ossification in vivo. These results demonstrate that the porous NF PLLA scaffold treated with MATN3 represents an advantageous 3D microenvironment for cartilage regeneration and phenotype maintenance, and is a promising strategy for articular cartilage repair. STATEMENT OF SIGNIFICANCE Articular cartilage defects, caused by trauma, inflammation, or joint instability, may ultimately lead to debilitating pain and disability. Bone marrow-derived mesenchymal stem cells (BMSCs) are an attractive cell source for articular cartilage tissue engineering. However, chondrogenic induction of BMSCs is often accompanied by undesired hypertrophy, which can lead to calcification and ultimately damage the cartilage. Therefore, a therapy to prevent hypertrophy and endochondral ossification is of paramount importance to adequately regenerate articular cartilage. We hypothesized that MATN3 (a non-collagenous ECM protein expressed exclusively in cartilage) may improve regeneration of articular cartilage with BMSCs by maintaining chondrogenesis and preventing hypertrophic transition in an ECM mimicking nanofibrous scaffold. Our results showed that the administration of MATN3 to the cell/nanofibrous scaffold constructs favorably maintained chondrogenesis and prevented hypertrophy/endochondral ossification in the chondrogenic constructs in vitro and in vivo. The combination of nanofibrous PLLA scaffolds and MATN3 treatment provides a very promising strategy to generate chondrogenic grafts with phenotypic stability for articular cartilage repair.
Collapse
|
112
|
Zhao E, Carney D, Chambers M, Ewalefo S, Hogan M. The role of biologic in foot and ankle trauma-a review of the literature. Curr Rev Musculoskelet Med 2018; 11:495-502. [PMID: 30054808 DOI: 10.1007/s12178-018-9512-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW The use of biologics in orthopedics is becoming increasingly popular as an adjuvant in healing musculoskeletal injuries. Though many biologics involved in the management of foot and ankle injuries are used based on physician preference, reports of improved outcomes when combined with standard operative treatment has led to further clinical interest especially in foot and ankle trauma. RECENT FINDINGS The most recent studies have shown benefits for biologic use in patients predisposed to poor bone and soft tissue healing. Biologics have shown benefit in treating soft tissue injuries such as Achilles ruptures as well as the complications of trauma such as non-unions and osteoarthritis. Biologics have shown some benefit in improving functional and pain scores, as well as reducing time to heal in foot and ankle traumatic injuries, with particular success shown with patients that have risk factors for poor healing. As the use of biologics continues to increase, there is a need for high-level studies to confirm early findings of lower level reports.
Collapse
Affiliation(s)
- Emily Zhao
- Department of Orthopaedic Surgery, University of Pittsburgh, 3471 Fifth Avenue, Suite 1011, Pittsburgh, PA, 15213, USA
| | - Dwayne Carney
- Department of Orthopaedic Surgery, University of Pittsburgh, 3471 Fifth Avenue, Suite 1011, Pittsburgh, PA, 15213, USA
| | - Monique Chambers
- Department of Orthopaedic Surgery, University of Pittsburgh, 3471 Fifth Avenue, Suite 1011, Pittsburgh, PA, 15213, USA
| | - Samuel Ewalefo
- Department of Orthopaedic Surgery, University of Pittsburgh, 3471 Fifth Avenue, Suite 1011, Pittsburgh, PA, 15213, USA
| | - MaCalus Hogan
- Department of Orthopaedic Surgery, University of Pittsburgh, 3471 Fifth Avenue, Suite 1011, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
113
|
Stocco TD, Bassous NJ, Zhao S, Granato AEC, Webster TJ, Lobo AO. Nanofibrous scaffolds for biomedical applications. NANOSCALE 2018; 10:12228-12255. [PMID: 29947408 DOI: 10.1039/c8nr02002g] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tissue engineering is an emergent and very interesting research field, providing potential solutions for a myriad of challenges in healthcare. Fibrous scaffolds specifically have shown promise as an effective tissue engineering method, as their high length-to-width ratio mimics that of extracellular matrix components, which in turn guides tissue formation, promotes cellular adhesion and improves mechanical properties. In this review paper, we discuss in detail both the importance of fibrous scaffolds for the promotion of tissue growth and the different methods to produce fibrous biomaterials to possess favorable and unique characteristics. Here, we focus on the pressing need to develop biomimetic structures that promote an ideal environment to encourage tissue formation. In addition, we discuss different biomedical applications in which fibrous scaffolds can be useful, identifying their importance, relevant aspects, and remaining significant challenges. In conclusion, we provide comments on the future direction of fibrous scaffolds and the best way to produce them, proposed in light of recent technological advances and the newest and most promising fabrication techniques.
Collapse
Affiliation(s)
- Thiago D Stocco
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
114
|
Grogan SP, Duffy SF, Pauli C, Lotz MK, D’Lima DD. Gene expression profiles of the meniscus avascular phenotype: A guide for meniscus tissue engineering. J Orthop Res 2018; 36:1947-1958. [PMID: 29411909 PMCID: PMC6326361 DOI: 10.1002/jor.23864] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 02/05/2018] [Indexed: 02/04/2023]
Abstract
Avascular (Avas) meniscus regeneration remains a challenge, which is partly a consequence of our limited knowledge of the cells that maintain this tissue region. In this study, we utilized microarrays to characterize gene expression profiles of intact human Avas meniscus tissue and of cells following culture expansion. Using these data, we examined various 3D culture conditions to redifferentiate Avas cells toward the tissue phenotype. RNA was isolated from either the tissue directly or following cell isolation and 2 weeks in monolayer culture. RNA was hybridized on human genome arrays. Differentially expressed (DE) genes were identified by ranking analysis. DAVID pathway analysis was performed and visualized using STRING analysis. Quantitative PCR (qPCR) on additional donor menisci (tissues and cells) were used to validate array data. Avas cells cultured in 3D were subjected to qPCR to compare with the array-generated data. A total of 387 genes were DE based on differentiation state (>3-fold change; p < 0.01). In Avas-cultured cells, the upregulated pathways included focal adhesion, ECM-receptor interaction, regulation of actin cytoskeleton, and PDGF Signaling. In 3D-cultured Avas cells, TGFβ1 or combinations of TGFβ1 and BMP6 were most effective to promote an Avas tissue phenotype. THBS2 and THBS4 expression levels were identified as a means to denote meniscus cell phenotype status. We identified the key gene expression profiles, new markers and pathways involved in characterizing the Avas meniscus phenotype in the native state and during in vitro dedifferentiation and redifferentiation. These data served to screen 3D conditions to generate meniscus-like neotissues. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1947-1958, 2018.
Collapse
Affiliation(s)
- Shawn P Grogan
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA
| | - Stuart F. Duffy
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Chantal Pauli
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Martin K Lotz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Darryl D D’Lima
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA,Corresponding author: Darryl D D’Lima, MD, PhD, Shiley Center for Orthopaedic Research and Education at Scripps Clinic, 11025 North Torrey Pines Road, Suite 200, La Jolla, CA 92037, Tel 858 332 0166 Fax 858 332 0669,
| |
Collapse
|
115
|
Chu F, Feng Q, Hu Z, Shen G. Appropriate cyclic tensile strain promotes biological changes of cranial base synchondrosis chondrocytes. Orthod Craniofac Res 2018; 20:177-182. [PMID: 28727318 DOI: 10.1111/ocr.12194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2017] [Indexed: 01/14/2023]
Abstract
OBJECTIVES This study was designed to clarify biological changes of cranial base synchondrosis chondrocytes (CBSCs) upon cyclic tensile strain (CTS) loading which simulated orthopaedic mechanical protraction on cranial base synchondroses (CBS). MATERIAL AND METHODS A two-step digestion method was used to isolate CBSCs obtained from 1-week-old Sprague Dawley rats. Immunohistochemical staining of type II collagen and Sox9 was conducted to identify chondrocytes. A CTS of 1 Hz and 10% elongation was applied to the second passage of CBSCs by FX-5000™ Tension System for 24 hours. The control group kept static at the same time. The expression levels of extracellular matrix (Acan, Col1a1, Col2a1 and Col10a1) and key regulatory factors (Sox9, Ihh and PTHrP) were detected by quantitative real-time RT-PCR. RESULTS Positive staining of type II collagen and Sox9 was detected in the isolated CBSCs. The relative expression level of Acan, Col2a1, Col10a1, Sox9 and Ihh in the CTS-loading group was 1.85-fold, 2.19-fold, 1.53-fold, 6.62-fold, and 1.39-fold, respectively, as much as that in the control group, which had statistical significance (P<.05). There was no statistical difference (P>.05) in the expression of Col1a1 and PTHrP. CONCLUSIONS A CTS of 1 Hz and 10% elongation for 24 hours had positive effects on chondrocyte proliferation, phenotype maintenance and cartilage matrix synthesis.
