101
|
Peng B, Kowalski K. Highly Efficient and Scalable Compound Decomposition of Two-Electron Integral Tensor and Its Application in Coupled Cluster Calculations. J Chem Theory Comput 2017; 13:4179-4192. [DOI: 10.1021/acs.jctc.7b00605] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bo Peng
- William R. Wiley Environmental
Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P. O. Box 999, Richland, Washington 99352, United States
| | - Karol Kowalski
- William R. Wiley Environmental
Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P. O. Box 999, Richland, Washington 99352, United States
| |
Collapse
|
102
|
Mayhall NJ. Using Higher-Order Singular Value Decomposition To Define Weakly Coupled and Strongly Correlated Clusters: The n-Body Tucker Approximation. J Chem Theory Comput 2017; 13:4818-4828. [DOI: 10.1021/acs.jctc.7b00696] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Nicholas J. Mayhall
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
| |
Collapse
|
103
|
Azarias C, Habert C, Budzák Š, Blase X, Duchemin I, Jacquemin D. Calculations of n→π* Transition Energies: Comparisons Between TD-DFT, ADC, CC, CASPT2, and BSE/GW Descriptions. J Phys Chem A 2017; 121:6122-6134. [DOI: 10.1021/acs.jpca.7b05222] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Cloé Azarias
- CEISAM,
BP 92208, UMR CNRS 6230, Université de Nantes, 2, Rue de
la Houssiniere, 44322 Nantes, Cedex 3, France
| | - Chloé Habert
- CEISAM,
BP 92208, UMR CNRS 6230, Université de Nantes, 2, Rue de
la Houssiniere, 44322 Nantes, Cedex 3, France
| | - Šimon Budzák
- Department
of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, SK-97400 Banská Bystrica, Slovak Republic
| | - Xavier Blase
- CNRS, Inst NEEL, F-38042 Grenoble, France
- Univ.
Grenoble Alpes, Inst NEEL, F-38042 Grenoble, France
| | - Ivan Duchemin
- Univ.
Grenoble Alpes, Inst NEEL, F-38042 Grenoble, France
- Univ.
Grenobles Alpes, CEA, INAC-MEM, L_Sim, F-38000 Grenoble, France
| | - Denis Jacquemin
- CEISAM,
BP 92208, UMR CNRS 6230, Université de Nantes, 2, Rue de
la Houssiniere, 44322 Nantes, Cedex 3, France
- Institut Universitaire de France, 1, rue Descartes, F-75231 Paris Cedex 05, France
| |
Collapse
|
104
|
Ortuño MA, Cramer CJ. Multireference Electronic Structures of Fe–Pyridine(diimine) Complexes over Multiple Oxidation States. J Phys Chem A 2017; 121:5932-5939. [DOI: 10.1021/acs.jpca.7b06032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Manuel A. Ortuño
- Department of Chemistry,
Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christopher J. Cramer
- Department of Chemistry,
Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
105
|
Fortier S, Aguilar-Calderón JR, Vlaisavljevich B, Metta-Magaña AJ, Goos AG, Botez CE. An N-Tethered Uranium(III) Arene Complex and the Synthesis of an Unsupported U–Fe Bond. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00429] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Bess Vlaisavljevich
- Department
of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| | | | | | | |
Collapse
|
106
|
Parrish RM, Burns LA, Smith DGA, Simmonett AC, DePrince AE, Hohenstein EG, Bozkaya U, Sokolov AY, Di Remigio R, Richard RM, Gonthier JF, James AM, McAlexander HR, Kumar A, Saitow M, Wang X, Pritchard BP, Verma P, Schaefer HF, Patkowski K, King RA, Valeev EF, Evangelista FA, Turney JM, Crawford TD, Sherrill CD. Psi4 1.1: An Open-Source Electronic Structure Program Emphasizing Automation, Advanced Libraries, and Interoperability. J Chem Theory Comput 2017; 13:3185-3197. [PMID: 28489372 PMCID: PMC7495355 DOI: 10.1021/acs.jctc.7b00174] [Citation(s) in RCA: 818] [Impact Index Per Article: 102.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Psi4 is an ab initio electronic structure program providing methods such as Hartree-Fock, density functional theory, configuration interaction, and coupled-cluster theory. The 1.1 release represents a major update meant to automate complex tasks, such as geometry optimization using complete-basis-set extrapolation or focal-point methods. Conversion of the top-level code to a Python module means that Psi4 can now be used in complex workflows alongside other Python tools. Several new features have been added with the aid of libraries providing easy access to techniques such as density fitting, Cholesky decomposition, and Laplace denominators. The build system has been completely rewritten to simplify interoperability with independent, reusable software components for quantum chemistry. Finally, a wide range of new theoretical methods and analyses have been added to the code base, including functional-group and open-shell symmetry adapted perturbation theory, density-fitted coupled cluster with frozen natural orbitals, orbital-optimized perturbation and coupled-cluster methods (e.g., OO-MP2 and OO-LCCD), density-fitted multiconfigurational self-consistent field, density cumulant functional theory, algebraic-diagrammatic construction excited states, improvements to the geometry optimizer, and the "X2C" approach to relativistic corrections, among many other improvements.
Collapse
Affiliation(s)
- Robert M Parrish
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0400, United States
| | - Lori A Burns
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0400, United States
| | - Daniel G A Smith
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0400, United States
| | - Andrew C Simmonett
- National Institutes of Health , National Heart, Lung and Blood Institute, Laboratory of Computational Biology, 5635 Fishers Lane, T-900 Suite, Rockville, Maryland 20852, United States
| | - A Eugene DePrince
- Department of Chemistry and Biochemistry, Florida State University , Tallahassee, Florida 32306-4390, United States
| | - Edward G Hohenstein
- Department of Chemistry and Biochemistry, The City College of New York , New York, New York 10031, United States
| | - Uğur Bozkaya
- Department of Chemistry, Hacettepe University , Ankara 06800, Turkey
| | - Alexander Yu Sokolov
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - Roberto Di Remigio
- Department of Chemistry, Centre for Theoretical and Computational Chemistry, UiT, The Arctic University of Norway , N-9037 Tromsø, Norway
| | - Ryan M Richard
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0400, United States
| | - Jérôme F Gonthier
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0400, United States
| | - Andrew M James
- Department of Chemistry, Virginia Tech , Blacksburg, Virginia 24061, United States
| | - Harley R McAlexander
- Department of Chemistry, Virginia Tech , Blacksburg, Virginia 24061, United States
| | - Ashutosh Kumar
- Department of Chemistry, Virginia Tech , Blacksburg, Virginia 24061, United States
| | - Masaaki Saitow
- Department of Chemistry and Research Center for Smart Molecules, Rikkyo University , 3-34-1 Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Xiao Wang
- Department of Chemistry, Virginia Tech , Blacksburg, Virginia 24061, United States
| | - Benjamin P Pritchard
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0400, United States
| | - Prakash Verma
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| | - Henry F Schaefer
- Center for Computational Quantum Chemistry, University of Georgia , Athens, Georgia 30602, United States
| | - Konrad Patkowski
- Department of Chemistry and Biochemistry, Auburn University , Auburn, Alabama 36849, United States
| | - Rollin A King
- Department of Chemistry, Bethel University , St. Paul, Minnesota 55112, United States
| | - Edward F Valeev
- Department of Chemistry, Virginia Tech , Blacksburg, Virginia 24061, United States
| | | | - Justin M Turney
- Center for Computational Quantum Chemistry, University of Georgia , Athens, Georgia 30602, United States
| | - T Daniel Crawford
- Department of Chemistry, Virginia Tech , Blacksburg, Virginia 24061, United States
| | - C David Sherrill
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0400, United States
| |
Collapse
|
107
|
Rai P, Sargsyan K, Najm H, Hermes MR, Hirata S. Low-rank canonical-tensor decomposition of potential energy surfaces: application to grid-based diagrammatic vibrational Green's function theory. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1288937] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Prashant Rai
- Sandia National Laboratories, Livermore, CA, USA
| | | | - Habib Najm
- Sandia National Laboratories, Livermore, CA, USA
| | - Matthew R. Hermes
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - So Hirata
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
108
|
On the accuracy of population analyses based on fitted densities#. J Mol Model 2017; 23:99. [DOI: 10.1007/s00894-017-3264-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 01/30/2017] [Indexed: 10/20/2022]
|
109
|
Peng B, Kowalski K. Low-rank factorization of electron integral tensors and its application in electronic structure theory. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.01.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
110
|
Bozkaya U, Sherrill CD. Analytic energy gradients for the coupled-cluster singles and doubles method with the density-fitting approximation. J Chem Phys 2017; 144:174103. [PMID: 27155621 DOI: 10.1063/1.4948318] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
An efficient implementation is presented for analytic gradients of the coupled-cluster singles and doubles (CCSD) method with the density-fitting approximation, denoted DF-CCSD. Frozen core terms are also included. When applied to a set of alkanes, the DF-CCSD analytic gradients are significantly accelerated compared to conventional CCSD for larger molecules. The efficiency of our DF-CCSD algorithm arises from the acceleration of several different terms, which are designated as the "gradient terms": computation of particle density matrices (PDMs), generalized Fock-matrix (GFM), solution of the Z-vector equation, formation of the relaxed PDMs and GFM, back-transformation of PDMs and GFM to the atomic orbital (AO) basis, and evaluation of gradients in the AO basis. For the largest member of the alkane set (C10H22), the computational times for the gradient terms (with the cc-pVTZ basis set) are 2582.6 (CCSD) and 310.7 (DF-CCSD) min, respectively, a speed up of more than 8-folds. For gradient related terms, the DF approach avoids the usage of four-index electron repulsion integrals. Based on our previous study [U. Bozkaya, J. Chem. Phys. 141, 124108 (2014)], our formalism completely avoids construction or storage of the 4-index two-particle density matrix (TPDM), using instead 2- and 3-index TPDMs. The DF approach introduces negligible errors for equilibrium bond lengths and harmonic vibrational frequencies.
