101
|
Abstract
According to the World Health Organization, cardiovascular disease accounts for approximately 30% of all deaths in the United States, and is the worldwide leading cause of morbidity and mortality. Over the last several years, microRNAs have emerged as critical regulators of physiological homeostasis in multiple organ systems, including the cardiovascular system. The focus of this review is to provide an overview of the current state of knowledge of the molecular mechanisms contributing to the multiple causes of cardiovascular disease with respect to regulation by microRNAs. A major challenge in understanding the roles of microRNAs in the pathophysiology of cardiovascular disease is that cardiovascular disease may arise from perturbations in intracellular signaling in multiple cell types including vascular smooth muscle and endothelial cells, cardiac myocytes and fibroblasts, as well as hepatocytes, pancreatic β-cells, and others. Additionally, perturbations in intracellular signaling cascades may also have profound effects on heterocellular communication via secreted cytokines and growth factors. There has been much progress in recent years to identify the microRNAs that are both dysregulated under pathological conditions, as well as the signaling pathway(s) regulated by an individual microRNA. The goal of this review is to summarize what is currently known about the mechanisms whereby microRNAs maintain cardiovascular homeostasis and to attempt to identify some key unresolved questions that require further study.
Collapse
Affiliation(s)
- Ronald L Neppl
- Boston Children's Hospital, Department of Cardiology ; Harvard Medical School, Department of Pediatrics Boston MA, 02115
| | - Da-Zhi Wang
- Boston Children's Hospital, Department of Cardiology ; Harvard Medical School, Department of Pediatrics Boston MA, 02115
| |
Collapse
|
102
|
Chandran PA, Keller A, Weinmann L, Seida AA, Braun M, Andreev K, Fischer B, Horn E, Schwinn S, Junker M, Houben R, Dombrowski Y, Dietl J, Finotto S, Wölfl M, Meister G, Wischhusen J. The TGF-β-inducible miR-23a cluster attenuates IFN-γ levels and antigen-specific cytotoxicity in human CD8⁺ T cells. J Leukoc Biol 2014; 96:633-45. [PMID: 25030422 DOI: 10.1189/jlb.3a0114-025r] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cytokine secretion and degranulation represent key components of CD8(+) T-cell cytotoxicity. While transcriptional blockade of IFN-γ and inhibition of degranulation by TGF-β are well established, we wondered whether TGF-β could also induce immune-regulatory miRNAs in human CD8(+) T cells. We used miRNA microarrays and high-throughput sequencing in combination with qRT-PCR and found that TGF-β promotes expression of the miR-23a cluster in human CD8(+) T cells. Likewise, TGF-β up-regulated expression of the cluster in CD8(+) T cells from wild-type mice, but not in cells from mice with tissue-specific expression of a dominant-negative TGF-β type II receptor. Reporter gene assays including site mutations confirmed that miR-23a specifically targets the 3'UTR of CD107a/LAMP1 mRNA, whereas the further miRNAs expressed in this cluster-namely, miR-27a and -24-target the 3'UTR of IFN-γ mRNA. Upon modulation of the miR-23a cluster by the respective miRNA antagomirs and mimics, we observed significant changes in IFN-γ expression, but only slight effects on CD107a/LAMP1 expression. Still, overexpression of the cluster attenuated the cytotoxic activity of antigen-specific CD8(+) T cells. These functional data thus reveal that the miR-23a cluster not only is induced by TGF-β, but also exerts a suppressive effect on CD8(+) T-cell effector functions, even in the absence of TGF-β signaling.
Collapse
Affiliation(s)
- P Anoop Chandran
- Graduate School of Life Sciences (GSLS), University of Würzburg, Germany; Department of Obstetrics and Gynecology
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Lasse Weinmann
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ahmed Adel Seida
- Department of Obstetrics and Gynecology, Interdisciplinary Center for Clinical Research
| | - Matthias Braun
- Pediatric Hematology, Oncology, and Stem Cell Transplantation, Children's Hospital
| | - Katerina Andreev
- Laboratory of Cellular and Molecular Lung Immunology, Institute of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; and
| | | | - Evi Horn
- Department of Obstetrics and Gynecology
| | - Stefanie Schwinn
- Pediatric Hematology, Oncology, and Stem Cell Transplantation, Children's Hospital
| | - Markus Junker
- Department of Obstetrics and Gynecology, Interdisciplinary Center for Clinical Research
| | - Roland Houben
- Department of Dermatology, University of Würzburg Medical School, Würzburg, Germany
| | - Yvonne Dombrowski
- Department of Obstetrics and Gynecology, Interdisciplinary Center for Clinical Research
| | | | - Susetta Finotto
- Laboratory of Cellular and Molecular Lung Immunology, Institute of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; and
| | - Matthias Wölfl
- Pediatric Hematology, Oncology, and Stem Cell Transplantation, Children's Hospital
| | - Gunter Meister
- Max Planck Institute of Biochemistry, Martinsried, Germany; Department of Biochemistry, University of Regensburg, Germany
| | - Jörg Wischhusen
- Department of Obstetrics and Gynecology, Interdisciplinary Center for Clinical Research,
| |
Collapse
|
103
|
Shi H, Sun BL, Zhang J, Lu S, Zhang P, Wang H, Yu Q, Stetler RA, Vosler PS, Chen J, Gao Y. miR-15b suppression of Bcl-2 contributes to cerebral ischemic injury and is reversed by sevoflurane preconditioning. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2014; 12:381-91. [PMID: 23469855 DOI: 10.2174/1871527311312030011] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 11/04/2012] [Accepted: 11/16/2012] [Indexed: 12/20/2022]
Abstract
Ischemic neuroprotection afforded by sevoflurane preconditioning has been previously demonstrated, yet the underlying mechanism is poorly understood and likely affects a wide range of cellular activities. Several individual microRNAs have been implicated in both the pathogenesis of cerebral ischemia and cellular survival, and are capable of affecting a range of target mRNA. Conceivably, sevoflurane preconditioning may lead to alterations in ischemia-induced microRNA expression that may subsequently exert neuroprotective effects. We first examined the microRNA expression profile following transient cerebral ischemia in rats and the impact of sevoflurane preconditioning. Microarray analysis revealed that 3 microRNAs were up-regulated (>2.0 fold) and 9 were down-regulated (< 0.5 fold) following middle cerebral artery occlusion (MCAO) compared to sham controls. In particular, miR-15b was expressed at significantly high levels after MCAO. Preconditioning with sevoflurane significantly attenuated the upregulation of miR-15b at 72h after reperfusion. Bcl-2, an anti-apoptotic gene involved in the pathogenesis of cerebral ischemia, has been identified as a direct target of miR-15b. Consistent with the observed downregulation of miR-15b in sevoflurane-preconditioned brain, postischemic Bcl-2 expression was significantly increased by sevoflurane preconditioning. We identified the 3'-UTR of Bcl-2 as the target for miR-15b. Molecular inhibition of miR-15b was capable of mimicking the neuroprotective effect of sevoflurane preconditioning, suggesting that the suppression of miR-15b due to sevoflurane contributes to its ischemic neuroprotection. Thus, sevoflurane preconditioning may exert its anti-apoptotic effects by reducing the elevated expression of miR-15b following ischemic injury, allowing its target proteins, including Bcl-2, to be translated and expressed at the protein level.