Collapse
Affiliation(s)
- F Chu
- Department of Orthodontics, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Q Feng
- Department of Orthodontics, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Z Hu
- Department of Orthodontics, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - G Shen
- Department of Orthodontics, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
116
|
Mao Y, Hoffman T, Wu A, Kohn J. An Innovative Laboratory Procedure to Expand Chondrocytes with Reduced Dedifferentiation. Cartilage 2018; 9:202-211. [PMID: 29271232 PMCID: PMC5871131 DOI: 10.1177/1947603517746724] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective In vitro expansion of chondrocytes is required for cartilage tissue engineering and clinical cell-based cartilage repair practices. However, the dedifferentiation of chondrocytes during in vitro expansion continues to be a challenge. This study focuses on identifying a cell culture surface to support chondrocyte expansion with reduced dedifferentiation. Design A less adhesive culture surface, non-tissue culture treated surface (NTC), was tested for its suitability for culturing chondrocytes. The cell expansion and the expression of chondrocyte markers were monitored for at least 2 passages on NTC in comparison with conventional tissue culture treated polystyrene surface (TCP). The ability of expanded chondrocytes to form cartilage tissues was evaluated using pellet culturing and subcutaneous implantation in nude mice. Results NTC supported bovine chondrocyte proliferation to a clinically relevant expansion requirement within 2 passages. Chondrocyte phenotypes were better maintained when cultured on NTC than on TCP. In vitro pellet culture studies showed that chondrocytes expanded on NTC expressed a higher level of chondrocyte extracellular matrix. Furthermore, the cells expanded on NTC or TCP were implanted subcutaneously as pellets in nude mice for 6 weeks. The recovered pellets showed cartilage-like tissue formation from cells expanded on NTC but not from the cells expanded on TCP. Conclusions This study presents an innovative and easy culturing procedure to expand chondrocytes with reduced dedifferentiation. This procedure has potential to be developed to expand chondrocytes in vitro for basic research, tissue engineering, and possibly for clinical applications.
Collapse
Affiliation(s)
- Yong Mao
- New Jersey Center for Biomaterials, Rutgers University, Piscataway, NJ, USA
| | - Tyler Hoffman
- New Jersey Center for Biomaterials, Rutgers University, Piscataway, NJ, USA
| | - Amy Wu
- New Jersey Center for Biomaterials, Rutgers University, Piscataway, NJ, USA
| | - Joachim Kohn
- New Jersey Center for Biomaterials, Rutgers University, Piscataway, NJ, USA,Joachim Kohn, New Jersey Center for Biomaterials, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
117
|
Current Therapeutic Strategies for Stem Cell-Based Cartilage Regeneration. Stem Cells Int 2018; 2018:8490489. [PMID: 29765426 PMCID: PMC5889878 DOI: 10.1155/2018/8490489] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/14/2017] [Accepted: 01/23/2018] [Indexed: 12/13/2022] Open
Abstract
The process of cartilage destruction in the diarthrodial joint is progressive and irreversible. This destruction is extremely difficult to manage and frustrates researchers, clinicians, and patients. Patients often take medication to control their pain. Surgery is usually performed when pain becomes uncontrollable or joint function completely fails. There is an unmet clinical need for a regenerative strategy to treat cartilage defect without surgery due to the lack of a suitable regenerative strategy. Clinicians and scientists have tried to address this using stem cells, which have a regenerative potential in various tissues. Cartilage may be an ideal target for stem cell treatment because it has a notoriously poor regenerative potential. In this review, we describe past, present, and future strategies to regenerate cartilage in patients. Specifically, this review compares a surgical regenerative technique (microfracture) and cell therapy, cell therapy with and without a scaffold, and therapy with nonaggregated and aggregated cells. We also review the chondrogenic potential of cells according to their origin, including autologous chondrocytes, mesenchymal stem cells, and induced pluripotent stem cells.
Collapse
|
118
|
Zhang S, Chuah SJ, Lai RC, Hui JHP, Lim SK, Toh WS. MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity. Biomaterials 2018; 156:16-27. [DOI: 10.1016/j.biomaterials.2017.11.028] [Citation(s) in RCA: 641] [Impact Index Per Article: 91.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/17/2017] [Accepted: 11/21/2017] [Indexed: 12/16/2022]
|
119
|
Delco ML, Bonnevie ED, Bonassar LJ, Fortier LA. Mitochondrial dysfunction is an acute response of articular chondrocytes to mechanical injury. J Orthop Res 2018; 36:739-750. [PMID: 28696002 PMCID: PMC5764818 DOI: 10.1002/jor.23651] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 06/23/2017] [Indexed: 02/04/2023]
Abstract
UNLABELLED Mitochondrial (MT) dysfunction is known to occur in chondrocytes isolated from end-stage osteoarthritis (OA) patients, but the role of MT dysfunction in the initiation and early pathogenesis of post-traumatic OA (PTOA) remains unclear. The objective of this study was to investigate chondrocyte MT function immediately following mechanical injury in cartilage, and to determine if the response to injury differed between a weight bearing region (medial femoral condyle; MFC) and a non-weight bearing region (distal patellofemoral groove; PFG) of the same joint. Cartilage was harvested from the MFC and PFG of 10 neonatal bovids, and subjected to injurious compression at varying magnitudes (5-17 MPa, 5-34 GPa/s) using a rapid single-impact model. Chondrocyte MT respiratory function, MT membrane polarity, chondrocyte viability, and cell membrane damage were assessed in situ. Cartilage impact resulted in MT depolarization and impaired MT respiratory function within 2 h of injury. Cartilage from a non-weight bearing region of the joint (PFG) was more sensitive to impact-induced MT dysfunction and chondrocyte death than cartilage from a weight-bearing surface (MFC). Our findings suggest that MT dysfunction is an acute response of chondrocytes to cartilage injury, and that MT may play a key mechanobiological role in the initiation and early pathogenesis of PTOA. CLINICAL SIGNIFICANCE Direct therapeutic targeting of MT function in the early post-injury time frame may provide a strategy to block perpetuation of tissue damage and prevent the development of PTOA. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:739-750, 2018.
Collapse
Affiliation(s)
- Michelle L. Delco
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Edward D. Bonnevie
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York
| | - Lawrence J. Bonassar
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York,Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Lisa A. Fortier
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| |
Collapse
|
120
|
Chondrogenic potential of IL-10 in mechanically injured cartilage and cellularized collagen ACI grafts. Osteoarthritis Cartilage 2018; 26:264-275. [PMID: 29169959 DOI: 10.1016/j.joca.2017.11.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 11/07/2017] [Accepted: 11/11/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The application of adjunctive mediators in Autologous chondrocyte implantation (ACI) techniques might be useful for improving the dedifferentiated chondrocyte phenotype, to support neocartilage formation and inhibit post-traumatic cartilage destruction. In this study we examined if (a) interleukin 10 treatment can cause chondrogenic phenotype stabilization and matrix preservation in mechanically injured cartilage and if (b) IL-10 can promote chondrogenesis in a clinically applied collagen scaffold for ACI treatment. MATERIALS AND METHODS For (a) bovine articular cartilage was harvested, subjected to an axial unconfined injury and treated with bovine IL-10 (1-10,000 pg/ng/ml). For (b) a post-operatively remaining ACI graft was treated with human IL-10. Expression levels of type I/II/X collagen, SOX9 and aggrecan were measured by qPCR (a,b). After 3 weeks cell death was analyzed (nuclear blebbing and TUNEL assay) and matrix composition was determined by GAG measurements and immunohistochemistry (aggrecan, type I/II collagen, hyaluronic acid). STATISTICS One way ANOVA analysis with Bonferroni's correction. RESULTS (a) IL-10 stabilized the chondrogenic phenotype after injurious compression and preserved matrix integrity. This was indicated by elevated expression of chondrogenic markers COL2A1, ACAN, SOX9, while COL1A1 and COL10A1 were reduced. An increased GAG content paralleled this and histological staining of type 2 collagen, aggrecan and toluidine blue were enhanced after 3 weeks. (b) IL-10 [100 pg/ml] improved the chondrogenic differentiation of human chondrocytes, which was accompanied by cartilaginous matrix formation after 3 weeks of incubation. CONCLUSION Interleukin-10 is a versatile adjuvant candidate to control the post-injurious environment in cartilage defects and promote chondrogenesis in ACI grafts.
Collapse
|
121
|
Liu X, Meng H, Guo Q, Sun B, Zhang K, Yu W, Liu S, Wang Y, Jing X, Zhang Z, Peng J, Yang J. Tissue-derived scaffolds and cells for articular cartilage tissue engineering: characteristics, applications and progress. Cell Tissue Res 2018; 372:13-22. [PMID: 29368258 DOI: 10.1007/s00441-017-2772-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/23/2017] [Indexed: 12/22/2022]
Abstract
There are many factors to consider in the field of tissue engineering. For articular cartilage repair, this includes seed cells, scaffolds and chondrotrophic hormones. This review primarily focuses on the seed cells and scaffolds. Extracellular matrix proteins provide a natural scaffold for cell attachment, proliferation and differentiation. The structure and composition of tissue-derived scaffolds and native tissue are almost identical. As such, tissue-derived scaffolds hold great promise for biomedical applications. However, autologous tissue-derived scaffolds also have many drawbacks for transplantation, as harvesting autografts is limited to available donor sites and requires secondary surgery, therefore imparting additional damage to the body. This review summarizes and analyzes various cell sources and tissue-derived scaffolds applied in orthopedic tissue engineering.