Collapse
Affiliation(s)
- Uğur Bozkaya
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey
| | - C David Sherrill
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, and School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
111
|
Hannon KP, Li C, Evangelista FA. An integral-factorized implementation of the driven similarity renormalization group second-order multireference perturbation theory. J Chem Phys 2017; 144:204111. [PMID: 27250283 DOI: 10.1063/1.4951684] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We report an efficient implementation of a second-order multireference perturbation theory based on the driven similarity renormalization group (DSRG-MRPT2) [C. Li and F. A. Evangelista, J. Chem. Theory Comput. 11, 2097 (2015)]. Our implementation employs factorized two-electron integrals to avoid storage of large four-index intermediates. It also exploits the block structure of the reference density matrices to reduce the computational cost to that of second-order Møller-Plesset perturbation theory. Our new DSRG-MRPT2 implementation is benchmarked on ten naphthyne isomers using basis sets up to quintuple-ζ quality. We find that the singlet-triplet splittings (ΔST) of the naphthyne isomers strongly depend on the equilibrium structures. For a consistent set of geometries, the ΔST values predicted by the DSRG-MRPT2 are in good agreements with those computed by the reduced multireference coupled cluster theory with singles, doubles, and perturbative triples.
Collapse
Affiliation(s)
- Kevin P Hannon
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Chenyang Li
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Francesco A Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
112
|
Freitag L, Knecht S, Angeli C, Reiher M. Multireference Perturbation Theory with Cholesky Decomposition for the Density Matrix Renormalization Group. J Chem Theory Comput 2017; 13:451-459. [PMID: 28094988 PMCID: PMC5312874 DOI: 10.1021/acs.jctc.6b00778] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Indexed: 01/05/2023]
Abstract
We present a second-order N-electron valence state perturbation theory (NEVPT2) based on a density matrix renormalization group (DMRG) reference wave function that exploits a Cholesky decomposition of the two-electron repulsion integrals (CD-DMRG-NEVPT2). With a parameter-free multireference perturbation theory approach at hand, the latter allows us to efficiently describe static and dynamic correlation in large molecular systems. We demonstrate the applicability of CD-DMRG-NEVPT2 for spin-state energetics of spin-crossover complexes involving calculations with more than 1000 atomic basis functions. We first assess, in a study of a heme model, the accuracy of the strongly and partially contracted variant of CD-DMRG-NEVPT2 before embarking on resolving a controversy about the spin ground state of a cobalt tropocoronand complex.
Collapse
Affiliation(s)
- Leon Freitag
- ETH
Zürich, Laboratorium für
Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Stefan Knecht
- ETH
Zürich, Laboratorium für
Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Celestino Angeli
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Università
di Ferrara, Via Fossato
di Mortara 17, 44121 Ferrara, Italy
| | - Markus Reiher
- ETH
Zürich, Laboratorium für
Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
113
|
Ben Amor N, Soupart A, Heitz MC. Methodological CASPT2 study of the valence excited states of an iron-porphyrin complex. J Mol Model 2017; 23:53. [DOI: 10.1007/s00894-017-3226-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/12/2017] [Indexed: 10/20/2022]
|
114
|
Aquilante F, Delcey MG, Pedersen TB, Fdez. Galván I, Lindh R. Inner projection techniques for the low-cost handling of two-electron integrals in quantum chemistry. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1284354] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Francesco Aquilante
- Dipartimento di Chimica “G. Ciamician”, Università di Bologna, Bologna, Italy
| | - Mickaël G. Delcey
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, CA, USA
| | - Thomas Bondo Pedersen
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, Blindern, Oslo, Norway
| | - Ignacio Fdez. Galván
- Department of Chemistry – Ångström, The Theoretical Chemistry Programme, Uppsala University, Uppsala, Sweden
- Uppsala Center for Computational Chemistry – UC3, Uppsala University, Uppsala, Sweden
| | - Roland Lindh
- Department of Chemistry – Ångström, The Theoretical Chemistry Programme, Uppsala University, Uppsala, Sweden
| |
Collapse
|
115
|
Sand AM, Truhlar DG, Gagliardi L. Efficient algorithm for multiconfiguration pair-density functional theory with application to the heterolytic dissociation energy of ferrocene. J Chem Phys 2017; 146:034101. [DOI: 10.1063/1.4973709] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Andrew M. Sand
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| |
Collapse
|
116
|
Akimov AV. Nonadiabatic Molecular Dynamics with Tight-Binding Fragment Molecular Orbitals. J Chem Theory Comput 2016; 12:5719-5736. [DOI: 10.1021/acs.jctc.6b00955] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Alexey V. Akimov
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
117
|
Nascimento DR, DePrince AE. Linear Absorption Spectra from Explicitly Time-Dependent Equation-of-Motion Coupled-Cluster Theory. J Chem Theory Comput 2016; 12:5834-5840. [DOI: 10.1021/acs.jctc.6b00796] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel R. Nascimento
- Department of Chemistry and
Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - A. Eugene DePrince
- Department of Chemistry and
Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
118
|
Poidevin C, Lepetit C, Ben Amor N, Chauvin R. Truncated Transition Densities for Analysis of (Nonlinear) Optical Properties of carbo-Chromophores. J Chem Theory Comput 2016; 12:3727-40. [PMID: 27359162 DOI: 10.1021/acs.jctc.6b00484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The optical properties of several quadrupolar carbo-benzene derivatives are investigated at various levels of calculation (TDDFT and CASPT2) and analyzed using a new theoretical tool here disclosed: The "visualization" of the transition dipole moment from the transition density truncated to the main monoexcitations involved in the electronic transition (TTD). The experimental or calculated one-photon UV-visible absorption spectra of the carbo-benzene derivatives fit with the Gouterman model originally proposed for porphyrins, where the first four excited states involve linear combinations of monoexcitations of the same four frontier molecular orbitals. The relative intensities of the absorption bands are analyzed from the transition dipole moments calculated from the TTDs and an analogy between porphyrins and carbo-benzenes is argued. The two-photon absorption (TPA) cross section related to the third-order nonlinear optical response is calculated for each two-photon-allowed excited state |f⟩ from the contribution of all possible intermediate excited states |i⟩ using the "sum-over-state" (SOS) scheme. The quadrupolar carbo-benzene derivatives fit into the three-level model, as their TPA cross section exhibits a dominant contribution of one of the intermediate excited states. The origin of TPA efficiency (enhancement) upon carbo-merisation of the C-C link to the para-substituents is discussed from the excitation energies of the intermediate and final excited states and from the two corresponding transition dipole moments (μ0i and μif). The latter may be calculated from the TTDs.