Collapse
Affiliation(s)
- Hong Shi
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Wang C, Ji B, Cheng B, Chen J, Bai B. Neuroprotection of microRNA in neurological disorders (Review). Biomed Rep 2014; 2:611-619. [PMID: 25053999 DOI: 10.3892/br.2014.297] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/13/2014] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are small, endogenous, non-coding RNA molecules that function as post-transcriptional regulators of gene expression by imperfect base-pairing with the 3'-untranslated regions of their target mRNAs. Altered expression of numerous miRNAs has been shown to be extensively involved in the pathogenesis of various diseases and cancers. Additionally, the specific expression of miRNAs in the nervous system has indicated that miRNAs are critical for the occurrence and development of neurological diseases. Increasing evidence has shown that specific miRNAs target the expression of particular proteins that are significant in the disease pathogenesis. Therefore, miRNA-mediated regulation may be important in the occurrence and development of neurological diseases and may function as a novel biomarker and tool for clinical therapy. In the present study, the significance of miRNAs is reviewed in a number of neurological disorders and the possibility of their use in therapeutic interventions is evaluated.
Collapse
Affiliation(s)
- Chunmei Wang
- Neurobiology Institute, Jining Medical University, Jining 272067, P.R. China
| | - Bingyuan Ji
- Neurobiology Institute, Jining Medical University, Jining 272067, P.R. China ; School of Life Science, Shandong Agricultural University, Taian 271018, P.R. China
| | - Baohua Cheng
- Neurobiology Institute, Jining Medical University, Jining 272067, P.R. China
| | - Jing Chen
- Neurobiology Institute, Jining Medical University, Jining 272067, P.R. China
| | - Bo Bai
- Neurobiology Institute, Jining Medical University, Jining 272067, P.R. China
| |
Collapse
|
105
|
Zhou J, Zhang J. Identification of miRNA-21 and miRNA-24 in plasma as potential early stage markers of acute cerebral infarction. Mol Med Rep 2014; 10:971-6. [PMID: 24841240 DOI: 10.3892/mmr.2014.2245] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 04/14/2014] [Indexed: 11/05/2022] Open
Abstract
This study investigated the role of microRNA-21 (miR-21) and microRNA-24 (miR-24) in the pathological processes that follow cerebral ischemic injury and examined the potential use of miR-21 and -24 in stroke diagnostics as sensitive plasma biomarkers. An oxygen-glucose deprivation (OGD) model was constructed using mouse N2A neuroblastoma cells (N2A). Western blot analysis and quantitative polymerase chain reaction (qPCR) were employed to detect protein and miRNA expression levels. miR-21 and miR-24 were analyzed in the plasma from 68 patients with acute cerebral infarction (ACI) and 21 healthy individuals. In the present study, it was identified that plasma miR-21 and miR-24 were lower in ACI patients than in the controls (P<0.05). A positive correlation was demonstrated between plasma miR-21 and miR-24, and a negative correlation was revealed between miR-21, miR-24 and the National Institutes of Health Scales Score (NIHSS) within the first day following stroke. In addition, the expression of miR-21 and miR-24 was upregulated by 3.3- and 4.9-fold, respectively, when the reoxygenation time persisted up to 24 h following 3 h of OGD. The expression of Bcl-2 was upregulated following gain of miR-21 function, while X-linked inhibitor of apoptosis protein (XIAP) was downregulated after gain of miR-24 function in N2A cells. The data suggested that miR-21 may have an antiapoptotic effect in N2A neuroblastoma cells following OGD and reoxygenation, while miR-24 may have a pro-apoptotic effect. Therefore, these microRNAs may be potential therapeutic targets for the treatment of post-ischemic injury and may act as diagnostic markers during the early stage of ACI.
Collapse
Affiliation(s)
- Jiansuo Zhou
- Department of Laboratory Medicine, Peking University Third Hospital, Haidian, Beijing 100191, P.R. China
| | - Jie Zhang
- Department of Laboratory Medicine, Peking University Third Hospital, Haidian, Beijing 100191, P.R. China
| |
Collapse
|
106
|
|
107
|
Blood brain barrier and neuroinflammation are critical targets of IGF-1-mediated neuroprotection in stroke for middle-aged female rats. PLoS One 2014; 9:e91427. [PMID: 24618563 PMCID: PMC3949985 DOI: 10.1371/journal.pone.0091427] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 02/10/2014] [Indexed: 01/06/2023] Open
Abstract
Ischemia-induced cerebral infarction is more severe in older animals as compared to younger animals, and is associated with reduced availability of insulin-like growth factor (IGF)-1. This study determined the effect of post-stroke IGF-1 treatment, and used microRNA profiling to identify mechanisms underlying IGF-1’s neuroprotective actions. Post-stroke ICV administration of IGF-1 to middle-aged female rats reduced infarct volume by 39% when measured 24h later. MicroRNA analyses of ischemic tissue collected at the early post-stroke phase (4h) indicated that 8 out of 168 disease-related miRNA were significantly downregulated by IGF-1. KEGG pathway analysis implicated these miRNA in PI3K-Akt signaling, cell adhesion/ECM receptor pathways and T-and B-cell signaling. Specific components of these pathways were subsequently analyzed in vehicle and IGF-1 treated middle-aged females. Phospho-Akt was reduced by ischemia at 4h, but elevated by IGF-1 treatment at 24h. IGF-1 induced Akt activation was preceded by a reduction of blood brain barrier permeability at 4h post-stroke and global suppression of cytokines including IL-6, IL-10 and TNF-α. A subset of these cytokines including IL-6 was also suppressed by IGF-1 at 24h post-stroke. These data are the first to show that the temporal and mechanistic components of post-stroke IGF-1 treatment in older animals, and that cellular components of the blood brain barrier may serve as critical targets of IGF-1 in the aging brain.
Collapse
|
108
|
Dai R, Ahmed SA. Sexual dimorphism of miRNA expression: a new perspective in understanding the sex bias of autoimmune diseases. Ther Clin Risk Manag 2014; 10:151-63. [PMID: 24623979 PMCID: PMC3949753 DOI: 10.2147/tcrm.s33517] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Autoimmune diseases encompass a diverse group of diseases which emanate from a dysregulated immune system that launches a damaging attack on its own tissues. Autoimmune attacks on self tissues can occur in any organ or body system. A notable feature of autoimmune disease is that a majority of these disorders occur predominantly in females. The precise basis of sex bias in autoimmune diseases is complex and potentially involves sex chromosomes, sex hormones, and sex-specific gene regulation in response to internal and external stimuli. Epigenetic regulation of genes, especially by microRNAs (miRNAs), is now attracting significant attention. miRNAs are small, non-protein-coding RNAs that are predicted to regulate a majority of human genes, including those involved in immune regulation. Therefore, it is not surprising that dysregulated miRNAs are evident in many diseases, including autoimmune diseases. Because there are marked sex differences in the incidence of autoimmune diseases, this review focuses on the role of sex factors on miRNA expression in the context of autoimmune diseases, an aspect not addressed thus far. Here, we initially review miRNA biogenesis and miRNA regulation of immunity and autoimmunity. We then summarize the recent findings of sexual dimorphism of miRNA expression in diverse tissues, which imply a critical role of miRNA in sex differentiation and in sex-specific regulation of tissue development and/or function. We also discuss the important contribution of the X chromosome and sex hormones to the sexual dimorphism of miRNA expression. Understanding sexually dimorphic miRNA expression in sex-biased autoimmune diseases not only offers us new insight into the mechanism of sex bias of the disease but will also aid us in developing new sex-based therapeutic strategies for the efficient treatment of these diseases with a sex bias.