Collapse
Affiliation(s)
- Xuejian Liu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
- First Affiliated Hospital of Jiamusi University, Jiamusi University, Jiamusi, China
| | - Haoye Meng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
- Beijing Key Lab of Regenerative Medicine in Orthopaedics, Beijing, China
| | - Quanyi Guo
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
- Beijing Key Lab of Regenerative Medicine in Orthopaedics, Beijing, China
| | - Baichuan Sun
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
- First Affiliated Hospital of Jiamusi University, Jiamusi University, Jiamusi, China
| | - Kaihong Zhang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Wen Yu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
- Beijing Key Lab of Regenerative Medicine in Orthopaedics, Beijing, China
| | - Shichen Liu
- First Affiliated Hospital of Jiamusi University, Jiamusi University, Jiamusi, China
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
- Beijing Key Lab of Regenerative Medicine in Orthopaedics, Beijing, China
| | - Xiaoguang Jing
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
- First Affiliated Hospital of Jiamusi University, Jiamusi University, Jiamusi, China
| | - Zengzeng Zhang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
- First Affiliated Hospital of Jiamusi University, Jiamusi University, Jiamusi, China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China.
- Beijing Key Lab of Regenerative Medicine in Orthopaedics, Beijing, China.
| | - Jianhua Yang
- First Affiliated Hospital of Jiamusi University, Jiamusi University, Jiamusi, China.
- Longgang District People's Hospital of Shenzhen, Shenzhen, China.
| |
Collapse
|
122
|
Critchley SE, Eswaramoorthy R, Kelly DJ. Low‐oxygen conditions promote synergistic increases in chondrogenesis during co‐culture of human osteoarthritic stem cells and chondrocytes. J Tissue Eng Regen Med 2018; 12:1074-1084. [DOI: 10.1002/term.2608] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 10/11/2017] [Accepted: 10/23/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Susan E. Critchley
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences InstituteTrinity College Dublin Dublin Ireland
- Department of Mechanical and Manufacturing Engineering, School of EngineeringTrinity College Dublin Dublin Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER)Royal College of Surgeons in Ireland and Trinity College Dublin Dublin Ireland
| | - Rajalakshmanan Eswaramoorthy
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences InstituteTrinity College Dublin Dublin Ireland
- Department of Mechanical and Manufacturing Engineering, School of EngineeringTrinity College Dublin Dublin Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER)Royal College of Surgeons in Ireland and Trinity College Dublin Dublin Ireland
| | - Daniel J. Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences InstituteTrinity College Dublin Dublin Ireland
- Department of Mechanical and Manufacturing Engineering, School of EngineeringTrinity College Dublin Dublin Ireland
- Department of AnatomyRoyal College of Surgeons in Ireland Dublin Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER)Royal College of Surgeons in Ireland and Trinity College Dublin Dublin Ireland
| |
Collapse
|
123
|
Gadjanski I. Mimetic Hierarchical Approaches for Osteochondral Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1058:143-170. [PMID: 29691821 DOI: 10.1007/978-3-319-76711-6_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
UNLABELLED In order to engineer biomimetic osteochondral (OC) construct, it is necessary to address both the cartilage and bone phase of the construct, as well as the interface between them, in effect mimicking the developmental processes when generating hierarchical scaffolds that show gradual changes of physical and mechanical properties, ideally complemented with the biochemical gradients. There are several components whose characteristics need to be taken into account in such biomimetic approach, including cells, scaffolds, bioreactors as well as various developmental processes such as mesenchymal condensation and vascularization, that need to be stimulated through the use of growth factors, mechanical stimulation, purinergic signaling, low oxygen conditioning, and immunomodulation. This chapter gives overview of these biomimetic OC system components, including the OC interface, as well as various methods of fabrication utilized in OC biomimetic tissue engineering (TE) of gradient scaffolds. Special attention is given to addressing the issue of achieving clinical size, anatomically shaped constructs. Besides such neotissue engineering for potential clinical use, other applications of biomimetic OC TE including formation of the OC tissues to be used as high-fidelity disease/healing models and as in vitro models for drug toxicity/efficacy evaluation are covered. HIGHLIGHTS Biomimetic OC TE uses "smart" scaffolds able to locally regulate cell phenotypes and dual-flow bioreactors for two sets of conditions for cartilage/bone Protocols for hierarchical OC grafts engineering should entail mesenchymal condensation for cartilage and vascular component for bone Immunomodulation, low oxygen tension, purinergic signaling, time dependence of stimuli application are important aspects to consider in biomimetic OC TE.
Collapse
Affiliation(s)
- Ivana Gadjanski
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica, Novi Sad, Serbia. .,Belgrade Metropolitan University, Tadeusa Koscuska 63, Belgrade, Serbia.
| |
Collapse
|
124
|
Prasadam I, Akuien A, Friis TE, Fang W, Mao X, Crawford RW, Xiao Y. Mixed cell therapy of bone marrow-derived mesenchymal stem cells and articular cartilage chondrocytes ameliorates osteoarthritis development. J Transl Med 2018; 98:106-116. [PMID: 29035380 DOI: 10.1038/labinvest.2017.117] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/14/2017] [Accepted: 09/14/2017] [Indexed: 12/13/2022] Open
Abstract
Of the many cell-based treatments that have been tested in an effort to regenerate osteoarthritic articular cartilage, none have ever produced cartilage that compare with native hyaline cartilage. Studies show that different cell types lead to inconsistent results and for cartilage regeneration to be considered successful, there must be an absence of fibrotic tissue. Here we report of a series of experiments in which bone marrow-derived stem cells (BMSCs) and articular cartilage chondrocytes (ACCs) were mixed in a 1:1 ratio and tested for their ability to enhance cartilage regeneration in three different conditions: (1) in an in vitro differentiation model; (2) in an ex vivo cartilage defect model implanted subcutaneously in mice; and (3) as an intra-articular injection in a meniscectomy-induced OA model in rats. The mixed cells were compared with monocultures of BMSCs and ACCs. In all three experimental models there was significantly enhanced cartilage regeneration and decreased fibrosis in the mixed BMSCs+ACCs group compared with the monocultures. Molecular analysis showed a reduction in vascularization and hypertrophy, coupled with higher chondrogenic gene expression resulting from the BMSCs+ACCs treatment. Together, our data suggest that mixed BMSCs+ACCs treatment is highly chondro-protective and is more effective in regenerating damaged cartilage in both the ex vivo cartilage defect and post-trauma OA disease models. The results from this approach could potentially be used for regeneration of cartilage in OA patients.
Collapse
Affiliation(s)
- Indira Prasadam
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Akoy Akuien
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Thor E Friis
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Wei Fang
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Xinzhan Mao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,Department of Orthopaedic Surgery, The Second Xiangya Hospital, Changsha, China.,Department of Rheumatism, The Xiangya Hospital, Central-South University, Changsha, China
| | - Ross W Crawford
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,Prince Charles Hospital, Brisbane, QLD, Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
125
|
The Application of Stem Cells from Different Tissues to Cartilage Repair. Stem Cells Int 2017; 2017:2761678. [PMID: 29375622 PMCID: PMC5742463 DOI: 10.1155/2017/2761678] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/24/2017] [Indexed: 12/15/2022] Open
Abstract
The degeneration of articular cartilage represents an ongoing challenge at the clinical and basic level. Tissue engineering and regenerative medicine using stem/progenitor cells have emerged as valid alternatives to classical reparative techniques. This review offers a brief introduction and overview of the field, highlighting a number of tissue sources for stem/progenitor cell populations. Emphasis is given to recent developments in both clinical and basic sciences. The relative strengths and weaknesses of each tissue type are discussed.
Collapse
|
126
|
Jeyakumar V, Niculescu-Morzsa E, Bauer C, Lacza Z, Nehrer S. Platelet-Rich Plasma Supports Proliferation and Redifferentiation of Chondrocytes during In Vitro Expansion. Front Bioeng Biotechnol 2017; 5:75. [PMID: 29270404 PMCID: PMC5723650 DOI: 10.3389/fbioe.2017.00075] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/23/2017] [Indexed: 01/05/2023] Open
Abstract
Articular cartilage regeneration is insufficient to restore sports injuries or defects that can occur from trauma. Treatment options for cartilage repair include autologous chondrocyte implantation (ACI) by isolation, expansion, and reimplantation of healthy donor chondrocytes. Chondrocyte expansion onto 2D substrates leads to dedifferentiation and loss of the cellular phenotype. We aimed to overcome the state of dedifferentiation by biochemical stimuli with platelet derivatives such as platelet-rich plasma (PRP) and hyperacute serum (HAS) to achieve sufficient cell numbers in combination with variable oxygen tension. Human articular chondrocytes from osteoarthritic (OA) cartilage chondrocytes were switched from 10% FCS supplementation to either 10% PRP or 10% HAS after initial passaging for further experiments under normoxic (20% O2) or hypoxic (1% O2) conditions. An XTT assay measured the effect of PRP or HAS on the cell proliferation at 3, 6, and 9 days. The chondrogenic redifferentiation potential of dedifferentiated chondrocytes was determined with reverse transcriptase quantitative real-time PCR for markers of expression for type II collagen (COL2A1), type I collagen (COL1A1), and matrix metalloproteinases MMP3, matrix metalloproteinase 13 (MMP13) at 24 and 72 h. Measured protein levels of 100% PRP or HAS by multiplex quantification revealed basic fibroblast growth factor, G-CSF, and PDGF were significantly higher in PRP than in HAS (p < 0.05) but LEPTIN levels did not differ. The quantified protein levels did not differ when isolated from same donors at a different time. Chondrocyte proliferation indicated that supplementation of 10% HAS enhanced the proliferation rate compared to 10% PRP or 10% FCS at 6 and 9 days significantly (p < 0.05). mRNA levels for expression of COL1A1 were significantly downregulated (p < 0.05) when cultured with 10% PRP than 10% HAS or 10% FCS under normoxic/hypoxic conditions. COL2A1 was significantly upregulated (p < 0.05) in PRP than 10% HAS or 10% FCS. MMP3 expression was downregulated after 72 h under all conditions. MMP13 was upregulated with 10% PRP at both 24 and 72 h but significantly downregulated under hypoxia (1% O2) for all circumstances. While HAS has its effect on chondrocyte proliferation, PRP enhances both proliferation and redifferentiation of dedifferentiated chondrocytes. PRP can replace standard usage of FCS for chondrogenic priming and expansion as implications for clinical use such as ACI procedures.
