101
|
Cleghorn WM, Tsakem EL, Song X, Vishnivetskiy SA, Seo J, Chen J, Gurevich EV, Gurevich VV. Progressive reduction of its expression in rods reveals two pools of arrestin-1 in the outer segment with different roles in photoresponse recovery. PLoS One 2011; 6:e22797. [PMID: 21818392 PMCID: PMC3144249 DOI: 10.1371/journal.pone.0022797] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 07/02/2011] [Indexed: 01/10/2023] Open
Abstract
Light-induced rhodopsin signaling is turned off with sub-second kinetics by rhodopsin phosphorylation followed by arrestin-1 binding. To test the availability of the arrestin-1 pool in dark-adapted outer segment (OS) for rhodopsin shutoff, we measured photoresponse recovery rates of mice with arrestin-1 content in the OS of 2.5%, 5%, 60%, and 100% of wild type (WT) level by two-flash ERG with the first (desensitizing) flash at 160, 400, 1000, and 2500 photons/rod. The time of half recovery (t(half)) in WT retinas increases with the intensity of the initial flash, becoming ∼2.5-fold longer upon activation of 2500 than after 160 rhodopsins/rod. Mice with 60% and even 5% of WT arrestin-1 level recovered at WT rates. In contrast, the mice with 2.5% of WT arrestin-1 had a dramatically slower recovery than the other three lines, with the t(half) increasing ∼28 fold between 160 and 2500 rhodopsins/rod. Even after the dimmest flash, the rate of recovery of rods with 2.5% of normal arrestin-1 was two times slower than in other lines, indicating that arrestin-1 level in the OS between 100% and 5% of WT is sufficient for rapid recovery, whereas with lower arrestin-1 the rate of recovery dramatically decreases with increased light intensity. Thus, the OS has two distinct pools of arrestin-1: cytoplasmic and a separate pool comprising ∼2.5% that is not immediately available for rhodopsin quenching. The observed delay suggests that this pool is localized at the periphery, so that its diffusion across the OS rate-limits the recovery. The line with very low arrestin-1 expression is the first where rhodopsin inactivation was made rate-limiting by arrestin manipulation.
Collapse
Affiliation(s)
- Whitney M. Cleghorn
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Elviche L. Tsakem
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Xiufeng Song
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Sergey A. Vishnivetskiy
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jungwon Seo
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jeannie Chen
- Department of Cell and Neurobiology, University of Southern California, Los Angeles, California, United States of America
| | - Eugenia V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
102
|
Abstract
Vision begins with photoisomerization of visual pigments. Thermal energy can complement photon energy to drive photoisomerization, but it also triggers spontaneous pigment activation as noise that interferes with light detection. For half a century, the mechanism underlying this dark noise has remained controversial. We report here a quantitative relation between a pigment's photoactivation energy and its peak-absorption wavelength, λ(max). Using this relation and assuming that pigment activations by light and heat go through the same ground-state isomerization energy barrier, we can predict the relative noise of diverse pigments with multi-vibrational-mode thermal statistics. The agreement between predictions and our measurements strongly suggests that pigment noise arises from canonical isomerization. The predicted high noise for pigments with λ(max) in the infrared presumably explains why they apparently do not exist in nature.
Collapse
Affiliation(s)
- Dong-Gen Luo
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
103
|
Buzhynskyy N, Salesse C, Scheuring S. Rhodopsin is spatially heterogeneously distributed in rod outer segment disk membranes. J Mol Recognit 2011; 24:483-9. [DOI: 10.1002/jmr.1086] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
104
|
Palczewski K. Focus on vision: 3 decades of remarkable contributions to biology and medicine. FASEB J 2011; 25:439-43. [PMID: 21282210 DOI: 10.1096/fj.11-0202ufm] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The FASEB Journal is a pillar among biomedical publications, contributing greatly by disseminating the results of vision research during its lifetime. Progress over this period has been remarkable. George Wald provided the first chemical understanding of the fundamental processes governing vision: the photoisomerization of 11-cis-retinal to all-trans-retinal and the enzymatic regeneration of this chromophore. Contributions of this extraordinary scientist set the stage for discoveries ranging from gross recording of various electrical responses to light to elucidation of signal transduction at a structural level, and from characterization of retinal diseases to successful treatments.