Collapse
Affiliation(s)
- Rujuan Dai
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - S Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
109
|
Adlakha YK, Saini N. Brain microRNAs and insights into biological functions and therapeutic potential of brain enriched miRNA-128. Mol Cancer 2014; 13:33. [PMID: 24555688 PMCID: PMC3936914 DOI: 10.1186/1476-4598-13-33] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 02/12/2014] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs, the non-coding single-stranded RNA of 19–25 nucleotides are emerging as robust players of gene regulation. Plethora of evidences support that the ability of microRNAs to regulate several genes of a pathway or even multiple cross talking pathways have significant impact on a complex regulatory network and ultimately the physiological processes and diseases. Brain being a complex organ with several cell types, expresses more distinct miRNAs than any other tissues. This review aims to discuss about the microRNAs in brain development, function and their dysfunction in brain tumors. We also provide a comprehensive summary of targets of brain specific and brain enriched miRNAs that contribute to the diversity and plasticity of the brain. In particular, we uncover recent findings on miRNA-128, a brain-enriched microRNA that is induced during neuronal differentiation and whose aberrant expression has been reported in several cancers. This review describes the wide spectrum of targets of miRNA-128 that have been identified till date with potential roles in apoptosis, angiogenesis, proliferation, cholesterol metabolism, self renewal, invasion and cancer progression and how this knowledge might be exploited for the development of future miRNA-128 based therapies for the treatment of cancer as well as metabolic diseases.
Collapse
Affiliation(s)
| | - Neeru Saini
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Delhi, India.
| |
Collapse
|
110
|
Gesing A, Wang F, List EO, Berryman DE, Masternak MM, Lewinski A, Karbownik-Lewinska M, Kopchick JJ, Bartke A. Expression of apoptosis-related genes in liver-specific growth hormone receptor gene-disrupted mice is sex dependent. J Gerontol A Biol Sci Med Sci 2014; 70:44-52. [PMID: 24550353 DOI: 10.1093/gerona/glu008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Apoptosis is a process that affects life span and health. Mice with liver-specific disruption of the growth hormone receptor (GHR) gene (ie, Ghr gene) liver-specific growth hormone receptor knockout [LiGHRKO] mice), as opposed to mice with global deletion of the Ghr gene (GHRKO; Ghr-/-), are characterized by severe hepatic steatosis and lack of improved insulin sensitivity. We have previously shown that levels of proapoptotic factors are decreased in long-lived and insulin-sensitive GHRKO mice. In the current study, expression of specific apoptosis-related genes was assessed in brains, kidneys, and livers of male and female LiGHRKO and wild-type mice using real-time PCR. In the brain, expression of Caspase 3, Caspase 9, Smac/DIABLO, and p53 was decreased in females compared with males. Renal expression of Caspase 3 and Noxa also decreased in female mice. In the liver, no differences were seen between males and females. Also, no significant genotype effects were detected in the examined organs. Lack of significant genotype effect in kidneys contrasts with previous observations in GHRKO mice. Apparently, global GHR deletion induces beneficial changes in apoptotic factors, whereas liver-specific GHR disruption does not. Furthermore, sexual dimorphism may play an important role in regulating apoptosis during liver-specific suppression of the somatotrophic signaling.
Collapse
Affiliation(s)
- Adam Gesing
- Department of Internal Medicine, Geriatrics Research, Southern Illinois University School of Medicine, Springfield. Department of Oncological Endocrinology, Medical University of Lodz, Poland.
| | - Feiya Wang
- Department of Internal Medicine, Geriatrics Research, Southern Illinois University School of Medicine, Springfield
| | - Edward O List
- Edison Biotechnology Institute, Department of Specialty Medicine
| | - Darlene E Berryman
- Edison Biotechnology Institute, School of Applied Health Sciences and Wellness, and Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens
| | - Michal M Masternak
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando. Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Andrzej Lewinski
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, Poland. Department of Endocrinology and Metabolic Diseases, Polish Mother's Memorial Hospital - Research Institute, Lodz, Poland
| | - Malgorzata Karbownik-Lewinska
- Department of Oncological Endocrinology, Medical University of Lodz, Poland. Department of Endocrinology and Metabolic Diseases, Polish Mother's Memorial Hospital - Research Institute, Lodz, Poland
| | - John J Kopchick
- Edison Biotechnology Institute, Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens
| | - Andrzej Bartke
- Department of Internal Medicine, Geriatrics Research, Southern Illinois University School of Medicine, Springfield
| |
Collapse
|
111
|
Lusardi TA, Murphy SJ, Phillips JI, Chen Y, Davis CM, Young JM, Thompson SJ, Saugstad JA. MicroRNA responses to focal cerebral ischemia in male and female mouse brain. Front Mol Neurosci 2014; 7:11. [PMID: 24574964 PMCID: PMC3920114 DOI: 10.3389/fnmol.2014.00011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 01/23/2014] [Indexed: 12/31/2022] Open
Abstract
Stroke occurs with greater frequency in men than in women across diverse ethnic backgrounds and nationalities. Work from our lab and others have revealed a sex-specific sensitivity to cerebral ischemia whereby males exhibit a larger extent of brain damage resulting from an ischemic event compared to females. Previous studies revealed that microRNA (miRNA) expression is regulated by cerebral ischemia in males; however, no studies to date have examined the effect of ischemia on miRNA responses in females. Thus, we examined miRNA responses in male and female brain in response to cerebral ischemia using miRNA arrays. These studies revealed that in male and female brains, ischemia leads to both a universal miRNA response as well as a sexually distinct response to challenge. Target prediction analysis of the miRNAs increased in male or female ischemic brain reveal sex-specific differences in gene targets and protein pathways. These data support that the mechanisms underlying sexually dimorphic responses to cerebral ischemia includes distinct changes in miRNAs in male and female brain, in addition to a miRNA signature response to ischemia that is common to both.
Collapse
Affiliation(s)
- Theresa A Lusardi
- Dow Neurobiology Laboratories, Legacy Research Institute Portland, OR, USA
| | - Stephanie J Murphy
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University Portland, OR, USA
| | - Jay I Phillips
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University Portland, OR, USA
| | - Yingxin Chen
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University Portland, OR, USA
| | - Catherine M Davis
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University Portland, OR, USA
| | - Jennifer M Young
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University Portland, OR, USA
| | - Simon J Thompson
- Dow Neurobiology Laboratories, Legacy Research Institute Portland, OR, USA
| | - Julie A Saugstad
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University Portland, OR, USA
| |
Collapse
|
112
|
Sharma S, Eghbali M. Influence of sex differences on microRNA gene regulation in disease. Biol Sex Differ 2014; 5:3. [PMID: 24484532 PMCID: PMC3912347 DOI: 10.1186/2042-6410-5-3] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 12/30/2013] [Indexed: 12/21/2022] Open
Abstract
Sexual dimorphism is observed in most human diseases. The difference in the physiology and genetics between sexes can contribute tremendously to the disease prevalence, severity, and outcome. Both hormonal and genetic differences between males and females can lead to differences in gene expression patterns that can influence disease risk and course. MicroRNAs have emerged as potential regulatory molecules in all organisms. They can have a broad effect on every aspect of physiology, including embryogenesis, metabolism, and growth and development. Numerous microRNAs have been identified and elucidated to play a key role in cardiovascular diseases, as well as in neurological and autoimmune disorders. This is especially important as microRNA-based tools can be exploited as beneficial therapies for disease treatment and prevention. Sex steroid hormones as well as X-linked genes can have a considerable influence on the regulation of microRNAs. However, there are very few studies highlighting the role of microRNAs in sex biased diseases. This review attempts to summarize differentially regulated microRNAs in males versus females in different diseases and calls for more attention in this underexplored area that should set the basis for more effective therapeutic strategies for sexually dimorphic diseases.
