101
|
McGoldrick P, Joyce PI, Fisher EMC, Greensmith L. Rodent models of amyotrophic lateral sclerosis. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1832:1421-36. [PMID: 23524377 DOI: 10.1016/j.bbadis.2013.03.012] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterised by the degeneration of upper and lower motor neurons. Recent advances in our understanding of some of the genetic causes of ALS, such as mutations in SOD1, TARDBP, FUS and VCP have led to the generation of rodent models of the disease, as a strategy to help our understanding of the pathophysiology of ALS and to assist in the development of therapeutic strategies. This review provides detailed descriptions of TDP-43, FUS and VCP models of ALS, and summarises potential therapeutics which have been recently trialled in rodent models of the disease. This article is part of a Special Issue entitled: Animal Models of Disease.
Collapse
Affiliation(s)
- Philip McGoldrick
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, WC1N 3BG, UK.
| | | | | | | |
Collapse
|
102
|
Varabyova A, Topf U, Kwiatkowska P, Wrobel L, Kaus-Drobek M, Chacinska A. Mia40 and MINOS act in parallel with Ccs1 in the biogenesis of mitochondrial Sod1. FEBS J 2013; 280:4943-59. [PMID: 23802566 DOI: 10.1111/febs.12409] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/23/2013] [Accepted: 06/24/2013] [Indexed: 11/26/2022]
Abstract
Superoxide dismutase 1 (Sod1) is a major superoxide-scavenging enzyme in the eukaryotic cell, and is localized in the cytosol and intermembrane space of mitochondria. Sod1 requires its specific chaperone Ccs1 and disulfide bond formation in order to be retained in the intermembrane space. Our study identified a pool of Sod1 that is present in the reduced state in mitochondria that lack Ccs1. We created yeast mutants with mutations in highly conserved amino acid residues corresponding to human mutations that cause amyotrophic lateral sclerosis, and found that some of the mutant proteins were present in the reduced state. These mutant variants of Sod1 were efficiently localized in mitochondria. Localization of the reduced, Ccs1-independent forms of Sod1 relied on Mia40, an essential component of the mitochondrial intermembrane space import and assembly pathway that is responsible for the biogenesis of intermembrane space proteins. Furthermore, the mitochondrial inner membrane organizing system (MINOS), which is responsible for mitochondrial membrane architecture, differentially modulated the presence of reduced Sod1 in mitochondria. Thus, we identified novel mitochondrial players that are possibly involved in pathological conditions caused by changes in the biogenesis of Sod1.
Collapse
Affiliation(s)
- Aksana Varabyova
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
103
|
Mitochondria and ALS: Implications from novel genes and pathways. Mol Cell Neurosci 2013; 55:44-9. [DOI: 10.1016/j.mcn.2012.06.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 06/05/2012] [Accepted: 06/06/2012] [Indexed: 12/13/2022] Open
|
104
|
Huntington's disease: underlying molecular mechanisms and emerging concepts. Trends Biochem Sci 2013; 38:378-85. [PMID: 23768628 DOI: 10.1016/j.tibs.2013.05.003] [Citation(s) in RCA: 255] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/06/2013] [Accepted: 05/17/2013] [Indexed: 11/22/2022]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder for which no disease modifying treatments exist. Many molecular changes and cellular consequences that underlie HD are observed in other neurological disorders, suggesting that common pathological mechanisms and pathways may exist. Recent findings have enhanced our understanding of the way cells regulate and respond to expanded polyglutamine proteins such as mutant huntingtin. These studies demonstrate that in addition to effects on folding, aggregation, and clearance pathways, a general transcriptional mechanism also dictates the expression of polyglutamine proteins. Here, we summarize the key pathways and networks that are important in HD in the context of recent therapeutic advances and highlight how their interplay may be of relevance to other protein folding disorders.
Collapse
|
105
|
Antinone SE, Ghadge GD, Lam TT, Wang L, Roos RP, Green WN. Palmitoylation of superoxide dismutase 1 (SOD1) is increased for familial amyotrophic lateral sclerosis-linked SOD1 mutants. J Biol Chem 2013; 288:21606-17. [PMID: 23760509 DOI: 10.1074/jbc.m113.487231] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mutations in Cu,Zn-superoxide dismutase (mtSOD1) cause familial amyotrophic lateral sclerosis (FALS), a neurodegenerative disease resulting from motor neuron degeneration. Here, we demonstrate that wild type SOD1 (wtSOD1) undergoes palmitoylation, a reversible post-translational modification that can regulate protein structure, function, and localization. SOD1 palmitoylation was confirmed by multiple techniques, including acyl-biotin exchange, click chemistry, cysteine mutagenesis, and mass spectrometry. Mass spectrometry and cysteine mutagenesis demonstrated that cysteine residue 6 was the primary site of palmitoylation. The palmitoylation of FALS-linked mtSOD1s (A4V and G93A) was significantly increased relative to that of wtSOD1 expressed in HEK cells and a motor neuron cell line. The palmitoylation of FALS-linked mtSOD1s (G93A and G85R) was also increased relative to that of wtSOD1 when assayed from transgenic mouse spinal cords. We found that the level of SOD1 palmitoylation correlated with the level of membrane-associated SOD1, suggesting a role for palmitoylation in targeting SOD1 to membranes. We further observed that palmitoylation occurred predominantly on disulfide-reduced as opposed to disulfide-bonded SOD1, suggesting that immature SOD1 is the primarily palmitoylated species. Increases in SOD1 disulfide bonding and maturation with increased copper chaperone for SOD1 expression caused a decrease in wtSOD1 palmitoylation. Copper chaperone for SOD1 overexpression decreased A4V palmitoylation less than wtSOD1 and had little effect on G93A mtSOD1 palmitoylation. These findings suggest that SOD1 palmitoylation occurs prior to disulfide bonding during SOD1 maturation and that palmitoylation is increased when disulfide bonding is delayed or decreased as observed for several mtSOD1s.