Collapse
Affiliation(s)
- Corentin Poidevin
- CNRS, LCC (Laboratoire de Chimie de Coordination) , 205 route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France.,Université de Toulouse, UPS, INP , F-31077 Toulouse Cedex 4, France
| | - Christine Lepetit
- CNRS, LCC (Laboratoire de Chimie de Coordination) , 205 route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France.,Université de Toulouse, UPS, INP , F-31077 Toulouse Cedex 4, France
| | - Nadia Ben Amor
- Laboratoire de Chimie et Physique Quantiques, UMR 5626 (CNRS), IRSAMC, Université P. Sabatier , 118 Route de Narbonne, 31062 Toulouse Cedex, France
| | - Remi Chauvin
- CNRS, LCC (Laboratoire de Chimie de Coordination) , 205 route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France.,Université de Toulouse, UPS, INP , F-31077 Toulouse Cedex 4, France
| |
Collapse
|
119
|
Johnstone EV, Poineau F, Todorova TK, Forster PM, Sørensen LK, Fdez Galván I, Lindh R, Czerwinski KR, Sattelberger AP. Molecular and Electronic Structure of Re2Br4(PMe3)4. Inorg Chem 2016; 55:7111-6. [PMID: 27387436 DOI: 10.1021/acs.inorgchem.6b01052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The dinuclear rhenium(II) complex Re2Br4(PMe3)4 was prepared from the reduction of [Re2Br8](2-) with (n-Bu4N)BH4 in the presence of PMe3 in propanol. The complex was characterized by single-crystal X-ray diffraction (SCXRD) and UV-visible spectroscopy. It crystallizes in the monoclinic C2/c space group and is isostructural with its molybdenum and technetium analogues. The Re-Re distance (2.2521(3) Å) is slightly longer than the one in Re2Cl4(PMe3)4 (2.247(1) Å). The molecular and electronic structure of Re2X4(PMe3)4 (X = Cl, Br) were studied by multiconfigurational quantum chemical methods. The computed ground-state geometry is in excellent agreement with the experimental structure determined by SCXRD. The calculated total bond order (2.75) is consistent with the presence of an electron-rich triple bond and is similar to the one found for Re2Cl4(PMe3)4. The electronic absorption spectrum of Re2Br4(PMe3)4 was recorded in benzene and shows a series of low-intensity bands in the range 10 000-26 000 cm(-1). The absorption bands were assigned based on calculations of the excitation energies with the multireference wave functions followed by second-order perturbation theory using the CASSCF/CASPT2 method. Calculations predict that the lowest energy band corresponds to the δ* → σ* transition, while the next higher energy bands were attributed to the δ* → π*, δ → σ*, and δ → π* transitions.
Collapse
Affiliation(s)
- Erik V Johnstone
- Department of Chemistry, University of Nevada Las Vegas , Las Vegas, Nevada 89154, United States
| | - Frederic Poineau
- Department of Chemistry, University of Nevada Las Vegas , Las Vegas, Nevada 89154, United States
| | - Tanya K Todorova
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, UPMC-Paris 6, Collège de France , 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Paul M Forster
- Department of Chemistry, University of Nevada Las Vegas , Las Vegas, Nevada 89154, United States
| | | | | | | | - Kenneth R Czerwinski
- Department of Chemistry, University of Nevada Las Vegas , Las Vegas, Nevada 89154, United States
| | - Alfred P Sattelberger
- Department of Chemistry, University of Nevada Las Vegas , Las Vegas, Nevada 89154, United States.,Argonne National Laboratory , Argonne, Illinois 60439, United States
| |
Collapse
|
120
|
Rebolini E, Izsák R, Reine SS, Helgaker T, Pedersen TB. Comparison of Three Efficient Approximate Exact-Exchange Algorithms: The Chain-of-Spheres Algorithm, Pair-Atomic Resolution-of-the-Identity Method, and Auxiliary Density Matrix Method. J Chem Theory Comput 2016; 12:3514-22. [DOI: 10.1021/acs.jctc.6b00074] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Elisa Rebolini
- Centre
for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O.
Box 1033, Blindern, N-0315 Oslo, Norway
| | - Róbert Izsák
- Max-Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Simen Sommerfelt Reine
- Centre
for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O.
Box 1033, Blindern, N-0315 Oslo, Norway
| | - Trygve Helgaker
- Centre
for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O.
Box 1033, Blindern, N-0315 Oslo, Norway
| | - Thomas Bondo Pedersen
- Centre
for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O.
Box 1033, Blindern, N-0315 Oslo, Norway
| |
Collapse
|
121
|
Mariappan Balasekaran S, Todorova TK, Pham CT, Hartmann T, Abram U, Sattelberger AP, Poineau F. Octafluorodirhenate(III) Revisited: Solid-State Preparation, Characterization, and Multiconfigurational Quantum Chemical Calculations. Inorg Chem 2016; 55:5417-21. [PMID: 27171734 DOI: 10.1021/acs.inorgchem.6b00424] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A simple method for the high-yield preparation of (NH4)2[Re2F8]·2H2O has been developed that involves the reaction of (n-Bu4N)2[Re2Cl8] with molten ammonium bifluoride (NH4HF2). Using this method, the new salt [NH4]2[Re2F8]·2H2O was prepared in ∼90% yield. The product was characterized in solution by ultraviolet-visible light (UV-vis) and (19)F nuclear magnetic resonance ((19)F NMR) spectroscopies and in the solid-state by elemental analysis, powder X-ray diffraction (XRD), and infrared (IR) spectroscopy. Multiconfigurational CASSCF/CASPT2 quantum chemical calculations were performed to investigate the molecular and electronic structure, as well as the electronic absorption spectrum of the [Re2F8](2-) anion. The metal-metal bonding in the Re2(6+) unit was quantified in terms of effective bond order (EBO) and compared to that of its [Re2Cl8](2-) and [Re2Br8](2-) analogues.