Collapse
Affiliation(s)
| | - Mansoureh Eghbali
- Department of Anesthesiology, Division of Molecular Medicine, and Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California Los Angeles, BH-160CHS, Los Angeles, CA 90095-7115, USA.
| |
Collapse
|
113
|
Poojari R. Embelin – a drug of antiquity: shifting the paradigm towards modern medicine. Expert Opin Investig Drugs 2014; 23:427-44. [DOI: 10.1517/13543784.2014.867016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
114
|
Pang Y, Mao H, Shen L, Zhao Z, Liu R, Liu P. MiR-519d represses ovarian cancer cell proliferation and enhances cisplatin-mediated cytotoxicity in vitro by targeting XIAP. Onco Targets Ther 2014; 7:587-97. [PMID: 24790458 PMCID: PMC4003267 DOI: 10.2147/ott.s60289] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small, noncoding RNAs that are believed to play fundamental roles in tumorigenesis and tumor development at the posttranscriptional level, as negative regulators of gene expression. This study was designed to evaluate the expression and anticancer effect of miR-519d in ovarian cancer. METHODS The expression levels of miR-519d in ovarian cancer cells and tissues were detected by TaqMan quantitative reverse transcriptase-polymerase chain reaction (TaqMan qRT-PCR; Life Technologies, Carlsbad, CA, USA). The effects of miR-519d on ovarian cancer cell proliferation and cisplatin chemosensitivity were analyzed by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide, flow cytometry, and Western blotting assay. A luciferase reporter assay was performed to validate the miR-519d binding sites on the 3' untranslated region of X-linked inhibitor of apoptosis protein (XIAP). The expression levels of XIAP mRNA and protein were examined by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting assay, respectively. RESULTS miR-519d was significantly downregulated in human ovarian cancer cell lines and tissues. Overexpression of miR-519d in ovarian cancer cells decreased cell proliferation and sensitized ovarian cancer cells to cisplatin-induced cell death accompanied by increased activation of caspase 3 and cleavage of poly(adenosine diphosphate [ADP]-ribose) polymerase 1. Bioinformatics analysis indicated that XIAP was a putative target of miR-519d. Overexpression of miR-519d decreased XIAP expression at both the protein and mRNA levels. In contrast, inhibition of miR-519d increased XIAP expression. Luciferase reporter assay confirmed XIAP as a direct target of miR-519d. XIAP mRNA and protein expression levels were inversely correlated with miR-519d expression in ovarian cancer cell lines and tissues. CONCLUSION These findings indicate that miR-519d suppresses cell proliferation and sensitizes ovarian cancer cells to cisplatin-induced cell death by targeting the XIAP transcript, suggesting that miR-519d plays a tumor-suppressive role in human ovarian cancer and highlighting the therapeutic potential of miR-519d in ovarian cancer treatment.
Collapse
Affiliation(s)
- Yingxin Pang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Hongluan Mao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Liang Shen
- Department of Obstetrics and Gynecology, Provincial Hospital Affiliated with Shandong University, Jinan, People’s Republic of China
| | - Zhe Zhao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Ruihan Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Peishu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
- Correspondence: Peishu Liu, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, No 107 Wen Hua Xi Road, Jinan, Shandong 250012, People’s Republic of China, Tel +86 531 8216 9571, Fax +86 531 9692 7544, Email
| |
Collapse
|
115
|
Dhiraj DK, Chrysanthou E, Mallucci GR, Bushell M. miRNAs-19b, -29b-2* and -339-5p show an early and sustained up-regulation in ischemic models of stroke. PLoS One 2013; 8:e83717. [PMID: 24376737 PMCID: PMC3869799 DOI: 10.1371/journal.pone.0083717] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 11/06/2013] [Indexed: 12/18/2022] Open
Abstract
Stroke, the loss of neurons after ischemic insult to the brain, is one of the leading causes of death and disability worldwide. Despite its prevalence and severity, current therapy is extremely limited, highlighting the importance of further understanding the molecular events underlying ischemia-induced neuronal cell death. An ischemic area can be subdivided into two separate pathophysiological regions: the rapidly dying necrotic core, and the potentially salvageable apoptotic penumbra. Understanding molecular events occurring in the apoptotic ischemic penumbra may give greater insight into mechanisms controlling this salvageable tissue. miRNAs are known to have key roles in the regulation of gene expression in numerous pathological conditions, including the modulation of distinct pathways in stroke. However, previous studies have profiled miRNAs in the whole ischemic infarct, and do not differentiate between miRNA regulation in the necrotic core versus the apoptotic penumbra. We asked if there were unique miRNAs that are differentially regulated following ischemic insults in the salvageable apoptotic penumbra. miRNA expression profiles were compared in the whole infarct from in vivo stroke models, using the three vessel occlusion approach, to an in vitro model of the ischemic penumbra, prior to apoptotic induction. Multiple miRNAs were found to be differentially regulated following ischemic insults in each system. However, miR-19b, miR-29b-2* and miR-339-5p were significantly up-regulated in both model systems. Further, we confirmed these results in a neuroblastoma cell line subjected to a penumbra-like ischemic insult that induced the apoptotic cell death pathway. The data show that miR-19b, miR-29b-2* and miR-339-5p are up-regulated following ischemic insults and may be regulating gene expression to control important cellular pathways in the salvageable ischemic penumbra. Further investigation of their role and mRNA target identification may lead to new insights into the molecular mechanisms taking place in the salvageable apoptotic penumbra.
Collapse
Affiliation(s)
- Dalbir K. Dhiraj
- MRC Toxicology Unit, Medical Research Council, Leicester, England, United Kingdom
| | - Elvina Chrysanthou
- MRC Toxicology Unit, Medical Research Council, Leicester, England, United Kingdom
| | - Giovanna R. Mallucci
- MRC Toxicology Unit, Medical Research Council, Leicester, England, United Kingdom
| | - Martin Bushell
- MRC Toxicology Unit, Medical Research Council, Leicester, England, United Kingdom
- * E-mail:
| |
Collapse
|
116
|
|
117
|
Role of microRNAs in stroke and poststroke depression. ScientificWorldJournal 2013; 2013:459692. [PMID: 24363618 PMCID: PMC3865697 DOI: 10.1155/2013/459692] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/07/2013] [Indexed: 12/22/2022] Open
Abstract
microRNAs (miRNA), a sort of noncoding RNAs widely distributed in eukaryotic cells, could regulate gene expression by inhibiting transcription or translation. They were involved in important physiological and pathological processes including growth, development, and occurrence and progression of diseases. miRNAs are crucial for the development of the nervous system. Recent studies have demonstrated that some miRNAs play important roles in the occurrence and development of ischemic cerebrovascular diseases such as stroke and were also involved in the occurrence and development of poststroke depression (PSD). Herein, studies on the role of miRNAs in the cerebral ischemia and PSD were reviewed, and results may be helpful for the diagnosis and prognosis of cerebral ischemia and PSD with miRNAs in clinical practice.
Collapse
|
118
|
Wang X, Jiang C, Wan H, Wu J, Quan W, Wu K, Li D. Neuroprotection against permanent focal cerebral ischemia by ginkgolides A and B is associated with obstruction of the mitochondrial apoptotic pathway via inhibition of c‐Jun N‐terminal kinase in rats. J Neurosci Res 2013; 92:232-42. [PMID: 24327346 DOI: 10.1002/jnr.23306] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 06/28/2013] [Accepted: 08/30/2013] [Indexed: 01/29/2023]
Affiliation(s)
- Xuan Wang
- Department of PharmacyPutuo People's HospitalShanghai China
| | - Cui‐Min Jiang
- Department of PharmacyPutuo People's HospitalShanghai China
| | - Hai‐Ying Wan
- Department of Clinical LaboratoryTongji Hospital of Tongji UniversityShanghai China
| | - Jun‐Lu Wu
- Department of Clinical LaboratoryTongji Hospital of Tongji UniversityShanghai China
| | - Wen‐Qiang Quan
- Department of Clinical LaboratoryTongji Hospital of Tongji UniversityShanghai China
| | - Kai‐Yin Wu
- Institute of PathologyCharité University HospitalBerlin Germany
| | - Dong Li
- Department of Clinical LaboratoryTongji Hospital of Tongji UniversityShanghai China
| |
Collapse
|
119
|
Vemuganti R. All's well that transcribes well: non-coding RNAs and post-stroke brain damage. Neurochem Int 2013; 63:438-49. [PMID: 23954844 PMCID: PMC3805745 DOI: 10.1016/j.neuint.2013.07.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/26/2013] [Accepted: 07/28/2013] [Indexed: 12/13/2022]
Abstract
The mammalian genome is replete with various classes of non-coding (nc) RNA genes. Many of them actively transcribe, and their relevance to CNS diseases is just beginning to be understood. CNS is one of the organs in the body that shows very high ncRNAs activity. Recent studies demonstrated that cerebral ischemia rapidly changes the expression profiles of different classes of ncRNAs: including microRNA, long noncoding RNA and piwi-interacting RNA. Several studies further showed that post-ischemic neuronal death and/or plasticity/regeneration can be altered by modulating specific microRNAs. These studies are of interest for therapeutic development as they may contribute to identifying new ncRNA targets that can be modulated to prevent secondary brain damage after stroke.
