101
|
Xi H, Katschke KJ, Li Y, Truong T, Lee WP, Diehl L, Rangell L, Tao J, Arceo R, Eastham-Anderson J, Hackney JA, Iglesias A, Cote-Sierra J, Elstrott J, Weimer RM, van Lookeren Campagne M. IL-33 amplifies an innate immune response in the degenerating retina. J Exp Med 2016; 213:189-207. [PMID: 26755704 PMCID: PMC4749925 DOI: 10.1084/jem.20150894] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 12/07/2015] [Indexed: 01/12/2023] Open
Abstract
Xi et al. demonstrate that IL-33 is a key regulator of retinal inflammation and degeneration. Age-related macular degeneration (AMD), a leading cause of vision impairment in the ageing population, is characterized by irreversible loss of retinal pigment epithelial (RPE) cells and photoreceptors and can be associated with choroidal neovascularization. Mononuclear phagocytes are often present in AMD lesions, but the processes that direct myeloid cell recruitment remain unclear. Here, we identify IL-33 as a key regulator of inflammation and photoreceptor degeneration after retina stress or injury. IL-33+ Müller cells were more abundant and IL-33 cytokine was elevated in advanced AMD cases compared with age-matched controls with no AMD. In rodents, retina stress resulted in release of bioactive IL-33 that in turn increased inflammatory chemokine and cytokine expression in activated Müller cells. Deletion of ST2, the IL-33 receptor α chain, or treatment with a soluble IL-33 decoy receptor significantly reduced release of inflammatory mediators from Müller cells, inhibited accumulation of mononuclear phagocytes in the outer retina, and protected photoreceptor rods and cones after a retina insult. This study demonstrates a central role for IL-33 in regulating mononuclear phagocyte recruitment to the photoreceptor layer and positions IL-33 signaling as a potential therapeutic target in macular degenerative diseases.
Collapse
Affiliation(s)
- Hongkang Xi
- Department of Immunology, Genentech, Inc., South San Francisco, CA 94080
| | - Kenneth J Katschke
- Department of Immunology, Genentech, Inc., South San Francisco, CA 94080
| | - Yun Li
- Department of Immunology, Genentech, Inc., South San Francisco, CA 94080
| | - Tom Truong
- Department of Immunology, Genentech, Inc., South San Francisco, CA 94080
| | - Wyne P Lee
- Department of Immunology, Genentech, Inc., South San Francisco, CA 94080
| | - Lauri Diehl
- Department of Pathology, Genentech, Inc., South San Francisco, CA 94080
| | - Linda Rangell
- Department of Pathology, Genentech, Inc., South San Francisco, CA 94080
| | - Jianhua Tao
- Department of Pathology, Genentech, Inc., South San Francisco, CA 94080
| | - Rommel Arceo
- Department of Pathology, Genentech, Inc., South San Francisco, CA 94080
| | | | - Jason A Hackney
- Department of Bioinformatics and Computational Biology, Genentech, Inc., South San Francisco, CA 94080
| | - Antonio Iglesias
- Roche Pharmaceutical Research and Early Development, Pharmacological Sciences, Roche Innovation Center Basel, CH-4070 Basel, Switzerland
| | - Javier Cote-Sierra
- Roche Pharmaceutical Research and Early Development, Pharmacological Sciences, Roche Innovation Center Basel, CH-4070 Basel, Switzerland
| | - Justin Elstrott
- Department of Biomedical Imaging, Genentech, Inc., South San Francisco, CA 94080
| | - Robby M Weimer
- Department of Biomedical Imaging, Genentech, Inc., South San Francisco, CA 94080
| | | |
Collapse
|
102
|
In vivo cellular imaging of various stress/response pathways using AAV following axonal injury in mice. Sci Rep 2015; 5:18141. [PMID: 26670005 PMCID: PMC4680972 DOI: 10.1038/srep18141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/10/2015] [Indexed: 11/30/2022] Open
Abstract
Glaucoma, a leading cause of blindness worldwide, is instigated by various factors, including axonal injury, which eventually leads to a progressive loss of retinal ganglion cells (RGCs). To study various pathways reportedly involved in the pathogenesis of RGC death caused by axonal injury, seven pathways were investigated. Pathway-specific fluorescent protein-coded reporters were each packaged into an adeno-associated virus (AAV). After producing axonal injury in the eye, injected with AAV to induce RGC death, the temporal activity of each stress-related pathway was monitored in vivo through the detection of fluorescent RGCs using confocal ophthalmoscopy. We identified the activation of ATF6 and MCP-1 pathways involved in endoplasmic reticulum stress and macrophage recruitment, respectively, as early markers of RGC stress that precede neuronal death. Conversely, inflammatory responses probed by NF-κB and cell-death-related pathway p53 were most prominent in the later phases, when RGC death was already ongoing. AAV-mediated delivery of stress/response reporters followed by in vivo cellular imaging is a powerful strategy to characterize the temporal aspects of complex molecular pathways involved in retinal diseases. The identification of promoter elements that are activated before the death of RGCs enables the development of pre-emptive gene therapy, exclusively targeting the early phases of diseased cells.
Collapse
|
103
|
Zulliger R, Conley SM, Naash MI. Non-viral therapeutic approaches to ocular diseases: An overview and future directions. J Control Release 2015; 219:471-487. [PMID: 26439665 PMCID: PMC4699668 DOI: 10.1016/j.jconrel.2015.10.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 12/31/2022]
Abstract
Currently there are no viable treatment options for patients with debilitating inherited retinal degeneration. The vast variability in disease-inducing mutations and resulting phenotypes has hampered the development of therapeutic interventions. Gene therapy is a logical approach, and recent work has focused on ways to optimize vector design and packaging to promote optimized expression and phenotypic rescue after intraocular delivery. In this review, we discuss ongoing ocular clinical trials, which currently use viral gene delivery, but focus primarily on new advancements in optimizing the efficacy of non-viral gene delivery for ocular diseases. Non-viral delivery systems are highly customizable, allowing functionalization to improve cellular and nuclear uptake, bypassing cellular degradative machinery, and improving gene expression in the nucleus. Non-viral vectors often yield transgene expression levels lower than viral counterparts, however their favorable safety/immune profiles and large DNA capacity (critical for the delivery of large ocular disease genes) make their further development a research priority. Recent work on particle coating and vector engineering presents exciting ways to overcome limitations of transient/low gene expression levels, but also highlights the fact that further refinements are needed before use in the clinic.
Collapse
Affiliation(s)
- Rahel Zulliger
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204-5060, United States
| | - Shannon M Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204-5060, United States.
| |
Collapse
|
104
|
Jiao H, Natoli R, Valter K, Provis JM, Rutar M. Spatiotemporal Cadence of Macrophage Polarisation in a Model of Light-Induced Retinal Degeneration. PLoS One 2015; 10:e0143952. [PMID: 26630454 PMCID: PMC4667999 DOI: 10.1371/journal.pone.0143952] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/11/2015] [Indexed: 11/20/2022] Open
Abstract
Background The recruitment of macrophages accompanies almost every pathogenic state of the retina, and their excessive activation in the subretinal space is thought to contribute to the progression of diseases including age-related macular degeneration. Previously, we have shown that macrophages aggregate in the outer retina following damage elicited by photo-oxidative stress, and that inhibition of their recruitment reduces photoreceptor death. Here, we look for functional insight into macrophage activity in this model through the spatiotemporal interplay of macrophage polarisation over the course of degeneration. Methods Rats were exposed to 1000 lux light damage (LD) for 24hrs, with some left to recover for 3 and 7 days post-exposure. Expression and localisation of M1- and M2- macrophage markers was investigated in light-damaged retinas using qPCR, ELISA, flow cytometry, and immunohistochemistry. Results Expression of M1- (Ccl3, Il-6, Il-12, Il-1β, TNFα) and M2- (CD206, Arg1, Igf1, Lyve1, Clec7a) related markers followed discrete profiles following light damage; up-regulation of M1 genes peaked at the early phase of cell death, while M2 genes generally exhibited more prolonged increases during the chronic phase. Moreover, Il-1β and CD206 labelled accumulations of microglia/macrophages which differed in their morphological, temporal, and spatial characteristics following light damage. Conclusions The data illustrate a dynamic shift in macrophage polarisation following light damage through a broad swathe of M1 and M2 markers. Pro-inflammatory M1 activation appears to dominate the early phase of degeneration while M2 responses appear to more heavily mark the chronic post-exposure period. While M1/M2 polarisation represents two extremes amongst a spectrum of macrophage activity, knowledge of their predominance offers insight into functional consequences of macrophage activity over the course of damage, which may inform the spatiotemporal employment of therapeutics in retinal disease.
Collapse
Affiliation(s)
- Haihan Jiao
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Riccardo Natoli
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
- ANU Medical School, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Krisztina Valter
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
- ANU Medical School, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jan M. Provis
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
- ANU Medical School, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Matt Rutar
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail:
| |
Collapse
|
105
|
Matsumoto H, Murakami Y, Kataoka K, Notomi S, Mantopoulos D, Trichonas G, Miller JW, Gregory MS, Ksander BR, Marshak-Rothstein A, Vavvas DG. Membrane-bound and soluble Fas ligands have opposite functions in photoreceptor cell death following separation from the retinal pigment epithelium. Cell Death Dis 2015; 6:e1986. [PMID: 26583327 PMCID: PMC4670938 DOI: 10.1038/cddis.2015.334] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/09/2015] [Accepted: 10/12/2015] [Indexed: 01/30/2023]
Abstract
Fas ligand (FasL) triggers apoptosis of Fas-positive cells, and previous reports described FasL-induced cell death of Fas-positive photoreceptors following a retinal detachment. However, as FasL exists in membrane-bound (mFasL) and soluble (sFasL) forms, and is expressed on resident microglia and infiltrating monocyte/macrophages, the current study examined the relative contribution of mFasL and sFasL to photoreceptor cell death after induction of experimental retinal detachment in wild-type, knockout (FasL-/-), and mFasL-only knock-in (ΔCS) mice. Retinal detachment in FasL-/- mice resulted in a significant reduction of photoreceptor cell death. In contrast, ΔCS mice displayed significantly more apoptotic photoreceptor cell death. Photoreceptor loss in ΔCS mice was inhibited by a subretinal injection of recombinant sFasL. Thus, Fas/FasL-triggered cell death accounts for a significant amount of photoreceptor cell loss following the retinal detachment. The function of FasL was dependent upon the form of FasL expressed: mFasL triggered photoreceptor cell death, whereas sFasL protected the retina, indicating that enzyme-mediated cleavage of FasL determines, in part, the extent of vision loss following the retinal detachment. Moreover, it also indicates that treatment with sFasL could significantly reduce photoreceptor cell loss in patients with retinal detachment.
Collapse
Affiliation(s)
- H Matsumoto
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Y Murakami
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - K Kataoka
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - S Notomi
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - D Mantopoulos
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - G Trichonas
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - J W Miller
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - M S Gregory
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Schepens Eye Research Institute, Boston, MA, USA
| | - B R Ksander
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Schepens Eye Research Institute, Boston, MA, USA
| | - A Marshak-Rothstein
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - D G Vavvas
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
106
|
Lueck K, Busch M, Moss SE, Greenwood J, Kasper M, Lommatzsch A, Pauleikhoff D, Wasmuth S. Complement Stimulates Retinal Pigment Epithelial Cells to Undergo Pro-Inflammatory Changes. Ophthalmic Res 2015; 54:195-203. [PMID: 26502094 DOI: 10.1159/000439596] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 08/21/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS We examined the effect of human complement sera (HCS) on retinal pigment epithelial (RPE) cells with respect to pro-inflammatory mediators relevant in early age-related macular degeneration (AMD). METHODS RPE cells were treated with complement-containing HCS or with heat-inactivated (HI) HCS or C7-deficient HCS as controls. Cells were analysed for C5b-9 using immunocytochemistry and flow cytometry. Interleukin (IL)-6, IL-8, and monocyte chemoattractant protein-1 (MCP-1) were quantified by ELISA and RT-PCR. Tumour necrosis factor-α (TNF-α), intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), were analysed by Western blotting. The intracellular distribution of nuclear factor (NF)-x03BA;B was investigated by immunofluorescence. RESULTS A concentration-dependent increased staining for C5b-9 but no influence on cell viability was observed after HCS treatment. ELISA and RT-PCR analysis revealed elevated secretion and expression of IL-6, IL-8, and MCP-1. Western blot analysis showed a concentration-dependent increase in ICAM-1, VCAM-1, and TNF-α in response to HCS, and immunofluorescence staining revealed nuclear translocation of NF-x03BA;B. CONCLUSION This study suggests that complement stimulates NF-x03BA;B activation in RPE cells that might further create a pro-inflammatory environment. All these factors together may support early AMD development.