Collapse
Affiliation(s)
| | - Tanya K Todorova
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, UPMC-Paris 6, Collège de France , 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Chien Thang Pham
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , D-14195 Berlin, Germany
| | - Thomas Hartmann
- Department of Engineering, University of Nevada Las Vegas , Las Vegas, Nevada 89154, United States
| | - Ulrich Abram
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , D-14195 Berlin, Germany
| | - Alfred P Sattelberger
- Department of Chemistry, University of Nevada Las Vegas , Las Vegas, Nevada 89154, United States.,Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Frederic Poineau
- Department of Chemistry, University of Nevada Las Vegas , Las Vegas, Nevada 89154, United States
| |
Collapse
|
122
|
Fosso-Tande J, Nguyen TS, Gidofalvi G, DePrince AE. Large-Scale Variational Two-Electron Reduced-Density-Matrix-Driven Complete Active Space Self-Consistent Field Methods. J Chem Theory Comput 2016; 12:2260-71. [DOI: 10.1021/acs.jctc.6b00190] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jacob Fosso-Tande
- Department
of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Truong-Son Nguyen
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington 99258-0089, United States
| | - Gergely Gidofalvi
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington 99258-0089, United States
| | - A. Eugene DePrince
- Department
of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
123
|
Bozkaya U. A noniterative asymmetric triple excitation correction for the density-fitted coupled-cluster singles and doubles method: Preliminary applications. J Chem Phys 2016; 144:144108. [DOI: 10.1063/1.4945706] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Uğur Bozkaya
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey
| |
Collapse
|
124
|
Giussani A, Segarra-Martí J, Nenov A, Rivalta I, Tolomelli A, Mukamel S, Garavelli M. Spectroscopic fingerprints of DNA/RNA pyrimidine nucleobases in third-order nonlinear electronic spectra. Theor Chem Acc 2016. [DOI: 10.1007/s00214-016-1867-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
125
|
Segarra-Martí J, Garavelli M, Aquilante F. Multiconfigurational Second-Order Perturbation Theory with Frozen Natural Orbitals Extended to the Treatment of Photochemical Problems. J Chem Theory Comput 2016; 11:3772-84. [PMID: 26574459 DOI: 10.1021/acs.jctc.5b00479] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new flavor of the frozen natural orbital complete active space second-order perturbation theory method (FNO-CASPT2, Aquilante et al., J. Chem. Phys. 131, 034113) is proposed herein. In this new implementation, the virtual space in Cholesky decomposition-based CASPT2 computations (CD-CASPT2) is truncated by excluding those orbitals that contribute the least toward preserving a predefined value of the trace of an approximate density matrix, as that represents a measure of the amount of dynamic correlation retained in the model. In this way, the amount of correlation included is practically constant at all nuclear arrangements, thus allowing for the computation of smooth electronic states surfaces and energy gradients-essential requirements for theoretical studies in photochemistry. The method has been benchmarked for a series of relevant biochromophores for which large speed-ups have been recorded while retaining the accuracy achieved in the corresponding CD-CASPT2 calculations. Both vertical excitation energies and gradient calculations have been carried out to establish general guidelines as to how much correlation needs to be retained in the calculation for the results to be consistent with the CD-CASPT2 findings. Our results feature errors within a tenth of an eV for the most difficult cases and have been validated to be used for gradient computations where an up to 3-fold speed-up is observed depending on the size of the system and the basis set employed.
Collapse
Affiliation(s)
- Javier Segarra-Martí
- Dipartimento di Chimica "G. Ciamician", Università di Bologna , Via Selmi 2, IT-40126 Bologna, Italy
| | - Marco Garavelli
- Dipartimento di Chimica "G. Ciamician", Università di Bologna , Via Selmi 2, IT-40126 Bologna, Italy.,Université de Lyon, CNRS , Institut de Chimie de Lyon, École Normale Supérieure de Lyon, 46 Allée d'Italie, F-69364 Lyon Cedex 07, France
| | - Francesco Aquilante
- Dipartimento di Chimica "G. Ciamician", Università di Bologna , Via Selmi 2, IT-40126 Bologna, Italy
| |
Collapse
|
126
|
Bozkaya U. Orbital-Optimized MP3 and MP2.5 with Density-Fitting and Cholesky Decomposition Approximations. J Chem Theory Comput 2016; 12:1179-88. [DOI: 10.1021/acs.jctc.5b01128] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Uğur Bozkaya
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey
| |
Collapse
|
127
|
Anda A, Hansen T, De Vico L. Multireference Excitation Energies for Bacteriochlorophylls A within Light Harvesting System 2. J Chem Theory Comput 2016; 12:1305-13. [DOI: 10.1021/acs.jctc.5b01104] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- André Anda
- Department of Chemistry, Copenhagen University, Universitetsparken 5, DK-2100, Copenhagen Ø, Denmark
| | - Thorsten Hansen
- Department of Chemistry, Copenhagen University, Universitetsparken 5, DK-2100, Copenhagen Ø, Denmark
| | - Luca De Vico
- Department of Chemistry, Copenhagen University, Universitetsparken 5, DK-2100, Copenhagen Ø, Denmark
| |
Collapse
|
128
|
Vlaisavljevich B, Andrews L, Wang X, Gong Y, Kushto GP, Bursten BE. Detection and Electronic Structure of Naked Actinide Complexes: Rhombic-Ring (AnN)2 Molecules Stabilized by Delocalized π-Bonding. J Am Chem Soc 2016; 138:893-905. [PMID: 26645301 DOI: 10.1021/jacs.5b10458] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The major products of the reaction of laser ablated and excited U atoms and N2 are the linear N≡U≡N dinitride molecule, isoelectronic with the uranyl dication, and the diatomic nitride U≡N. These molecules form novel cyclic dimers, (UN)2 and (NUN)2, with complex electronic structures, in matrix isolation experiments, which increase on UV photolysis. In addition, (NUN)2 increases at the expense of (UN)2 upon warming the codeposited matrix samples into the 20-40 K range as attested by additional nitrogen and argon matrix infrared spectra recorded after cooling the samples back to 4 or 7 K. These molecules are identified through matrix infrared spectra with nitrogen isotopic substitution and by comparing the observed matrix frequencies with those from electronic structure calculations. The dimerization is strong (theory predicts the dimer to be on the order of 100 kcal/mol more stable than the monomers), since the ground state involves 12 bonding electrons, 8 in the σ-system, and 4 in the delocalized π-system. This delocalized π bonding is present in the U, Th, La, and Hf analogues further demonstrating the interesting interplay between the 5f and 6d orbitals in actinide chemistry. The (UN)2(+) cation is also observed in solid argon, and calculations indicate that the bonding in the ring is preserved. On the other hand, the NUN dimer is of lower C2h symmetry, and the initial NUN molecules are recognizable in this more weakly bonded (ΔE = -64 kcal/mol) structure. The NThN molecules bind more strongly in the (NThN)2 dimer than the NUN molecules in (NUN)2 since NUN itself is more stable than NThN.
Collapse
Affiliation(s)
- Bess Vlaisavljevich
- Department of Chemistry, University of Minnesota and Supercomputing Institute , 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, United States.,Department of Chemical and Biomolecular Engineering, University of California , Berkeley, California 94720, United States
| | - Lester Andrews
- Department of Chemistry, University of Virginia , P.O. Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Xuefeng Wang
- Department of Chemistry, Tongji University , Shanghai 200092, China
| | - Yu Gong
- Department of Chemistry, University of Virginia , P.O. Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Gary P Kushto
- United States Naval Research Laboratory , 4555 Overlook Ave SW, Washington, DC 20375, United States
| | - Bruce E Bursten
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute , Worcester, Massachusetts 01609-2280, United States
| |
Collapse
|
129
|
Saureu S, de Graaf C. TD-DFT study of the light-induced spin crossover of Fe(iii) complexes. Phys Chem Chem Phys 2016; 18:1233-44. [DOI: 10.1039/c5cp06620d] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Two light-induced spin-crossover Fe(iii) compounds have been studied with time-dependent density functional theory (TD-DFT) to investigate the deactivation mechanism and the role of the ligand-field states as intermediates in this process.
Collapse
Affiliation(s)
- Sergi Saureu
- Departament de Química Física i Inorgànica
- Universitat Rovira i Virgili
- 43007 Tarragona
- Spain
| | - Coen de Graaf
- Departament de Química Física i Inorgànica
- Universitat Rovira i Virgili
- 43007 Tarragona
- Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)
| |
Collapse
|
130
|
Bozkaya U. Orbital-optimized linearized coupled-cluster doubles with density-fitting and Cholesky decomposition approximations: an efficient implementation. Phys Chem Chem Phys 2016; 18:11362-73. [DOI: 10.1039/c6cp00164e] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient implementation of the orbital-optimized linearized coupled-cluster double method with the density-fitting (DF-OLCCD) and Cholesky decomposition (CD-OLCCD) approximations is presented.