Collapse
Affiliation(s)
- Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
120
|
Xie X, Miao L, Yao J, Feng C, Li C, Gao M, Liu M, Gong L, Wang Y, Qi X, Ren J. Role of multiple microRNAs in the sexually dimorphic expression of Cyp2b9 in mouse liver. Drug Metab Dispos 2013; 41:1732-7. [PMID: 23704697 DOI: 10.1124/dmd.113.052217] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mouse cytochrome P450 2b9 (Cyp2b9) is a testosterone 16α-hydroxylase enzyme showing female-specific expression in many inbred mouse strains, including C57BL/6J. Previous studies have recognized that some sex-dependently secreted endogenous modulating factors were involved in the sexually dimorphic expression of Cyp2b9 through transcriptional regulation. In this study, we found evidence that some microRNAs contributed to the sexually biased expression of Cyp2b9 via post-transcriptional regulation. Cyp2b9 was upregulated in livers of hepatocyte-specific Dicer1 knockout mice at 3 weeks. The age-dependent downregulation of Cyp2b9 in the livers of male mice was diminished when Dicer1 was specifically knocked out in hepatocytes. When these data were combined with bioinformatics analysis and microRNA profiles of male and female mice, we found that 18 microRNAs were associated with the sexually dimorphic expression of Cyp2b9, which showed higher expression levels in male C57BL/6J mice when compared with females. Luciferase assays revealed that approximate half of these microRNAs repressed luciferase activity in a reporter system containing the 3'-untranslated region (3'-UTR) of Cyp2b9, and also inhibited Cyp2b9 protein expression. MicroRNA seed region mutation or mutations in putative binding sites of the microRNAs in Cyp2b9 3'-UTR led to the loss of the suppression of luciferase activity. There was also a negative correlation between the levels of these microRNAs and Cyp2b9. Our results suggested that multiple microRNAs participated in the regulation of Cyp2b9 expression, and that the lower expression levels of these microRNAs potentially contributed to the female-specific expression of Cyp2b9 in the livers of C57BL/6J mice.
Collapse
Affiliation(s)
- Xiaofeng Xie
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, (X.X., L.M., J.Y., C.F., C.L., M.G., M.L., L.G., X.Q., J.R.), Laboratory of Neural Signal Transduction, Institute of Neuroscience, Chinese Academy of Sciences (Y.W.), Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Ouyang YB, Stary CM, Yang GY, Giffard R. microRNAs: innovative targets for cerebral ischemia and stroke. Curr Drug Targets 2013; 14:90-101. [PMID: 23170800 DOI: 10.2174/138945013804806424] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 08/02/2012] [Accepted: 11/16/2012] [Indexed: 12/30/2022]
Abstract
Stroke is one of the leading causes of death and disability worldwide. Because stroke is a multifactorial disease with a short therapeutic window many clinical stroke trials have failed and the only currently approved therapy is thrombolysis. MicroRNAs (miRNA) are endogenously expressed noncoding short single-stranded RNAs that play a role in the regulation of gene expression at the post-transcriptional level, via degradation or translational inhibition of their target mRNAs. The study of miRNAs is rapidly growing and recent studies have revealed a significant role of miRNAs in ischemic disease. miRNAs are especially important candidates for stroke therapeutics because of their ability to simultaneously regulate many target genes and since to date targeting single genes for therapeutic intervention has not yet succeeded in the clinic. Although there are already quite a few review articles about miRNA in ischemic heart disease, much less is currently known about miRNAs in cerebral ischemia. This review summarizes current knowledge about miRNAs and cerebral ischemia, focusing on the role of miRNAs in ischemia, both changes in expression and identification of potential targets, as well as the potential of miRNAs as biomarkers and therapeutic targets in cerebral ischemia.
Collapse
Affiliation(s)
- Yi-Bing Ouyang
- Department of Anesthesia, Stanford University School of Medicine, 300 Pasteur Drive, S272A and S290, Stanford, CA 94305-5117, USA.
| | | | | | | |
Collapse
|
122
|
Doeppner TR, Doehring M, Bretschneider E, Zechariah A, Kaltwasser B, Müller B, Koch JC, Bähr M, Hermann DM, Michel U. MicroRNA-124 protects against focal cerebral ischemia via mechanisms involving Usp14-dependent REST degradation. Acta Neuropathol 2013; 126:251-65. [PMID: 23754622 DOI: 10.1007/s00401-013-1142-5] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/28/2013] [Accepted: 06/06/2013] [Indexed: 01/07/2023]
Abstract
MicroRNAs (miRNAs) are highly conserved non-coding RNAs modulating gene expression via mRNA binding. Recent work suggests an involvement of miRNAs in cardiovascular diseases including stroke. As such, the brain-abundant miR-124 and its transcriptional repressor RE1-silencing transcription factor (REST) do not only have elementary roles in the developing and the adult brain, but also alter expression upon cerebral ischemia. However, the therapeutic potential of miR-124 against stroke and the mechanisms involved remain elusive. Here, we analyzed the therapeutic potential of ectopic miR-124 against stroke and its underlying mechanisms with regard to the interaction between miR-124 and REST. Our results show that viral vector-mediated miR-124 delivery increased the resistance of cultured oxygen-glucose-deprived cortical neurons in vitro and reduced brain injury as well as functional impairment in mice submitted to middle cerebral artery occlusion. Likewise, miR-124 induced enhanced neurovascular remodeling leading to increased angioneurogenesis 8 weeks post-stroke. While REST abundance increased upon stroke, the increase was prevented by miR-124 despite a so far unknown negative feedback loop between miR-124 and REST. Rather, miR-124 decreased the expression of the deubiquitinating enzyme Usp14, which has two conserved miR-124-binding sites in the 3'UTR of its mRNA, and thereby mediated reduced REST levels. The down-regulation of REST by miR-124 was also mimicked by the Usp14 inhibitor IU-1, suggesting that miR-124 promotes neuronal survival under ischemic conditions via Usp14-dependent REST degradation. Ectopic miR-124 expression, therefore, appears as an attractive and novel tool in stroke treatment, mediating neuroprotection via a hitherto unknown mechanism that involves Usp14-dependent REST degradation.