Collapse
Affiliation(s)
- Katharina Lueck
- Ophtha-Lab, Department of Ophthalmology at St. Franziskus Hospital, Muenster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Ha Y, Liu H, Xu Z, Yokota H, Narayanan SP, Lemtalsi T, Smith SB, Caldwell RW, Caldwell RB, Zhang W. Endoplasmic reticulum stress-regulated CXCR3 pathway mediates inflammation and neuronal injury in acute glaucoma. Cell Death Dis 2015; 6:e1900. [PMID: 26448323 PMCID: PMC4632306 DOI: 10.1038/cddis.2015.281] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 08/18/2015] [Accepted: 09/02/2015] [Indexed: 01/16/2023]
Abstract
Acute glaucoma is a leading cause of irreversible blindness in East Asia. The mechanisms underlying retinal neuronal injury induced by a sudden rise in intraocular pressure (IOP) remain obscure. Here we demonstrate that the activation of CXCL10/CXCR3 axis, which mediates the recruitment and activation of inflammatory cells, has a critical role in a mouse model of acute glaucoma. The mRNA and protein expression levels of CXCL10 and CXCR3 were significantly increased after IOP-induced retinal ischemia. Blockade of the CXCR3 pathway by deleting CXCR3 gene significantly attenuated ischemic injury-induced upregulation of inflammatory molecules (interleukin-1β and E-selectin), inhibited the recruitment of microglia/monocyte to the superficial retina, reduced peroxynitrite formation, and prevented the loss of neurons within the ganglion cell layer. In contrast, intravitreal delivery of CXCL10 increased leukocyte recruitment and retinal cell apoptosis. Inhibition of endoplasmic reticulum (ER) stress with chemical chaperones partially blocked ischemic injury-induced CXCL10 upregulation, whereas induction of ER stress with tunicamycin enhanced CXCL10 expression in retina and primary retinal ganglion cells. Interestingly, deleting CXCR3 attenuated ER stress-induced retinal cell death. In conclusion, these results indicate that ER stress-medicated activation of CXCL10/CXCR3 pathway has an important role in retinal inflammation and neuronal injury after high IOP-induced ischemia.
Collapse
Affiliation(s)
- Y Ha
- Department of Ophthalmology and Visual Sciences, The University of Texas Medical Branch, Galveston, TX, USA
| | - H Liu
- Center for Biomedical Engineering, The University of Texas Medical Branch, Galveston, TX, USA
| | - Z Xu
- Vascular Biology Center, Georgia Regents University, Augusta, GA, USA
| | - H Yokota
- Vascular Biology Center, Georgia Regents University, Augusta, GA, USA
- Department of Ophthalmology, Asahikawa Medical University, Asahikawa, Japan
| | - S P Narayanan
- Vascular Biology Center, Georgia Regents University, Augusta, GA, USA
- College of Allied Health Sciences, Georgia Regents University, Augusta, GA, USA
| | - T Lemtalsi
- Vascular Biology Center, Georgia Regents University, Augusta, GA, USA
| | - S B Smith
- Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA, USA
| | - R W Caldwell
- Department of pharmacology and Toxicology, Georgia Regents University, Augusta, GA, USA
| | - R B Caldwell
- Vascular Biology Center, Georgia Regents University, Augusta, GA, USA
- College of Allied Health Sciences, Georgia Regents University, Augusta, GA, USA
- VA Medical Center, Augusta, GA, USA
| | - W Zhang
- Department of Ophthalmology and Visual Sciences, The University of Texas Medical Branch, Galveston, TX, USA
- Center for Biomedical Engineering, The University of Texas Medical Branch, Galveston, TX, USA
- Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
108
|
Electrospun SF/PLCL nanofibrous membrane: a potential scaffold for retinal progenitor cell proliferation and differentiation. Sci Rep 2015; 5:14326. [PMID: 26395224 PMCID: PMC4585796 DOI: 10.1038/srep14326] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 08/24/2015] [Indexed: 12/22/2022] Open
Abstract
Biocompatible polymer scaffolds are promising as potential carriers for the delivery of retinal progenitor cells (RPCs) in cell replacement therapy for the repair of damaged or diseased retinas. The primary goal of the present study was to investigate the effects of blended electrospun nanofibrous membranes of silk fibroin (SF) and poly(L-lactic acid-co-ε-caprolactone) (PLCL), a novel scaffold, on the biological behaviour of RPCs in vitro. To assess the cell-scaffold interaction, RPCs were cultured on SF/PLCL scaffolds for indicated durations. Our data revealed that all the SF/PLCL scaffolds were thoroughly cytocompatible, and the SF:PLCL (1:1) scaffolds yielded the best RPC growth. The in vitro proliferation assays showed that RPCs proliferated more quickly on the SF:PLCL (1:1) than on the other scaffolds and the control. Quantitative polymerase chain reaction (qPCR) and immunocytochemistry analyses demonstrated that RPCs grown on the SF:PLCL (1:1) scaffolds preferentially differentiated toward retinal neurons, including, most interestingly, photoreceptors. In summary, we demonstrated that the SF:PLCL (1:1) scaffolds can not only markedly promote RPC proliferation with cytocompatibility for RPC growth but also robustly enhance RPCs’ differentiation toward specific retinal neurons of interest in vitro, suggesting that SF:PLCL (1:1) scaffolds may have potential applications in retinal cell replacement therapy in the future.
Collapse
|
109
|
Housset M, Sennlaub F. Thrombospondin-1 and Pathogenesis of Age-Related Macular Degeneration. J Ocul Pharmacol Ther 2015; 31:406-12. [DOI: 10.1089/jop.2015.0023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Michael Housset
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France
- CNRS, UMR_7210, Paris, France
- INSERM, U968, Paris, France
| | - Florian Sennlaub
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France
- CNRS, UMR_7210, Paris, France
- INSERM, U968, Paris, France
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, DHU ViewMaintain, INSERM-DHOS CIC 1423, Paris, France
| |
Collapse
|
110
|
Gallina D, Zelinka CP, Cebulla CM, Fischer AJ. Activation of glucocorticoid receptors in Müller glia is protective to retinal neurons and suppresses microglial reactivity. Exp Neurol 2015; 273:114-25. [PMID: 26272753 DOI: 10.1016/j.expneurol.2015.08.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/05/2015] [Accepted: 08/08/2015] [Indexed: 01/06/2023]
Abstract
Reactive microglia and macrophages are prevalent in damaged retinas. Glucocorticoid signaling is known to suppress inflammation and the reactivity of microglia and macrophages. In the vertebrate retina, the glucocorticoid receptor (GCR) is known to be activated and localized to the nuclei of Müller glia (Gallina et al., 2014). Accordingly, we investigated how signaling through GCR influences the survival of neurons using the chick retina in vivo as a model system. We applied intraocular injections of GCR agonist or antagonist, assessed microglial reactivity, and the survival of retinal neurons following different damage paradigms. Microglial reactivity was increased in retinas from eyes that were injected with vehicle, and this reactivity was decreased by GCR-agonist dexamethasone (Dex) and increased by GCR-antagonist RU486. We found that activation of GCR suppresses the reactivity of microglia and inhibited the loss of retinal neurons resulting from excitotoxicity. We provide evidence that the protection-promoting effects of Dex were maintained when the microglia were selectively ablated. Similarly, intraocular injections of Dex protected ganglion cells from colchicine-treatment and protected photoreceptors from damage caused by retinal detachment. We conclude that activation of GCR promotes the survival of ganglion cells in colchicine-damaged retinas, promotes the survival of amacrine and bipolar cells in excitotoxin-damaged retinas, and promotes the survival of photoreceptors in detached retinas. We propose that suppression of microglial reactivity is secondary to activation of GCR in Müller glia, and this mode of signaling is an effective means to lessen the damage and vision loss resulting from different types of retinal damage.
Collapse
Affiliation(s)
- Donika Gallina
- Department of Neuroscience, College of Medicine, Wexner Medical Center, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave., Columbus, OH 43210-1239, USA
| | - Christopher Paul Zelinka
- Department of Neuroscience, College of Medicine, Wexner Medical Center, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave., Columbus, OH 43210-1239, USA
| | - Colleen M Cebulla
- Havener Eye Institute, Department of Ophthalmology and Visual Science, College of Medicine, The Ohio State University, 915 Olentangy River Road, Suite 5000, Columbus, OH 43212, USA
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, Wexner Medical Center, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave., Columbus, OH 43210-1239, USA.
| |
Collapse
|
111
|
Deliyanti D, Wilkinson-Berka JL. Inhibition of NOX1/4 with GKT137831: a potential novel treatment to attenuate neuroglial cell inflammation in the retina. J Neuroinflammation 2015. [PMID: 26219952 PMCID: PMC4518508 DOI: 10.1186/s12974-015-0363-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Inflammation and the excess production of reactive oxygen species (ROS) contribute significantly to the pathogenesis of ischemic retinopathies such as diabetic retinopathy and retinopathy of prematurity. We hypothesized that GKT137831, a dual inhibitor of NADPH oxidases (NOX) 1 and NOX4, reduces inflammation in the ischemic retina by dampening the pro-inflammatory phenotype of retinal immune cells as well as macroglial Müller cells and neurons. METHODS Ischemic retinopathy was induced in Sprague-Dawley rats by exposure to 80 % O2 cycled with 21 % O2 for 3 h per day from postnatal day (P) 0 to P11, followed by room air (P12 to P18). GKT137831 was administered P12 to P18 (60 mg/kg, subcutaneous) and comparisons were to room air controls. Retinal inflammation was examined by measuring leukocyte adherence to the retinal vasculature, ionized calcium-binding adaptor protein-1-positive microglia/macrophages, and the mRNA and protein levels of key inflammatory factors involved in retinal disease. Damage to Müller cells was evaluated by quantitating glial fibrillary acidic protein-positive cells and vascular leakage with an albumin ELISA. To verify the anti-inflammatory actions of GKT137831 on glia and neurons involved in ischemic retinopathy, primary cultures of rat retinal microglia, Müller cells, and ganglion cells were exposed to the in vitro counterpart of ischemia, hypoxia (0.5 %), and treated with GKT137831 for up to 72 h. ROS levels were evaluated with dihydroethidium and the protein and gene expression of inflammatory factors with quantitative PCR, ELISA, and a protein cytokine array. RESULTS In the ischemic retina, GKT137831 reduced the increased leukocyte adherence to the vasculature, the pro-inflammatory phenotype of microglia and macroglia, the increased gene and protein expression of vascular endothelial growth factor, monocyte chemoattractant protein-1, and leukocyte adhesion molecules as well as vascular leakage. In all cultured cell types, GKT137831 reduced the hypoxia-induced increase in ROS levels and protein expression of various inflammatory mediators. CONCLUSIONS NOX1/4 enzyme inhibition with GKT137831 has potent anti-inflammatory effects in the retina, indicating its potential as a treatment for a variety of vision-threatening retinopathies.