Collapse
Affiliation(s)
- Uğur Bozkaya
- Department of Chemistry
- Hacettepe University
- Ankara 06800
- Turkey
| |
Collapse
|
131
|
Guo M, Sørensen LK, Delcey MG, Pinjari RV, Lundberg M. Simulations of iron K pre-edge X-ray absorption spectra using the restricted active space method. Phys Chem Chem Phys 2016; 18:3250-9. [DOI: 10.1039/c5cp07487h] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The intensities and relative energies of metal K pre-edge features are sensitive to both geometric and electronic structures.
Collapse
Affiliation(s)
- Meiyuan Guo
- Department of Chemistry-Ångström Laboratory
- Uppsala University
- SE-751 20 Uppsala
- Sweden
| | - Lasse Kragh Sørensen
- Department of Chemistry-Ångström Laboratory
- Uppsala University
- SE-751 20 Uppsala
- Sweden
| | - Mickaël G. Delcey
- Department of Chemistry-Ångström Laboratory
- Uppsala University
- SE-751 20 Uppsala
- Sweden
| | - Rahul V. Pinjari
- Department of Chemistry-Ångström Laboratory
- Uppsala University
- SE-751 20 Uppsala
- Sweden
| | - Marcus Lundberg
- Department of Chemistry-Ångström Laboratory
- Uppsala University
- SE-751 20 Uppsala
- Sweden
| |
Collapse
|
132
|
Aquilante F, Malmqvist PÅ, Pedersen TB, Ghosh A, Roos BO. Cholesky Decomposition-Based Multiconfiguration Second-Order Perturbation Theory (CD-CASPT2): Application to the Spin-State Energetics of Co(III)(diiminato)(NPh). J Chem Theory Comput 2015; 4:694-702. [PMID: 26621084 DOI: 10.1021/ct700263h] [Citation(s) in RCA: 306] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The electronic structure and low-lying electronic states of a Co(III)(diiminato)(NPh) complex have been studied using multiconfigurational wave function theory (CASSCF/CASPT2). The results have been compared to those obtained with density functional theory. The best agreement with ab initio results is obtained with a modified B3LYP functional containing a reduced amount (15%) of Hartree-Fock exchange. A relativistic basis set with 869 functions has been employed in the most extensive ab initio calculations, where a Cholesky decomposition technique was used to overcome problems arising from the large size of the two-electron integral matrix. It is shown that this approximation reproduces results obtained with the full integral set to a high accuracy, thus opening the possibility to use this approach to perform multiconfigurational wave-function-based quantum chemistry on much larger systems relative to what has been possible until now.
Collapse
Affiliation(s)
- Francesco Aquilante
- Department of Theoretical Chemistry, Chemical Center, University of Lund, P.O. Box 124, S-221 00 Lund, Sweden, and Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| | - Per-Åke Malmqvist
- Department of Theoretical Chemistry, Chemical Center, University of Lund, P.O. Box 124, S-221 00 Lund, Sweden, and Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| | - Thomas Bondo Pedersen
- Department of Theoretical Chemistry, Chemical Center, University of Lund, P.O. Box 124, S-221 00 Lund, Sweden, and Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| | - Abhik Ghosh
- Department of Theoretical Chemistry, Chemical Center, University of Lund, P.O. Box 124, S-221 00 Lund, Sweden, and Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| | - Björn Olof Roos
- Department of Theoretical Chemistry, Chemical Center, University of Lund, P.O. Box 124, S-221 00 Lund, Sweden, and Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| |
Collapse
|
133
|
Aquilante F, Autschbach J, Carlson RK, Chibotaru LF, Delcey MG, De Vico L, Fdez Galván I, Ferré N, Frutos LM, Gagliardi L, Garavelli M, Giussani A, Hoyer CE, Li Manni G, Lischka H, Ma D, Malmqvist PÅ, Müller T, Nenov A, Olivucci M, Pedersen TB, Peng D, Plasser F, Pritchard B, Reiher M, Rivalta I, Schapiro I, Segarra-Martí J, Stenrup M, Truhlar DG, Ungur L, Valentini A, Vancoillie S, Veryazov V, Vysotskiy VP, Weingart O, Zapata F, Lindh R. Molcas 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table. J Comput Chem 2015; 37:506-41. [PMID: 26561362 DOI: 10.1002/jcc.24221] [Citation(s) in RCA: 1149] [Impact Index Per Article: 114.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/07/2015] [Accepted: 09/09/2015] [Indexed: 12/17/2022]
Abstract
In this report, we summarize and describe the recent unique updates and additions to the Molcas quantum chemistry program suite as contained in release version 8. These updates include natural and spin orbitals for studies of magnetic properties, local and linear scaling methods for the Douglas-Kroll-Hess transformation, the generalized active space concept in MCSCF methods, a combination of multiconfigurational wave functions with density functional theory in the MC-PDFT method, additional methods for computation of magnetic properties, methods for diabatization, analytical gradients of state average complete active space SCF in association with density fitting, methods for constrained fragment optimization, large-scale parallel multireference configuration interaction including analytic gradients via the interface to the Columbus package, and approximations of the CASPT2 method to be used for computations of large systems. In addition, the report includes the description of a computational machinery for nonlinear optical spectroscopy through an interface to the QM/MM package Cobramm. Further, a module to run molecular dynamics simulations is added, two surface hopping algorithms are included to enable nonadiabatic calculations, and the DQ method for diabatization is added. Finally, we report on the subject of improvements with respects to alternative file options and parallelization.