Collapse
Affiliation(s)
- Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106-4965, USA.
| |
Collapse
|
105
|
Mustafi D, Avishai A, Avishai N, Engel A, Heuer A, Palczewski K. Serial sectioning for examination of photoreceptor cell architecture by focused ion beam technology. J Neurosci Methods 2011; 198:70-6. [PMID: 21439323 DOI: 10.1016/j.jneumeth.2011.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/08/2011] [Accepted: 03/09/2011] [Indexed: 01/18/2023]
Abstract
Structurally deciphering complex neural networks requires technology with sufficient resolution to allow visualization of single cells and their intimate surrounding connections. Scanning electron microscopy (SEM), coupled with serial ion ablation (SIA) technology, presents a new avenue to study these networks. SIA allows ion ablation to remove nanometer sections of tissue for SEM imaging, resulting in serial section data collection for three-dimensional reconstruction. Here we highlight a method for preparing retinal tissues for imaging of photoreceptors by SIA-SEM technology. We show that this technique can be used to visualize whole rod photoreceptors and the internal disc elements from wild-type (wt) mice. The distance parameters of the discs and photoreceptors are in good agreement with previous work with other methods. Moreover, we show that large planes of retinal tissue can be imaged at high resolution to display the packing of normal rods. Finally, SIA-SEM imaging of retinal tissue from a mouse model (Nrl⁻/⁻) with phenotypic changes akin to the human disease enhanced S-cone syndrome (ESCS) revealed a structural profile of overall photoreceptor ultrastructure and internal elements that accompany this disease. Overall, this work presents a new method to study photoreceptor cells at high structural resolution that has a broad applicability to the visual neuroscience field.
Collapse
Affiliation(s)
- Debarshi Mustafi
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106-4965, USA
| | | | | | | | | | | |
Collapse
|
106
|
Jastrzebska B, Debinski A, Filipek S, Palczewski K. Role of membrane integrity on G protein-coupled receptors: Rhodopsin stability and function. Prog Lipid Res 2011; 50:267-77. [PMID: 21435354 DOI: 10.1016/j.plipres.2011.03.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Rhodopsin is a prototypical G protein-coupled receptor (GPCR) - a member of the superfamily that shares a similar structural architecture consisting of seven-transmembrane helices and propagates various signals across biological membranes. Rhodopsin is embedded in the lipid bilayer of specialized disk membranes in the outer segments of retinal rod photoreceptor cells where it transmits a light-stimulated signal. Photoactivated rhodopsin then activates a visual signaling cascade through its cognate G protein, transducin or Gt, that results in a neuronal response in the brain. Interestingly, the lipid composition of ROS membranes not only differs from that of the photoreceptor plasma membrane but is critical for visual transduction. Specifically, lipids can modulate structural changes in rhodopsin that occur after photoactivation and influence binding of transducin. Thus, altering the lipid organization of ROS membranes can result in visual dysfunction and blindness.
Collapse
Affiliation(s)
- Beata Jastrzebska
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4965, USA.
| | | | | | | |
Collapse
|
107
|
Song X, Vishnivetskiy SA, Seo J, Chen J, Gurevich EV, Gurevich VV. Arrestin-1 expression level in rods: balancing functional performance and photoreceptor health. Neuroscience 2011; 174:37-49. [PMID: 21075174 PMCID: PMC3020241 DOI: 10.1016/j.neuroscience.2010.11.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 10/31/2010] [Accepted: 11/06/2010] [Indexed: 12/16/2022]
Abstract
In rod photoreceptors, signaling persists as long as rhodopsin remains catalytically active. Phosphorylation by rhodopsin kinase followed by arrestin-1 binding completely deactivates rhodopsin. Timely termination prevents excessive signaling and ensures rapid recovery. Mouse rods express arrestin-1 and rhodopsin at ∼0.8:1 ratio, making arrestin-1 the second most abundant protein in the rod. The biological significance of wild type arrestin-1 expression level remains unclear. Here we investigated the effects of varying arrestin-1 expression on its intracellular distribution in dark-adapted photoreceptors, rod functional performance, recovery kinetics, and morphology. We found that rod outer segments isolated from dark-adapted animals expressing arrestin-1 at wild type or higher level contain much greater fraction of arrestin-1 than previously estimated, 15-25% of the total. The fraction of arrestin-1 residing in the outer segments (OS) in animals with low expression (4-12% of wild type) is much lower, 5-7% of the total. Only 4% of wild type arrestin-1 level in the outer segments was sufficient to maintain near-normal retinal morphology, whereas rapid recovery required at least ∼12%. Supra-physiological arrestin-1 expression improved light sensitivity and facilitated photoresponse recovery, but was detrimental for photoreceptor health, particularly in the peripheral retina. Thus, physiological level of arrestin-1 expression in rods reflects the balance between short-term functional performance of photoreceptors and their long-term health.