Collapse
Affiliation(s)
- Vivek Jeyakumar
- Centre for Regenerative Medicine and Orthopedics, Danube University Krems, Krems an der Donau, Austria
| | - Eugenia Niculescu-Morzsa
- Centre for Regenerative Medicine and Orthopedics, Danube University Krems, Krems an der Donau, Austria
| | - Christoph Bauer
- Centre for Regenerative Medicine and Orthopedics, Danube University Krems, Krems an der Donau, Austria
| | | | - Stefan Nehrer
- Centre for Regenerative Medicine and Orthopedics, Danube University Krems, Krems an der Donau, Austria
| |
Collapse
|
127
|
Kim TW, Lee MC, Bae HC, Han HS. Direct Coculture of Human Chondrocytes and Synovium-Derived Stem Cells Enhances In Vitro Chondrogenesis. CELL JOURNAL 2017; 20:53-60. [PMID: 29308619 PMCID: PMC5759681 DOI: 10.22074/cellj.2018.5025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/13/2017] [Indexed: 01/02/2023]
Abstract
Objective Coculture of chondrocytes and mesenchymal stem cells (MSCs) has been developed as a strategy to
overcome the dedifferentiation of chondrocytes during in vitro expansion in autologous chondrocyte transplantation.
Synovium-derived stem cells (SDSCs) can be a promising cell source for coculture due to their superior chondrogenic
potential compared to other MSCs and easy accessibility without donor site morbidity. However, studies on coculture of
chondrocytes and SDSCs are very limited. The aim of this study was to investigate whether direct coculture of human
chondrocytes and SDSCs could enhance chondrogenesis compared to monoculture of each cell.
Materials and Methods In this experimental study, passage 2 chondrocytes and SDSCs were directly cocultured
using different ratios of chondrocytes to SDSCs (3:1, 1:1, or 1:3). glycosaminoglycan (GAG) synthetic activity was
assessed using GAG assays and Safranin-O staining. Expression of chondrogenesis-related genes (collagen types I,
II, X, Aggrecan, and Sox-9) were analyzed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR)
and immunohistochemistry staining.
Results GAG/DNA ratios in 1:1 and 1:3 coculture groups were significantly increased compared to those in the
chondrocyte and SDSC monoculture groups. Type II collagen and SOX-9 were significantly upregulated in the 1:1
coculture group compared to those in the chondrocyte and SDSC monoculture groups. On the other hand, osteogenic
marker (type I collagen) and hypertrophic marker (type X collagen) were significantly downregulated in the coculture
groups compared to those in the SDSC monoculture group.
Conclusion Direct coculture of human chondrocytes and SDSCs significantly enhanced chondrogenic potential,
especially at a ratio of 1:1, compared to chondrocyte or SDSC monocultures.
Collapse
Affiliation(s)
- Tae Woo Kim
- Department of Orthopaedic Surgery, Hallym University Chuncheon Sacred Heart Hospital 77, Sakju-ro, Chuncheon-si, Gangwon-do, Korea
| | - Myung Chul Lee
- Department of Orthopaedic Surgery, Seoul National University Hospital 101 Daehang-ro, Jongno-gu, Seoul, Korea
| | - Hyun Cheol Bae
- Department of Orthopaedic Surgery, Seoul National University Hospital 101 Daehang-ro, Jongno-gu, Seoul, Korea
| | - Hyuk-Soo Han
- Department of Orthopaedic Surgery, Seoul National University Hospital 101 Daehang-ro, Jongno-gu, Seoul, Korea. Electronic adress:
| |
Collapse
|
128
|
Vascular Endothelial Growth Factor Sequestration Enhances In Vivo Cartilage Formation. Int J Mol Sci 2017; 18:ijms18112478. [PMID: 29160845 PMCID: PMC5713444 DOI: 10.3390/ijms18112478] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/01/2017] [Accepted: 11/15/2017] [Indexed: 12/17/2022] Open
Abstract
Autologous chondrocyte transplantation for cartilage repair still has unsatisfactory clinical outcomes because of inter-donor variability and poor cartilage quality formation. Re-differentiation of monolayer-expanded human chondrocytes is not easy in the absence of potent morphogens. The Vascular Endothelial Growth Factor (VEGF) plays a master role in angiogenesis and in negatively regulating cartilage growth by stimulating vascular invasion and ossification. Therefore, we hypothesized that its sole microenvironmental blockade by either VEGF sequestration by soluble VEGF receptor-2 (Flk-1) or by antiangiogenic hyperbranched peptides could improve chondrogenesis of expanded human nasal chondrocytes (NC) freshly seeded on collagen scaffolds. Chondrogenesis of several NC donors was assessed either in vitro or ectopically in nude mice. VEGF blockade appeared not to affect NC in vitro differentiation, whereas it efficiently inhibited blood vessel ingrowth in vivo. After 8 weeks, in vivo glycosaminoglycan deposition was approximately two-fold higher when antiangiogenic approaches were used, as compared to the control group. Our data indicates that the inhibition of VEGF signaling, independently of the specific implementation mode, has profound effects on in vivo NC chondrogenesis, even in the absence of chondroinductive signals during prior culture or at the implantation site.
Collapse
|
129
|
Arora A, Mahajan A, Katti DS. TGF-β1 presenting enzymatically cross-linked injectable hydrogels for improved chondrogenesis. Colloids Surf B Biointerfaces 2017; 159:838-848. [DOI: 10.1016/j.colsurfb.2017.08.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/04/2017] [Accepted: 08/17/2017] [Indexed: 12/14/2022]
|
130
|
Huang YZ, Xie HQ, Silini A, Parolini O, Zhang Y, Deng L, Huang YC. Mesenchymal Stem/Progenitor Cells Derived from Articular Cartilage, Synovial Membrane and Synovial Fluid for Cartilage Regeneration: Current Status and Future Perspectives. Stem Cell Rev Rep 2017; 13:575-586. [PMID: 28721683 DOI: 10.1007/s12015-017-9753-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Large articular cartilage defects remain an immense challenge in the field of regenerative medicine because of their poor intrinsic repair capacity. Currently, the available medical interventions can relieve clinical symptoms to some extent, but fail to repair the cartilaginous injuries with authentic hyaline cartilage. There has been a surge of interest in developing cell-based therapies, focused particularly on the use of mesenchymal stem/progenitor cells with or without scaffolds. Mesenchymal stem/progenitor cells are promising graft cells for tissue regeneration, but the most suitable source of cells for cartilage repair remains controversial. The tissue origin of mesenchymal stem/progenitor cells notably influences the biological properties and therapeutic potential. It is well known that mesenchymal stem/progenitor cells derived from synovial joint tissues exhibit superior chondrogenic ability compared with those derived from non-joint tissues; thus, these cell populations are considered ideal sources for cartilage regeneration. In addition to the progress in research and promising preclinical results, many important research questions must be answered before widespread success in cartilage regeneration is achieved. This review outlines the biology of stem/progenitor cells derived from the articular cartilage, the synovial membrane, and the synovial fluid, including their tissue distribution, function and biological characteristics. Furthermore, preclinical and clinical trials focusing on their applications for cartilage regeneration are summarized, and future research perspectives are discussed.
Collapse
Affiliation(s)
- Yi-Zhou Huang
- Laboratory of Stem Cell and Tissue Engineering, West China Hospital, Sichuan University, Chengdu, China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, West China Hospital, Sichuan University, Chengdu, China
| | - Antonietta Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Brescia, Italy
| | - Ornella Parolini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Brescia, Italy
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, Rome, Italy
| | - Yi Zhang
- Laboratory of Stem Cell and Tissue Engineering, West China Hospital, Sichuan University, Chengdu, China
| | - Li Deng
- Laboratory of Stem Cell and Tissue Engineering, West China Hospital, Sichuan University, Chengdu, China.
| | - Yong-Can Huang
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Orthopaedic Research Center, Peking University Shenzhen Hospital, Shenzhen, China.
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, China.
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, SAR, China.