Collapse
Affiliation(s)
- Francesco Aquilante
- Department of Chemistry - Ångström, The Theoretical Chemistry Programme, Uppsala University, Box 518, Uppsala, 751 20, Sweden.,Dipartimento di Chimica "G. Ciamician", Università di Bologna, via Selmi 2, IT-40126, Bologna, Italy
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York, 14260-3000, USA
| | - Rebecca K Carlson
- Department of Chemistry, Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota, 55455-0431, USA
| | - Liviu F Chibotaru
- Division of Quantum and Physical Chemistry, and INPAC, Institute for Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven Celestijnenlaan, 200F, 3001, Belgium
| | - Mickaël G Delcey
- Department of Chemistry - Ångström, The Theoretical Chemistry Programme, Uppsala University, Box 518, Uppsala, 751 20, Sweden
| | - Luca De Vico
- Department of Chemistry, Copenhagen University, Universitetsparken 5, Copenhagen Ø, 2100, Denmark
| | - Ignacio Fdez Galván
- Department of Chemistry - Ångström, The Theoretical Chemistry Programme, Uppsala University, Box 518, Uppsala, 751 20, Sweden.,Uppsala Center for Computational Chemistry - UC3, Uppsala University, Box 518, Uppsala, 751 20, Sweden
| | - Nicolas Ferré
- Université d'Aix-Marseille, CNRS, Institut de Chimie Radicalaire, Campus Étoile/Saint-Jérôme Case 521, Avenue Esc. Normandie Niemen, Marseille Cedex 20, 13397, France
| | - Luis Manuel Frutos
- Unidad Docente de Química Física, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Laura Gagliardi
- Department of Chemistry, Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota, 55455-0431, USA
| | - Marco Garavelli
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via Selmi 2, IT-40126, Bologna, Italy.,Université de Lyon, CNRS, École Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon Cedex 07, F-69364, France
| | - Angelo Giussani
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via Selmi 2, IT-40126, Bologna, Italy
| | - Chad E Hoyer
- Department of Chemistry, Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota, 55455-0431, USA
| | - Giovanni Li Manni
- Department of Chemistry, Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota, 55455-0431, USA.,Max Planck Institut für Festkörperforschung, Heisenbergstraße 1, Stuttgart, 70569, Germany
| | - Hans Lischka
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Circle and Boston, Lubbock, Texas, 79409-1061, USA.,Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, Vienna, A-1090, Austria
| | - Dongxia Ma
- Department of Chemistry, Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota, 55455-0431, USA.,Max Planck Institut für Festkörperforschung, Heisenbergstraße 1, Stuttgart, 70569, Germany
| | - Per Åke Malmqvist
- Department of Theoretical Chemistry, Lund University, Chemical Center, P.O.B 124 S-221 00, Lund, Sweden
| | - Thomas Müller
- Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, Institute for Advanced Simulation (IAS), Wilhelm-Johnen-Straße, Jülich, 52425, Germany
| | - Artur Nenov
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via Selmi 2, IT-40126, Bologna, Italy
| | - Massimo Olivucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, Siena, 53100, Italy.,Chemistry Department, Bowling Green State University, 141 Overman Hall, Bowling Green, Ohio, 43403, USA.,Institut de Physique et Chimie des Matériaux de Strasbourg & Labex NIE, Université de Strasbourg, CNRS UMR 7504, 23 Rue du Loess, Strasbourg, 67034, France
| | - Thomas Bondo Pedersen
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, Oslo, 0315, Norway
| | - Daoling Peng
- College of Chemistry and Environment, South China Normal University, Guangzhou, 510006, China
| | - Felix Plasser
- Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, Vienna, A-1090, Austria
| | - Ben Pritchard
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York, 14260-3000, USA
| | - Markus Reiher
- ETH Zurich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, Zurich, CH-8093, Switzerland
| | - Ivan Rivalta
- Université de Lyon, CNRS, École Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon Cedex 07, F-69364, France
| | - Igor Schapiro
- Institut de Physique et Chimie des Matériaux de Strasbourg & Labex NIE, Université de Strasbourg, CNRS UMR 7504, 23 Rue du Loess, Strasbourg, 67034, France.,Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Javier Segarra-Martí
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via Selmi 2, IT-40126, Bologna, Italy
| | - Michael Stenrup
- Department of Chemistry - Ångström, The Theoretical Chemistry Programme, Uppsala University, Box 518, Uppsala, 751 20, Sweden.,Uppsala Center for Computational Chemistry - UC3, Uppsala University, Box 518, Uppsala, 751 20, Sweden
| | - Donald G Truhlar
- Department of Chemistry, Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota, 55455-0431, USA
| | - Liviu Ungur
- Division of Quantum and Physical Chemistry, and INPAC, Institute for Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven Celestijnenlaan, 200F, 3001, Belgium
| | - Alessio Valentini
- Unidad Docente de Química Física, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain.,Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, Siena, 53100, Italy
| | - Steven Vancoillie
- Department of Theoretical Chemistry, Lund University, Chemical Center, P.O.B 124 S-221 00, Lund, Sweden
| | - Valera Veryazov
- Department of Theoretical Chemistry, Lund University, Chemical Center, P.O.B 124 S-221 00, Lund, Sweden
| | - Victor P Vysotskiy
- Department of Theoretical Chemistry, Lund University, Chemical Center, P.O.B 124 S-221 00, Lund, Sweden
| | - Oliver Weingart
- Institut für Theoretische Chemie und Computerchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, Düsseldorf, 40225, Germany
| | - Felipe Zapata
- Unidad Docente de Química Física, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Roland Lindh
- Department of Chemistry - Ångström, The Theoretical Chemistry Programme, Uppsala University, Box 518, Uppsala, 751 20, Sweden.,Uppsala Center for Computational Chemistry - UC3, Uppsala University, Box 518, Uppsala, 751 20, Sweden
| |
Collapse
|
134
|
Pinjari RV, Delcey MG, Guo M, Odelius M, Lundberg M. Cost and sensitivity of restricted active-space calculations of metal L-edge X-ray absorption spectra. J Comput Chem 2015; 37:477-86. [DOI: 10.1002/jcc.24237] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/24/2015] [Accepted: 10/02/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Rahul V. Pinjari
- Department of Chemistry - Ångström laboratory; Uppsala University; SE-75120 Uppsala Sweden
| | - Mickaël G. Delcey
- Department of Chemistry - Ångström laboratory; Uppsala University; SE-75120 Uppsala Sweden
| | - Meiyuan Guo
- Department of Chemistry - Ångström laboratory; Uppsala University; SE-75120 Uppsala Sweden
| | - Michael Odelius
- Department of Physics; AlbaNova University Center, Stockholm University; SE-106 91 Stockholm Sweden
| | - Marcus Lundberg
- Department of Chemistry - Ångström laboratory; Uppsala University; SE-75120 Uppsala Sweden
| |
Collapse
|
135
|
Fumanal M, Mota F, Novoa JJ, Ribas-Arino J. Unravelling the Key Driving Forces of the Spin Transition in π-Dimers of Spiro-biphenalenyl-Based Radicals. J Am Chem Soc 2015; 137:12843-55. [DOI: 10.1021/jacs.5b04053] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Maria Fumanal
- Departament de Química
Física and IQTCUB, Facultat de Química, Universitat de Barcelona, Avinguda Diagonal 645, 08028 Barcelona, Spain
| | - Fernando Mota
- Departament de Química
Física and IQTCUB, Facultat de Química, Universitat de Barcelona, Avinguda Diagonal 645, 08028 Barcelona, Spain
| | - Juan J. Novoa
- Departament de Química
Física and IQTCUB, Facultat de Química, Universitat de Barcelona, Avinguda Diagonal 645, 08028 Barcelona, Spain
| | - Jordi Ribas-Arino
- Departament de Química
Física and IQTCUB, Facultat de Química, Universitat de Barcelona, Avinguda Diagonal 645, 08028 Barcelona, Spain
| |
Collapse
|
136
|
Tyler SF, Natoli SN, Vlaisavljevich B, Fanwick PE, Ren T. Turning a New Leaf on Metal-TMC Chemistry: NiII(TMC) Acetylides. Inorg Chem 2015; 54:10058-64. [PMID: 26414398 DOI: 10.1021/acs.inorgchem.5b01883] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sarah F. Tyler
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sean N. Natoli
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Bess Vlaisavljevich
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Phillip E. Fanwick
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tong Ren
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
137
|
Eisenhart RJ, Rudd PA, Planas N, Boyce DW, Carlson RK, Tolman WB, Bill E, Gagliardi L, Lu CC. Pushing the Limits of Delta Bonding in Metal-Chromium Complexes with Redox Changes and Metal Swapping. Inorg Chem 2015; 54:7579-92. [PMID: 26168331 PMCID: PMC5960016 DOI: 10.1021/acs.inorgchem.5b01163] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Into the metalloligand Cr[N(o-(NCH2P((i)Pr)2)C6H4)3] (1, CrL) was inserted a second chromium atom to generate the dichromium complex Cr2L (2), which is a homobimetallic analogue of the known MCrL complexes, where M is manganese (3) or iron (4). The cationic and anionic counterparts, [MCrL](+) and [MCrL](-), respectively, were targeted, and each MCr pair was isolated in at least one other redox state. The solid-state structures of the [MCrL](+,0,-) redox members are essentially the same, with ultrashort metal-metal bonds between 1.96 and 1.74 Å. The formal shortness ratios (r) of these interactions are between 0.84 and 0.74 and are interpreted as triple to quintuple metal-metal bonds with the aid of theory. The trio of (d-d)(10) species [Cr2L](-) (2(red)), MnCrL (3), and [FeCrL](+) (4(ox)) are S = 0 diamagnets. On the basis of M-Cr bond distances and theoretical calculations, the strength of the metal-metal bond across the (d-d)(10) series increases in the order Fe < Mn < Cr. The methylene protons in the ligand are shifted downfield in the (1)H NMR spectra, and the diamagnetic anisotropy of the metal-metal bond was calculated as -3500 × 10(-36), -3900 × 10(-36), and -5800 × 10(-36) m(3) molecule(-1) for 2(red), 3, and 4(ox) respectively. The magnitude of diamagnetic anisotropy is, thus, affected more by bond polarity than by bond order. A comparative vis-NIR study of quintuply bonded 2(red) and 3 revealed a large red shift in the δ(4) → δ(3)δ* transition energy upon swapping from the (Cr2)(2+) to the (MnCr)(3+) core. Complex 2(red) was further investigated by resonance Raman spectroscopy, and a band at 434 cm(-1) was assigned as the Cr-Cr bond vibration. Finally, 4(ox) exhibited a Mössbauer doublet with an isomer shift of 0.18 mm/s that suggests a primarily Fe-based oxidation to Fe(I).