Collapse
Affiliation(s)
| | | | | | - Jeannie Chen
- University of Southern California, Los Angeles, California 90033
| | | | | |
Collapse
|
108
|
Cheong R, Levchenko A. Oscillatory signaling processes: the how, the why and the where. Curr Opin Genet Dev 2011; 20:665-9. [PMID: 20971631 DOI: 10.1016/j.gde.2010.08.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 08/05/2010] [Accepted: 08/19/2010] [Indexed: 10/18/2022]
Abstract
Oscillatory processes in biological signal transduction have come under progressively increasing scrutiny in terms of their functional significance and mechanisms of emergence and regulation. Since oscillatory processes can be a by-product of rapid adaptation and can also easily emerge if the feedback underlying adaptive processes is inadvertently artificially enhanced, one needs to exercise caution in both claiming the existence of in vivo oscillations and seeking to assign to them a specific functional significance. Nevertheless, oscillations can be a powerful means of encoding and transferring information both in time and in space, thus possessing important potential advantages for evolutionary selection and stabilization. Thus periodicity in the cell responses to diverse persistent external stimuli might become a more recognized and even expected feature of signaling processes.
Collapse
Affiliation(s)
- Raymond Cheong
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | |
Collapse
|
109
|
Systems biochemistry approaches to vertebrate phototransduction: towards a molecular understanding of disease. Biochem Soc Trans 2011; 38:1275-80. [PMID: 20863298 DOI: 10.1042/bst0381275] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Phototransduction in vertebrates represents a paradigm of signalling pathways, in particular those mediated by G-protein-coupled receptors. The variety of protein-protein, protein-ion and protein-nucleotide interactions makes up an intricate network which is finely regulated by activating-deactivating molecules and chemical modifications. The holistic systems properties of the network allow for typical adaptation mechanisms, which ultimately result in fine adjustments of sensitivity and electrical response of the photoreceptor cells to the broad range of light stimuli. In the present article, we discuss a novel bottom-up strategy to study the phototransduction cascade in rod cells starting from the underlying biochemistry. The resulting network model can be simulated and the predicted dynamic behaviour directly compared with data from electrophysiological experiments performed on a wide range of illumination conditions. The advantage of applying procedures typical of systems theory to a well-studied signalling pathway is also discussed. Finally, the potential application to the study of the molecular basis of retinal diseases is highlighted through a practical example, namely the simulation of conditions related to Leber congenital amaurosis.
Collapse
|
110
|
Abstract
The sense of smell begins with odorant molecules binding to membrane receptors on the cilia of olfactory receptor neurons (ORNs), thereby activating a G protein, G(olf), and the downstream effector enzyme, an adenylyl cyclase (ACIII). Recently, we have found in amphibian ORNs that an odorant-binding event has a low probability of activating sensory transduction at all; even when successful, the resulting unitary response apparently involves a single active Gα(olf)-ACIII molecular complex. This low amplification is in contrast to rod phototransduction in vision, the best-quantified G-protein signaling pathway, where each photoisomerized rhodopsin molecule is well known to produce substantial amplification by activating many G-protein, and hence effector-enzyme, molecules. We have now carried out similar experiments on mouse ORNs, which offer, additionally, the advantage of genetics. Indeed, we found the same low probability of transduction, based on the unitary olfactory response having a fairly constant amplitude and similar kinetics across different odorants and randomly encountered ORNs. Also, consistent with our picture, the unitary response of Gα(olf)(+/-) ORNs was similar to WT in amplitude, although their Gα(olf)-protein expression was only half of normal. Finally, from the action potential firing, we estimated that ≤19 odorant-binding events successfully triggering transduction in a WT mouse ORN will lead to signaling to the brain.