- Beijing Key Laboratory for Genetic Research of Bone and Joint Disease, Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
131
|
Dijkstra K, Hendriks J, Karperien M, Vonk LA, Saris DB. Arthroscopic Airbrush-Assisted Cell Spraying for Cartilage Repair: Design, Development, and Characterization of Custom-Made Arthroscopic Spray Nozzles. Tissue Eng Part C Methods 2017; 23:505-515. [DOI: 10.1089/ten.tec.2017.0228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Koen Dijkstra
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jan Hendriks
- Department of Developmental BioEngineering, University of Twente, Enschede, The Netherlands
| | - Marcel Karperien
- Department of Developmental BioEngineering, University of Twente, Enschede, The Netherlands
| | - Lucienne A. Vonk
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Daniël B.F. Saris
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
- MIRA Institute for BioMedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
- Department of Orthopedics, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
132
|
Mehmood K, Zhang H, Iqbal MK, Rehman MU, Shahzad M, Li K, Huang S, Nabi F, Zhang L, Li J. In VitroEffect of Apigenin and Danshen in Tibial Dyschondroplasia Through Inhibition of Heat-Shock Protein 90 and Vascular Endothelial Growth Factor Expressions in Avian Growth Plate Cells. Avian Dis 2017; 61:372-377. [DOI: 10.1637/11641-032817-regr] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Khalid Mehmood
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
- University College of Veterinary & Animal Sciences, Islamia University of Bahawalpur 63100, Pakistan
| | - Hui Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Muhammad Kashif Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Mujeeb Ur Rehman
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Muhammad Shahzad
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
- University College of Veterinary & Animal Sciences, Islamia University of Bahawalpur 63100, Pakistan
| | - Kun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Shucheng Huang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Fazul Nabi
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Lihong Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
- College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet 860000, People's Republic of China
| |
Collapse
|
133
|
RNA Interference and BMP-2 Stimulation Allows Equine Chondrocytes Redifferentiation in 3D-Hypoxia Cell Culture Model: Application for Matrix-Induced Autologous Chondrocyte Implantation. Int J Mol Sci 2017; 18:ijms18091842. [PMID: 28837082 PMCID: PMC5618491 DOI: 10.3390/ijms18091842] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 12/29/2022] Open
Abstract
As in humans, osteoarthritis (OA) causes considerable economic loss to the equine industry. New hopes for cartilage repair have emerged with the matrix-associated autologous chondrocyte implantation (MACI). Nevertheless, its limitation is due to the dedifferentiation occurring during the chondrocyte amplification phase, leading to the loss of its capacity to produce a hyaline extracellular matrix (ECM). To enhance the MACI therapy efficiency, we have developed a strategy for chondrocyte redifferentiation, and demonstrated its feasibility in the equine model. Thus, to mimic the cartilage microenvironment, the equine dedifferentiated chondrocytes were cultured in type I/III collagen sponges for 7 days under hypoxia in the presence of BMP-2. In addition, chondrocytes were transfected by siRNA targeting Col1a1 and Htra1 mRNAs, which are overexpressed during dedifferentiation and OA. To investigate the quality of the neo-synthesized ECM, specific and atypical cartilage markers were evaluated by RT-qPCR and Western blot. Our results show that the combination of 3D hypoxia cell culture, BMP-2 (Bone morphogenetic protein-2), and RNA interference, increases the chondrocytes functional indexes (Col2a1/Col1a1, Acan/Col1a1), leading to an effective chondrocyte redifferentiation. These data represent a proof of concept for this process of application, in vitro, in the equine model, and will lead to the improvement of the MACI efficiency for cartilage tissue engineering therapy in preclinical/clinical trials, both in equine and human medicine.
Collapse
|
134
|
Bundens G, Buckley A, Milton L, Behling K, Chmielewski S, Cho E, Lozano-Torres X, Selim A, Lackman R, George-Weinstein M, Miller L, D'Angelo M. Measuring clinically relevant endpoints in a serum-free, three-dimensional, primary cell culture system of human osteoarthritic articular chondrocytes. Exp Cell Res 2017; 357:310-319. [PMID: 28583763 DOI: 10.1016/j.yexcr.2017.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 05/09/2017] [Accepted: 06/01/2017] [Indexed: 11/24/2022]
Abstract
Osteoarthritis (OA) is characterized by degeneration of articular cartilage within the joint, inflammation and pain. The purpose of this study was to develop a primary, serum free cell culture system of human osteoarthritic articular chondrocytes (HOACs) with which to study manifestations of the disease process. Joint tissues were obtained from OA patients undergoing total knee arthroplasty (TKA). HOACs isolated from the femoral condyles and tibial plateau of the same side were combined, plated in three-dimensional, alginate beads and cultured for five days in serum, hormone and protein free medium. More living cells were obtained from the femoral condyles than the tibial plateau. The optimal plating density was 2.5 × 106 cells/ml of alginate. The amounts of DNA, RNA, proteoglycans and total collagen were similar in cultures prepared from the sides of least and greatest pathology. More type 1 than type 2 collagen was detected in the medium on days 2 and 5. A greater percentage of type 1 than type 2 collagen was degraded. The inflammatory cytokine interleukin-1 beta was present in the medium and alginate associated matrix. Although variation in the metabolic profiles between subjects was observed, HOACs from all patients continued to reflect the OA phenotype for five days in culture. This serum free, three-dimensional primary culture system of HOACs provides a platform with which to measure clinically relevant endpoints of OA and screen potential disease modifying OA therapeutics.
Collapse
Affiliation(s)
- Grace Bundens
- Cooper Medical School of Rowan University, 402 South Broadway, Camden, NJ 08103, USA.
| | - Andrea Buckley
- Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA 19131, USA.
| | - LaBraya Milton
- Cooper University Hospital, Three Cooper Plaza, Camden, NJ 08103, USA.
| | - Kathryn Behling
- Cooper Medical School of Rowan University, 402 South Broadway, Camden, NJ 08103, USA; Cooper University Hospital, Three Cooper Plaza, Camden, NJ 08103, USA.
| | - Sarah Chmielewski
- Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA 19131, USA.
| | - Ellen Cho
- Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA 19131, USA.
| | - Xiomara Lozano-Torres
- Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA 19131, USA.
| | - Abdulhafez Selim
- Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA 19131, USA.
| | - Richard Lackman
- Cooper University Hospital, Three Cooper Plaza, Camden, NJ 08103, USA.
| | | | - Lawrence Miller
- Cooper University Hospital, Three Cooper Plaza, Camden, NJ 08103, USA.
| | - Marina D'Angelo
- Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA 19131, USA.
| |
Collapse
|
135
|
Kuo YC, Rajesh R. Guided differentiation and tissue regeneration of induced pluripotent stem cells using biomaterials. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.04.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
136
|
Koh S, Purser M, Wysk R, Piedrahita JA. Improved Chondrogenic Potential and Proteomic Phenotype of Porcine Chondrocytes Grown in Optimized Culture Conditions. Cell Reprogram 2017; 19:232-244. [PMID: 28749737 DOI: 10.1089/cell.2017.0005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
For successful cartilage tissue engineering, the ability to generate a high number of chondrocytes in vitro while avoiding terminal differentiation or de-differentiation is critical. The ability to accomplish this by using the abundant and easily sampled costal cartilage could provide a practical alternative to the use of articular cartilage and mesenchymal stem cells. Chondrocytes isolated from pig costal cartilage were expanded in either serum-free medium with FGF2 (SFM) or fetal bovine serum-containing medium (SCM), under either high (21%) or low (5%) oxygen conditions. Overall, chondrocytes cultured in SFM and low oxygen (Low-SFM) demonstrated the highest cell growth rate (p < 0.05). The effect of passage number on the differentiation status of the chondrocytes was analyzed by alkaline phosphatase (AP) staining and real-time PCR for known chondrocyte quality markers. AP staining indicated that chondrocytes grown in SCM had a higher proportion of terminally differentiated (hypertrophic) chondrocytes (p < 0.05). At the mRNA level, expression ratios of ACAN/VCAN and COL2/COL1 were significantly higher (p < 0.05) in cells expanded in Low-SFM, indicating reduced de-differentiation. In vitro re-differentiation capacity was assessed after a 6-week induction, and chondrocytes grown in Low-SFM showed similar expression ratios of COL2/COL1 and ACAN/VCAN to native cartilage. Proteomic analysis of in vitro produced cartilage indicated that the Low-SFM condition most closely matched the proteomic profile of native costal and articular cartilage. In conclusion, Low-SFM culture conditions resulted in improved cell growth rates, reduced levels of de-differentiation during expansion, greater ability to re-differentiate into cartilage on induction, and an improved proteomic profile that resembles that of in vivo cartilage.