Collapse
Affiliation(s)
- Reed J. Eisenhart
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - P. Alex Rudd
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Nora Planas
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Supercomputing Institute and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - David W. Boyce
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rebecca K. Carlson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Supercomputing Institute and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - William B. Tolman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Eckhard Bill
- Max Planck Institut für Chemische Energiekonversion (MPI-CEC), Stiftstraße 34–36, 45470 Mülheim an der Ruhr, Germany
| | - Laura Gagliardi
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Supercomputing Institute and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Connie C. Lu
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
138
|
Delcey MG, Pedersen TB, Aquilante F, Lindh R. Analytical gradients of the state-average complete active space self-consistent field method with density fitting. J Chem Phys 2015; 143:044110. [DOI: 10.1063/1.4927228] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Mickaël G. Delcey
- Department of Chemistry – Ångström, The Theoretical Chemistry Programme, Uppsala University, P.O. Box 518, 751 20 Uppsala, Sweden
| | - Thomas Bondo Pedersen
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, 0315 Oslo, Norway
| | - Francesco Aquilante
- Department of Chemistry – Ångström, The Theoretical Chemistry Programme, Uppsala University, P.O. Box 518, 751 20 Uppsala, Sweden
- Dipartimento di chimica “G. Ciamician,” Università di Bologna, V. F. Selmi 2, 40126 Bologna, Italy
| | - Roland Lindh
- Department of Chemistry – Ångström, The Theoretical Chemistry Programme, Uppsala University, P.O. Box 518, 751 20 Uppsala, Sweden
- Uppsala Center for Computational Chemistry - UC3, Uppsala University, P.O. Box 518, 751 20 Uppsala, Sweden
| |
Collapse
|
139
|
Bozkaya U. Derivation of general analytic gradient expressions for density-fitted post-Hartree-Fock methods: an efficient implementation for the density-fitted second-order Møller-Plesset perturbation theory. J Chem Phys 2015; 141:124108. [PMID: 25273413 DOI: 10.1063/1.4896235] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
General analytic gradient expressions (with the frozen-core approximation) are presented for density-fitted post-HF methods. An efficient implementation of frozen-core analytic gradients for the second-order Møller-Plesset perturbation theory (MP2) with the density-fitting (DF) approximation (applying to both reference and correlation energies), which is denoted as DF-MP2, is reported. The DF-MP2 method is applied to a set of alkanes, conjugated dienes, and noncovalent interaction complexes to compare the computational cost of single point analytic gradients with MP2 with the resolution of the identity approach (RI-MP2) [F. Weigend and M. Häser, Theor. Chem. Acc. 97, 331 (1997); R. A. Distasio, R. P. Steele, Y. M. Rhee, Y. Shao, and M. Head-Gordon, J. Comput. Chem. 28, 839 (2007)]. In the RI-MP2 method, the DF approach is used only for the correlation energy. Our results demonstrate that the DF-MP2 method substantially accelerate the RI-MP2 method for analytic gradient computations due to the reduced input/output (I/O) time. Because in the DF-MP2 method the DF approach is used for both reference and correlation energies, the storage of 4-index electron repulsion integrals (ERIs) are avoided, 3-index ERI tensors are employed instead. Further, as in case of integrals, our gradient equation is completely avoid construction or storage of the 4-index two-particle density matrix (TPDM), instead we use 2- and 3-index TPDMs. Hence, the I/O bottleneck of a gradient computation is significantly overcome. Therefore, the cost of the generalized-Fock matrix (GFM), TPDM, solution of Z-vector equations, the back transformation of TPDM, and integral derivatives are substantially reduced when the DF approach is used for the entire energy expression. Further application results show that the DF approach introduce negligible errors for closed-shell reaction energies and equilibrium bond lengths.
Collapse
Affiliation(s)
- Uğur Bozkaya
- Department of Chemistry, Atatürk University, Erzurum 25240, Turkey and Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
| |
Collapse
|
140
|
Lanza M, Simon A, Ben Amor N. Electronic Spectroscopy of [FePAH](+) Complexes in the Region of the Diffuse Interstellar Bands: Multireference Wave Function Studies on [FeC6H6](+). J Phys Chem A 2015; 119:6123-30. [PMID: 25850680 DOI: 10.1021/acs.jpca.5b00438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The low-energy states and electronic spectrum in the near-infrared-visible region of [FeC6H6](+) are studied by theoretical approaches. An exhaustive exploration of the potential energy surface of [FeC6H6](+) is performed using the density functional theory method. The ground state is found to be a (4)A1 state. The structures of the lowest energy states ((4)A2 and (4)A1) are used to perform multireference wave function calculations by means of the multistate complete active space with perturbation at the second order method. Contrary to the density functional theory results ((4)A1 ground state), multireference perturbative calculations show that the (4)A2 state is the ground state. The vertical electronic spectrum is computed and compared with the astronomical diffuse interstellar bands, a set of near-infrared-visible bands detected on the extinction curve in our and other galaxies. Many transitions are found in this domain, corresponding to d → d, d → 4s, or d → π* excitations, but few are allowed and, if they are, their oscillation strengths are small. Even though some band positions could match some of the observed bands, the relative intensities do not fit, making the contribution of the [Fe-C6H6](+) complexes to the diffuse interstellar bands questionable. This work, however, lays the foundation for the studies of polycyclic aromatic hydrocarbons (PAHs) complexed to Fe cations that are more likely to possess d → π* and π → π* transitions in the diffuse interstellar bands domain. PAH ligands indeed possess a larger number of π and π* orbitals, respectively, higher and lower in energy than those of C6H6, which are expected to lead to lower energy d → π* and π → π* transitions in [FePAH](+) than in [FeC6H6](+) complexes.
Collapse
Affiliation(s)
- Mathieu Lanza
- †LOMC - UMR 6294, CNRS-Université du Havre, 25 rue Philippe Lebon, BP 540, 76058 Le Havre, France
| | - Aude Simon
- ‡Laboratoire de Chimie et Physique Quantiques UMR5626, IRSAMC, CNRS/Université P. Sabatier, 118 Rte de Narbonne, 31 062 Toulouse Cedex, France
| | - Nadia Ben Amor
- ‡Laboratoire de Chimie et Physique Quantiques UMR5626, IRSAMC, CNRS/Université P. Sabatier, 118 Rte de Narbonne, 31 062 Toulouse Cedex, France
| |
Collapse
|
141
|
Merlot P, Izsák R, Borgoo A, Kjærgaard T, Helgaker T, Reine S. Charge-constrained auxiliary-density-matrix methods for the Hartree-Fock exchange contribution. J Chem Phys 2015; 141:094104. [PMID: 25194361 DOI: 10.1063/1.4894267] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Three new variants of the auxiliary-density-matrix method (ADMM) of Guidon, Hutter, and VandeVondele [J. Chem. Theory Comput. 6, 2348 (2010)] are presented with the common feature that they have a simplified constraint compared with the full orthonormality requirement of the earlier ADMM1 method. All ADMM variants are tested for accuracy and performance in all-electron B3LYP calculations with several commonly used basis sets. The effect of the choice of the exchange functional for the ADMM exchange-correction term is also investigated.