Collapse
|
111
|
RD3, the protein associated with Leber congenital amaurosis type 12, is required for guanylate cyclase trafficking in photoreceptor cells. Proc Natl Acad Sci U S A 2010; 107:21158-63. [PMID: 21078983 DOI: 10.1073/pnas.1010460107] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Guanylate cyclases, GC1 and GC2, are localized in the light-sensitive outer segment compartment of photoreceptor cells, where they play a crucial role in phototransduction by catalyzing the synthesis of cGMP, the second messenger of phototransduction, and regulating intracellular Ca(2+) levels in combination with the cGMP-gated channel. Mutations in GC1 are known to cause Leber congenital amaurosis type 1 (LCA1), a childhood disease associated with severe vision loss. Although the enzymatic and regulatory properties of guanylate cyclases have been studied extensively, the molecular determinants responsible for their trafficking in photoreceptors remain unknown. Here we show that RD3, a protein of unknown function encoded by a gene associated with photoreceptor degeneration in humans with Leber congenital amaurosis type 12 (LCA12), the rd3 mouse, and rcd2 collie, colocalizes and interacts with GC1 and GC2 in rod and cone photoreceptor cells of normal mice. GC1 and GC2 are undetectable in photoreceptors of the rd3 mouse deficient in RD3 by immunofluorescence microscopy. Cell expression studies show that RD3 mediates the export of GC1 from the endoplasmic reticulum to endosomal vesicles, and that the C terminus of GC1 is required for RD3 binding. Our results indicate that photoreceptor degeneration in the rd3 mouse, rcd2 dog, and LCA12 patients is caused by impaired RD3-mediated guanylate cyclase expression and trafficking. The resulting deficiency in cGMP synthesis and the constitutive closure of cGMP-gated channels might cause a reduction in intracellular Ca(2+) to a level below that required for long-term photoreceptor cell survival.
Collapse
|
112
|
Oie T, Yamanami M, Ishibashi-Ueda H, Kanda K, Yaku H, Nakayama Y. In-body optical stimulation formed connective tissue vascular grafts, "biotubes," with many capillaries and elastic fibers. J Artif Organs 2010; 13:235-40. [PMID: 20882309 DOI: 10.1007/s10047-010-0517-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 08/31/2010] [Indexed: 12/16/2022]
Abstract
The autologous biotube, developed by using in-body tissue architecture technology, is one of the most promising small-diameter vascular grafts in regenerative medicine. The walls of the biotubes obtained by a traditional silicone mold-based method were very thin, and this is still the primary obstacle while handling anastomosis, even though these biotubes have adequate pressure resistance ability. This pilot study showed the effect of optical stimulation of subcutaneous tissue formation in the body during the preparation of the biotubes. A blue light-emitting diode (LED) was embedded into a silicone rod as a mold. The biotube was prepared by placing the luminescent molds into the dorsal subcutaneous pouches of a pair of beagles (each weighing ~10 kg) for 2 weeks under photoirradiation. The wall thickness of the obtained biotubes was 506.9 ± 185.7 μm, which was remarkably more than that of the previous biotubes prepared by 2 months of embedding similarly in beagles' subcutaneous pouches (thickness, 77.2 ± 14.8 μm). Many capillaries with smooth muscle cells were infiltrated into the wall and concentrated in the internal layer. Interestingly, the formation of elastic fibers had already started along with collagen fibers, mostly with a regular circumferential orientation. The short-term in-body optical stimulation resulted in the rapid formation of a biotube. These phenomena will allow easy surgical handling and may induce vascular maturation in histology during the acute phase after implantation.
Collapse
Affiliation(s)
- Tomonori Oie
- Division of Medical Engineering and Materials, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan
| | | | | | | | | | | |
Collapse
|
113
|
Swaroop A, Kim D, Forrest D. Transcriptional regulation of photoreceptor development and homeostasis in the mammalian retina. Nat Rev Neurosci 2010; 11:563-76. [PMID: 20648062 PMCID: PMC11346175 DOI: 10.1038/nrn2880] [Citation(s) in RCA: 406] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the developing vertebrate retina, diverse neuronal subtypes originate from multipotent progenitors in a conserved order and are integrated into an intricate laminated architecture. Recent progress in mammalian photoreceptor development has identified a complex relationship between six key transcription-regulatory factors (RORbeta, OTX2, NRL, CRX, NR2E3 and TRbeta2) that determine rod versus M cone or S cone cell fate. We propose a step-wise 'transcriptional dominance' model of photoreceptor cell fate determination, with the S cone representing the default state of a generic photoreceptor precursor. Elucidation of gene-regulatory networks that dictate photoreceptor genesis and homeostasis will have wider implications for understanding the development of nervous system function and for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, Building 6/338, MSC 0610, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
114
|
Molday RS, Zhang K. Defective lipid transport and biosynthesis in recessive and dominant Stargardt macular degeneration. Prog Lipid Res 2010; 49:476-92. [PMID: 20633576 DOI: 10.1016/j.plipres.2010.07.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Stargardt disease is a common inherited macular degeneration characterized by a significant loss in central vision in the first or second decade of life, bilateral atrophic changes in the central retina associated with degeneration of photoreceptors and underlying retinal pigment epithelial cells, and the presence of yellow flecks extending from the macula. Autosomal recessive Stargardt disease, the most common macular dystrophy, is caused by mutations in the gene encoding ABCA4, a photoreceptor ATP binding cassette (ABC) transporter. Biochemical studies together with analysis of abca4 knockout mice and Stargardt patients have implicated ABCA4 as a lipid transporter that facilitates the removal of potentially toxic retinal compounds from photoreceptors following photoexcitation. An autosomal dominant form of Stargardt disease also known as Stargardt-like dystrophy is caused by mutations in a gene encoding ELOVL4, an enzyme that catalyzes the elongation of very long-chain fatty acids in photoreceptors and other tissues. This review focuses on the molecular characterization of ABCA4 and ELOVL4 and their role in photoreceptor cell biology and the pathogenesis of Stargardt disease.