Collapse
Affiliation(s)
- Sehwon Koh
- 1 Genomics Program, North Carolina State University , Raleigh, North Carolina.,2 Comparative Medicine Institute, North Carolina State University , Raleigh, North Carolina.,3 Department of Cell Biology, Duke University , Durham, North Carolina
| | - Molly Purser
- 4 Department of Industrial and Systems Engineering, North Carolina state University , Raleigh, North Carolina.,5 RTI Health Solutions, Research Triangle International , Raleigh, North Carolina
| | - Richard Wysk
- 2 Comparative Medicine Institute, North Carolina State University , Raleigh, North Carolina.,4 Department of Industrial and Systems Engineering, North Carolina state University , Raleigh, North Carolina
| | - Jorge A Piedrahita
- 1 Genomics Program, North Carolina State University , Raleigh, North Carolina.,2 Comparative Medicine Institute, North Carolina State University , Raleigh, North Carolina.,6 Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University , Raleigh, North Carolina
| |
Collapse
|
137
|
Megat Abdul Wahab R, Mohamed Rozali NA, Senafi S, Zainol Abidin IZ, Zainal Ariffin Z, Zainal Ariffin SH. Impact of isolation method on doubling time and the quality of chondrocyte and osteoblast differentiated from murine dental pulp stem cells. PeerJ 2017. [PMID: 28626603 PMCID: PMC5473353 DOI: 10.7717/peerj.3180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Stem cells are normally isolated from dental pulps using the enzymatic digestion or the outgrowth method. However, the effects of the isolation method on the quality of the isolated stem cells are not studied in detail in murine models. The aim of this study was to compare the matrices secreted by osteoblast and chondrocytes differentiated from dental pulp stem cells isolated through different means. Method DPSC from murine incisors were isolated through either the outgrowth (DPSC-OG) or the enzymatic digestion (DPSC-ED) method. Cells at passage 4 were used in this study. The cells were characterized through morphology and expression of cell surface markers. The cells’ doubling time when cultured using different seeding densities was calculated and analyzed using one-way ANOVA and Tukey’s multiple comparison post-test. The ability of cells to differentiate to chondrocyte and osteoblast was evaluated through staining and analysis on the matrices secreted. Results Gene expression analysis showed that DPSC-OG and DPSC-ED expressed dental pulp mesenchymal stem cell markers, but not hematopoietic stem cell markers. The least number of cells that could have been used to culture DPSC-OG and DPSC-ED with the shortest doubling time was 5 × 102 cells/cm2 (11.49 ± 2.16 h) and 1 × 102 cells/cm2 (10.55 h ± 0.50), respectively. Chondrocytes differentiated from DPSC-ED produced 2 times more proteoglycan and at a faster rate than DPSC-OG. FTIR revealed that DPSC-ED differentiated into osteoblast also secreted matrix, which more resembled a calvaria. Discussion Isolation approaches might have influenced the cell populations obtained. This, in turn, resulted in cells with different proliferation and differentiation capability. While both DPSC-OG and DPSC-ED expressed mesenchymal stem cell markers, the percentage of cells carrying each marker might have differed between the two methods. Regardless, enzymatic digestion clearly yielded cells with better characteristics than outgrowth.
Collapse
Affiliation(s)
| | - Nur Akmal Mohamed Rozali
- School of Biosciences and Biotechnology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Sahidan Senafi
- School of Biosciences and Biotechnology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Intan Zarina Zainol Abidin
- Centre for Graduate Studies, Research Resources Centre, Cyberjaya University College of Medical Sciences, Cyberjaya, Selangor, Malaysia
| | | | | |
Collapse
|
138
|
Arora A, Sriram M, Kothari A, Katti DS. Co-culture of infrapatellar fat pad-derived mesenchymal stromal cells and articular chondrocytes in plasma clot for cartilage tissue engineering. Cytotherapy 2017; 19:881-894. [PMID: 28479049 DOI: 10.1016/j.jcyt.2017.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/23/2017] [Accepted: 04/07/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND Cell source plays a deterministic role in defining the outcome of a cell-based cartilage regenerative therapy and its clinical translational ability. Recent efforts in the direction of co-culture of two or more cell types attempt to combine the advantages of constituent cell types and negate their demerits. METHODS We examined the potential of co-culture of infrapatellar fat pad-derived mesenchymal stromal cells (IFP MSCs) and articular chondrocytes (ACs) in plasma clots in terms of their ratios and culture formats for cartilage tissue engineering. RESULTS AND DISCUSSION It was observed that IFP MSCs and ACs interact positively to produce a better quality hyaline cartilage-like matrix. While a supra-additive deposition of sulfated Glycosaminoglycans (sGAG), collagen type II, aggrecan and link protein was observed, deposition of collagen type I and X was sub-additive. (Immuno)-histologically similar cartilage was generated in vitro in IFP MSC:AC ratio of 50:50 and pure AC groups thus yielding a hyaline cartilage with 50% reduced requirement of ACs. Subsequently, we investigated if this response could be improved further by enabling better cell-cell interactions using scaffold-free systems such as self-assembled cartilage or by encapsulating cellular micro-aggregates in plasma clot. However, it was inferred that while self-assembly may have enabled better cell-cell interaction, poor cell survival negated its overall beneficial role, whereas the micro-aggregate group demonstrated highly heterogeneous matrix deposition within the construct, thus diminishing its translational utility. Overall, it was concluded that co-culture of IFP MSCs and ACs at a ratio of 50:50 within plasma clots demonstrated potential for cell-based cartilage regenerative therapy.
Collapse
Affiliation(s)
- Aditya Arora
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology-Kanpur, Kanpur, Uttar Pradesh, India
| | - M Sriram
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology-Kanpur, Kanpur, Uttar Pradesh, India
| | - Anjaney Kothari
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology-Kanpur, Kanpur, Uttar Pradesh, India
| | - Dhirendra S Katti
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology-Kanpur, Kanpur, Uttar Pradesh, India.
| |
Collapse
|
139
|
San-Marina S, Sharma A, Voss SG, Janus JR, Hamilton GS. Assessment of Scaffolding Properties for Chondrogenic Differentiation of Adipose-Derived Mesenchymal Stem Cells in Nasal Reconstruction. JAMA FACIAL PLAST SU 2017; 19:108-114. [PMID: 27737438 DOI: 10.1001/jamafacial.2016.1200] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Importance Nasal reconstruction in patients who are missing a significant amount of structural nasal support remains a difficult challenge. One challenge is the deficiency of cartilage left within the nose as a consequence of rhinectomy or a midline destructive disease. Historically, the standard donor source for large quantities of native cartilage has been costal cartilage. Objective To enable the development of protocols for new mesenchymal stem cell technologies as alternative procedures with reduced donor site morbidity, risk of infection and extrusion. Design, Setting, and Materials We examined 6 popular scaffold materials in current practice in terms of their biodegradability in tissue culture, effect on adipose-derived mesenchymal stem cell growth, and chondrogenic fate commitment. Various biomaterials of matching size, porosity, and fiber alignment were synthesized by electrospinning and overlaid with rabbit adipose-derived mesenchymal cells in media supplemented or not with chondrogenic factors. Experiments were performed in vitro using as end points biomarkers for cell growth and chondrogenic differentiation. Polydioxanone (PDO), poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV), PHBV-polycaprolactone, poly(L-lactide-co-caprolactone), poly(lactic-co-glycolic acid), and polystyrene scaffolds of 60% to 70% porosity and random fiber alignment were coated with poly(L)-lysine/laminin to promote cell adhesion and incubated for 28 days with 2.5 to 3.5 × 105 rabbit adipose mesenchymal cells. Main Outcomes and Measures Cell growth was measured by fluorometric DNA quantitation and chondrogenic differentiation of stem cells by spectrophotometric sulfated glycosaminoglycan (sGAG) assay. Microscopic visualization of cell growth and matrix deposition on formalin-fixed, paraffin-embedded tissue sections was performed, respectively, with nuclear fast red and Alcian blue. Results Of 6 scaffold materials tested using rabbit apidose mesenchymal cells, uncoated scaffolds promoted limited cell adhesion but coating with poly(L)-lysine/laminin enabled efficient cell saturation of scaffold surfaces, albeit with limited involvement of scaffold interiors. Similar growth rates were observed under these conditions, based on DNA content analysis. However, PDO and PHBV/PCL scaffolds supported chondrogenic fate commitment better than other materials, based on soluble sGAG analysis and microscopic observation of chondrogenic matrix deposition. The mean (SD) sGAG scaffold values expressed as fold increase over control were PDO, 2.26 (0.88), PHBV/PCL, 2.09 (0.83), PLCL, 1.36 (0.39), PLGA, 1.34 (0.77), PHBV, 1.07 (0.31), and PS, 0.38 (0.14). Conclusions and Relevance These results establish materials, reagents, and protocols for tissue engineering for nasal reconstruction using single-layer, chondrogenically differentiated, adipose-derived mesenchymal stem cells. Stackable, scaffold-supported, multisheet bioengineered tissue may be generated using these protocols. Level of Evidence NA.