Collapse
Affiliation(s)
- Sarah E Antinone
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
106
|
Pickles S, Destroismaisons L, Peyrard SL, Cadot S, Rouleau GA, Brown RH, Julien JP, Arbour N, Vande Velde C. Mitochondrial damage revealed by immunoselection for ALS-linked misfolded SOD1. Hum Mol Genet 2013; 22:3947-59. [PMID: 23736301 DOI: 10.1093/hmg/ddt249] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mutant superoxide dismutase 1 (SOD1) selectively associates with spinal cord mitochondria in rodent models of SOD1-mediated amyotrophic lateral sclerosis. A portion of mutant SOD1 exists in a non-native/misfolded conformation that is selectively recognized by conformational antibodies. Misfolded SOD1 is common to all mutant SOD1 models, is uniquely found in areas affected by the disease and is considered to mediate toxicity. We report that misfolded SOD1 recognized by the antibody B8H10 is present in greater abundance in mitochondrial fractions of SOD1(G93A) rat spinal cords compared with oxidized SOD1, as recognized by the C4F6 antibody. Using a novel flow cytometric assay, we detect an age-dependent deposition of B8H10-reactive SOD1 on spinal cord mitochondria from both SOD1(G93A) rats and SOD1(G37R) mice. Mitochondrial damage, including increased mitochondrial volume, excess superoxide production and increased exposure of the toxic BH3 domain of Bcl-2, tracks positively with the presence of misfolded SOD1. Lastly, B8H10 reactive misfolded SOD1 is present in the lysates and mitochondrial fractions of lymphoblasts derived from ALS patients carrying SOD1 mutations, but not in controls. Together, these results highlight misfolded SOD1 as common to two ALS rodent animal models and familial ALS patient lymphoblasts with four different SOD1 mutations. Studies in the animal models point to a role for misfolded SOD1 in mitochondrial dysfunction in ALS pathogenesis.
Collapse
|
107
|
Fuchs A, Kutterer S, Mühling T, Duda J, Schütz B, Liss B, Keller BU, Roeper J. Selective mitochondrial Ca2+ uptake deficit in disease endstage vulnerable motoneurons of the SOD1G93A mouse model of amyotrophic lateral sclerosis. J Physiol 2013; 591:2723-45. [PMID: 23401612 PMCID: PMC3678052 DOI: 10.1113/jphysiol.2012.247981] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 02/04/2013] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis is a progressive neurodegenerative disease that targets some somatic motoneuron populations, while others, e.g. those of the oculomotor system, are spared. The pathophysiological basis of this pattern of differential vulnerability, which is preserved in a transgenic mouse model of amyotrophic lateral sclerosis (SOD1(G93A)), and the mechanism of neurodegeneration in general are unknown. Hyperexcitability and calcium dysregulation have been proposed by others on the basis of data from juvenile mice that are, however, asymptomatic. No studies have been done with symptomatic mice following disease progression to the disease endstage. Here, we developed a new brainstem slice preparation for whole-cell patch-clamp recordings and single cell fura-2 calcium imaging to study motoneurons in adult wild-type and SOD1(G93A) mice up to disease endstage. We analysed disease-stage-dependent electrophysiological properties and intracellular Ca(2+) handling of vulnerable hypoglossal motoneurons in comparison to resistant oculomotor neurons. Thereby, we identified a transient hyperexcitability in presymptomatic but not in endstage vulnerable motoneurons. Additionally, we revealed a remodelling of intracellular Ca(2+) clearance within vulnerable but not resistant motoneurons at disease endstage characterised by a reduction of uniporter-dependent mitochondrial Ca(2+) uptake and enhanced Ca(2+) extrusion across the plasma membrane. Our study challenged the notion that hyperexcitability is a direct cause of neurodegeneration in SOD1(G93A) mice, but molecularly identified a Ca(2+) clearance deficit in motoneurons and an adaptive Ca(2+) handling strategy that might be targeted by future therapeutic strategies.
Collapse
Affiliation(s)
- Andrea Fuchs
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Retzius Väg 8, 17177 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Parone PA, Da Cruz S, Han JS, McAlonis-Downes M, Vetto AP, Lee SK, Tseng E, Cleveland DW. Enhancing mitochondrial calcium buffering capacity reduces aggregation of misfolded SOD1 and motor neuron cell death without extending survival in mouse models of inherited amyotrophic lateral sclerosis. J Neurosci 2013; 33:4657-71. [PMID: 23486940 PMCID: PMC3711648 DOI: 10.1523/jneurosci.1119-12.2013] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 12/18/2012] [Accepted: 12/20/2012] [Indexed: 11/21/2022] Open
Abstract
Mitochondria have been proposed as targets for toxicity in amyotrophic lateral sclerosis (ALS), a progressive, fatal adult-onset neurodegenerative disorder characterized by the selective loss of motor neurons. A decrease in the capacity of spinal cord mitochondria to buffer calcium (Ca(2+)) has been observed in mice expressing ALS-linked mutants of SOD1 that develop motor neuron disease with many of the key pathological hallmarks seen in ALS patients. In mice expressing three different ALS-causing SOD1 mutants, we now test the contribution of the loss of mitochondrial Ca(2+)-buffering capacity to disease mechanism(s) by eliminating ubiquitous expression of cyclophilin D, a critical regulator of Ca(2+)-mediated opening of the mitochondrial permeability transition pore that determines mitochondrial Ca(2+) content. A chronic increase in mitochondrial buffering of Ca(2+) in the absence of cyclophilin D was maintained throughout disease course and was associated with improved mitochondrial ATP synthesis, reduced mitochondrial swelling, and retention of normal morphology. This was accompanied by an attenuation of glial activation, reduction in levels of misfolded SOD1 aggregates in the spinal cord, and a significant suppression of motor neuron death throughout disease. Despite this, muscle denervation, motor axon degeneration, and disease progression and survival were unaffected, thereby eliminating mutant SOD1-mediated loss of mitochondrial Ca(2+) buffering capacity, altered mitochondrial morphology, motor neuron death, and misfolded SOD1 aggregates, as primary contributors to disease mechanism for fatal paralysis in these models of familial ALS.