Collapse
Affiliation(s)
- Patrick Merlot
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Róbert Izsák
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Alex Borgoo
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Thomas Kjærgaard
- The qLEAP Center for Theoretical Chemistry, Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | - Trygve Helgaker
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Simen Reine
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| |
Collapse
|
142
|
Akimov AV, Prezhdo OV. Large-Scale Computations in Chemistry: A Bird’s Eye View of a Vibrant Field. Chem Rev 2015; 115:5797-890. [DOI: 10.1021/cr500524c] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Alexey V. Akimov
- Department
of Chemistry, University of South California, Los Angeles, California 90089, United States
| | - Oleg V. Prezhdo
- Department
of Chemistry, University of South California, Los Angeles, California 90089, United States
| |
Collapse
|
143
|
McKemmish LK. Efficient calculation of integrals in mixed ramp-Gaussian basis sets. J Chem Phys 2015; 142:134104. [PMID: 25854225 DOI: 10.1063/1.4916314] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Algorithms for the efficient calculation of two-electron integrals in the newly developed mixed ramp-Gaussian basis sets are presented, alongside a Fortran90 implementation of these algorithms, RampItUp. These new basis sets have significant potential to (1) give some speed-up (estimated at up to 20% for large molecules in fully optimised code) to general-purpose Hartree-Fock (HF) and density functional theory quantum chemistry calculations, replacing all-Gaussian basis sets, and (2) give very large speed-ups for calculations of core-dependent properties, such as electron density at the nucleus, NMR parameters, relativistic corrections, and total energies, replacing the current use of Slater basis functions or very large specialised all-Gaussian basis sets for these purposes. This initial implementation already demonstrates roughly 10% speed-ups in HF/R-31G calculations compared to HF/6-31G calculations for large linear molecules, demonstrating the promise of this methodology, particularly for the second application. As well as the reduction in the total primitive number in R-31G compared to 6-31G, this timing advantage can be attributed to the significant reduction in the number of mathematically complex intermediate integrals after modelling each ramp-Gaussian basis-function-pair as a sum of ramps on a single atomic centre.
Collapse
Affiliation(s)
- Laura K McKemmish
- Department of Physics and Astronomy, University College London, London, United KingdomResearch School of Chemistry, Australian National University, Canberra, Australia
| |
Collapse
|
144
|
Deng J, Gilbert ATB, Gill PMW. MP2[V] – A Simple Approximation to Second-Order Møller–Plesset Perturbation Theory. J Chem Theory Comput 2015; 11:1639-44. [DOI: 10.1021/acs.jctc.5b00147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jia Deng
- Research
School of Chemistry, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Andrew T. B. Gilbert
- Research
School of Chemistry, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Peter M. W. Gill
- Research
School of Chemistry, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
145
|
Manzer S, Epifanovsky E, Head-Gordon M. Efficient implementation of the pair atomic resolution of the identity approximation for exact exchange for hybrid and range- separated density functionals. J Chem Theory Comput 2015; 11:518-27. [PMID: 25691831 PMCID: PMC4325599 DOI: 10.1021/ct5008586] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Indexed: 11/30/2022]
Abstract
An efficient new molecular orbital (MO) basis algorithm is reported implementing the pair atomic resolution of the identity approximation (PARI) to evaluate the exact exchange contribution (K) to self-consistent field methods, such as hybrid and range-separated hybrid density functionals. The PARI approximation, in which atomic orbital (AO) basis function pairs are expanded using auxiliary basis functions centered only on their two respective atoms, was recently investigated by Merlot et al. [J. Comput. Chem. 2013, 34, 1486]. Our algorithm is significantly faster than quartic scaling RI-K, with an asymptotic exchange speedup for hybrid functionals of (1 + X/N), where N and X are the AO and auxiliary basis dimensions. The asymptotic speedup is 2 + 2X/N for range separated hybrids such as CAM-B3LYP, ωB97X-D, and ωB97X-V which include short- and long-range exact exchange. The observed speedup for exchange in ωB97X-V for a C68 graphene fragment in the cc-pVTZ basis is 3.4 relative to RI-K. Like conventional RI-K, our method greatly outperforms conventional integral evaluation in large basis sets; a speedup of 19 is obtained in the cc-pVQZ basis on a C54 graphene fragment. Negligible loss of accuracy relative to exact integral evaluation is demonstrated on databases of bonded and nonbonded interactions. We also demonstrate both analytically and numerically that the PARI-K approximation is variationally stable.
Collapse
Affiliation(s)
- Samuel
F. Manzer
- Department of Chemistry, UC−Berkeley, Berkeley, California 94720-1460, United States
| | - Evgeny Epifanovsky
- Department of Chemistry, UC−Berkeley, Berkeley, California 94720-1460, United States
| | - Martin Head-Gordon
- Department of Chemistry, UC−Berkeley, Berkeley, California 94720-1460, United States
| |
Collapse
|
146
|
Hybrid Functionals with Variationally Fitted Exact Exchange. ADVANCES IN QUANTUM CHEMISTRY 2015. [DOI: 10.1016/bs.aiq.2015.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
147
|
Eisenhart RJ, Carlson RK, Boyle KM, Gagliardi L, Lu CC. Synthesis and redox reactivity of a phosphine-ligated dichromium paddlewheel. Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2014.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
148
|
Myhre RH, Sánchez de Merás AMJ, Koch H. Multi-level coupled cluster theory. J Chem Phys 2014; 141:224105. [DOI: 10.1063/1.4903195] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Rolf H. Myhre
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, USA
| | | | - Henrik Koch
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
149
|
Kennedy MR, McDonald AR, DePrince AE, Marshall MS, Podeszwa R, Sherrill CD. Communication: resolving the three-body contribution to the lattice energy of crystalline benzene: benchmark results from coupled-cluster theory. J Chem Phys 2014; 140:121104. [PMID: 24697416 DOI: 10.1063/1.4869686] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Coupled-cluster theory including single, double, and perturbative triple excitations [CCSD(T)] has been applied to trimers that appear in crystalline benzene in order to resolve discrepancies in the literature about the magnitude of non-additive three-body contributions to the lattice energy. The present results indicate a non-additive three-body contribution of 0.89 kcal mol(-1), or 7.2% of the revised lattice energy of -12.3 kcal mol(-1). For the trimers for which we were able to compute CCSD(T) energies, we obtain a sizeable difference of 0.63 kcal mol(-1) between the CCSD(T) and MP2 three-body contributions to the lattice energy, confirming that three-body dispersion dominates over three-body induction. Taking this difference as an estimate of three-body dispersion for the closer trimers, and adding an Axilrod-Teller-Muto estimate of 0.13 kcal mol(-1) for long-range contributions yields an overall value of 0.76 kcal mol(-1) for three-body dispersion, a significantly smaller value than in several recent studies.
Collapse
Affiliation(s)
- Matthew R Kennedy
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, and School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Ashley Ringer McDonald
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, and School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - A Eugene DePrince
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, and School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Michael S Marshall
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, and School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Rafal Podeszwa
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006, Katowice, Poland
| | - C David Sherrill
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, and School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| |
Collapse
|
150
|
Multiply Bonded Metal(II) Acetate (Rhodium, Ruthenium, and Molybdenum) Complexes with the trans-1,2-Bis(N-methylimidazol-2-yl)ethylene Ligand. Inorg Chem 2014; 53:12305-14. [DOI: 10.1021/ic501435a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|