Collapse
Affiliation(s)
| | - Ayushman Sharma
- Department of Otolaryngology, Mayo Clinic, Rochester, Minnesota
| | - Stephen G Voss
- Department of Otolaryngology, Mayo Clinic, Rochester, Minnesota
| | - Jeffrey R Janus
- Department of Otolaryngology, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
140
|
Meinert C, Schrobback K, Levett PA, Lutton C, Sah RL, Klein TJ. Tailoring hydrogel surface properties to modulate cellular response to shear loading. Acta Biomater 2017; 52:105-117. [PMID: 27729233 PMCID: PMC5385162 DOI: 10.1016/j.actbio.2016.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/20/2016] [Accepted: 10/07/2016] [Indexed: 12/17/2022]
Abstract
Biological tissues at articulating surfaces, such as articular cartilage, typically have remarkable low-friction properties that limit tissue shear during movement. However, these frictional properties change with trauma, aging, and disease, resulting in an altered mechanical state within the tissues. Yet, it remains unclear how these surface changes affect the behaviour of embedded cells when the tissue is mechanically loaded. Here, we developed a cytocompatible, bilayered hydrogel system that permits control of surface frictional properties without affecting other bulk physicochemical characteristics such as compressive modulus, mass swelling ratio, and water content. This hydrogel system was applied to investigate the effect of variations in surface friction on the biological response of human articular chondrocytes to shear loading. Shear strain in these hydrogels during dynamic shear loading was significantly higher in high-friction hydrogels than in low-friction hydrogels. Chondrogenesis was promoted following dynamic shear stimulation in chondrocyte-encapsulated low-friction hydrogel constructs, whereas matrix synthesis was impaired in high-friction constructs, which instead exhibited increased catabolism. Our findings demonstrate that the surface friction of tissue-engineered cartilage may act as a potent regulator of cellular homeostasis by governing the magnitude of shear deformation during mechanical loading, suggesting a similar relationship may also exist for native articular cartilage. STATEMENT OF SIGNIFICANCE Excessive mechanical loading is believed to be a major risk factor inducing pathogenesis of articular cartilage and other load-bearing tissues. Yet, the mechanisms leading to increased transmission of mechanical stimuli to cells embedded in the tissue remain largely unexplored. Here, we demonstrate that the tribological properties of loadbearing tissues regulate cellular behaviour by governing the magnitude of mechanical deformation arising from physiological tissue function. Based on these findings, we propose that changes to articular surface friction as they occur with trauma, aging, or disease, may initiate tissue pathology by increasing the magnitude of mechanical stress on embedded cells beyond a physiological level.
Collapse
Affiliation(s)
- Christoph Meinert
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland 4059, Australia.
| | - Karsten Schrobback
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland 4059, Australia.
| | - Peter A Levett
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland 4059, Australia.
| | - Cameron Lutton
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland 4059, Australia.
| | - Robert L Sah
- Department of Bioengineering, University of California-San Diego, La Jolla, CA 92093, United States.
| | - Travis J Klein
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland 4059, Australia.
| |
Collapse
|
141
|
Naranda J, Gradišnik L, Gorenjak M, Vogrin M, Maver U. Isolation and characterization of human articular chondrocytes from surgical waste after total knee arthroplasty (TKA). PeerJ 2017; 5:e3079. [PMID: 28344902 PMCID: PMC5363257 DOI: 10.7717/peerj.3079] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/09/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Cartilage tissue engineering is a fast-evolving field of biomedical engineering, in which the chondrocytes represent the most commonly used cell type. Since research in tissue engineering always consumes a lot of cells, simple and cheap isolation methods could form a powerful basis to boost such studies and enable their faster progress to the clinics. Isolated chondrocytes can be used for autologous chondrocyte implantation in cartilage repair, and are the base for valuable models to investigate cartilage phenotype preservation, as well as enable studies of molecular features, nature and scales of cellular responses to alterations in the cartilage tissue. METHODS Isolation and consequent cultivation of primary human adult articular chondrocytes from the surgical waste obtained during total knee arthroplasty (TKA) was performed. To evaluate the chondrogenic potential of the isolated cells, gene expression of collagen type 2 (COL2), collagen 1 (COL1) and aggrecan (ACAN) was evaluated. Immunocytochemical staining of all mentioned proteins was performed to evaluate chondrocyte specific production. RESULTS Cartilage specific gene expression of COL2 and ACAN has been shown that the proposed protocol leads to isolation of cells with a high chondrogenic potential, possibly even specific phenotype preservation up to the second passage. COL1 expression has confirmed the tendency of the isolated cells dedifferentiation into a fibroblast-like phenotype already in the second passage, which confirms previous findings that higher passages should be used with care in cartilage tissue engineering. To evaluate the effectiveness of our approach, immunocytochemical staining of the evaluated chondrocyte specific products was performed as well. DISCUSSION In this study, we developed a protocol for isolation and consequent cultivation of primary human adult articular chondrocytes with the desired phenotype from the surgical waste obtained during TKA. TKA is a common and very frequently performed orthopaedic surgery during which both femoral condyles are removed. The latter present the ideal source for a simple and relatively cheap isolation of chondrocytes as was confirmed in our study.
Collapse
Affiliation(s)
- Jakob Naranda
- Department of Orthopaedics, University Medical Centre Maribor, Maribor, Slovenia
| | - Lidija Gradišnik
- Institute of Biomedical Sciences, University of Maribor, Faculty of Medicine, Maribor, Slovenia
| | - Mario Gorenjak
- Center for Human Molecular Genetics and Pharmacogenomics, University of Maribor, Faculty of Medicine, Maribor, Slovenia
| | - Matjaž Vogrin
- Department of Orthopaedics, University Medical Centre Maribor, Maribor, Slovenia
| | - Uroš Maver
- Institute of Biomedical Sciences, University of Maribor, Faculty of Medicine, Maribor, Slovenia
| |
Collapse
|
142
|
Bianchi VJ, Weber JF, Waldman SD, Backstein D, Kandel RA. Formation of Hyaline Cartilage Tissue by Passaged Human Osteoarthritic Chondrocytes. Tissue Eng Part A 2017; 23:156-165. [DOI: 10.1089/ten.tea.2016.0262] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Vanessa J. Bianchi
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Joanna F. Weber
- Department of Mechanical and Materials Engineering, Queen's University, Kingston, Ontario, Canada
- Kennan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Stephen D. Waldman
- Kennan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Chemical Engineering, Ryerson University, Toronto, Ontario, Canada
| | - David Backstein
- Division of Orthopaedics, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Rita A. Kandel
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
- Pathology and Laboratory Medicine, Mt. Sinai Hospital, Toronto, Ontario, Canada
| |
Collapse
|
143
|
Challenges for Cartilage Regeneration. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2017. [DOI: 10.1007/978-3-662-53574-5_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
144
|
Guo T, Lembong J, Zhang LG, Fisher JP. Three-Dimensional Printing Articular Cartilage: Recapitulating the Complexity of Native Tissue<sup/>. TISSUE ENGINEERING PART B-REVIEWS 2016; 23:225-236. [PMID: 27875945 DOI: 10.1089/ten.teb.2016.0316] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In the past few decades, the field of tissue engineering combined with rapid prototyping (RP) techniques has been successful in creating biological substitutes that mimic tissues. Its applications in regenerative medicine have drawn efforts in research from various scientific fields, diagnostics, and clinical translation to therapies. While some areas of therapeutics are well developed, such as skin replacement, many others such as cartilage repair can still greatly benefit from tissue engineering and RP due to the low success and/or inefficiency of current existing, often surgical treatments. Through fabrication of complex scaffolds and development of advanced materials, RP provides a new avenue for cartilage repair. Computer-aided design and three-dimensional (3D) printing allow the fabrication of modeled cartilage scaffolds for repair and regeneration of damaged cartilage tissues. Specifically, the various processes of 3D printing will be discussed in details, both cellular and acellular techniques, covering the different materials, geometries, and operational printing conditions for the development of tissue-engineered articular cartilage. Finally, we conclude with some insights on future applications and challenges related to this technology, especially using 3D printing techniques to recapitulate the complexity of native structure for advanced cartilage regeneration.
Collapse
Affiliation(s)
- Ting Guo
- 1 Fischell Department of Bioengineering, University of Maryland , College Park, Maryland
| | - Josephine Lembong
- 1 Fischell Department of Bioengineering, University of Maryland , College Park, Maryland
| | - Lijie Grace Zhang
- 2 Department of Mechanical and Aerospace Engineering, The George Washington University , Washington, District of Columbia
| | - John P Fisher
- 1 Fischell Department of Bioengineering, University of Maryland , College Park, Maryland
| |
Collapse
|
145
|
Diaz-Romero J, Kürsener S, Kohl S, Nesic D. S100B + A1 CELISA: A Novel Potency Assay and Screening Tool for Redifferentiation Stimuli of Human Articular Chondrocytes. J Cell Physiol 2016; 232:1559-1570. [DOI: 10.1002/jcp.25682] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/08/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Jose Diaz-Romero
- Osteoarticular Research Group; Department of Clinical Research; University of Bern; Bern Switzerland
| | - Sibylle Kürsener
- Osteoarticular Research Group; Department of Clinical Research; University of Bern; Bern Switzerland
| | - Sandro Kohl
- Department of Orthopedics and Traumatology; Inselspital; University of Bern; Bern Switzerland
| | - Dobrila Nesic
- Osteoarticular Research Group; Department of Clinical Research; University of Bern; Bern Switzerland
- Department of Orthopedics and Traumatology; Inselspital; University of Bern; Bern Switzerland
| |
Collapse
|
146
|
Efficiency of Human Epiphyseal Chondrocytes with Differential Replication Numbers for Cellular Therapy Products. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6437658. [PMID: 27999805 PMCID: PMC5143694 DOI: 10.1155/2016/6437658] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 08/14/2016] [Accepted: 08/15/2016] [Indexed: 11/18/2022]
Abstract
The cell-based therapy for cartilage or bone requires a large number of cells; serial passages of chondrocytes are, therefore, needed. However, fates of expanded chondrocytes from extra fingers remain unclarified. The chondrocytes from human epiphyses morphologically changed from small polygonal cells to bipolar elongated spindle cells and to large polygonal cells with degeneration at early passages. Gene of type II collagen was expressed in the cells only at a primary culture (Passage 0) and Passage 1 (P1) cells. The nodules by implantation of P0 to P8 cells were composed of cartilage and perichondrium. The cartilage consisted of chondrocytes with round nuclei and type II collagen-positive matrix, and the perichondrium consisted of spindle cells with type I collage-positive matrix. The cartilage and perichondrium developed to bone with marrow cavity through enchondral ossification. Chondrogenesis and osteogenesis by epiphyseal chondrocytes depended on replication number in culture. It is noteworthy to take population doubling level in correlation with pharmaceutical efficacy into consideration when we use chondrocytes for cell-based therapies.