Collapse
Affiliation(s)
- Devy Deliyanti
- Department of Immunology, Monash University, Alfred Medical Research and Education Precinct Level 6, 89 Commercial Road, Melbourne, VIC, Australia, 3004
| | - Jennifer L Wilkinson-Berka
- Department of Immunology, Monash University, Alfred Medical Research and Education Precinct Level 6, 89 Commercial Road, Melbourne, VIC, Australia, 3004.
| |
Collapse
|
112
|
Deliyanti D, Zhang Y, Khong F, Berka DR, Stapleton DI, Kelly DJ, Wilkinson-Berka JL. FT011, a Novel Cardiorenal Protective Drug, Reduces Inflammation, Gliosis and Vascular Injury in Rats with Diabetic Retinopathy. PLoS One 2015. [PMID: 26222724 PMCID: PMC4519240 DOI: 10.1371/journal.pone.0134392] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Diabetic retinopathy features inflammation as well as injury to glial cells and the microvasculature, which are influenced by hypertension and overactivity of the renin-angiotensin system. FT011 is an anti-inflammatory and anti-fibrotic agent that has been reported to attenuate organ damage in diabetic rats with cardiomyopathy and nephropathy. However, the potential therapeutic utility of FT011 for diabetic retinopathy has not been evaluated. We hypothesized that FT011 would attenuate retinopathy in diabetic Ren-2 rats, which exhibit hypertension due to an overactive extra-renal renin-angiotensin system. Diabetic rats were studied for 8 and 32 weeks and received intravitreal injections of FT011 (50 μM) or vehicle (0.9% NaCl). Comparisons were to age-matched controls. In the 8-week study, retinal inflammation was examined by quantitating vascular leukocyte adherence, microglial/macrophage density and the expression of inflammatory mediators. Macroglial Müller cells, which exhibit a pro-inflammatory and pro-angiogenic phenotype in diabetes, were evaluated in the 8-week study as well as in culture following exposure to hyperglycaemia and FT011 (10, 30, 100 μM) for 72 hours. In the 32-week study, severe retinal vasculopathy was examined by quantitating acellular capillaries and extracellular matrix proteins. In diabetic rats, FT011 reduced retinal leukostasis, microglial density and mRNA levels of intercellular adhesion molecule-1 (ICAM-1). In Müller cells, FT011 reduced diabetes-induced gliosis and vascular endothelial growth factor (VEGF) immunolabeling and the hyperglycaemic-induced increase in ICAM-1, monocyte chemoattractant protein-1, CCL20, cytokine-induced neutrophil chemoattractant-1, VEGF and IL-6. Late intervention with FT011 reduced acellular capillaries and the elevated mRNA levels of collagen IV and fibronectin in diabetic rats. In conclusion, the protective effects of FT011 in cardiorenal disease extend to key elements of diabetic retinopathy and highlight its potential as a treatment approach.
Collapse
Affiliation(s)
- Devy Deliyanti
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia, 3004
| | - Yuan Zhang
- Department of Medicine, St Vincent’s Hospital, The University of Melbourne, Fitzroy, Victoria, Australia, 3065
| | - Fay Khong
- Department of Medicine, St Vincent’s Hospital, The University of Melbourne, Fitzroy, Victoria, Australia, 3065
| | - David R. Berka
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia, 3004
| | - David I. Stapleton
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia, 3052
| | - Darren J. Kelly
- Department of Medicine, St Vincent’s Hospital, The University of Melbourne, Fitzroy, Victoria, Australia, 3065
| | | |
Collapse
|
113
|
Upregulation of P2RX7 in Cx3cr1-Deficient Mononuclear Phagocytes Leads to Increased Interleukin-1β Secretion and Photoreceptor Neurodegeneration. J Neurosci 2015; 35:6987-96. [PMID: 25948251 DOI: 10.1523/jneurosci.3955-14.2015] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Photoreceptor degeneration in age-related macular degeneration (AMD) is associated with an infiltration and chronic accumulation of mononuclear phagocytes (MPs). We have previously shown that Cx3cr1-deficient mice develop age- and stress- related subretinal accumulation of MPs, which is associated with photoreceptor degeneration. Cx3cr1-deficient MPs have been shown to increase neuronal apoptosis through IL-1β in neuroinflammation of the brain. The reason for increased IL-1β secretion from Cx3cr1-deficient MPs, and whether IL-1β is responsible for increased photoreceptor apoptosis in Cx3cr1-deficient mice, has not been elucidated. Here we show that Cx3cr1-deficient MPs express increased surface P2X7 receptor (P2RX7), which stimulates IL-1β maturation and secretion. P2RX7 and IL-1β inhibition efficiently blunted Cx3cr1-MP-dependent photoreceptor apoptosis in a monocyte/retina coculture system and in light-induced subretinal inflammation of Cx3cr1-deficient mice in vivo. Our results provide an explanation for increased CX3CR1-dependent IL-1β secretion and suggest that IL-1β or P2RX7 inhibition can help inhibit the inflammation-associated photoreceptor cell loss in late AMD, including geographic atrophy, for which no efficient treatment currently exists.
Collapse
|
114
|
Pastor JC, Rojas J, Pastor-Idoate S, Di Lauro S, Gonzalez-Buendia L, Delgado-Tirado S. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical consequences. Prog Retin Eye Res 2015. [PMID: 26209346 DOI: 10.1016/j.preteyeres.2015.07.005] [Citation(s) in RCA: 237] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
During the last four decades, proliferative vitreoretinopathy (PVR) has defied the efforts of many researchers to prevent its occurrence or development. Thus, PVR is still the major complication following retinal detachment (RD) surgery and a bottle-neck for advances in cell therapy that require intraocular surgery. In this review we tried to combine basic and clinical knowledge, as an example of translational research, providing new and practical information for clinicians. PVR was defined as the proliferation of cells after RD. This idea was used for classifying PVR and also for designing experimental models used for testing many drugs, none of which were successful in humans. We summarize current information regarding the pathogenic events that follow any RD because this information may be the key for understanding and treating the earliest stages of PVR. A major focus is made on the intraretinal changes derived mainly from retinal glial cell reactivity. These responses can lead to intraretinal PVR, an entity that has not been clearly recognized. Inflammation is one of the major components of PVR, and we describe new genetic biomarkers that have the potential to predict its development. New treatment approaches are analyzed, especially those directed towards neuroprotection, which can also be useful for preventing visual loss after any RD. We also summarize the results of different surgical techniques and clinical information that is oriented toward the identification of high risk patients. Finally, we provide some recommendations for future classification of PVR and for designing comparable protocols for testing new drugs or techniques.
Collapse
Affiliation(s)
- J Carlos Pastor
- Retina Group, IOBA (Eye Institute), University of Valladolid, Valladolid, Spain; Department of Ophthalmology, Hospital Clinico Universitario de Valladolid, Valladolid, Spain.
| | - Jimena Rojas
- Retina Group, IOBA (Eye Institute), University of Valladolid, Valladolid, Spain; Department of Ophthalmology, Hospital Universitario Austral, Universidad Austral, Buenos Aires, Argentina
| | - Salvador Pastor-Idoate
- Retina Group, IOBA (Eye Institute), University of Valladolid, Valladolid, Spain; Manchester Royal Eye Hospital, Manchester Vision Regeneration (MVR) Lab at NIHR/Wellcome Trust, Manchester, United Kingdom
| | - Salvatore Di Lauro
- Retina Group, IOBA (Eye Institute), University of Valladolid, Valladolid, Spain; Department of Ophthalmology, Hospital Clinico Universitario de Valladolid, Valladolid, Spain
| | - Lucia Gonzalez-Buendia
- Retina Group, IOBA (Eye Institute), University of Valladolid, Valladolid, Spain; Department of Ophthalmology, Hospital Clinico Universitario de Valladolid, Valladolid, Spain
| | - Santiago Delgado-Tirado
- Retina Group, IOBA (Eye Institute), University of Valladolid, Valladolid, Spain; Department of Ophthalmology, Hospital Clinico Universitario de Valladolid, Valladolid, Spain
| |
Collapse
|
115
|
Ninomiya H, Katakami N, Osonoi T, Saitou M, Yamamoto Y, Takahara M, Kawamori D, Matsuoka TA, Yamasaki Y, Shimomura I. Association between new onset diabetic retinopathy and monocyte chemoattractant protein-1 (MCP-1) polymorphism in Japanese type 2 diabetes. Diabetes Res Clin Pract 2015; 108:e35-7. [PMID: 25913234 DOI: 10.1016/j.diabres.2015.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/21/2015] [Accepted: 04/03/2015] [Indexed: 10/23/2022]
Abstract
We longitudinally evaluated the association between monocyte chemoattractant protein-1 (MCP-1) A-2518G polymorphism and new onset of diabetic retinopathy in 758 type 2 diabetic patients. The new onset of retinopathy increased with the increase of the number of G alleles, even after adjustment for age, HbA1c levels, and duration of diabetes.
Collapse
Affiliation(s)
- Hiroyo Ninomiya
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Naoto Katakami
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Department of Metabolism and Atherosclerosis, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | | | | | - Yuichi Yamamoto
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Mitsuyoshi Takahara
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Dan Kawamori
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Taka-aki Matsuoka
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshimitsu Yamasaki
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
116
|
Kataoka K, Matsumoto H, Kaneko H, Notomi S, Takeuchi K, Sweigard JH, Atik A, Murakami Y, Connor KM, Terasaki H, Miller JW, Vavvas DG. Macrophage- and RIP3-dependent inflammasome activation exacerbates retinal detachment-induced photoreceptor cell death. Cell Death Dis 2015; 6:e1731. [PMID: 25906154 PMCID: PMC4650542 DOI: 10.1038/cddis.2015.73] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 12/24/2014] [Accepted: 02/16/2015] [Indexed: 12/21/2022]
Abstract
Detachment of photoreceptors from the retinal pigment epithelium is seen in various retinal disorders, resulting in photoreceptor death and subsequent vision loss. Cell death results in the release of endogenous molecules that activate molecular platforms containing caspase-1, termed inflammasomes. Inflammasome activation in retinal diseases has been reported in some cases to be protective and in others to be detrimental, causing neuronal cell death. Moreover, the cellular source of inflammasomes in retinal disorders is not clear. Here, we demonstrate that patients with photoreceptor injury by retinal detachment (RD) have increased levels of cleaved IL-1β, an end product of inflammasome activation. In an animal model of RD, photoreceptor cell death led to activation of endogenous inflammasomes, and this activation was diminished by Rip3 deletion. The major source of Il1b expression was found to be infiltrating macrophages in the subretinal space, rather than dying photoreceptors. Inflammasome inhibition attenuated photoreceptor death after RD. Our data implicate the infiltrating macrophages as a source of damaging inflammasomes after photoreceptor detachment in a RIP3-dependent manner and suggest a novel therapeutic target for treatment of retinal diseases.
Collapse
Affiliation(s)
- K Kataoka
- 1] Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA [2] Department of Ophthalmology, Nagoya University School of Medicine, Nagoya, Japan
| | - H Matsumoto
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - H Kaneko
- Department of Ophthalmology, Nagoya University School of Medicine, Nagoya, Japan
| | - S Notomi
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - K Takeuchi
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - J H Sweigard
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - A Atik
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Y Murakami
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - K M Connor
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - H Terasaki
- Department of Ophthalmology, Nagoya University School of Medicine, Nagoya, Japan
| | - J W Miller
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - D G Vavvas
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
117
|
|
118
|
Xu Y, Balasubramaniam B, Copland DA, Liu J, Armitage MJ, Dick AD. Activated adult microglia influence retinal progenitor cell proliferation and differentiation toward recoverin-expressing neuron-like cells in a co-culture model. Graefes Arch Clin Exp Ophthalmol 2015; 253:1085-96. [PMID: 25680876 DOI: 10.1007/s00417-015-2961-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/15/2014] [Accepted: 12/22/2014] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Microglia contribute to immune homeostasis of the retina, and thus act as a potential regulator determining successful repair or retinal stem cell transplantation. We investigated the interaction between human microglia and retinal progenitor cells in cell co-culture to further our exploration on developing a new therapeutic strategy for retinal degeneration. METHODS Microglia and retinal progenitor cultures were developed using CD11b(+) and CD133(+), respectively, from adult donor retina. Microglia activation was developed using interferon-gamma and lipopolysaccharide. Retinal progenitor differentiation was analysed in co-culture with or without microglial activation. Retinal progenitor proliferation was analysed in presence of conditioned medium from activated microglia. Phenotype and function of adult human retinal cell cultures were examined using cell morphology, immunohistochemistry and real-time PCR. RESULTS By morphology, neuron-like cells generated in co-culture expressed photoreceptor marker recoverin. Neurospheres derived from retinal progenitor cells showed reduced growth in the presence of conditioned medium from activated microglia. Delayed retinal progenitor cell migration and reduced cellular differentiation was observed in co-cultures with activated microglia. In independent experiments, activated microglia showed enhanced mRNA expression of CXCL10, IL-27, IL-6, and TNF-alpha compared to controls. CONCLUSION Adult human retina retains retinal progenitors or potential to reprogram cells to then proliferate and differentiate into neuron-like cells in vitro. Human microglia support retinal progenitor differentiation into neuron-like cells, but such capacity is altered following microglial activation. Modulating microglia activity is a potential approach to promote retinal repair and facilitate success of stem-cell transplantation.