Collapse
Affiliation(s)
- Philippe A. Parone
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093
| | - Sandrine Da Cruz
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093
| | - Joo Seok Han
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093
| | - Melissa McAlonis-Downes
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093
| | - Anne P. Vetto
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093
| | - Sandra K. Lee
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093
| | - Eva Tseng
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093
| | - Don W. Cleveland
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093
| |
Collapse
|
109
|
Balaker AE, Ishiyama P, Lopez IA, Ishiyama G, Ishiyama A. Immunocytochemical Localization of the Translocase of the Outer Mitochondrial Membrane (Tom20) in the Human Cochlea. Anat Rec (Hoboken) 2012; 296:326-32. [DOI: 10.1002/ar.22622] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
110
|
Capitanio D, Vasso M, Ratti A, Grignaschi G, Volta M, Moriggi M, Daleno C, Bendotti C, Silani V, Gelfi C. Molecular signatures of amyotrophic lateral sclerosis disease progression in hind and forelimb muscles of an SOD1(G93A) mouse model. Antioxid Redox Signal 2012; 17:1333-50. [PMID: 22563797 PMCID: PMC3437050 DOI: 10.1089/ars.2012.4524] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIMS This study utilized proteomics, biochemical and enzymatic assays, and bioinformatics tools that characterize protein alterations in hindlimb (gastrocnemius) and forelimb (triceps) muscles in an amyotrophic lateral sclerosis (ALS) (SOD1(G93A)) mouse model. The aim of this study was to identify the key molecular signatures involved in disease progression. RESULTS Both muscle types have in common an early down-regulation of complex I. In the hindlimb, early increases in oxidative metabolism are associated with uncoupling of the respiratory chain, an imbalance of NADH/NAD(+), and an increase in reactive oxygen species (ROS) production. The NADH overflow due to complex I inactivation induces TCA flux perturbations, leading to citrate production, triggering fatty acid synthase (FAS), and lipid peroxidation. These early metabolic changes in the hindlimb followed by sustained and comparatively higher metabolic and cytoskeletal derangements over time precede and may catalyze the progressive muscle wasting in this muscle at the late stage. By contrast, in the forelimb, there is an early down-regulation of complexes I and II that is associated with the reduction of oxidative metabolism, which promotes metabolic homeostasis that is accompanied by a greater cytoskeletal stabilization response. However, these early compensatory systems diminish by a later time point. INNOVATION The identification of potential early- and late-stage disease molecular signatures in an ALS model: muscle albumin, complex I, complex II, citrate synthase, FAS, and phosphoinositide 3-kinase functions as diagnostic markers and peroxisome proliferator-activated receptor γ co-activator 1α (PGC1α), Sema-3A, and Rho-associated protein kinase 1 (ROCK1) play the role of disease progression markers. CONCLUSION The differing pattern of cellular metabolism and cytoskeletal derangements in the hind and forelimb identifies the potential dysmetabolism/hypermetabolism molecular signatures associated with disease progression, which may serve as diagnostic/disease progression markers in ALS patients.
Collapse
Affiliation(s)
- Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, Segrate, Italy
- Institute of Molecular Bioimaging and Physiology, National Research Council, Segrate, Italy
| | - Michele Vasso
- Department of Biomedical Sciences for Health, University of Milan, Segrate, Italy
- Institute of Molecular Bioimaging and Physiology, National Research Council, Segrate, Italy
| | - Antonia Ratti
- Department of Neurology and Laboratory of Neuroscience, “Dino Ferrari” Center, University of Milan, IRCCS Italian Institute for Auxology, Milan, Italy
| | - Giuliano Grignaschi
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Manuela Volta
- Department of Neurology and Laboratory of Neuroscience, “Dino Ferrari” Center, University of Milan, IRCCS Italian Institute for Auxology, Milan, Italy
| | - Manuela Moriggi
- Department of Biomedical Sciences for Health, University of Milan, Segrate, Italy
| | - Cristina Daleno
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Caterina Bendotti
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, “Dino Ferrari” Center, University of Milan, IRCCS Italian Institute for Auxology, Milan, Italy
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, Segrate, Italy
- Institute of Molecular Bioimaging and Physiology, National Research Council, Segrate, Italy
| |
Collapse
|
111
|
Cozzolino M, Pesaresi MG, Gerbino V, Grosskreutz J, Carrì MT. Amyotrophic lateral sclerosis: new insights into underlying molecular mechanisms and opportunities for therapeutic intervention. Antioxid Redox Signal 2012; 17:1277-330. [PMID: 22413952 DOI: 10.1089/ars.2011.4328] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent years have witnessed a renewed interest in the pathogenic mechanisms of amyotrophic lateral sclerosis (ALS), a late-onset progressive degeneration of motor neurons. The discovery of new genes associated with the familial form of the disease, along with a deeper insight into pathways already described for this disease, has led scientists to reconsider previous postulates. While protein misfolding, mitochondrial dysfunction, oxidative damage, defective axonal transport, and excitotoxicity have not been dismissed, they need to be re-examined as contributors to the onset or progression of ALS in the light of the current knowledge that the mutations of proteins involved in RNA processing, apparently unrelated to the previous "old partners," are causative of the same phenotype. Thus, newly envisaged models and tools may offer unforeseen clues on the etiology of this disease and hopefully provide the key to treatment.
Collapse
|
112
|
Chen L, Liu T, Tran A, Lu X, Tomilov AA, Davies V, Cortopassi G, Chiamvimonvat N, Bers DM, Votruba M, Knowlton AA. OPA1 mutation and late-onset cardiomyopathy: mitochondrial dysfunction and mtDNA instability. J Am Heart Assoc 2012; 1:e003012. [PMID: 23316298 PMCID: PMC3541627 DOI: 10.1161/jaha.112.003012] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 07/31/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND Mitochondrial fusion protein mutations are a cause of inherited neuropathies such as Charcot-Marie-Tooth disease and dominant optic atrophy. Previously we reported that the fusion protein optic atrophy 1 (OPA1) is decreased in heart failure. METHODS AND RESULTS We investigated cardiac function, mitochondrial function, and mtDNA stability in a mouse model of the disease with OPA1 mutation. The homozygous mutation is embryonic lethal. Heterozygous OPA(+/-) mice exhibit reduced mtDNA copy number and decreased expression of nuclear antioxidant genes at 3 to 4 months. Although initial cardiac function was normal, at 12 months the OPA1(+/-) mouse hearts had decreased fractional shortening, cardiac output, and myocyte contraction. This coincided with the onset of blindness. In addition to small fragmented mitochondria, aged OPA1(+/-) mice had impaired cardiac mitochondrial function compared with wild-type littermates. CONCLUSIONS OPA1 mutation leads to deficiency in antioxidant transcripts, increased reactive oxygen species, mitochondrial dysfunction, and late-onset cardiomyopathy.