Collapse
Affiliation(s)
- Robert S Molday
- Department of Biochemistry and Molecular Biology, Centre of Macular Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada.
| | | |
Collapse
|
115
|
Restoration of cone vision in the CNGA3-/- mouse model of congenital complete lack of cone photoreceptor function. Mol Ther 2010; 18:2057-63. [PMID: 20628362 DOI: 10.1038/mt.2010.149] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Congenital absence of cone photoreceptor function is associated with strongly impaired daylight vision and loss of color discrimination in human achromatopsia. Here, we introduce viral gene replacement therapy as a potential treatment for this disease in the CNGA3(-/-) mouse model. We show that such therapy can restore cone-specific visual processing in the central nervous system even if cone photoreceptors had been nonfunctional from birth. The restoration of cone vision was assessed at different stages along the visual pathway. Treated CNGA3(-/-) mice were able to generate cone photoreceptor responses and to transfer these signals to bipolar cells. In support, we found morphologically that treated cones expressed regular cyclic nucleotide-gated (CNG) channel complexes and opsins in outer segments, which previously they did not. Moreover, expression of CNGA3 normalized cyclic guanosine monophosphate (cGMP) levels in cones, delayed cone cell death and reduced the inflammatory response of Müller glia cells that is typical of retinal degenerations. Furthermore, ganglion cells from treated, but not from untreated, CNGA3(-/-) mice displayed cone-driven, light-evoked, spiking activity, indicating that signals generated in the outer retina are transmitted to the brain. Finally, we demonstrate that this newly acquired sensory information was translated into cone-mediated, vision-guided behavior.
Collapse
|
116
|
Roger JE, Nellissery J, Kim DS, Swaroop A. Sumoylation of bZIP transcription factor NRL modulates target gene expression during photoreceptor differentiation. J Biol Chem 2010; 285:25637-44. [PMID: 20551322 DOI: 10.1074/jbc.m110.142810] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Development of rod photoreceptors in the mammalian retina is critically dependent on the basic motif-leucine zipper transcription factor NRL (neural retina leucine zipper). In the absence of NRL, photoreceptor precursors in mouse retina produce only cones that primarily express S-opsin. Conversely, ectopic expression of NRL in post-mitotic precursors leads to a rod-only retina. To explore the role of signaling molecules in modulating NRL function, we identified putative sites of post-translational modification in the NRL protein by in silico analysis. Here, we demonstrate the sumoylation of NRL in vivo and in vitro, with two small ubiquitin-like modifier (SUMO) molecules attached to the Lys-20 residue. NRL-K20R and NRL-K20R/K24R sumoylation mutants show reduced transcriptional activation of Nr2e3 and rhodopsin promoters (two direct targets of NRL) in reporter assays when compared with wild-type NRL. Consistent with this, in vivo electroporation of the NRL-K20R/K24R mutant into newborn Nrl(-/-) mouse retina leads to reduced Nr2e3 activation and only a partial rescue of the Nrl(-/-) phenotype in contrast to the wild-type NRL that is able to convert cones to rod photoreceptors. Although PIAS3 (protein inhibitor of activated STAT3), an E3-SUMO ligase implicated in photoreceptor differentiation, can be immunoprecipitated with NRL, there appears to be redundancy in E3 ligases, and PIAS3 does not seem to be essential for NRL sumoylation. Our studies suggest an important role of sumoylation in fine-tuning the activity of NRL and thereby incorporating yet another layer of control in gene regulatory networks involved in photoreceptor development and homeostasis.