Collapse
|
123
|
Wang K, Zhang J, Liu J, Tian J, Wu Y, Wang X, Quan L, Xu H, Wang W, Liu H. Variations in the protein level of Omi/HtrA2 in the heart of aged rats may contribute to the increased susceptibility of cardiomyocytes to ischemia/reperfusion injury and cell death : Omi/HtrA2 and aged heart injury. AGE (DORDRECHT, NETHERLANDS) 2013; 35:733-746. [PMID: 22535253 PMCID: PMC3636415 DOI: 10.1007/s11357-012-9406-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 03/26/2012] [Indexed: 05/31/2023]
Abstract
Survival after acute myocardial infarction is decreased in elderly patients. The enhanced rates of apoptosis in the aging heart exacerbate myocardial ischemia/reperfusion (MI/R) injury. We have recently demonstrated that the X-linked inhibitor of apoptosis protein (XIAP), the most potent endogenous inhibitor of apoptosis, was decreased in aging rats' hearts. XIAP was balanced by two mitochondria proteins, Omi/HtrA2 and Smac/DIABLO. However, the implicative role of XIAP, Omi/HtrA2, and Smac/DIABLO to aging-related MI/R injury has not been previously investigated. In our study, male aging rats (20-24 months) or young adult rats (4-6 months) were subjected to 30 min of myocardial ischemia followed by reperfusion. MI/R-induced cardiac injury was enhanced in aging rats, as evidenced by aggravated cardiac dysfunction, enlarged infarct size, and increased myocardial apoptosis (TUNEL and caspase-3 activity). Then, the XIAP, Omi/HtrA2, and Smac/DIABLO protein and mRNA expression was detected. XIAP protein and mRNA expression was decreased in both aging hearts and aging hearts subjected to MI/R. Meanwhile, myocardial XIAP protein expression was correlated to cardiac function after MI/R. However, Omi/HtrA2, but not Smac/DIABLO, expression was increased in aging hearts. Moreover, the translocation of Omi/HtrA2 from mitochondria to cytosol was increased in both aging hearts and aging hearts subjected to MI/R. Treatment with ucf-101 (a novel and specific Omi/HtrA2 inhibitor) attenuated XIAP degradation and caspase-3 activity and exerted cardioprotective effects. Taken together, these results demonstrated that increased expression and leakage of Omi/HtrA2 enhanced MI/R injury in aging hearts via degrading XIAP and promoting myocardial apoptosis.
Collapse
MESH Headings
- Aging/genetics
- Aging/metabolism
- Aging/pathology
- Animals
- Apoptosis Regulatory Proteins
- Blotting, Western
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Death/genetics
- Disease Models, Animal
- Gene Expression Regulation
- High-Temperature Requirement A Serine Peptidase 2
- In Situ Nick-End Labeling
- Male
- Mitochondria, Heart/genetics
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Mitochondrial Proteins/biosynthesis
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Myocardial Reperfusion Injury/genetics
- Myocardial Reperfusion Injury/metabolism
- Myocardial Reperfusion Injury/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA-Binding Proteins/biosynthesis
- RNA-Binding Proteins/genetics
- Rats
- Rats, Sprague-Dawley
- Real-Time Polymerase Chain Reaction
- Serine Endopeptidases/biosynthesis
- Serine Endopeptidases/genetics
- Serine-Arginine Splicing Factors
- X-Linked Inhibitor of Apoptosis Protein/genetics
- X-Linked Inhibitor of Apoptosis Protein/metabolism
Collapse
Affiliation(s)
- Ke Wang
- />Department of Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 Xitoutiao, You An Men, P.O. Box 907, Beijing, 100069 People’s Republic of China
| | - Jie Zhang
- />Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001 People’s Republic of China
| | - Jingyi Liu
- />Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001 People’s Republic of China
| | - Jue Tian
- />Department of Pathophysiology, Ningxia Medical University, Yinchuan, Ningxia 750004 People’s Republic of China
| | - Ye Wu
- />Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001 People’s Republic of China
| | - Xiaoliang Wang
- />Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001 People’s Republic of China
| | - Lin Quan
- />Department of Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 Xitoutiao, You An Men, P.O. Box 907, Beijing, 100069 People’s Republic of China
| | - Haibo Xu
- />Department of Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 Xitoutiao, You An Men, P.O. Box 907, Beijing, 100069 People’s Republic of China
| | - Wen Wang
- />Department of Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 Xitoutiao, You An Men, P.O. Box 907, Beijing, 100069 People’s Republic of China
| | - Huirong Liu
- />Department of Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 Xitoutiao, You An Men, P.O. Box 907, Beijing, 100069 People’s Republic of China
- />The Key Laboratory of Remodeling-related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing, 100069 People’s Republic of China
| |
Collapse
|
124
|
Puyal J, Ginet V, Clarke PGH. Multiple interacting cell death mechanisms in the mediation of excitotoxicity and ischemic brain damage: a challenge for neuroprotection. Prog Neurobiol 2013; 105:24-48. [PMID: 23567504 DOI: 10.1016/j.pneurobio.2013.03.002] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 03/05/2013] [Accepted: 03/13/2013] [Indexed: 02/09/2023]
Abstract
There is currently no approved neuroprotective pharmacotherapy for acute conditions such as stroke and cerebral asphyxia. One of the reasons for this may be the multiplicity of cell death mechanisms, because inhibition of a particular mechanism leaves the brain vulnerable to alternative ones. It is therefore essential to understand the different cell death mechanisms and their interactions. We here review the multiple signaling pathways underlying each of the three main morphological types of cell death--apoptosis, autophagic cell death and necrosis--emphasizing their importance in the neuronal death that occurs during cerebral ischemia and hypoxia-ischemia, and we analyze the interactions between the different mechanisms. Finally, we discuss the implications of the multiplicity of cell death mechanisms for the design of neuroprotective strategies.
Collapse
Affiliation(s)
- Julien Puyal
- Département des Neurosciences Fondamentales, Université de Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland.
| | | | | |
Collapse
|
125
|
Giampietri C, Petrungaro S, Filippini A, Ziparo E. Sex-related differences in death control of somatic cells. J Cell Mol Med 2013; 17:550-1. [PMID: 23517054 PMCID: PMC3822655 DOI: 10.1111/jcmm.12047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 01/31/2013] [Indexed: 11/30/2022] Open
Affiliation(s)
- Claudia Giampietri
- Department of Anatomy, Histology,Forensic Medicine and Orthopedics-Section of Histology and Medical Embryology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of RomeRome, Italy
- *Correspondence to: Claudia GIAMPIETRI, Department of Anatomy, Histology, Forensic Medicine and Orthopedics-Section of Histology and Medical Embryology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy. Tel.: +39 6 49766948 Fax: +39 6 4462854 E-mail:
| | - Simonetta Petrungaro
- Department of Anatomy, Histology,Forensic Medicine and Orthopedics-Section of Histology and Medical Embryology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of RomeRome, Italy
| | - Antonio Filippini
- Department of Anatomy, Histology,Forensic Medicine and Orthopedics-Section of Histology and Medical Embryology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of RomeRome, Italy
| | - Elio Ziparo
- Department of Anatomy, Histology,Forensic Medicine and Orthopedics-Section of Histology and Medical Embryology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of RomeRome, Italy
| |
Collapse
|
126
|
Wilson ME. Stroke: understanding the differences between males and females. Pflugers Arch 2013; 465:595-600. [PMID: 23503729 DOI: 10.1007/s00424-013-1260-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/01/2013] [Accepted: 03/01/2013] [Indexed: 01/09/2023]
Abstract
Stroke is a significant cause of death and long-term disability in the USA. The incidence, mortality, and outcomes of stroke are significantly different between men and women. As with many diseases that affect men and women differently, an understanding on the reasons underlying those differences is critical to effective diagnosis and treatment. This review will examine the sex differences in stroke in both humans and animal models of stroke and review what is known about potential mechanisms underlying these differences. It is clear that there is a complex interaction between hormonal, genetic, and unknown factors at play in generating the sex differences in stroke.