Collapse
Affiliation(s)
- Le Chen
- Department of Medicine, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Christie DA, Mitsopoulos P, Blagih J, Dunn SD, St-Pierre J, Jones RG, Hatch GM, Madrenas J. Stomatin-like Protein 2 Deficiency in T Cells Is Associated with Altered Mitochondrial Respiration and Defective CD4+T Cell Responses. THE JOURNAL OF IMMUNOLOGY 2012; 189:4349-60. [DOI: 10.4049/jimmunol.1103829] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
114
|
Hsueh KW, Hsieh AC, Harn HJ, Lin SZ. Stem cell therapy in amyotrophic lateral sclerosis. Biomedicine (Taipei) 2012. [DOI: 10.1016/j.biomed.2012.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
115
|
Altered gene expression, mitochondrial damage and oxidative stress: converging routes in motor neuron degeneration. Int J Cell Biol 2012; 2012:908724. [PMID: 22675362 PMCID: PMC3362844 DOI: 10.1155/2012/908724] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 03/15/2012] [Indexed: 02/07/2023] Open
Abstract
Motor neuron diseases (MNDs) are a rather heterogeneous group of diseases, with either sporadic or genetic origin or both, all characterized by the progressive degeneration of motor neurons. At the cellular level, MNDs share features such as protein misfolding and aggregation, mitochondrial damage and energy deficit, and excitotoxicity and calcium mishandling. This is particularly well demonstrated in ALS, where both sporadic and familial forms share the same symptoms and pathological phenotype, with a prominent role for mitochondrial damage and resulting oxidative stress. Based on recent data, however, altered control of gene expression seems to be a most relevant, and previously overlooked, player in MNDs. Here we discuss which may be the links that make pathways apparently as different as altered gene expression, mitochondrial damage, and oxidative stress converge to generate a similar motoneuron-toxic phenotype.
Collapse
|
116
|
Da Cruz S, Parone PA, Lopes VS, Lillo C, McAlonis-Downes M, Lee SK, Vetto AP, Petrosyan S, Marsala M, Murphy AN, Williams DS, Spiegelman BM, Cleveland DW. Elevated PGC-1α activity sustains mitochondrial biogenesis and muscle function without extending survival in a mouse model of inherited ALS. Cell Metab 2012; 15:778-86. [PMID: 22560226 PMCID: PMC3565468 DOI: 10.1016/j.cmet.2012.03.019] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 02/17/2012] [Accepted: 03/20/2012] [Indexed: 11/30/2022]
Abstract
The transcriptional coactivator PGC-1α induces multiple effects on muscle, including increased mitochondrial mass and activity. Amyotrophic lateral sclerosis (ALS) is a progressive, fatal, adult-onset neurodegenerative disorder characterized by selective loss of motor neurons and skeletal muscle degeneration. An early event is thought to be denervation-induced muscle atrophy accompanied by alterations in mitochondrial activity and morphology within muscle. We now report that elevation of PGC-1α levels in muscles of mice that develop fatal paralysis from an ALS-causing SOD1 mutant elevates PGC-1α-dependent pathways throughout disease course. Mitochondrial biogenesis and activity are maintained through end-stage disease, accompanied by retention of muscle function, delayed muscle atrophy, and significantly improved muscle endurance even at late disease stages. However, survival was not extended. Therefore, muscle is not a primary target of mutant SOD1-mediated toxicity, but drugs increasing PGC-1α activity in muscle represent an attractive therapy for maintaining muscle function during progression of ALS.
Collapse
Affiliation(s)
- Sandrine Da Cruz
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Mitochondria in motor nerve terminals: function in health and in mutant superoxide dismutase 1 mouse models of familial ALS. J Bioenerg Biomembr 2012; 43:581-6. [PMID: 22089637 DOI: 10.1007/s10863-011-9392-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Mitochondria contribute to neuronal function not only via their ability to generate ATP, but also via their ability to buffer large Ca(2+) loads. This review summarizes evidence that mitochondrial Ca(2+) sequestration is especially important for sustaining the function of vertebrate motor nerve terminals during repetitive stimulation. Motor terminal mitochondria can sequester large amounts of Ca(2+) because they have mechanisms for limiting both the mitochondrial depolarization and the increase in matrix free [Ca(2+)] associated with Ca(2+) influx. In mice expressing mutations of human superoxide dismutase -1 (SOD1) that cause some cases of familial amyotrophic lateral sclerosis (fALS), motor terminals degenerate well before the death of motor neuron cell bodies. This review presents evidence for early and progressive mitochondrial dysfunction in motor terminals of mutant SOD1 mice (G93A, G85R). This dysfunction would impair mitochondrial ability to sequester stimulation-associated Ca(2+) loads, and thus likely contributes to the early degeneration of motor terminals.
Collapse
|
118
|
Abstract
Mutations in SOD1, causative for a subset of familial ALS cases, are associated with the formation of non-normal SOD1 conformers. Recent studies have defined this pool of SOD1 as misfolded and new antibodies have been developed to selectively detect misfolded SOD1 in vivo and in vitro. We will review these new tools and expand on the evidence demonstrating mitochondria as a common intersecting point for misfolded SOD1.