Collapse
Affiliation(s)
- Jerome E Roger
- Neurobiology-Neurodegeneration and Repair Laboratory, NEI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
117
|
Abstract
The rate of synaptic transmission between photoreceptors and bipolar cells has been long known to depend on conditions of ambient illumination. However, the molecular mechanisms that mediate and regulate transmission at this ribbon synapse are poorly understood. We conducted electroretinographic recordings from dark- and light-adapted mice lacking the abundant photoreceptor-specific protein phosducin and found that the ON-bipolar cell responses in these animals have a reduced light sensitivity in the dark-adapted state. Additional desensitization of their responses, normally caused by steady background illumination, was also diminished compared with wild-type animals. This effect was observed in both rod- and cone-driven pathways, with the latter affected to a larger degree. The underlying mechanism is likely to be photoreceptor specific because phosducin is not expressed in other retina neurons and transgenic expression of phosducin in rods of phosducin knock-out mice rescued the rod-specific phenotype. The underlying mechanism functions downstream from the phototransduction cascade, as evident from the sensitivity of phototransduction in phosducin knock-out rods being affected to a much lesser degree than b-wave responses. These data indicate that a major regulatory component responsible for setting the sensitivity of signal transmission between photoreceptors and ON-bipolar cells is confined to photoreceptors and that phosducin participates in the underlying molecular mechanism.
Collapse
|
118
|
O'Halloran DM, Altshuler-Keylin S, Lee JI, L'Etoile ND. Regulators of AWC-mediated olfactory plasticity in Caenorhabditis elegans. PLoS Genet 2009; 5:e1000761. [PMID: 20011101 PMCID: PMC2780698 DOI: 10.1371/journal.pgen.1000761] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 11/09/2009] [Indexed: 01/29/2023] Open
Abstract
While most sensory neurons will adapt to prolonged stimulation by down-regulating their responsiveness to the signal, it is not clear which events initiate long-lasting sensory adaptation. Likewise, we are just beginning to understand how the physiology of the adapted cell is altered. Caenorhabditis elegans is inherently attracted to specific odors that are sensed by the paired AWC olfactory sensory neurons. The attraction diminishes if the animal experiences these odors for a prolonged period of time in the absence of food. The AWC neuron responds acutely to odor-exposure by closing calcium channels. While odortaxis requires a Gα subunit protein, cGMP-gated channels, and guanylyl cyclases, adaptation to prolonged odor exposure requires nuclear entry of the cGMP-dependent protein kinase, EGL-4. We asked which candidate members of the olfactory signal transduction pathway promote nuclear entry of EGL-4 and which molecules might induce long-term adaptation downstream of EGL-4 nuclear entry. We found that initiation of long-term adaptation, as assessed by nuclear entry of EGL-4, is dependent on G-protein mediated signaling but is independent of fluxes in calcium levels. We show that long-term adaptation requires polyunsaturated fatty acids (PUFAs) that may act on the transient receptor potential (TRP) channel type V OSM-9 downstream of EGL-4 nuclear entry. We also present evidence that high diacylglycerol (DAG) levels block long-term adaptation without affecting EGL-4 nuclear entry. Our analysis provides a model for the process of long-term adaptation that occurs within the AWC neuron of C. elegans: G-protein signaling initiates long-lasting olfactory adaptation by promoting the nuclear entry of EGL-4, and once EGL-4 has entered the nucleus, processes such as PUFA activation of the TRP channel OSM-9 may dampen the output of the AWC neuron. Caenorhabditis elegans is capable of sensing a variety of attractive volatile compounds. These odors are the worm's “best guesses” as to how to track down food. Employing calculated approximations underlies a foraging strategy that is open to failure. When C. elegans track an odor which proves unrewarding, they must modify their behavior based on this experience. They also need to prevent over-stimulating their neurons. To accomplish this, C. elegans olfactory sensory neurons adapt to odors after a sustained exposure to odor in the absence of food. Within the pair of primary odor-sensory neurons, termed the AWCs, adaptation requires the cGMP-dependent protein kinase G (PKG), EGL-4. Exposing animals to AWC–sensed odors for approximately 60 minutes results in a long-lasting (∼3 hour) adaptation that requires the nuclear translocation of EGL-4. To understand how sensory transduction and desensitization machinery converge to achieve olfactory adaptation, we asked whether odor-induced EGL-4 nuclear accumulation was affected by gene mutations that abrogate either odor sensation of or adaptation to AWC–sensed odors. We find that G-protein signaling represents the integration point where primary odor sensation and odor adaptation pathways diverge. PUFA signaling, calcium, and decreased diacylglycerol all dampen the response of the AWC neuron to odor downstream of this divergence.