Collapse
|
147
|
Zhong L, Huang X, Rodrigues ED, Leijten JCH, Verrips T, El Khattabi M, Karperien M, Post JN. Endogenous DKK1 and FRZB Regulate Chondrogenesis and Hypertrophy in Three-Dimensional Cultures of Human Chondrocytes and Human Mesenchymal Stem Cells. Stem Cells Dev 2016; 25:1808-1817. [PMID: 27733096 PMCID: PMC5124737 DOI: 10.1089/scd.2016.0222] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hypertrophic differentiation occurs during in vitro chondrogenesis of mesenchymal stem cells (MSCs), decreasing the quality of the cartilage construct. Previously we identified WNT pathway antagonists Dickkopf 1 homolog (DKK1) and frizzled-related protein (FRZB) as key factors in blocking hypertrophic differentiation of human MSCs (hMSCs). In this study, we investigated the role of endogenously expressed DKK1 and FRZB in chondrogenesis of hMSC and chondrocyte redifferentiation and in preventing cell hypertrophy using three relevant human cell based systems, isolated hMSCs, isolated primary human chondrocytes (hChs), and cocultures of hMSCs with hChs for which we specifically designed neutralizing nano-antibodies. We selected and tested variable domain of single chain heavy chain only antibodies (VHH) for their ability to neutralize the function of DKK1 or FRZB. In the presence of DKK1 and FRZB neutralizing VHH, glycosaminoglycan and collagen type II staining were significantly reduced in monocultured hMSCs and monocultured chondrocytes. Furthermore, in cocultures, cells in pellets showed hypertrophic differentiation. In conclusion, endogenous expression of the WNT antagonists DKK1 and FRZB is necessary for multiple steps during chondrogenesis: first DKK1 and FRZB are indispensable for the initial steps of chondrogenic differentiation of hMSCs, second they are necessary for chondrocyte redifferentiation, and finally in preventing hypertrophic differentiation of articular chondrocytes.
Collapse
Affiliation(s)
- Leilei Zhong
- 1 Department of Developmental BioEngineering, Faculty of Science and Technology, MIRA-Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, the Netherlands
| | - Xiaobin Huang
- 1 Department of Developmental BioEngineering, Faculty of Science and Technology, MIRA-Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, the Netherlands
| | - Emilie Dooms Rodrigues
- 1 Department of Developmental BioEngineering, Faculty of Science and Technology, MIRA-Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, the Netherlands
| | - Jeroen C H Leijten
- 1 Department of Developmental BioEngineering, Faculty of Science and Technology, MIRA-Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, the Netherlands
| | | | | | - Marcel Karperien
- 1 Department of Developmental BioEngineering, Faculty of Science and Technology, MIRA-Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, the Netherlands
| | - Janine N Post
- 1 Department of Developmental BioEngineering, Faculty of Science and Technology, MIRA-Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, the Netherlands
| |
Collapse
|
148
|
Pereira RC, Martinelli D, Cancedda R, Gentili C, Poggi A. Human Articular Chondrocytes Regulate Immune Response by Affecting Directly T Cell Proliferation and Indirectly Inhibiting Monocyte Differentiation to Professional Antigen-Presenting Cells. Front Immunol 2016; 7:415. [PMID: 27822208 PMCID: PMC5075572 DOI: 10.3389/fimmu.2016.00415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/26/2016] [Indexed: 12/27/2022] Open
Abstract
Autologous chondrocyte implantation is the current gold standard cell therapy for cartilage lesions. However, in some instances, the heavily compromised health of the patient can either impair or limit the recovery of the autologous chondrocytes and a satisfactory outcome of the implant. Allogeneic human articular chondrocytes (hAC) could be a good alternative, but the possible immunological incompatibility between recipient and hAC donor should be considered. Herein, we report that allogeneic hAC inhibited T lymphocyte response to antigen-dependent and -independent proliferative stimuli. This effect was maximal when T cells and hAC were in contact and it was not relieved by the addition of exogenous lymphocyte growth factor interleukin (IL)-2. More important, hAC impaired the differentiation of peripheral blood monocytes induced with granulocyte monocyte colony-stimulating factor and IL-4 (Mo) to professional antigen-presenting cells, such as dendritic cells (DC). Indeed, a marked inhibition of the onset of the CD1a expression and an ineffective downregulation of CD14 antigens was observed in Mo-hAC co-cultures. Furthermore, compared to immature or mature DC, Mo from Mo-hAC co-cultures did not trigger an efficacious allo-response. The prostaglandin (PG) E2 present in the Mo-hAC co-culture conditioned media is a putative candidate of the hAC-mediated inhibition of Mo maturation. Altogether, these findings indicate that allogeneic hAC inhibit, rather than trigger, immune response and strongly suggest that an efficient chondrocyte implantation could be possible also in an allogeneic setting.
Collapse
Affiliation(s)
- Rui C. Pereira
- Regenerative Medicine Unit, Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Daniela Martinelli
- Regenerative Medicine Unit, Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Ranieri Cancedda
- Regenerative Medicine Unit, Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Chiara Gentili
- Regenerative Medicine Unit, Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, Department of Integrated Oncological Therapies, IRCCS AOU San Martino IST, Genova, Italy
| |
Collapse
|
149
|
Chondrogenic Potency Analyses of Donor-Matched Chondrocytes and Mesenchymal Stem Cells Derived from Bone Marrow, Infrapatellar Fat Pad, and Subcutaneous Fat. Stem Cells Int 2016; 2016:6969726. [PMID: 27781068 PMCID: PMC5066011 DOI: 10.1155/2016/6969726] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/04/2016] [Indexed: 12/25/2022] Open
Abstract
Autologous chondrocyte implantation (ACI) is a cell-based therapy that has been used clinically for over 20 years to treat cartilage injuries more efficiently in order to negate or delay the need for joint replacement surgery. In this time, very little has changed in the ACI procedure, but now many centres are considering or using alternative cell sources for cartilage repair, in particular mesenchymal stem cells (MSCs). In this study, we have tested the chondrogenic potential of donor-matched MSCs derived from bone marrow (BM), infrapatellar fat pad (FP), and subcutaneous fat (SCF), compared to chondrocytes. We have confirmed that there is a chondrogenic potency hierarchy ranging across these cell types, with the most potent being chondrocytes, followed by FP-MSCs, BM-MSCs, and lastly SCF-MSCs. We have also examined gene expression and surface marker profiles in a predictive model to identify cells with enhanced chondrogenic potential. In doing so, we have shown that Sox-9, Alk-1, and Coll X expressions, as well as immunopositivity for CD49c and CD39, have predictive value for all of the cell types tested in indicating chondrogenic potency. The findings from this study have significant clinical implications for the refinement and development of novel cell-based cartilage repair strategies.
Collapse
|
150
|
Yu SM, Yeo HJ, Choi SY, Kim SJ. Cytokine-induced apoptosis inhibitor-1 causes dedifferentiation of rabbit articular chondrocytes via the ERK-1/2 and p38 kinase pathways. Int J Biochem Cell Biol 2016; 80:10-18. [PMID: 27644154 DOI: 10.1016/j.biocel.2016.09.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/19/2016] [Accepted: 09/15/2016] [Indexed: 12/15/2022]
Abstract
Cytokine-induced apoptosis inhibitor-1 (CIAPIN-1, formally named anamorsin) is a well-known regulator of apoptosis in many different cell types. Recently, it has been reported that some anti-apoptotic proteins are involved with the regulation of cell differentiation. However, relatively little is known about the role of CIAPIN-1 on rabbit articular chondrocytes differentiation. In this study, we investigated the effects of CIAPIN-1 in chondrocytes, focusing on extracellular signal-regulated kinase (ERK)-1/2 and p38 kinase signaling. CIAPIN-1 caused dedifferentiation, as determined by the inhibition of type II collagen expression and sulfated-proteoglycan synthesis. CIAPIN-1 activated ERK-1/2 and inactivated p38 kinase, as determined by the phosphorylation level of each protein. CIAPIN-1-induced ERK phosphorylation was abolished by the MEK inhibitor, PD98059, which also prevented the CIAPIN-1-induced loss of type II collagen expression. Inhibition of p38 kinase with SB203580 enhanced the decrease in type II collagen expression. Our findings collectively suggest that ERK-1/2 and p38 kinase regulate CIAPIN-1-induced dedifferentiation in rabbit articular chondrocytes.
Collapse
Affiliation(s)
- Seon-Mi Yu
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, Republic of Korea
| | - Hyeon Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon, Republic of Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon, Republic of Korea
| | - Song Ja Kim
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, Republic of Korea.
| |
Collapse
|