Collapse
Affiliation(s)
- Sarah Pickles
- Centre d'excellence en neuromique de l'Université de Montréal, Centre de recherche du CHUM (CRCHUM), Montréal, QC, Canada
| | | |
Collapse
|
119
|
Zuhl AM, Mohr JT, Bachovchin DA, Niessen S, Hsu KL, Berlin JM, Dochnahl M, López-Alberca MP, Fu GC, Cravatt BF. Competitive activity-based protein profiling identifies aza-β-lactams as a versatile chemotype for serine hydrolase inhibition. J Am Chem Soc 2012; 134:5068-71. [PMID: 22400490 DOI: 10.1021/ja300799t] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Serine hydrolases are one of the largest and most diverse enzyme classes in Nature. Most serine hydrolases lack selective inhibitors, which are valuable probes for assigning functions to these enzymes. We recently discovered a set of aza-β-lactams (ABLs) that act as potent and selective inhibitors of the mammalian serine hydrolase protein-phosphatase methylesterase-1 (PME-1). The ABLs inactivate PME-1 by covalent acylation of the enzyme's serine nucleophile, suggesting that they could offer a general scaffold for serine hydrolase inhibitor discovery. Here, we have tested this hypothesis by screening ABLs more broadly against cell and tissue proteomes by competitive activity-based protein profiling (ABPP), leading to the discovery of lead inhibitors for several serine hydrolases, including the uncharacterized enzyme α,β-hydrolase domain-containing 10 (ABHD10). ABPP-guided medicinal chemistry yielded a compound ABL303 that potently (IC(50) ≈ 30 nM) and selectively inactivated ABHD10 in vitro and in living cells. A comparison of optimized inhibitors for PME-1 and ABHD10 indicates that modest structural changes that alter steric bulk can tailor the ABL to selectively react with distinct, distantly related serine hydrolases. Our findings, taken together, designate the ABL as a versatile reactive group for creating first-in-class serine hydrolase inhibitors.
Collapse
Affiliation(s)
- Andrea M Zuhl
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Mitochondrial dynamics and bioenergetic dysfunction is associated with synaptic alterations in mutant SOD1 motor neurons. J Neurosci 2012; 32:229-42. [PMID: 22219285 DOI: 10.1523/jneurosci.1233-11.2012] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mutations in Cu,Zn superoxide dismutase (SOD1) cause familial amyotrophic lateral sclerosis (FALS), a rapidly fatal motor neuron disease. Mutant SOD1 has pleiotropic toxic effects on motor neurons, among which mitochondrial dysfunction has been proposed as one of the contributing factors in motor neuron demise. Mitochondria are highly dynamic in neurons; they are constantly reshaped by fusion and move along neurites to localize at sites of high-energy utilization, such as synapses. The finding of abnormal mitochondria accumulation in neuromuscular junctions, where the SOD1-FALS degenerative process is though to initiate, suggests that impaired mitochondrial dynamics in motor neurons may be involved in pathogenesis. We addressed this hypothesis by live imaging microscopy of photo-switchable fluorescent mitoDendra in transgenic rat motor neurons expressing mutant or wild-type human SOD1. We demonstrate that mutant SOD1 motor neurons have impaired mitochondrial fusion in axons and cell bodies. Mitochondria also display selective impairment of retrograde axonal transport, with reduced frequency and velocity of movements. Fusion and transport defects are associated with smaller mitochondrial size, decreased mitochondrial density, and defective mitochondrial membrane potential. Furthermore, mislocalization of mitochondria at synapses among motor neurons, in vitro, correlates with abnormal synaptic number, structure, and function. Dynamics abnormalities are specific to mutant SOD1 motor neuron mitochondria, since they are absent in wild-type SOD1 motor neurons, they do not involve other organelles, and they are not found in cortical neurons. Together, these results suggest that impaired mitochondrial dynamics may contribute to the selective degeneration of motor neurons in SOD1-FALS.
Collapse
|
121
|
Karbowski M, Neutzner A. Neurodegeneration as a consequence of failed mitochondrial maintenance. Acta Neuropathol 2012; 123:157-71. [PMID: 22143516 DOI: 10.1007/s00401-011-0921-0] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 11/18/2011] [Accepted: 11/22/2011] [Indexed: 02/06/2023]
Abstract
Maintaining the functional integrity of mitochondria is pivotal for cellular survival. It appears that neuronal homeostasis depends on high-fidelity mitochondria, in particular. Consequently, mitochondrial dysfunction is a fundamental problem associated with a significant number of neurological diseases, including Parkinson's disease (PD), Huntington's disease (HD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS) and various peripheral neuropathies, as well as the normal aging process. To ensure optimal mitochondrial function, diverse, evolutionarily conserved mitochondrial quality control mechanisms are in place, including the scavenging of toxic reactive oxygen species (ROS) and degradation of damaged mitochondrial proteins, but also turnover of whole organelles. In this review we will discuss various mitochondria-associated conditions, focusing on the role of protein turnover in mitochondrial maintenance with special emphasis on neurodegenerative disorders.
Collapse
Affiliation(s)
- Mariusz Karbowski
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | |
Collapse
|
122
|
dl-3-n-butylphthalide extends survival by attenuating glial activation in a mouse model of amyotrophic lateral sclerosis. Neuropharmacology 2012; 62:1004-10. [DOI: 10.1016/j.neuropharm.2011.10.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 10/13/2011] [Accepted: 10/14/2011] [Indexed: 12/12/2022]
|
123
|
Wei R, Bhattacharya A, Chintalaramulu N, Jernigan AL, Liu Y, Van Remmen H, Chaudhuri AR. Protein misfolding, mitochondrial dysfunction and muscle loss are not directly dependent on soluble and aggregation state of mSOD1 protein in skeletal muscle of ALS. Biochem Biophys Res Commun 2012; 417:1275-9. [PMID: 22234310 DOI: 10.1016/j.bbrc.2011.12.126] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 12/25/2011] [Indexed: 12/01/2022]
Abstract
Mutant superoxide dismutase 1 (mSOD1) is often found as aggregates at the outer-membrane of mitochondria in motor neurons of various mouse models and familial amyotrophic lateral sclerosis (f-ALS) patients. It has been postulated that disruption of mitochondrial function by physical association of misfolded mSOD1 aggregates may actually be the trigger for initiation of degeneration of motor neurons in ALS. However, it was not clear if the same mechanism is involved in muscle degeneration and mitochondrial dysfunction in skeletal muscles of ALS. Recent study from our laboratory show that two skeletal muscle proteins, namely creatine kinase (CK) and glyceraldehydes-3-phosphate dehydrogenase (GAPDH) undergo major conformational and functional changes in the f-ALS mouse model of ALS (G93A). In this paper, we report two intriguing observations which are as follows:(i) G93A protein does not form aggregates in skeletal muscle at any stages of disease process probably due to high chymotrypsin-like activity of proteasome and thus G93A protein aggregates have no direct effects on progressive loss of muscle mass and global changes in protein conformation in ALS, and (ii) the soluble G93A protein does not have direct effects on mitochondrial dysfunction as determined by quantifying the release of reactive oxygen species (ROS) in skeletal muscle mitochondria; instead, the proteins affected by G93A possibly affect mitochondrial ROS release. These data strongly suggest for the first time that unlike in motor neurons, the soluble and aggregation states of the G93A protein do not have direct effects on protein misfolding and mitochondrial dysfunction in skeletal muscle during ALS.