Collapse
Affiliation(s)
- Melinda E Wilson
- Department of Physiology, University of Kentucky, MS508 800 Rose St., Lexington, KY 40536, USA.
| |
Collapse
|
127
|
Pandi G, Nakka VP, Dharap A, Roopra A, Vemuganti R. MicroRNA miR-29c down-regulation leading to de-repression of its target DNA methyltransferase 3a promotes ischemic brain damage. PLoS One 2013; 8:e58039. [PMID: 23516428 PMCID: PMC3596316 DOI: 10.1371/journal.pone.0058039] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 01/29/2013] [Indexed: 12/21/2022] Open
Abstract
Recent studies showed that stroke extensively alters cerebral microRNA (miRNA) expression profiles and several miRNAs play a role in mediating ischemic pathophysiology. We currently evaluated the significance of miR-29c, a highly expressed miRNA in rodent brain that was significantly down-regulated after focal ischemia in adult rats as well as after oxygen-glucose deprivation in PC12 cells. Bioinformatics indicated that DNA methyltransferase 3a (DNMT3a) is a major target of miR-29c and co-transfection with premiR-29c prevented DNMT3a 3'UTR vector expression. In PC12 cells, treatment with premiR-29c prevented OGD-induced cell death (by 58 ± 6%; p<0.05). Furthermore, treatment with antagomiR-29c resulted in a 46 ± 5% cell death in PC12 cells. When rats were treated with premiR-29c and subjected to transient focal ischemia, post-ischemic miR-29c levels were restored and the infarct volume decreased significantly (by 34 ± 6%; p<0.05) compared to control premiR treated group. DNMT3a siRNA treatment also significantly curtailed the post-OGD cell death in PC12 cells (by 54 ± 6%; p<0.05) and decreased the post-ischemic infarct volume in rats (by 30 ± 5%; p<0.05) compared to respective control siRNA treated groups. The miR-29c gene promoter showed specific binding sites for the transcription factor REST and the miR-29c promoter vector expression was curtailed when cotransfected with a REST expressing plasmid. Furthermore, treatment with REST siRNA prevented the post-ischemic miR-29c down-regulation and DNMT3a induction in PC12 cells and curtailed ischemic cell death (by 64 ± 9%; p<0.05) compared to control siRNA treatment. These studies suggest that miR-29c is a pro-survival miRNA and its down-regulation is a promoter of ischemic brain damage by acting through its target DNMT3a. Furthermore, REST is an upstream transcriptional controller of miR-29c and curtailing REST induction prevents miR-29c down-regulation and ischemic neuronal death.
Collapse
Affiliation(s)
- Gopal Pandi
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Venkata P. Nakka
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Ashutosh Dharap
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Avtar Roopra
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
128
|
Zhu Y, Wang D, Wang F, Li T, Dong L, Liu H, Ma Y, Jiang F, Yin H, Yan W, Luo M, Tang Z, Zhang G, Wang Q, Zhang J, Zhou J, Yu J. A comprehensive analysis of GATA-1-regulated miRNAs reveals miR-23a to be a positive modulator of erythropoiesis. Nucleic Acids Res 2013; 41:4129-43. [PMID: 23420868 PMCID: PMC3627585 DOI: 10.1093/nar/gkt093] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
miRNAs play important roles in many biological processes, including erythropoiesis. Although several miRNAs regulate erythroid differentiation, how the key erythroid regulator, GATA-1, directly orchestrates differentiation through miRNA pathways remains unclear. In this study, we identified miR-23a as a key regulator of erythropoiesis, which was upregulated both during erythroid differentiation and in GATA-1 gain-of-function experiments, as determined by miRNA expression profile analysis. In primary human CD34+ hematopoietic progenitor cells, miR-23a increased in a GATA-1-dependent manner during erythroid differentiation. Gain- or loss-of-function analysis of miR-23a in mice or zebrafish demonstrated that it was essential for normal morphology in terminally differentiated erythroid cells. Furthermore, a protein tyrosine phosphatase, SHP2, was identified as a downstream target of miR-23a that mediated its regulation of erythropoiesis. Taken together, our data identify a key GATA-1–miRNA axis in erythroid differentiation.
Collapse
Affiliation(s)
- Yong Zhu
- National Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing 100005, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
An emerging role for microRNAs in sexually dimorphic neurobiological systems. Pflugers Arch 2013; 465:655-67. [PMID: 23397171 DOI: 10.1007/s00424-013-1227-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 01/28/2013] [Indexed: 10/27/2022]
Abstract
Over the past 20 years, our understanding of the basic mechanisms of gene regulation has vastly expanded due to the unexpected roles of small regulatory RNAs, in particular microRNAs (miRNAs). miRNAs add another layer of complexity to the regulation of effector molecules for nearly every physiological process, making them excellent candidate molecules as therapeutic targets, biomarkers, and disease predictors. Hormonal contributions to mature miRNA expression, biosynthetic processing, and downstream functions have only just begun to be investigated. Elucidating the physiological consequences of miRNA sexual dimorphism, and their associated regulatory processes, may be key toward understanding both normal and pathological processes in the brain. This short review provides a basic overview of miRNA biosynthesis, their role in normal brain development, and potential links to neurological diseases. We conclude with a brief discussion of the current knowledge of sex-specific miRNA processes in both the brain and the heart to conceptually integrate the relevance of miRNAs with the overarching theme ("sex differences in health and disease: brain and heart connections") of this special topics issue.
Collapse
|
130
|
Ritzel RM, Capozzi LA, McCullough LD. Sex, stroke, and inflammation: the potential for estrogen-mediated immunoprotection in stroke. Horm Behav 2013; 63:238-53. [PMID: 22561337 PMCID: PMC3426619 DOI: 10.1016/j.yhbeh.2012.04.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 04/13/2012] [Accepted: 04/14/2012] [Indexed: 01/05/2023]
Abstract
Stroke is the third leading cause of death and the primary cause of disability in the developed world. Experimental and clinical data indicate that stroke is a sexually dimorphic disease, with males demonstrating an enhanced intrinsic sensitivity to ischemic damage throughout most of their lifespan. The neuroprotective role of estrogen in the female brain is well established, however, estrogen exposure can also be deleterious, especially in older women. The mechanisms for this remain unclear. Our current understanding is based on studies examining estrogen as it relates to neuronal injury, yet cerebral ischemia also induces a robust sterile inflammatory response involving local and systemic immune cells. Despite the potent anti-inflammatory effects of estrogen, few studies have investigated the contribution of estrogen to sex differences in the inflammatory response to stroke. This review examines the potential role for estrogen-mediated immunoprotection in ischemic injury.
Collapse
Affiliation(s)
- Rodney M Ritzel
- University of Connecticut Health Center, Department of Neuroscience, Farmington, CT 06030, USA
| | | | | |
Collapse
|
131
|
Abstract
Epigenetic remodeling and modifications of chromatin structure by DNA methylation and histone modifications represent central mechanisms for the regulation of neuronal gene expression during brain development, higher-order processing, and memory formation. Emerging evidence implicates epigenetic modifications not only in normal brain function, but also in neuropsychiatric disorders. This review focuses on recent findings that disruption of chromatin modifications have a major role in the neurodegeneration associated with ischemic stroke and epilepsy. Although these disorders differ in their underlying causes and pathophysiology, they share a common feature, in that each disorder activates the gene silencing transcription factor REST (repressor element 1 silencing transcription factor), which orchestrates epigenetic remodeling of a subset of 'transcriptionally responsive targets' implicated in neuronal death. Although ischemic insults activate REST in selectively vulnerable neurons in the hippocampal CA1, seizures activate REST in CA3 neurons destined to die. Profiling the array of genes that are epigenetically dysregulated in response to neuronal insults is likely to advance our understanding of the mechanisms underlying the pathophysiology of these disorders and may lead to the identification of novel therapeutic strategies for the amelioration of these serious human conditions.