Collapse
Affiliation(s)
- Yunhe Xu
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom,
| | | | | | | | | | | |
Collapse
|
119
|
BRILLIANT BLUE G DOUBLE STAINING ENHANCES SUCCESSFUL INTERNAL LIMITING MEMBRANE PEELING WITH MINIMAL ADVERSE EFFECT BY LOW CELLULAR PERMEABILITY INTO LIVE CELLS. Retina 2015; 35:310-8. [DOI: 10.1097/iae.0000000000000289] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
120
|
Rutar M, Natoli R, Chia RX, Valter K, Provis JM. Chemokine-mediated inflammation in the degenerating retina is coordinated by Müller cells, activated microglia, and retinal pigment epithelium. J Neuroinflammation 2015; 12:8. [PMID: 25595590 PMCID: PMC4308937 DOI: 10.1186/s12974-014-0224-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/18/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Monocyte infiltration is involved in the pathogenesis of many retinal degenerative conditions. This process traditionally depends on local expression of chemokines, though the roles of many of these in the degenerating retina are unclear. Here, we investigate expression and in situ localization of the broad chemokine response in a light-induced model of retinal degeneration. METHODS Sprague-Dawley (SD) rats were exposed to 1,000 lux light damage (LD) for up to 24 hrs. At time points during (1 to 24 hrs) and following (3 and 7 days) exposure, animals were euthanized and retinas processed. Microarray analysis assessed differential expression of chemokines. Some genes were further investigated using polymerase chain reaction (PCR) and in situ hybridization and contrasted with photoreceptor apoptosis using terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Recruitment of retinal CD45 (+) leukocytes was determined via fluorescence activated cell sorting (FACS), and expression of chemokine receptors determined using PCR. RESULTS Exposure to 24 hrs of LD resulted in differential expression of chemokines including Ccl3, Ccl4, Ccl7, Cxcl1, and Cxcl10. Their upregulation correlated strongly with peak photoreceptor death, at 24 hrs exposure. In situ hybridization revealed that the modulated chemokines were expressed by a combination of Müller cells, activated microglia, and retinal pigment epithelium (RPE). This preceded large increases in the number of CD45(+) cells at 3- and 7-days post exposure, which expressed a corresponding repertoire of chemokine receptors. CONCLUSIONS Our data indicate that retinal degeneration induces upregulation of a broad chemokine response whose expression is coordinated by Müller cells, microglia, and RPE. The findings inform our understanding of the processes govern the trafficking of leukocytes, which are contributors in the pathology of retinal degenerations.
Collapse
Affiliation(s)
- Matt Rutar
- John Curtin School of Medical Research, The Australian National University, Building 131, Garran Road, Canberra, ACT 2601, Australia. .,ANU Medical School, The Australian National University, 54 Mills Road, Canberra, ACT 2601, Australia.
| | - Riccardo Natoli
- John Curtin School of Medical Research, The Australian National University, Building 131, Garran Road, Canberra, ACT 2601, Australia. .,ANU Medical School, The Australian National University, 54 Mills Road, Canberra, ACT 2601, Australia.
| | - R X Chia
- John Curtin School of Medical Research, The Australian National University, Building 131, Garran Road, Canberra, ACT 2601, Australia.
| | - Krisztina Valter
- John Curtin School of Medical Research, The Australian National University, Building 131, Garran Road, Canberra, ACT 2601, Australia. .,ANU Medical School, The Australian National University, 54 Mills Road, Canberra, ACT 2601, Australia.
| | - Jan M Provis
- John Curtin School of Medical Research, The Australian National University, Building 131, Garran Road, Canberra, ACT 2601, Australia. .,ANU Medical School, The Australian National University, 54 Mills Road, Canberra, ACT 2601, Australia.
| |
Collapse
|
121
|
Predicting visual outcomes for macula-off rhegmatogenous retinal detachment with optical coherence tomography. J Ophthalmol 2014; 2014:269837. [PMID: 25574380 PMCID: PMC4276691 DOI: 10.1155/2014/269837] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/02/2014] [Accepted: 11/03/2014] [Indexed: 11/18/2022] Open
Abstract
Purpose. We evaluated the ability of novel optical coherence tomography (OCT) parameters to predict postoperative best-corrected visual acuity (BCVA) in macula-off rhegmatogenous retinal detachment (RRD) eyes. Methods. We reviewed the medical records of 56 consecutive eyes with macula-off RRD. Clinical findings were analyzed including the relationship between preoperative OCT findings and 6-month postoperative BCVA. Results. Six-month postoperative BCVA was significantly correlated with preoperative findings including retinal height at the fovea, total and inner layer cross-sectional macular area within 2 mm of the fovea, and preoperative BCVA (P < 0.001, P < 0.001, P = 0.001, and P < 0.001, resp.). Multiple regression analysis revealed that the duration of macular detachment and total cross-sectional macular area were independent factors predicting 6-month postoperative BCVA (P = 0.024 and P = 0.041, resp.). Conclusions. Measuring preoperative total cross-sectional area of the macular layer within 2 mm of the fovea with OCT is a useful and objective way to predict postoperative visual outcome in eyes with macula-off RRD.
Collapse
|
122
|
Xiang P, Wu KC, Zhu Y, Xiang L, Li C, Chen DL, Chen F, Xu G, Wang A, Li M, Jin ZB. A novel Bruch's membrane-mimetic electrospun substrate scaffold for human retinal pigment epithelium cells. Biomaterials 2014; 35:9777-9788. [DOI: 10.1016/j.biomaterials.2014.08.040] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 08/24/2014] [Indexed: 12/28/2022]
|
123
|
Rangasamy S, McGuire PG, Franco Nitta C, Monickaraj F, Oruganti SR, Das A. Chemokine mediated monocyte trafficking into the retina: role of inflammation in alteration of the blood-retinal barrier in diabetic retinopathy. PLoS One 2014; 9:e108508. [PMID: 25329075 PMCID: PMC4203688 DOI: 10.1371/journal.pone.0108508] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 08/31/2014] [Indexed: 02/03/2023] Open
Abstract
Inflammation in the diabetic retina is mediated by leukocyte adhesion to the retinal vasculature and alteration of the blood-retinal barrier (BRB). We investigated the role of chemokines in the alteration of the BRB in diabetes. Animals were made diabetic by streptozotocin injection and analyzed for gene expression and monocyte/macrophage infiltration. The expression of CCL2 (chemokine ligand 2) was significantly up-regulated in the retinas of rats with 4 and 8 weeks of diabetes and also in human retinal endothelial cells treated with high glucose and glucose flux. Additionally, diabetes or intraocular injection of recombinant CCL2 resulted in increased expression of the macrophage marker, F4/80. Cell culture impedance sensing studies showed that purified CCL2 was unable to alter the integrity of the human retinal endothelial cell barrier, whereas monocyte conditioned medium resulted in significant reduction in cell resistance, suggesting the relevance of CCL2 in early immune cell recruitment for subsequent barrier alterations. Further, using Cx3cr1-GFP mice, we found that intraocular injection of CCL2 increased retinal GFP+ monocyte/macrophage infiltration. When these mice were made diabetic, increased infiltration of monocytes/macrophages was also present in retinal tissues. Diabetes and CCL2 injection also induced activation of retinal microglia in these animals. Quantification by flow cytometry demonstrated a two-fold increase of CX3CR1+/CD11b+ (monocyte/macrophage and microglia) cells in retinas of wildtype diabetic animals in comparison to control non-diabetic ones. Using CCL2 knockout (Ccl2−/−) mice, we show a significant reduction in retinal vascular leakage and monocyte infiltration following induction of diabetes indicating the importance of this chemokine in alteration of the BRB. Thus, CCL2 may be an important therapeutic target for the treatment of diabetic macular edema.
Collapse
Affiliation(s)
- Sampathkumar Rangasamy
- Department of Cell Biology & Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Paul G. McGuire
- Department of Cell Biology & Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Carolina Franco Nitta
- Department of Surgery, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
- New Mexico VA Health Care System, Albuquerque, New Mexico, United States of America
| | - Finny Monickaraj
- Department of Surgery, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Sreenivasa R. Oruganti
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Arup Das
- Department of Surgery, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
- New Mexico VA Health Care System, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
124
|
Fischer AJ, Zelinka C, Milani-Nejad N. Reactive retinal microglia, neuronal survival, and the formation of retinal folds and detachments. Glia 2014; 63:313-27. [PMID: 25231952 DOI: 10.1002/glia.22752] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 09/02/2014] [Indexed: 01/01/2023]
Abstract
Reactive microglia and macrophages are prevalent in damaged retinas. Accordingly, we investigate how the activation or ablation of microglia/macrophages influences the survival of neurons in the chick retina in vivo. We applied intraocular injections of interleukin 6 (IL6) to stimulate the reactivity of microglia/macrophages and clodronate-liposomes to ablate microglia/macrophages. Activation of the microglia/macrophages with IL6 delays the death of retinal neurons from N-methyl-D-aspartate (NMDA) -induced excitotoxicity. In addition, activation of microglia/macrophages combined with colchicine-mediated retinal damage diminished the survival of ganglion cells. Application of IL6 after an excitotoxic insult greatly exacerbates the damage, and causes widespread retinal detachments and folds, accompanied by accumulation of microglia/macrophages in the subretinal space. Damage-induced retinal folds and detachments were significantly reduced by the ablation of microglia/macrophages. We conclude that microglial reactivity is detrimental to the survival of ganglion cells in colchicine-damaged retinas and detrimental to the survival of photoreceptors in retinal folds. In addition, we conclude that IL6-treatment transiently protects amacrine and bipolar cells against an excitotoxic insult. We propose that suppressing reactivity of microglia/macrophages may be an effective means to lessen the damage and vision loss resulting from damage, in particular during retinal detachment injuries.
Collapse
Affiliation(s)
- Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio
| | | | | |
Collapse
|
125
|
Neuroprotective effect against axonal damage-induced retinal ganglion cell death in apolipoprotein E-deficient mice through the suppression of kainate receptor signaling. Brain Res 2014; 1586:203-12. [PMID: 25160129 DOI: 10.1016/j.brainres.2014.08.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 11/22/2022]
Abstract
Apolipoprotein E (ApoE) plays important roles in the body, including a carrier of cholesterols, an anti-oxidant, and a ligand for the low-density lipoprotein receptors. In the nervous system, the presence of ApoE4 isoforms is associated with Alzheimer's disease. ApoE gene polymorphisms are also associated with glaucoma, but the function of ApoE in the retina remains unclear. In this study, we investigated the role of ApoE in axonal damage-induced RGC death. ApoE was detected in the astrocytes and Müller cells in the wild-type (WT) retina. RGC damage was induced in adult ApoE-deficient mice (male, 10-12 weeks old) through ocular hypertension (OH), optic nerve crush (NC), or by administering kainic acid (KA) intravitreally. The WT mice were treated with a glutamate receptor antagonist (MK801 or CNQX) 30 min before performing NC or left untreated. Seven days later, the retinas were flat mounted and Fluorogold-labeled RGCs were counted. We found that the RGCs in the ApoE-deficient mice were resistant to OH-induced RGC death and optic nerve degeneration 4 weeks after induction. In WT mice, NC effectively induced RGC death (control: 4085±331 cells/mm(2), NC: 1728±170 cells/mm(2)). CNQX, an inhibitor of KA receptors, suppressed this RGC death (3031±246 cells/mm(2)), but MK801, an inhibitor of NMDA receptors, did not (1769±212 cells/mm(2)). This indicated the involvement of KA receptor signaling in NC-induced RGC death. We found that NC- or KA-induced RGC death was significantly less in the ApoE-deficient mice than in the WT mice. These data suggest that the ApoE deficiency had a neuroprotective effect against axonal damage-induced RGC death by suppressing the KA receptor signaling.