Collapse
Affiliation(s)
- Rochelle Wei
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, TX 78229-3900, USA
| | | | | | | | | | | | | |
Collapse
|
124
|
Lawton KA, Cudkowicz ME, Brown MV, Alexander D, Caffrey R, Wulff JE, Bowser R, Lawson R, Jaffa M, Milburn MV, Ryals JA, Berry JD. Biochemical alterations associated with ALS. ACTA ACUST UNITED AC 2011; 13:110-8. [PMID: 22117131 DOI: 10.3109/17482968.2011.619197] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Our objective was to identify metabolic pathways affected by ALS using non-targeted metabolomics in plasma, comparing samples from healthy volunteers to those from ALS patients. This discovery could become the basis for the identification of therapeutic targets and diagnostic biomarkers of ALS. Two distinct cross-sectional studies were conducted. Plasma was collected from 62 (Study 1) and 99 (Study 2) participants meeting El Escorial criteria for possible, probable, or definite ALS; 69 (Study 1) and 48 (Study 2) healthy controls samples were collected. Global metabolic profiling was used to detect and evaluate biochemical signatures of ALS. Twenty-three metabolites were significantly altered in plasma from ALS patients in both studies. These metabolites include biochemicals in pathways associated with neuronal change, hypermetabolism, oxidative damage, and mitochondrial dysfunction, all of which are proposed disease mechanisms in ALS. The data also suggest possible hepatic dysfunction associated with ALS. In conclusion, the data presented here provide insight into the pathophysiology of ALS while suggesting promising areas of focus for future studies. The metabolomics approach can generate novel hypotheses regarding ALS disease mechanisms with the potential to identify therapeutic targets and novel diagnostic biomarkers.
Collapse
|
125
|
|
126
|
Quinlan KA. Links between electrophysiological and molecular pathology of amyotrophic lateral sclerosis. Integr Comp Biol 2011; 51:913-25. [PMID: 21989221 DOI: 10.1093/icb/icr116] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multiple deficits have been described in amyotrophic lateral sclerosis (ALS), from the first changes in normal functioning of the motoneurons and glia to the eventual loss of spinal and cortical motoneurons. In this review, current results, including changes in size, and electrical properties of motoneurons, glutamate excitotoxicity, calcium buffering, deficits in mitochondrial and cellular transport, impediments to proteostasis which lead to stress of the endoplasmic reticulum (ER), and glial contributions to motoneuronal vulnerability are recapitulated. Results are mainly drawn from the mutant SOD1 mouse model of ALS, and emphasis is placed on early changes that precede the onset of symptoms and the interplay between molecular and electrical processes.
Collapse
Affiliation(s)
- Katharina A Quinlan
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
127
|
Bosco DA, LaVoie MJ, Petsko GA, Ringe D. Proteostasis and movement disorders: Parkinson's disease and amyotrophic lateral sclerosis. Cold Spring Harb Perspect Biol 2011; 3:a007500. [PMID: 21844169 DOI: 10.1101/cshperspect.a007500] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a movement disorder that afflicts over one million in the U.S.; amyotrophic lateral sclerosis (ALS or Lou Gehrig's disease) is less prevalent but also has a high incidence. The two disorders sometimes present together, making a comparative study of interest. Both ALS and PD are neurodegenerative diseases, and are characterized by the presence of intraneuronal inclusions; however, different classes of neurons are affected and the primary protein in the inclusions differs between the diseases, and in some cases is different in distinct forms of the same disease. These observations might suggest that the more general approach of proteostasis pathway alteration would be a powerful one in treating these disorders. Examining results from human genetics and studies in model organisms, as well as from biochemical and biophysical characterization of the proteins involved in both diseases, we find that most instances of PD can be considered as arising from the misfolding, and self-association to a toxic species, of the small neuronal protein α-synuclein, and that proteostasis strategies are likely to be of value for this disorder. For ALS, the situation is much more complex and less clear-cut; the available data are most consistent with a view that ALS may actually be a family of disorders, presenting similarly but arising from distinct and nonoverlapping causes, including mislocalization of some properly folded proteins and derangement of RNA quality control pathways. Applying proteostasis approaches to this disease may require rethinking or broadening the concept of what proteostasis means.
Collapse
Affiliation(s)
- Daryl A Bosco
- Department of Neurology, University of Massachusetts Medical Center, Worcester, Massachusetts 01655, USA
| | | | | | | |
Collapse
|
128
|
Ambegaokar SS, Jackson GR. Functional genomic screen and network analysis reveal novel modifiers of tauopathy dissociated from tau phosphorylation. Hum Mol Genet 2011; 20:4947-77. [PMID: 21949350 PMCID: PMC3221533 DOI: 10.1093/hmg/ddr432] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A functional genetic screen using loss-of-function and gain-of-function alleles was performed to identify modifiers of tau-induced neurotoxicity using the 2N/4R (full-length) isoform of wild-type human tau expressed in the fly retina. We previously reported eye pigment mutations, which create dysfunctional lysosomes, as potent modifiers; here, we report 37 additional genes identified from ∼1900 genes screened, including the kinases shaggy/GSK-3beta, par-1/MARK, CamKI and Mekk1. Tau acts synergistically with Mekk1 and p38 to down-regulate extracellular regulated kinase activity, with a corresponding decrease in AT8 immunoreactivity (pS202/T205), suggesting that tau can participate in signaling pathways to regulate its own kinases. Modifiers showed poor correlation with tau phosphorylation (using the AT8, 12E8 and AT270 epitopes); moreover, tested suppressors of wild-type tau were equally effective in suppressing toxicity of a phosphorylation-resistant S11A tau construct, demonstrating that changes in tau phosphorylation state are not required to suppress or enhance its toxicity. Genes related to autophagy, the cell cycle, RNA-associated proteins and chromatin-binding proteins constitute a large percentage of identified modifiers. Other functional categories identified include mitochondrial proteins, lipid trafficking, Golgi proteins, kinesins and dynein and the Hsp70/Hsp90-organizing protein (Hop). Network analysis uncovered several other genes highly associated with the functional modifiers, including genes related to the PI3K, Notch, BMP/TGF-β and Hedgehog pathways, and nuclear trafficking. Activity of GSK-3β is strongly upregulated due to TDP-43 expression, and reduced GSK-3β dosage is also a common suppressor of Aβ42 and TDP-43 toxicity. These findings suggest therapeutic targets other than mitigation of tau phosphorylation.