Collapse
Affiliation(s)
- Damien M. O'Halloran
- Center for Neuroscience, University of California Davis, Davis, California, United States of America
| | - Svetlana Altshuler-Keylin
- Center for Neuroscience, University of California Davis, Davis, California, United States of America
| | - Jin I. Lee
- Center for Neuroscience, University of California Davis, Davis, California, United States of America
| | - Noelle D. L'Etoile
- Center for Neuroscience, University of California Davis, Davis, California, United States of America
- Department of Psychiatry and Behavioral Sciences University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
119
|
Ca(2+)-modulated vision-linked ROS-GC guanylate cyclase transduction machinery. Mol Cell Biochem 2009; 334:105-15. [PMID: 19943184 DOI: 10.1007/s11010-009-0330-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 11/04/2009] [Indexed: 02/02/2023]
Abstract
Vertebrate phototransduction depends on the reciprocal relationship between two-second messengers, cyclic GMP and Ca(2+). The concentration of both is reciprocally regulated including the dynamic synthesis of cyclic GMP by a membrane bound guanylate cyclase. Different from hormone receptor guanylate cyclases, the cyclases operating in phototransduction are regulated by the intracellular Ca(2+)-concentration via small Ca(2+)-binding proteins. Based on the site of their expression and their Ca(2+) modulation, this sub-branch of the cyclase family was named sensory guanylate cyclases, of which the retina specific forms are named ROS-GCs (rod outer segment guanylate cyclases). This review focuses on the structure and function of the ROS-GC subfamily present in the mammalian retinal neurons: photoreceptors and inner layers of the retinal neurons. Portions and excerpts of the review are from a previous chapter (Curr Top Biochem Res 6:111-144, 2004).
Collapse
|
120
|
RGS9 concentration matters in rod phototransduction. Biophys J 2009; 97:1538-47. [PMID: 19751658 DOI: 10.1016/j.bpj.2009.06.037] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 06/18/2009] [Accepted: 06/23/2009] [Indexed: 11/22/2022] Open
Abstract
The transduction of light by retinal rods and cones is effected by homologous G-protein cascades whose rates of activation and deactivation determine the sensitivity and temporal resolution of photoreceptor signaling. In mouse rods, the rate-limiting step of deactivation is hydrolysis of GTP by the G-protein-effector complex, catalyzed by the RGS9 complex. Here, we incorporate a "Michaelis module" describing the RGS9 reaction into the conventional scheme for phototransduction and show that this augmented scheme can account precisely for the dominant recovery rate of intact rods in which RGS9 expression varies over a 20-fold range. Furthermore, by screening the parameter space of the scheme with maximum-likelihood methodology, we tested specific hypotheses about the rate constant for rhodopsin deactivation, and about the forward, reverse, and catalytic constants for RGS9-mediated G-protein deactivation. These tests reliably exclude lifetimes > approximately 50 ms for rhodopsin, and reveal that the dominant time constant of rod photoresponse recovery is 1/(V(max)/K(m)) for the RGS9 reaction, with k(cat)/K(m) approximately = 0.04 microm(2) s(-1) and k(cat) > 35 s(-1) (or K(m) > 840 microm(-2)). All together, the new kinetic scheme and analysis explain how and why RGS9 concentration matters in rod phototransduction, and they provide a framework for understanding the molecular mechanisms that rate-limit deactivation in other G-protein systems.
Collapse
|
121
|
Abstract
Seeing begins in the photoreceptors, where light is absorbed and signaled to the nervous system. Throughout the animal kingdom, photoreceptors are diverse in design and purpose. Nonetheless, phototransduction-the mechanism by which absorbed photons are converted into an electrical response-is highly conserved and based almost exclusively on a single class of photoproteins, the opsins. In this Review, we survey the G protein-coupled signaling cascades downstream from opsins in photoreceptors across vertebrate and invertebrate species, noting their similarities as well as differences.