Collapse
|
126
|
Neuroprotection by rat Müller glia against high glucose-induced neurodegeneration through a mechanism involving ERK1/2 activation. Exp Eye Res 2014; 125:20-9. [DOI: 10.1016/j.exer.2014.05.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/17/2014] [Accepted: 05/15/2014] [Indexed: 12/15/2022]
|
127
|
Lahmar I, Pfaff AW, Marcellin L, Sauer A, Moussa A, Babba H, Candolfi E. Müller cell activation and photoreceptor depletion in a mice model of congenital ocular toxoplasmosis. Exp Parasitol 2014; 144:22-6. [PMID: 24929147 DOI: 10.1016/j.exppara.2014.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 04/10/2014] [Accepted: 06/03/2014] [Indexed: 10/25/2022]
Abstract
Müller glial cells are critically involved in retinal inflammatory processes. Here, we investigate the activation of Müller cells in a model of congenital ocular toxoplasmosis (OT). Four weeks after infection, retinal sections were studied immunohistochemically using the markers glial fibrillary acidic protein (GFAP) and vimentin. Müller cells showed strong up-regulation of both markers, as well as a deteriorated morphology in all infected retinas. Moreover, cell density and color intensity of the outer nuclear layer (ONL) of photoreceptors were decreased. Our results indicate that the severe retinal damage and loss of vision observed in human OT may be not only directly caused by infection but rather mediated by infection induced reactive gliosis.
Collapse
Affiliation(s)
- Ibtissem Lahmar
- Institut de Parasitologie et de Pathologie Tropicale, EA 7292, Fédération de Médecine Translationelle, Université de Strasbourg, France; Laboratoire de Parasitologie - Mycologie Médicale et Moléculaire (code LR12ES08), Département de Biologie Clinique B, Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia.
| | - Alexander W Pfaff
- Institut de Parasitologie et de Pathologie Tropicale, EA 7292, Fédération de Médecine Translationelle, Université de Strasbourg, France
| | - Luc Marcellin
- Département de Pathologie, Hôpitaux Universitaires de Strasbourg, France
| | - Arnaud Sauer
- Institut de Parasitologie et de Pathologie Tropicale, EA 7292, Fédération de Médecine Translationelle, Université de Strasbourg, France
| | - Adnane Moussa
- Laboratoire d'Anatomie Pathologique, Hôpital Universitaire Fattouma Bourguiba, Monastir, Tunisia
| | - Hamouda Babba
- Laboratoire de Parasitologie - Mycologie Médicale et Moléculaire (code LR12ES08), Département de Biologie Clinique B, Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia
| | - Ermanno Candolfi
- Institut de Parasitologie et de Pathologie Tropicale, EA 7292, Fédération de Médecine Translationelle, Université de Strasbourg, France
| |
Collapse
|
128
|
Fukuda S, Nagano M, Yamashita T, Kimura K, Tsuboi I, Salazar G, Ueno S, Kondo M, Kunath T, Oshika T, Ohneda O. Functional endothelial progenitor cells selectively recruit neurovascular protective monocyte-derived F4/80(+) /Ly6c(+) macrophages in a mouse model of retinal degeneration. Stem Cells 2014; 31:2149-61. [PMID: 23843337 DOI: 10.1002/stem.1469] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 06/08/2013] [Accepted: 06/11/2013] [Indexed: 01/23/2023]
Abstract
Retinitis pigmentosa is a group of inherited eye disorders that result in profound vision loss with characteristic retinal neuronal degeneration and vasculature attenuation. In a mouse model of retinitis pigmentosa, endothelial progenitor cells (EPC) from bone marrow rescued the vasculature and photoreceptors. However, the mechanisms and cell types underlying these protective effects were uncertain. We divided EPC, which contribute to angiogenesis, into two subpopulations based on their aldehyde dehydrogenase (ALDH) activity and observed that EPC with low ALDH activity (Alde-Low) had greater neuroprotection and vasoprotection capabilities after injection into the eyes of an rd1 mouse model of retinitis pigmentosa compared with EPC with high ALDH activity (Alde-High). Of note, Alde-Low EPC selectively recruited F4/80(+) /Ly6c(+) monocyte-derived macrophages from bone marrow into retina through CCL2 secretion. In addition, the mRNA levels of CCR2, the neurotrophic factors TGF-β1 and IGF-1, and the anti-inflammatory mediator interleukin-10 were higher in migrated F4/80(+) /Ly6c(+) monocyte-derived macrophages as compared with F4/80(+) /Ly6c(-) resident retinal microglial cells. These results suggest a novel therapeutic approach using EPC to recruit neuroprotective macrophages that delay the progression of neural degenerative disease.
Collapse
Affiliation(s)
- Shinichi Fukuda
- Department of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Science; Department of Ophthalmology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Matsumoto H, Murakami Y, Kataoka K, Lin H, Connor KM, Miller JW, Zhou D, Avruch J, Vavvas DG. Mammalian STE20-like kinase 2, not kinase 1, mediates photoreceptor cell death during retinal detachment. Cell Death Dis 2014; 5:e1269. [PMID: 24874741 PMCID: PMC4047884 DOI: 10.1038/cddis.2014.218] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 04/14/2014] [Indexed: 12/28/2022]
Abstract
Photoreceptor cell death is the definitive cause of vision loss in retinal detachment (RD). Mammalian STE20-like kinase (MST) is a master regulator of both cell death and proliferation and a critical factor in development and tumorigenesis. However, to date the role of MST in neurodegeneration has not been fully explored. Utilizing MST1−/− and MST2−/− mice we identified MST2, but not MST1, as a regulator of photoreceptor cell death in a mouse model of RD. MST2−/− mice demonstrated significantly decreased photoreceptor cell death and outer nuclear layer (ONL) thinning after RD. Additionally, caspase-3 activation was attenuated in MST2−/− mice compared to control mice after RD. The transcription of p53 upregulated modulator of apoptosis (PUMA) and Fas was also reduced in MST2−/− mice post-RD. Retinas of MST2−/− mice displayed suppressed nuclear relocalization of phosphorylated YAP after RD. Consistent with the reduction of photoreceptor cell death, MST2−/− mice showed decreased levels of proinflammatory cytokines such as monocyte chemoattractant protein 1 and interleukin 6 as well as attenuated inflammatory CD11b cell infiltration during the early phase of RD. These results identify MST2, not MST1, as a critical regulator of caspase-mediated photoreceptor cell death in the detached retina and indicate its potential as a future neuroprotection target.
Collapse
Affiliation(s)
- H Matsumoto
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Y Murakami
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - K Kataoka
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - H Lin
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - K M Connor
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - J W Miller
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - D Zhou
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - J Avruch
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - D G Vavvas
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
130
|
Matsumoto H, Kataoka K, Tsoka P, Connor KM, Miller JW, Vavvas DG. Strain difference in photoreceptor cell death after retinal detachment in mice. Invest Ophthalmol Vis Sci 2014; 55:4165-74. [PMID: 24854853 DOI: 10.1167/iovs.14-14238] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To evaluate the potential for mouse genetic background to effect photoreceptor cell death in response to experimental retinal detachment (RD). METHODS Retinal detachment was induced in three inbred mouse strains (C57BL/6, BALB/c, and B6129SF2) by subretinal injection of sodium hyaluronate. A time course of photoreceptor cell death was assessed by TUNEL assay. Total photoreceptor cell death was analyzed through comparing the outer nuclear layer (ONL)/inner nuclear layer (INL) ratio 7 days post RD. Western blot analysis or quantitative real-time PCR (qPCR) were performed to assess cell death signaling, expression of endogenous neurotrophin, and levels of apoptosis inhibitors 24 hours after RD. Inflammatory cytokine secretion and inflammatory cell infiltration were quantified by ELISA and immunostaining, respectively. RESULTS The peak of photoreceptor cell death after RD was at 24 hours in all strains. Photoreceptor cell death as well as monocyte chemoattractant protein 1 and interleukin 6 secretion at 24 hours after RD was the highest in BALB/c, followed in order of magnitude by C57BL/6 and B6129SF2. Conversely, nerve growth factor expression and ONL/INL ratio were the lowest in BALB/c. Apoptosis signaling was higher in C57BL/6, whereas necroptosis signaling was higher in C57BL/6 and BALB/c. Autophagic signaling was higher in BALB/c. X-linked inhibitor of apoptosis (XIAP) and survivin protein levels were lower in C57BL/6 and BALB/c, respectively. Macrophage/microglia infiltration was higher in C57BL/6 and BALB/c at 24 hours after RD. CONCLUSIONS Photoreceptor cell death after RD was significantly different among the three strains, suggesting the presence of genetic factors that affect photoreceptor cell death after RD.
Collapse
Affiliation(s)
- Hidetaka Matsumoto
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Keiko Kataoka
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Pavlina Tsoka
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Kip M Connor
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Joan W Miller
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Demetrios G Vavvas
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
131
|
Himori N, Maruyama K, Yamamoto K, Yasuda M, Ryu M, Omodaka K, Shiga Y, Tanaka Y, Nakazawa T. Critical neuroprotective roles of heme oxygenase-1 induction against axonal injury-induced retinal ganglion cell death. J Neurosci Res 2014; 92:1134-42. [PMID: 24799032 DOI: 10.1002/jnr.23398] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/10/2014] [Accepted: 04/01/2014] [Indexed: 12/26/2022]
Abstract
Although axonal damage induces significant retinal ganglion cell (RGC) death, small numbers of RGCs are able to survive up to 7 days after optic nerve crush (NC) injury. To develop new treatments, we set out to identify patterns of change in the gene expression of axonal damage-resistant RGCs. To compensate for the low density of RGCs in the retina, we performed retrograde labeling of these cells with 4Di-10ASP in adult mice and 7 days after NC purified the RGCs with fluorescence-activated cell sorting. Gene expression in the cells was determined with a microarray, and the expression of Ho-1 was determined with quantitative PCR (qPCR). Changes in protein expression were assessed with immunohistochemistry and immunoblotting. Additionally, the density of Fluoro-gold-labeled RGCs was counted in retinas from mice pretreated with CoPP, a potent HO-1 inducer. The microarray and qPCR analyses showed increased expression of Ho-1 in the post-NC RGCs. Immunohistochemistry also showed that HO-1-positive cells were present in the ganglion cell layer (GCL), and cell counting showed that the proportion of HO-1-positive cells in the GCL rose significantly after NC. Seven days after NC, the number of RGCs in the CoPP-treated mice was significantly higher than in the control mice. Combined pretreatment with SnPP, an HO-1 inhibitor, suppressed the neuroprotective effect of CoPP. These results reflect changes in HO-1 activity to RGCs that are a key part of RGC survival. Upregulation of HO-1 signaling may therefore be a novel therapeutic strategy for glaucoma.