Collapse
Affiliation(s)
- Surendra S Ambegaokar
- Department of Neurology, University of Texas Medical Branch, 301 University Blvd., MRB 10.138, Galveston, TX 77555, USA
| | | |
Collapse
|
129
|
Vande Velde C, Dion PA, Rouleau GA. Amyotrophic lateral sclerosis: new genes, new models, and new mechanisms. F1000 BIOLOGY REPORTS 2011; 3:18. [PMID: 21941597 PMCID: PMC3169903 DOI: 10.3410/b3-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Research aimed at understanding amyotrophic lateral sclerosis (ALS) has seen exceptional growth in the past few years. New genes, new models, and new mechanisms have not only improved our understanding, but also contributed to the increasing complexity of ALS pathogenesis. The focus of this piece is to highlight some of the more notable developments in the field and to encourage a re-appreciation for the superoxide dismutase 1 (SOD1) mouse models.
Collapse
Affiliation(s)
- Christine Vande Velde
- Department of Medicine, Université de Montréal1560 Sherbrooke East, MontrealCanada, H2L 4W1
- CHUM Research Centre1560 Sherbrooke East, MontrealCanada, H2L 4W1
| | - Patrick A. Dion
- Department of Pathology and Cell Biology, Université de Montréal1560 Sherbrooke East, MontrealCanada, H2L 4W1
- CHUM Research Centre1560 Sherbrooke East, MontrealCanada, H2L 4W1
| | - Guy A. Rouleau
- Department of Medicine, Université de Montréal1560 Sherbrooke East, MontrealCanada, H2L 4W1
- CHUM Research Centre1560 Sherbrooke East, MontrealCanada, H2L 4W1
| |
Collapse
|
130
|
Pesaresi MG, Amori I, Giorgi C, Ferri A, Fiorenzo P, Gabanella F, Salvatore AM, Giorgio M, Pelicci PG, Pinton P, Carrì MT, Cozzolino M. Mitochondrial redox signalling by p66Shc mediates ALS-like disease through Rac1 inactivation. Hum Mol Genet 2011; 20:4196-208. [PMID: 21828072 DOI: 10.1093/hmg/ddr347] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Increased oxidative stress and mitochondrial damage are among the mechanisms whereby mutant SOD1 (mutSOD1) associated with familial forms of amyotrophic lateral sclerosis (ALS) induces motoneuronal death. The 66 kDa isoform of the growth factor adapter Shc (p66Shc) is known to be central in the control of mitochondria-dependent oxidative balance. Here we report that expression of mutSOD1s induces the activation of p66Shc in neuronal cells and that the overexpression of inactive p66Shc mutants protects cells from mutSOD1-induced mitochondrial damage. Most importantly, deletion of p66Shc ameliorates mitochondrial function, delays onset, improves motor performance and prolongs survival in transgenic mice modelling ALS. We also show that p66Shc activation by mutSOD1 causes a strong decrease in the activity of the small GTPase Rac1 through a redox-sensitive regulation. Our results provide new insight into the potential mechanisms of mutSOD1-mediated mitochondrial dysfunction.
Collapse
|
131
|
Cozzolino M, Carrì MT. Mitochondrial dysfunction in ALS. Prog Neurobiol 2011; 97:54-66. [PMID: 21827820 DOI: 10.1016/j.pneurobio.2011.06.003] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/13/2011] [Accepted: 06/14/2011] [Indexed: 12/11/2022]
Abstract
In the present article, we review the many facets of mitochondrial dysfunction in amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease due to loss of upper motor neurons in cerebral cortex and lower motor neurons in brainstem and spinal cord. Accumulating evidence from recent studies suggests that the many, interconnected facets of mitochondrial dysfunction may play a more significant role in the etiopathogenesis of this disorder than previously thought. This notion stems from our expanding knowledge of the complex physiology of mitochondria and of alteration of their properties that might confer an intrinsic susceptibility to long-lived, post-mitotic motor neurons to energy deficit, calcium mishandling and oxidative stress. The wealth of evidence implicating mitochondrial dysfunction as a major event in the pathology of ALS has prompted new studies aimed to the development of new mitochondria-targeted therapies. However, it is now clear that drugs targeting more than one aspect of mitochondrial dysfunction are needed to fight this devastating disease.
Collapse
Affiliation(s)
- Mauro Cozzolino
- Fondazione Santa Lucia IRCCS, c/o CERC, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | | |
Collapse
|
132
|
Joyce PI, Fratta P, Fisher EMC, Acevedo-Arozena A. SOD1 and TDP-43 animal models of amyotrophic lateral sclerosis: recent advances in understanding disease toward the development of clinical treatments. Mamm Genome 2011; 22:420-48. [PMID: 21706386 DOI: 10.1007/s00335-011-9339-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 05/26/2011] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease with no cure. Breakthroughs in understanding ALS pathogenesis came with the discovery of dominant mutations in the superoxide dismutase 1 gene (SOD1) and other genes, including the gene encoding transactivating response element DNA binding protein-43 (TDP-43). This has led to the creation of animal models to further our understanding of the disease and identify a number of ALS-causing mechanisms, including mitochondrial dysfunction, protein misfolding and aggregation, oxidative damage, neuronal excitotoxicity, non-cell autonomous effects and neuroinflammation, axonal transport defects, neurotrophin depletion, effects from extracellular mutant SOD1, and aberrant RNA processing. Here we summarise the SOD1 and TDP-43 animal models created to date, report on recent findings supporting the potential mechanisms of ALS pathogenesis, and correlate this understanding with current developments in the clinic.