Collapse
Affiliation(s)
- King-Wai Yau
- Solomon H. Snyder Department of Neuroscience and Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
122
|
Dell'Orco D, Schmidt H, Mariani S, Fanelli F. Network-level analysis of light adaptation in rod cells under normal and altered conditions. MOLECULAR BIOSYSTEMS 2009; 5:1232-46. [PMID: 19756313 DOI: 10.1039/b908123b] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Photoreceptor cells finely adjust their sensitivity and electrical response according to changes in light stimuli as a direct consequence of the feedback and regulation mechanisms in the phototransduction cascade. In this study, we employed a systems biology approach to develop a dynamic model of vertebrate rod phototransduction that accounts for the details of the underlying biochemistry. Following a bottom-up strategy, we first reproduced the results of a robust model developed by Hamer et al. (Vis. Neurosci., 2005, 22(4), 417), and then added a number of additional cascade reactions including: (a) explicit reactions to simulate the interaction between the activated effector and the regulator of G-protein signalling (RGS); (b) a reaction for the reformation of the G-protein from separate subunits; (c) a reaction for rhodopsin (R) reconstitution from the association of the opsin apoprotein with the 11-cis-retinal chromophore; (d) reactions for the slow activation of the cascade by opsin. The extended network structure successfully reproduced a number of experimental conditions that were inaccessible to prior models. With a single set of parameters the model was able to predict qualitative and quantitative features of rod photoresponses to light stimuli ranging over five orders of magnitude, in normal and altered conditions, including genetic manipulations of the cascade components. In particular, the model reproduced the salient dynamic features of the rod from Rpe65(-/-) animals, a well established model for Leber congenital amaurosis and vitamin A deficiency. The results of this study suggest that a systems-level approach can help to unravel the adaptation mechanisms in normal and in disease-associated conditions on a molecular basis.
Collapse
Affiliation(s)
- Daniele Dell'Orco
- Department of Chemistry and Dulbecco Telethon Institute, University of Modena and Reggio Emilia Via Campi 183, 41100 Modena, Italy.
| | | | | | | |
Collapse
|
123
|
The R7 RGS protein family: multi-subunit regulators of neuronal G protein signaling. Cell Biochem Biophys 2009; 54:33-46. [PMID: 19521673 DOI: 10.1007/s12013-009-9052-9] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 05/27/2009] [Indexed: 01/09/2023]
Abstract
G protein-coupled receptor signaling pathways mediate the transmission of signals from the extracellular environment to the generation of cellular responses, a process that is critically important for neurons and neurotransmitter action. The ability to promptly respond to rapidly changing stimulation requires timely inactivation of G proteins, a process controlled by a family of specialized proteins known as regulators of G protein signaling (RGS). The R7 group of RGS proteins (R7 RGS) has received special attention due to their pivotal roles in the regulation of a range of crucial neuronal processes such as vision, motor control, reward behavior, and nociception in mammals. Four proteins in this group, RGS6, RGS7, RGS9, and RGS11, share a common molecular organization of three modules: (i) the catalytic RGS domain, (ii) a GGL domain that recruits G beta(5), an outlying member of the G protein beta subunit family, and (iii) a DEP/DHEX domain that mediates interactions with the membrane anchor proteins R7BP and R9AP. As heterotrimeric complexes, R7 RGS proteins not only associate with and regulate a number of G protein signaling pathway components, but have also been found to form complexes with proteins that are not traditionally associated with G protein signaling. This review summarizes our current understanding of the biology of the R7 RGS complexes including their structure/functional organization, protein-protein interactions, and physiological roles.
Collapse
|
124
|
Chapter 7 Biology and Functions of the RGS9 Isoforms. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 86:205-27. [DOI: 10.1016/s1877-1173(09)86007-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
125
|
Primary processes in sensory cells: current advances. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2008; 195:1-19. [PMID: 19011871 DOI: 10.1007/s00359-008-0389-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2008] [Revised: 10/25/2008] [Accepted: 10/25/2008] [Indexed: 12/20/2022]
Abstract
In the course of evolution, the strong and unremitting selective pressure on sensory performance has driven the acuity of sensory organs to its physical limits. As a consequence, the study of primary sensory processes illustrates impressively how far a physiological function can be improved if the survival of a species depends on it. Sensory cells that detect single-photons, single molecules, mechanical motions on a nanometer scale, or incredibly small fluctuations of electromagnetic fields have fascinated physiologists for a long time. It is a great challenge to understand the primary sensory processes on a molecular level. This review points out some important recent developments in the search for primary processes in sensory cells that mediate touch perception, hearing, vision, taste, olfaction, as well as the analysis of light polarization and the orientation in the Earth's magnetic field. The data are screened for common transduction strategies and common transduction molecules, an aspect that may be helpful for researchers in the field.
Collapse
|