Collapse
Affiliation(s)
- Noriko Himori
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Kim B, Abdel-Rahman MH, Wang T, Pouly S, Mahmoud AM, Cebulla CM. Retinal MMP-12, MMP-13, TIMP-1, and TIMP-2 expression in murine experimental retinal detachment. Invest Ophthalmol Vis Sci 2014; 55:2031-40. [PMID: 24526442 DOI: 10.1167/iovs.13-13374] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PURPOSE Matrix metalloproteinases (MMPs) and their inhibitors play a role in the pathobiology of retinal detachment (RD) and proliferative vitreoretinopathy (PVR). Proliferative vitreoretinopathy is facilitated by chronic retinal detachment and involves excessive deposition of extracellular matrix (ECM) proteins. Matrix metalloproteinase-2 and -13 are important modulators of the ECM which have not been evaluated in RD. The purpose of this study was to investigate the retinal expression of select MMPs, including MMP-12, MMP-13, and associated inhibitors in a murine model of retinal detachment. METHODS Transient or chronic retinal detachments (RDs) were induced by subretinal injection of either saline (SA) or hyaluronic acid (HA) in C57BL/6 mice. To confirm that the HA-RD model has features consistent with PVR-like changes, glial activation and subretinal fibrosis were evaluated with immunofluorescence, dilated fundus examination, and spectral-domain optical coherence tomography (SD-OCT). Gene expression was quantified by qRT-PCR. Proteins were assayed by immunoblot and immunohistochemistry. RESULTS Hyaluronic acid RD eyes developed gliosis and subretinal fibrosis on dilated exam, SD-OCT, and immunofluorescence analysis. Gene expression of Mmp-12 and Mmp-13, and Timp-1 was strongly upregulated at all time points in RD compared with controls. Timp-2, Mmp-2, and Mmp-9 expression was modest. Hyaluronic acid RDs exhibited more MMP and TIMP expression than SA-RDs. MMP-12, -13, and TIMP-1 proteins were elevated in RDs compared with controls. Immunohistochemistry revealed moderate to strong MMP-13 levels in subretinal space macrophages. CONCLUSIONS Fibrosis can develop in the HA-RD model. There is an upregulation of select MMPs that may modulate the wound healing process following RD.
Collapse
Affiliation(s)
- Bongsu Kim
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University, Columbus, Ohio, United States
| | | | | | | | | | | |
Collapse
|
133
|
Fourgeux C, Martine L, Acar N, Bron AM, Creuzot-Garcher CP, Bretillon L. In vivo consequences of cholesterol-24S-hydroxylase (CYP46A1) inhibition by voriconazole on cholesterol homeostasis and function in the rat retina. Biochem Biophys Res Commun 2014; 446:775-81. [DOI: 10.1016/j.bbrc.2014.01.118] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 01/23/2014] [Indexed: 01/06/2023]
|
134
|
The effect of previous surgery and topical eye drops for primary open-angle glaucoma on cytokine expression in aqueous humor. Graefes Arch Clin Exp Ophthalmol 2014; 252:791-9. [DOI: 10.1007/s00417-014-2607-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/17/2014] [Accepted: 02/24/2014] [Indexed: 01/27/2023] Open
|
135
|
Wang Q, Ren J, Morgan S, Liu Z, Dou C, Liu B. Monocyte chemoattractant protein-1 (MCP-1) regulates macrophage cytotoxicity in abdominal aortic aneurysm. PLoS One 2014; 9:e92053. [PMID: 24632850 PMCID: PMC3954911 DOI: 10.1371/journal.pone.0092053] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 02/17/2014] [Indexed: 11/18/2022] Open
Abstract
Aims In abdominal aortic aneurysm (AAA), macrophages are detected in the proximity of aortic smooth muscle cells (SMCs). We have previously demonstrated in a murine model of AAA that apoptotic SMCs attract monocytes and other leukocytes by producing MCP-1. Here we tested whether infiltrating macrophages also directly contribute to SMC apoptosis. Methods and Results Using a SMC/RAW264.7 macrophage co-culture system, we demonstrated that MCP-1-primed RAWs caused a significantly higher level of apoptosis in SMCs as compared to control macrophages. Next, we detected an enhanced Fas ligand (FasL) mRNA level and membrane FasL protein expression in MCP-1-primed RAWs. Neutralizing FasL blocked SMC apoptosis in the co-culture. In situ proximity ligation assay showed that SMCs exposed to primed macrophages contained higher levels of receptor interacting protein-1 (RIP1)/Caspase 8 containing cell death complexes. Silencing RIP1 conferred apoptosis resistance to SMCs. In the mouse elastase injury model of aneurysm, aneurysm induction increased the level of RIP1/Caspase 8 containing complexes in medial SMCs. Moreover, TUNEL-positive SMCs in aneurysmal tissues were frequently surrounded by CD68+/FasL+ macrophages. Conversely, elastase-treated arteries from MCP-1 knockout mice display a reduction of both macrophage infiltration and FasL expression, which was accompanied by diminished apoptosis of SMCs. Conclusion Our data suggest that MCP-1-primed macrophages are more cytotoxic. MCP-1 appears to modulate macrophage cytotoxicity by increasing the level of membrane bound FasL. Thus, we showed that MCP-1-primed macrophages kill SMCs through a FasL/Fas-Caspase8-RIP1 mediated mechanism.
Collapse
Affiliation(s)
- Qiwei Wang
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison, Wisconsin, United States of America
| | - Jun Ren
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison, Wisconsin, United States of America
| | - Stephanie Morgan
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison, Wisconsin, United States of America
| | - Zhenjie Liu
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison, Wisconsin, United States of America
| | | | - Bo Liu
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
136
|
Luhmann UF, Robbie SJ, Bainbridge JW, Ali RR. The relevance of chemokine signalling in modulating inherited and age-related retinal degenerations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 801:427-33. [PMID: 24664727 DOI: 10.1007/978-1-4614-3209-8_54] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Systemic monocytes, tissue resident macrophages, dendritic cells and microglia have specific roles in immune surveillance and maintenance of tissue homeostasis and are key regulator and effector cells of the local immune response to acute and chronic tissue injury.Two major signalling pathways that differentially define trafficking behaviour and activation of systemic and local myeloid cell populations in response to exogenous and endogenous inflammatory stimuli are the Ccl2-Ccr2 and the Cx3cl1-Cx3cr1 chemokine pathways.Alterations in these pathways have been implicated in controlling myeloid cell activation during normal ageing and in age-related retinal degenerations, including age-related macular degeneration (AMD).We review the evidence for how altered chemokine signalling in acute and chronic inflammatory conditions regulate local and systemic myeloid cell responses in the retina and how this may contribute to or attenuate pathology in inherited and age-related retinal diseases. We discuss the role of environmental factors (e.g. light exposure) and the influence of genetic factors on the manifestation of pathology in experimental models and in human patients and how we envisage harnessing this knowledge for the development of targeted, more broadly applicable anti-inflammatory treatment strategies for a wide range of retinal degenerations.
Collapse
Affiliation(s)
- Ulrich Fo Luhmann
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, EC1V 9EL, London, UK,
| | | | | | | |
Collapse
|
137
|
Correlation of cytokine levels and microglial cell infiltration during retinal degeneration in RCS rats. PLoS One 2013; 8:e82061. [PMID: 24349184 PMCID: PMC3862575 DOI: 10.1371/journal.pone.0082061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/17/2013] [Indexed: 01/09/2023] Open
Abstract
Microglial cells, which are immunocompetent cells, are involved in all diseases of the central nervous system. During their activation in various diseases, a variety of soluble factors are released. In the present study, the correlation between cytokine levels and microglial cell migration in the course of retinal degeneration of Royal College of Surgeons (RCS) rats was evaluated. MFG-E8 and CD11b were used to confirm the microglial cells. In the retina of RCS rats, the mRNA expression of seven genes (MFG-E8 and its integrins αυ and ß5, CD11b and the cytokines TNF-α, IL-1ß, and MCP-1) formed almost similar bimodal peak distributions, which were centred at P7 and P45 to P60. In contrast, in rdy rats, which comprised the control group, a unimodal peak distribution centred at P14 was observed. The gene expression accompanied the activation and migration of microglial cells from the inner to the outer layer of the retina during the process of degeneration. Principal component analysis and discriminant function analysis revealed that the expression of these seven genes, especially TNF-α and CD11b, positively correlated with retinal degeneration and microglial activity during retinal degeneration in RCS rats, but not in the control rats. Furthermore, linear regression analysis demonstrated a significant correlation between the expression of these genes and the activation of microglial cells in the dystrophic retina. Our findings suggest that the suppression of microglial cells and the blockade of their cytotoxic effects may constitute a novel therapeutic strategy for treating photoreceptor death in various retinal disorders.
Collapse
|
138
|
Jung WK, Lee CM, Lee DS, Na G, Lee DY, Choi I, Park SG, Seo SK, Yang JW, Choi JS, Lee YM, Park WS, Choi IW. The 15-deoxy-δ12,14-prostaglandin J2 inhibits LPS‑stimulated inflammation via enhancement of the platelet‑activating factor acetylhydrolase activity in human retinal pigment epithelial cells. Int J Mol Med 2013; 33:449-56. [PMID: 24337644 DOI: 10.3892/ijmm.2013.1588] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 12/11/2013] [Indexed: 11/06/2022] Open
Abstract
A well-recognized natural ligand of PPARγ, 15-deoxy-δ(12,14)-prostaglandin J(2) (15d-PGJ(2)) possesses immunomodulatory properties. The aim of this study was to elucidate whether 15d-PGJ(2) was able to attenuate lipopolysaccharide (LPS)-induced inflammatory responses in human retinal pigment epithelial (RPE) cells, which are involved in ocular immune responses. In addition, we examined whether the platelet activating factor (PAF) is associated with the anti-inflammatory activity of 15d-PGJ(2). ARPE19 cells treated with varying concentrations of 15d-PGJ(2) and a PAF antagonist (CV3988) were used in this study. The activity of PAF-acetylhydrolase (PAF-AH) was assayed by treatment with 15d-PGJ(2) and CV3988 in the presence of LPS. 15d-PGJ(2) and CV3988 inhibited the LPS-induced mRNA expression and protein production of interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and intercellular adhesion molecule-1 (ICAM-1) in ARPE19 cells. These effects resulting from 15d-PGJ(2) were not abrogated by the PPARγ antagonist, indicating that the actions were PPARγ-independent. Furthermore, 15d-PGJ(2) and CV3988 enhanced the PAF-AH activity. Additionally, 15d-PGJ(2) inhibited the phosphorylation of the extracellular signal-regulated kinase (ERK) and the activation of nuclear transcription factor-κB (NF-κB). These results demonstrated that 15d-PGJ(2) reduced LPS-stimulated inflammatory responses in ARPE19 cells by enhancing the PAH-AH activity. These results suggest that 15d-PGJ(2) may have potent anti-inflammatory activity against ocular inflammation.
Collapse
Affiliation(s)
- Won-Kyo Jung
- Department of Biomedical Engineering, Pukyong National University, Busan, Republic of Korea
| | - Chang-Min Lee
- Department of Microbiology and Immunology, Medical Research Institute, Pusan National University School of Medicine, Yang-san, Republic of Korea
| | - Dae-Sung Lee
- POSTECH Ocean Science and Technology Institute, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Giyoun Na
- Department of Microbiology, College of Medicine Inje University, Busan, Republic of Korea
| | - Da-Young Lee
- Department of Microbiology, College of Medicine Inje University, Busan, Republic of Korea
| | - Inhak Choi
- Department of Microbiology, College of Medicine Inje University, Busan, Republic of Korea
| | - Sae-Gwang Park
- Department of Microbiology, College of Medicine Inje University, Busan, Republic of Korea
| | - Su-Kil Seo
- Department of Microbiology, College of Medicine Inje University, Busan, Republic of Korea
| | - Jae-Wook Yang
- Department of Ophthalmology, Busan Paik Hospital, College of Medicine Inje University, Busan, Republic of Korea
| | - Jung Sik Choi
- Department of Internal Medicine, Busan Paik Hospital, College of Medicine Inje University, Busan, Republic of Korea
| | - Young-Min Lee
- Department of Internal Medicine, Busan Paik Hospital, College of Medicine Inje University, Busan, Republic of Korea
| | - Won Sun Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Il-Whan Choi
- Department of Microbiology, College of Medicine Inje University, Busan, Republic of Korea
| |
Collapse
|
139
|
Sennlaub F, Auvynet C, Calippe B, Lavalette S, Poupel L, Hu SJ, Dominguez E, Camelo S, Levy O, Guyon E, Saederup N, Charo IF, Van Rooijen N, Nandrot E, Bourges JL, Behar-Cohen F, Sahel JA, Guillonneau X, Raoul W, Combadiere C. CCR2(+) monocytes infiltrate atrophic lesions in age-related macular disease and mediate photoreceptor degeneration in experimental subretinal inflammation in Cx3cr1 deficient mice. EMBO Mol Med 2013; 5:1775-1793. [PMID: 24142887 PMCID: PMC3840491 DOI: 10.1002/emmm.201302692] [Citation(s) in RCA: 223] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 08/28/2013] [Accepted: 08/30/2013] [Indexed: 12/11/2022] Open
Abstract
Atrophic age-related macular degeneration (AMD) is associated with the subretinal accumulation of mononuclear phagocytes (MPs). Their role in promoting or inhibiting retinal degeneration is unknown. We here show that atrophic AMD is associated with increased intraocular CCL2 levels and subretinal CCR2(+) inflammatory monocyte infiltration in patients. Using age- and light-induced subretinal inflammation and photoreceptor degeneration in Cx3cr1 knockout mice, we show that subretinal Cx3cr1 deficient MPs overexpress CCL2 and that both the genetic deletion of CCL2 or CCR2 and the pharmacological inhibition of CCR2 prevent inflammatory monocyte recruitment, MP accumulation and photoreceptor degeneration in vivo. Our study shows that contrary to CCR2 and CCL2, CX3CR1 is constitutively expressed in the retina where it represses the expression of CCL2 and the recruitment of neurotoxic inflammatory CCR2(+) monocytes. CCL2/CCR2 inhibition might represent a powerful tool for controlling inflammation and neurodegeneration in AMD.