Collapse
Affiliation(s)
- Peter I Joyce
- MRC Mammalian Genetics Unit, Harwell, Oxfordshire, UK.
| | | | | | | |
Collapse
|
133
|
Vande Velde C, McDonald KK, Boukhedimi Y, McAlonis-Downes M, Lobsiger CS, Bel Hadj S, Zandona A, Julien JP, Shah SB, Cleveland DW. Misfolded SOD1 associated with motor neuron mitochondria alters mitochondrial shape and distribution prior to clinical onset. PLoS One 2011; 6:e22031. [PMID: 21779368 PMCID: PMC3136936 DOI: 10.1371/journal.pone.0022031] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 06/13/2011] [Indexed: 11/19/2022] Open
Abstract
Mutations in superoxide dismutase (SOD1) are causative for inherited amyotrophic lateral sclerosis. A proportion of SOD1 mutant protein is misfolded onto the cytoplasmic face of mitochondria in one or more spinal cord cell types. By construction of mice in which mitochondrially targeted enhanced green fluorescent protein is selectively expressed in motor neurons, we demonstrate that axonal mitochondria of motor neurons are primary in vivo targets for misfolded SOD1. Mutant SOD1 alters axonal mitochondrial morphology and distribution, with dismutase active SOD1 causing mitochondrial clustering at the proximal side of Schmidt-Lanterman incisures within motor axons and dismutase inactive SOD1 producing aberrantly elongated axonal mitochondria beginning pre-symptomatically and increasing in severity as disease progresses. Somal mitochondria are altered by mutant SOD1, with loss of the characteristic cylindrical, networked morphology and its replacement by a less elongated, more spherical shape. These data indicate that mutant SOD1 binding to mitochondria disrupts normal mitochondrial distribution and size homeostasis as early pathogenic features of SOD1 mutant-mediated ALS.
Collapse
Affiliation(s)
- Christine Vande Velde
- Centre d'excellence en neuromique de l'Université de Montréal (CENUM), Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), and Département de Médecine, Université de Montréal, Montréal, Québec, Canada
- * E-mail: (CVV); (DC)
| | - Karli K. McDonald
- Centre d'excellence en neuromique de l'Université de Montréal (CENUM), Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), and Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Yasmin Boukhedimi
- Centre d'excellence en neuromique de l'Université de Montréal (CENUM), Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), and Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Melissa McAlonis-Downes
- Ludwig Institute for Cancer Research and Departments of Neuroscience and Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Christian S. Lobsiger
- Ludwig Institute for Cancer Research and Departments of Neuroscience and Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S975, Centre de Recherche de l'Institut du Cerveau et de la Moelle Épinière, Hôpital de la Salpêtrière, Paris, France
| | - Samar Bel Hadj
- Centre d'excellence en neuromique de l'Université de Montréal (CENUM), Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), and Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Andre Zandona
- Ludwig Institute for Cancer Research and Departments of Neuroscience and Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Jean-Pierre Julien
- Centre de recherche du Centre hospitalier de l'Université Laval (CHUL), Université Laval, Québec, Québec, Canada
| | - Sameer B. Shah
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States of America
| | - Don W. Cleveland
- Ludwig Institute for Cancer Research and Departments of Neuroscience and Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (CVV); (DC)
| |
Collapse
|
134
|
Nguyen KT, Barrett JN, García-Chacón L, David G, Barrett EF. Repetitive nerve stimulation transiently opens the mitochondrial permeability transition pore in motor nerve terminals of symptomatic mutant SOD1 mice. Neurobiol Dis 2011; 42:381-90. [PMID: 21310237 PMCID: PMC3079773 DOI: 10.1016/j.nbd.2011.01.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 12/17/2010] [Accepted: 01/28/2011] [Indexed: 11/20/2022] Open
Abstract
Mitochondria in motor nerve terminals temporarily sequester large Ca(2+) loads during repetitive stimulation. In wild-type mice this Ca(2+) uptake produces a small (<5 mV), transient depolarization of the mitochondrial membrane potential (Ψ(m), motor nerve stimulated at 100 Hz for 5s). We demonstrate that this stimulation-induced Ψ(m) depolarization attains much higher amplitudes in motor terminals of symptomatic mice expressing the G93A or G85R mutation of human superoxide dismutase 1 (SOD1), models of familial amyotrophic lateral sclerosis (fALS). These large Ψ(m) depolarizations decayed slowly and incremented with successive stimulus trains. Additional Ψ(m) depolarizations occurred that were not synchronized with stimulation. These large Ψ(m) depolarizations were reduced (a) by cyclosporin A (CsA, 1-2 μM), which inhibits opening of the mitochondrial permeability transition pore (mPTP), or (b) by replacing bath Ca(2+) with Sr(2+), which enters motor terminals and mitochondria but does not support mPTP opening. These results are consistent with the hypothesis that the large Ψ(m) depolarizations evoked by repetitive stimulation in motor terminals of symptomatic fALS mice result from mitochondrial dysfunction that increases the likelihood of transient mPTP opening during Ca(2+) influx. Such mPTP openings, a sign of mitochondrial stress, would disrupt motor terminal handling of Ca(2+) loads and might thereby contribute to motor terminal degeneration in fALS mice. Ψ(m) depolarizations resembling those in symptomatic fALS mice could be elicited in wild-type mice following a 0.5-1h exposure to diamide (200 μM), which produces an oxidative stress, but these depolarizations were not reduced by CsA.
Collapse
Affiliation(s)
- Khanh T. Nguyen
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, P.O. Box 016430, Miami, FL, 33101, USA
- Neuroscience Program, University of Miami Miller School of Medicine, P.O. Box 016430, Miami, FL, 33101, USA
| | - John N. Barrett
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, P.O. Box 016430, Miami, FL, 33101, USA
- Neuroscience Program, University of Miami Miller School of Medicine, P.O. Box 016430, Miami, FL, 33101, USA
| | - Luis García-Chacón
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, P.O. Box 016430, Miami, FL, 33101, USA
| | - Gavriel David
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, P.O. Box 016430, Miami, FL, 33101, USA
- Neuroscience Program, University of Miami Miller School of Medicine, P.O. Box 016430, Miami, FL, 33101, USA
| | - Ellen F. Barrett
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, P.O. Box 016430, Miami, FL, 33101, USA
- Neuroscience Program, University of Miami Miller School of Medicine, P.O. Box 016430, Miami, FL, 33101, USA
| |
Collapse
|