Collapse
Affiliation(s)
- Florian Sennlaub
- Inserm, U 968Paris, France
- UPMC Univ Paris 06, UMR_S 968, Institut de la VisionParis, France
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 503Paris, France
- Hôtel Dieu, Service d'Ophtalmologie, Centre de Recherche OphtalmologiqueParis, France
| | - Constance Auvynet
- Inserm, U 968Paris, France
- Inserm UMR_S 945, Laboratoire Immunité et InfectionParis, France
- Université Pierre et Marie Curie-Paris6, UPMC Univ Paris 06, UMR_S 945Paris, France
| | - Bertrand Calippe
- Inserm, U 968Paris, France
- UPMC Univ Paris 06, UMR_S 968, Institut de la VisionParis, France
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 503Paris, France
| | - Sophie Lavalette
- Inserm, U 968Paris, France
- UPMC Univ Paris 06, UMR_S 968, Institut de la VisionParis, France
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 503Paris, France
| | - Lucie Poupel
- Inserm UMR_S 945, Laboratoire Immunité et InfectionParis, France
- Université Pierre et Marie Curie-Paris6, UPMC Univ Paris 06, UMR_S 945Paris, France
| | - Shulong J Hu
- Inserm, U 968Paris, France
- UPMC Univ Paris 06, UMR_S 968, Institut de la VisionParis, France
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 503Paris, France
| | - Elisa Dominguez
- Inserm, U 968Paris, France
- UPMC Univ Paris 06, UMR_S 968, Institut de la VisionParis, France
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 503Paris, France
| | - Serge Camelo
- Inserm, U 968Paris, France
- UPMC Univ Paris 06, UMR_S 968, Institut de la VisionParis, France
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 503Paris, France
| | - Olivier Levy
- Inserm, U 968Paris, France
- UPMC Univ Paris 06, UMR_S 968, Institut de la VisionParis, France
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 503Paris, France
| | - Elodie Guyon
- Inserm, U 968Paris, France
- Inserm UMR_S 945, Laboratoire Immunité et InfectionParis, France
- Université Pierre et Marie Curie-Paris6, UPMC Univ Paris 06, UMR_S 945Paris, France
| | - Noah Saederup
- Gladstone Institute of Cardiovascular Disease, San FranciscoCA, USA
- Cardiovascular Research Institute, Department of Medicine, University of California San FranciscoSan Francisco, CA, USA
| | - Israel F Charo
- Gladstone Institute of Cardiovascular Disease, San FranciscoCA, USA
- Cardiovascular Research Institute, Department of Medicine, University of California San FranciscoSan Francisco, CA, USA
| | - Nico Van Rooijen
- Department of Molecular Cell Biology, Free University Medical CenterAmsterdam, The Netherlands
| | - Emeline Nandrot
- Inserm, U 968Paris, France
- UPMC Univ Paris 06, UMR_S 968, Institut de la VisionParis, France
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 503Paris, France
| | - Jean-Louis Bourges
- Hôtel Dieu, Service d'Ophtalmologie, Centre de Recherche OphtalmologiqueParis, France
- Inserm, UMR_S 872, Centre de Recherche des CordeliersParis, France
- Université Paris Descartes, UMR_S 872, Centre de Recherche des CordeliersParis, France
- Université Pierre et Marie Curie-Paris6, UPMC Univ Paris 06, UMR_S 872Paris, France
| | - Francine Behar-Cohen
- Hôtel Dieu, Service d'Ophtalmologie, Centre de Recherche OphtalmologiqueParis, France
- Inserm, UMR_S 872, Centre de Recherche des CordeliersParis, France
- Université Paris Descartes, UMR_S 872, Centre de Recherche des CordeliersParis, France
- Université Pierre et Marie Curie-Paris6, UPMC Univ Paris 06, UMR_S 872Paris, France
| | - José-Alain Sahel
- Inserm, U 968Paris, France
- UPMC Univ Paris 06, UMR_S 968, Institut de la VisionParis, France
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 503Paris, France
| | - Xavier Guillonneau
- Inserm, U 968Paris, France
- UPMC Univ Paris 06, UMR_S 968, Institut de la VisionParis, France
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 503Paris, France
| | - William Raoul
- Inserm, U 968Paris, France
- UPMC Univ Paris 06, UMR_S 968, Institut de la VisionParis, France
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 503Paris, France
| | - Christophe Combadiere
- Inserm UMR_S 945, Laboratoire Immunité et InfectionParis, France
- Université Pierre et Marie Curie-Paris6, UPMC Univ Paris 06, UMR_S 945Paris, France
- AP-HP, Groupe Hospitalier Pitié-Salpétrière, Service d'ImmunologieParis, France
| |
Collapse
|
140
|
Ramos de Carvalho JE, Verbraak FD, Aalders MC, van Noorden CJ, Schlingemann RO. Recent advances in ophthalmic molecular imaging. Surv Ophthalmol 2013; 59:393-413. [PMID: 24529711 DOI: 10.1016/j.survophthal.2013.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 12/30/2022]
Abstract
The aim of molecular imaging techniques is the visualization of molecular processes and functional changes in living animals and human patients before morphological changes occur at the cellular and tissue level. Ophthalmic molecular imaging is still in its infancy and has mainly been used in small animals for pre-clinical research. The goal of most of these pre-clinical studies is their translation into ophthalmic molecular imaging techniques in clinical care. We discuss various molecular imaging techniques and their applications in ophthalmology.
Collapse
Affiliation(s)
- J Emanuel Ramos de Carvalho
- Ocular Angiogenesis Group, Departments of Ophthalmology and Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Ophthalmology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Frank D Verbraak
- Department of Ophthalmology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Maurice C Aalders
- Department of Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Cornelis J van Noorden
- Ocular Angiogenesis Group, Departments of Ophthalmology and Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Reinier O Schlingemann
- Ocular Angiogenesis Group, Departments of Ophthalmology and Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Ophthalmology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Netherlands Institute for Neuroscience, Royal Academy of Sciences, Amsterdam, The Netherlands.
| |
Collapse
|
141
|
Matsumoto H, Miller JW, Vavvas DG. Retinal detachment model in rodents by subretinal injection of sodium hyaluronate. J Vis Exp 2013. [PMID: 24056325 PMCID: PMC3864357 DOI: 10.3791/50660] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Subretinal injection of sodium hyaluronate is a widely accepted method of inducing retinal detachment (RD). However, the height and duration of RD or the occurrence of subretinal hemorrhage can affect photoreceptor cell death in the detached retina. Hence, it is advantageous to create reproducible RDs without subretinal hemorrhage for evaluating photoreceptor cell death. We modified a previously reported method to create bullous and persistent RDs in a reproducible location with rare occurrence of subretinal hemorrhage. The critical step of this modified method is the creation of a self-sealing scleral incision, which can prevent leakage of sodium hyaluronate after injection into the subretinal space. To make the self-sealing scleral incision, a scleral tunnel is created, followed by scleral penetration into the choroid with a 30 G needle. Although choroidal hemorrhage may occur during this step, astriction with a surgical spear reduces the rate of choroidal hemorrhage. This method allows a more reproducible and reliable model of photoreceptor death in diseases that involve RD such as rhegmatogenous RD, retinopathy of prematurity, diabetic retinopathy, central serous chorioretinopathy, and age-related macular degeneration (AMD).
Collapse
Affiliation(s)
- Hidetaka Matsumoto
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School
| | | | | |
Collapse
|
142
|
Métrailler S, Emery M, Schorderet DF, Cottet S, Roduit R. ERK1/2 pathway is activated in degenerated Rpe65-deficient mice. Exp Eye Res 2013; 116:86-95. [PMID: 24012986 DOI: 10.1016/j.exer.2013.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 08/10/2013] [Accepted: 08/22/2013] [Indexed: 12/30/2022]
Abstract
The MAPK family is composed of three majors kinases, JNK, p38 and ERK1/2, and is implicated in many degenerative processes, including retinal cell death. The purpose of our study was to evaluate the activation of ERK1/2 kinase, and its potential role in Müller cell gliosis, during photoreceptor cell death in Rpe65(-/-) mice. We assayed ERK1/2 mRNA and protein levels, and evaluated ERK1/2 phosphorylation involved in kinase activation, in 2, 4 and 6 month-old Rpe65(-/-) mice and in age-matched wild-type controls. No differences in ERK1/2 expression were detected between Rpe65(-/-) and wild-type mice, however, ERK1/2 phosphorylation was dramatically increased in the knock out mice at 4 and 6 months-of-age. Phosphorylated ERK1/2 co-localized with GFAP in the ganglion cell layer, and correlated with an increase in GFAP protein expression and retinal cell death. Accumulation of cFOS protein in the ganglion cell layer occurred concomitant with pERK1/2 activation. Müller cell proliferation was not observed. ERK1/2 activation did not occur in 2 month-old Rpe65(-/-) or in the Rpe65(-/-)/Gnat1(-/-) mice, in which no degeneration was evident. The observed activation ERK1/2 and GFAP, both markers of Müller cell gliosis, in the absence of Müller cell proliferation, is consistent with the activation of atypical gliosis occurring during the slow process of degeneration in Rpe65(-/-) mice. As Müller cell gliosis is activated in many neuronal and retinal degenerative diseases, further studies will be needed to determine whether atypical gliosis in Rpe65(-/-) mice contributes to, or protects against, the pathogenesis occurring in this model of Leber congenital amaurosis.
Collapse
Affiliation(s)
- S Métrailler
- IRO, Institute for Research in Ophthalmology, 1950 Sion, Switzerland
| | | | | | | | | |
Collapse
|
143
|
Murakami Y, Notomi S, Hisatomi T, Nakazawa T, Ishibashi T, Miller JW, Vavvas DG. Photoreceptor cell death and rescue in retinal detachment and degenerations. Prog Retin Eye Res 2013; 37:114-40. [PMID: 23994436 DOI: 10.1016/j.preteyeres.2013.08.001] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 08/08/2013] [Accepted: 08/10/2013] [Indexed: 02/08/2023]
Abstract
Photoreceptor cell death is the ultimate cause of vision loss in various retinal disorders, including retinal detachment (RD). Photoreceptor cell death has been thought to occur mainly through apoptosis, which is the most characterized form of programmed cell death. The caspase family of cysteine proteases plays a central role for inducing apoptosis, and in experimental models of RD, dying photoreceptor cells exhibit caspase activation; however, there is a paradox that caspase inhibition alone does not provide a sufficient protection against photoreceptor cell loss, suggesting that other mechanisms of cell death are involved. Recent accumulating evidence demonstrates that non-apoptotic forms of cell death, such as autophagy and necrosis, are also regulated by specific molecular machinery, such as those mediated by autophagy-related proteins and receptor-interacting protein kinases, respectively. Here we summarize the current knowledge of cell death signaling and its roles in photoreceptor cell death after RD and other retinal degenerative diseases. A body of studies indicate that not only apoptotic but also autophagic and necrotic signaling are involved in photoreceptor cell death, and that combined targeting of these pathways may be an effective neuroprotective strategy for retinal diseases associated with photoreceptor cell loss.
Collapse
Affiliation(s)
- Yusuke Murakami
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA; Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
144
|
Murakami Y, Matsumoto H, Roh M, Giani A, Kataoka K, Morizane Y, Kayama M, Thanos A, Nakatake S, Notomi S, Hisatomi T, Ikeda Y, Ishibashi T, Connor KM, Miller JW, Vavvas DG. Programmed necrosis, not apoptosis, is a key mediator of cell loss and DAMP-mediated inflammation in dsRNA-induced retinal degeneration. Cell Death Differ 2013; 21:270-7. [PMID: 23954861 DOI: 10.1038/cdd.2013.109] [Citation(s) in RCA: 232] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 06/15/2013] [Accepted: 06/25/2013] [Indexed: 11/09/2022] Open
Abstract
There is no known treatment for the dry form of an age-related macular degeneration (AMD). Cell death and inflammation are important biological processes thought to have central role in AMD. Here we show that receptor-interacting protein (RIP) kinase mediates necrosis and enhances inflammation in a mouse model of retinal degeneration induced by dsRNA, a component of drusen in AMD. In contrast to photoreceptor-induced apoptosis, subretinal injection of the dsRNA analog poly(I : C) caused necrosis of the retinal pigment epithelium (RPE), as well as macrophage infiltration into the outer retinas. In Rip3(-/-) mice, both necrosis and inflammation were prevented, providing substantial protection against poly(I : C)-induced retinal degeneration. Moreover, after poly(I : C) injection, Rip3(-/-) mice displayed decreased levels of pro-inflammatory cytokines (such as TNF-α and IL-6) in the retina, and attenuated intravitreal release of high-mobility group box-1 (HMGB1), a major damage-associated molecular pattern (DAMP). In vitro, poly(I : C)-induced necrosis were inhibited in Rip3-deficient RPE cells, which in turn suppressed HMGB1 release and dampened TNF-α and IL-6 induction evoked by necrotic supernatants. On the other hand, Rip3 deficiency did not modulate directly TNF-α and IL-6 production after poly(I : C) stimulation in RPE cells or macrophages. Therefore, programmed necrosis is crucial in dsRNA-induced retinal degeneration and may promote inflammation by regulating the release of intracellular DAMPs, suggesting novel therapeutic targets for diseases such as AMD.
Collapse
Affiliation(s)
- Y Murakami
- 1] Department of Ophthalmology, Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA [2] Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - H Matsumoto
- Department of Ophthalmology, Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - M Roh
- Department of Ophthalmology, Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - A Giani
- Department of Ophthalmology, Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - K Kataoka
- Department of Ophthalmology, Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Y Morizane
- Department of Ophthalmology, Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - M Kayama
- Department of Ophthalmology, Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - A Thanos
- Department of Ophthalmology, Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - S Nakatake
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - S Notomi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - T Hisatomi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Y Ikeda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - T Ishibashi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - K M Connor
- Department of Ophthalmology, Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - J W Miller
- Department of Ophthalmology, Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - D G Vavvas
- Department of Ophthalmology, Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
145
|
Delyfer MN, Aït-Ali N, Camara H, Clérin E, Korobelnik JF, Sahel JA, Léveillard T. Transcriptomic analysis of human retinal surgical specimens using jouRNAI. J Vis Exp 2013. [PMID: 23979175 DOI: 10.3791/50375] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Retinal detachment (RD) describes a separation of the neurosensory retina from the retinal pigmented epithelium (RPE). The RPE is essential for normal function of the light sensitive neurons, the photoreceptors. Detachment of the retina from the RPE creates a physical gap that is filled with extracellular fluid. RD initiates cellular and molecular adverse events that affect both the neurosensory retina and the RPE since the physiological exchange of ions and metabolites is severely perturbed. The consequence for vision is related to the duration of the detachment since a rapid reapposition of the two tissues results in the restoration of vision (1). The treatment of RD is exclusively surgical. Removal of vitreous gel (vitrectomy) is followed by the removal non essential part of the retina around the detached area to favor retinal detachment. The removed retinal specimens are res nullius (nothing) and consequently normally discarded. To recover RNA from these surgical specimens, we developed the procedure jouRNAl that allows RNA conservation during the transfer from the surgical block to the laboratory. We also standardized a protocol to purify RNA by cesium chloride ultracentrifugation to assure that the purified RNAs are suitable for global gene expression analysis. The quality of the RNA was validated both by RT-PCR and microarray analysis. Analysis of the data shows a simultaneous involvement of inflammation and photoreceptor degeneration during RD.
Collapse
|
146
|
Seitz R, Ohlmann A, Tamm ER. The role of Müller glia and microglia in glaucoma. Cell Tissue Res 2013; 353:339-45. [PMID: 23779255 DOI: 10.1007/s00441-013-1666-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 05/16/2013] [Indexed: 02/04/2023]
Abstract
Cells of Müller glia and microglia react to neuronal injury in glaucoma. The change to a reactive phenotype initiates signaling cascades that may serve a neuroprotective role, but may also proceed to promote damaging effects on retinal neurons. Both effects appear to occur most likely in parallel in glaucoma, but the underlying mechanisms and signaling pathways that specifically promote protective versus destructive roles of reactive glial cells are mostly unclear. More research is needed to understand the homeostatic signaling network in which retinal glia cells are embedded to maintain or restore neuronal function after injury.
Collapse
Affiliation(s)
- Roswitha Seitz
- Institute of Human Anatomy and Embryology, University of Regensburg, Universitätstr. 31, 93053, Regensburg, Germany
| | | | | |
Collapse
|
147
|
Himori N, Yamamoto K, Maruyama K, Ryu M, Taguchi K, Yamamoto M, Nakazawa T. Critical role of Nrf2 in oxidative stress-induced retinal ganglion cell death. J Neurochem 2013; 127:669-80. [DOI: 10.1111/jnc.12325] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Noriko Himori
- Department of Ophthalmology; Tohoku University Graduate School of Medicine; Sendai Miyagi Japan
| | - Kotaro Yamamoto
- Department of Ophthalmology; Tohoku University Graduate School of Medicine; Sendai Miyagi Japan
| | - Kazuichi Maruyama
- Department of Ophthalmology; Tohoku University Graduate School of Medicine; Sendai Miyagi Japan
| | - Morin Ryu
- Department of Ophthalmology; Tohoku University Graduate School of Medicine; Sendai Miyagi Japan
| | - Keiko Taguchi
- Department of Medical Biochemistry; Tohoku University Graduate School of Medicine; Sendai Miyagi Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry; Tohoku University Graduate School of Medicine; Sendai Miyagi Japan
| | - Toru Nakazawa
- Department of Ophthalmology; Tohoku University Graduate School of Medicine; Sendai Miyagi Japan
| |
Collapse
|
148
|
Kunikata H, Yasuda M, Aizawa N, Tanaka Y, Abe T, Nakazawa T. Intraocular concentrations of cytokines and chemokines in rhegmatogenous retinal detachment and the effect of intravitreal triamcinolone acetonide. Am J Ophthalmol 2013; 155:1028-1037.e1. [PMID: 23490191 DOI: 10.1016/j.ajo.2013.01.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 01/08/2013] [Accepted: 01/08/2013] [Indexed: 01/23/2023]
Abstract
PURPOSE To investigate the role of intravitreal injection of triamcinolone acetonide (IVTA) in preventing photoreceptor apoptosis in eyes with rhegmatogenous retinal detachment (RRD) by measuring cytokine levels in the aqueous humor before and after IVTA. DESIGN Prospective, nonrandomized, interventional case series. METHODS setting: Institutional. patients: Nineteen eyes of 19 consecutive patients with RRD. intervention: All 19 eyes underwent IVTA 1 day before 25-gauge vitrectomy. Seventeen eyes free of retinal vascular disease served as controls. main outcome measure: Both baseline and 1 day post-IVTA measurements were made of the relative concentrations of 15 soluble factors (3 cytokines, 7 chemokines, and 5 growth factors). The associations with clinical findings, including macular status, were then analyzed. RESULTS Elevated monocyte chemotactic protein 1 (MCP-1), macrophage inflammatory protein 1β (MIP-1β), and interferon γ-induced protein 10 (IP-10) in eyes with RRD were significantly reduced after IVTA. MCP-1 levels were significantly correlated with MIP-1β and IP-10 before and after IVTA. The decreases in MCP-1, MIP-1β, and IP-10 were also closely correlated to each other. Both before and after IVTA, MCP-1 was higher in eyes with macula-off RRD than in eyes with macula-on RRD. CONCLUSIONS IVTA suppressed elevated levels of intraocular MCP-1, MIP-1β, and IP-10 in eyes with RRD. The decrease in the aqueous levels of each of these factors was significantly correlated with the others. In addition to MCP-1, MIP-1β and IP-10 might potentially be additional target molecules for RRD therapy.
Collapse
|
149
|
Titchenell PM, Antonetti DA. Using the past to inform the future: anti-VEGF therapy as a road map to develop novel therapies for diabetic retinopathy. Diabetes 2013; 62:1808-15. [PMID: 23704522 PMCID: PMC3661651 DOI: 10.2337/db12-1744] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Therapies targeting vascular endothelial growth factor (VEGF) are revolutionizing the treatment of diabetic retinopathy (DR) and diabetic macular edema (DME). In August 2012, ranibizumab, a monoclonal antibody fragment targeting VEGF designed for ocular use, became the first and only U.S. Food and Drug Administration-approved medical therapy for DME and the first approved treatment in over 25 years. This approval was based on strong preclinical data followed by numerous clinical trials that demonstrate an essential role of VEGF in vascular permeability and angiogenesis in both normal physiology and disease pathology. In this Perspective, we will examine the experimental studies and scientific data that aided in the success of the development of therapies targeting VEGF and consider how these approaches may inform the development of future therapeutics for diabetic eye disease. A multipoint model is proposed, based on well-established drug development principles, with the goal of improving the success of clinical drug development. This model suggests that to provide a validated preclinical target, investigators should demonstrate the following: the role of the target in normal physiology, a causal link to disease pathogenesis, correlation to human disease, and the ability to elicit clinically relevant improvements of disease phenotypes in animal models with multiple, chemically diverse interventions. This model will provide a framework to validate the current preclinical targets and identify novel targets to improve drug development success for DR.
Collapse
Affiliation(s)
- Paul M. Titchenell
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, Pennsylvania
| | - David A. Antonetti
- Departments of Ophthalmology and Visual Sciences and Molecular and Integrative Physiology, The University of Michigan, Ann Arbor, Michigan
- Corresponding author: David A. Antonetti,
| |
Collapse
|
150
|
Villacampa P, Ribera A, Motas S, Ramírez L, García M, de la Villa P, Haurigot V, Bosch F. Insulin-like growth factor I (IGF-I)-induced chronic gliosis and retinal stress lead to neurodegeneration in a mouse model of retinopathy. J Biol Chem 2013; 288:17631-42. [PMID: 23620587 DOI: 10.1074/jbc.m113.468819] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Insulin-like growth factor I (IGF-I) exerts multiple effects on different retinal cell types in both physiological and pathological conditions. Despite the growth factor's extensively described neuroprotective actions, transgenic mice with increased intraocular levels of IGF-I showed progressive impairment of electroretinographic amplitudes up to complete loss of response, with loss of photoreceptors and bipolar, ganglion, and amacrine neurons. Neurodegeneration was preceded by the overexpression of genes related to retinal stress, acute-phase response, and gliosis, suggesting that IGF-I altered normal retinal homeostasis. Indeed, gliosis and microgliosis were present from an early age in transgenic mice, before other alterations occurred, and were accompanied by signs of oxidative stress and impaired glutamate recycling. Older mice also showed overproduction of pro-inflammatory cytokines. Our results suggest that, when chronically increased, intraocular IGF-I is responsible for the induction of deleterious cellular processes that can lead to neurodegeneration, and they highlight the importance that this growth factor may have in the pathogenesis of conditions such as ischemic or diabetic retinopathy.
Collapse
Affiliation(s)
- Pilar Villacampa
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | | | | | | | | | | | | |
Collapse
|