Collapse
|
132
|
Park SY, Lim SL, Jang HJ, Lee JH, Um JY, Kim SH, Ahn KS, Lee SG. Embelin Induces Apoptosis in Human Glioma Cells Through Inactivating NF-κB. J Pharmacol Sci 2013; 121:192-9. [DOI: 10.1254/jphs.12137fp] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
133
|
Persky RW, Liu F, Xu Y, Weston G, Levy S, Roselli CE, McCullough LD. Neonatal testosterone exposure protects adult male rats from stroke. Neuroendocrinology 2013; 97:271-82. [PMID: 23051877 PMCID: PMC3617085 DOI: 10.1159/000343804] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 09/27/2012] [Indexed: 01/01/2023]
Abstract
BACKGROUND Men have a higher stroke incidence compared to women until advanced age. The contribution of hormones to these sex differences has been extensively debated. In experimental stroke, estradiol is neuroprotective, whereas androgens are detrimental. However, prior studies have only examined the effects of acute treatment paradigms; therefore, the timing and mechanism by which ischemic sexual dimorphism arises are unknown. METHODS The effects of exogenous neonatal androgen exposure on subsequent injury induced by middle cerebral artery occlusion in adulthood in male rats were examined. Rats were administered vehicle (oil), testosterone propionate (TP) or the non-aromatizable androgen dihydrotestosterone (DHT) for 5 days after birth. At 3 months of age, a focal stroke was induced. RESULTS Testosterone-treated rats (but not DHT-treated animals) had decreased infarct volumes (20 vs. 33%, p < 0.05) as well as increased estradiol levels (39.4 vs. 18.6 pg/ml, p < 0.0001) compared to oil-treated animals. TP-injected males had increased testicular aromatase (P450arom) levels (3.6 vs. 0.2 ng/ml, p < 0.0001) compared to oil-treated males. The level of X-linked inhibitor of apoptosis, the primary endogenous inhibitor of caspase-induced apoptosis, was increased in TP-treated rats compared with the oil-treated males. CONCLUSIONS Neonatal exposure to exogenous testosterone upregulates testicular aromatase expression in male rats and leads to adult neuroprotection secondary to changes in serum estradiol levels and cell death proteins. This study suggests that early exposure to gonadal hormones can have dramatic effects on the response to adult cerebrovascular injury.
Collapse
Affiliation(s)
- Rebecca W. Persky
- Department of Neuroscience and Neurology, University of Connecticut Health Center, Farmington, CT, USA
| | - Fudong Liu
- Department of Neuroscience and Neurology, University of Connecticut Health Center, Farmington, CT, USA
| | - Yan Xu
- Department of Neuroscience and Neurology, University of Connecticut Health Center, Farmington, CT, USA
| | - Gillian Weston
- Department of Neuroscience and Neurology, University of Connecticut Health Center, Farmington, CT, USA
| | - Stephanie Levy
- Department of Neuroscience and Neurology, University of Connecticut Health Center, Farmington, CT, USA
| | - Charles E. Roselli
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon, USA
| | - Louise D. McCullough
- Department of Neuroscience and Neurology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
134
|
Keddy PGW, Dunlop K, Warford J, Samson ML, Jones QRD, Rupasinghe HPV, Robertson GS. Neuroprotective and anti-inflammatory effects of the flavonoid-enriched fraction AF4 in a mouse model of hypoxic-ischemic brain injury. PLoS One 2012; 7:e51324. [PMID: 23251498 PMCID: PMC3520852 DOI: 10.1371/journal.pone.0051324] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 10/31/2012] [Indexed: 11/23/2022] Open
Abstract
We report here neuroprotective and anti-inflammatory effects of a flavonoid-enriched fraction isolated from the peel of Northern Spy apples (AF4) in a mouse of model of hypoxic-ischemic (HI) brain damage. Oral administration of AF4 (50 mg/kg, once daily for 3 days) prior to 50 min of HI completely prevented motor performance deficits assessed 14 days later that were associated with marked reductions in neuronal cell loss in the dorsal hippocampus and striatum. Pre-treatment with AF4 (5, 10, 25 or 50 mg/kg, p.o.; once daily for 3 days) produced a dose-dependent reduction in HI-induced hippocampal and striatal neuron cell loss, with 25 mg/kg being the lowest dose that achieved maximal neuroprotection. Comparison of the effects of 1, 3 or 7 doses of AF4 (25 mg/kg; p.o.) prior to HI revealed that at least 3 doses of AF4 were required before HI to reduce neuronal cell loss in both the dorsal hippocampus and striatum. Quantitative RT-PCR measurements revealed that the neuroprotective effects of AF4 (25 mg/kg; p.o.; once daily for 3 days) in the dorsal hippocampus were associated with a suppression of HI-induced increases in the expression of IL-1β, TNF-α and IL-6. AF4 pre-treatment enhanced mRNA levels for pro-survival proteins such as X-linked inhibitor of apoptosis and erythropoietin following HI in the dorsal hippocampus and striatum, respectively. Primary cultures of mouse cortical neurons incubated with AF4 (1 µg/ml), but not the same concentrations of either quercetin or quercetin-3-O-glucose or its metabolites, were resistant to cell death induced by oxygen glucose deprivation. These findings suggest that the inhibition of HI-induced brain injury produced by AF4 likely involves a transcriptional mechanism resulting from the co-operative actions of various phenolics in this fraction which not only reduce the expression of pro-inflammatory mediators but also enhance pro-survival gene signalling.
Collapse
Affiliation(s)
- Paul G. W. Keddy
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kate Dunlop
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jordan Warford
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michel L. Samson
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Quinton R. D. Jones
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - H. P. Vasantha Rupasinghe
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - George S. Robertson
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Psychiatry, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
135
|
Koellhoffer EC, McCullough LD. The effects of estrogen in ischemic stroke. Transl Stroke Res 2012; 4:390-401. [PMID: 24323337 DOI: 10.1007/s12975-012-0230-5] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 11/12/2012] [Indexed: 12/12/2022]
Abstract
Stroke is a leading cause of death and the most common cause of long-term disability in the USA. Women have a lower incidence of stroke compared with men throughout most of the lifespan which has been ascribed to protective effects of gonadal steroids, most notably estrogen. Due to the lower stroke incidence observed in pre-menopausal women and robust preclinical evidence of neuroprotective and anti-inflammatory properties of estrogen, researchers have focused on the potential benefits of hormones to reduce ischemic brain injury. However, as women age, they are disproportionately affected by stroke, coincident with the loss of estrogen with menopause. The risk of stroke in elderly women exceeds that of men and it is clear that in some settings estrogen can have pro-inflammatory effects. This review will focus on estrogen and inflammation and its interaction with aging.
Collapse
Affiliation(s)
- Edward C Koellhoffer
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | | |
Collapse
|
136
|
Li C, Hashimi SM, Good DA, Cao S, Duan W, Plummer PN, Mellick AS, Wei MQ. Apoptosis and microRNA aberrations in cancer. Clin Exp Pharmacol Physiol 2012; 39:739-46. [PMID: 22409455 DOI: 10.1111/j.1440-1681.2012.05700.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carcinogenesis arises from the malfunction of genes that control cell growth and division. Therefore, the most effective method of hindering tumourigenesis is to induce the death of immortalized cancer cells. Apoptosis or programmed cell death has shown the most promises in impairing cancer growth. A variety of proteins is involved in the regulation of apoptosis and the malfunction of any these regulators may cause cell proliferation. The microRNAs have been shown to play a central role in the regulation of the cell cycle, including apoptosis. The microRNAs are involved in post-transcriptional gene suppression and have been implicated in the regulation of cell differentiation and development. Aberrations in the microRNA regulation of apoptosis lead to tumourigenesis. The present review assesses the current knowledge of apoptotic regulation in cancer and the effect of microRNA aberrations in tumourigenesis.
Collapse
Affiliation(s)
- Chun Li
- Division of Molecular and Gene Therapies, Griffith Institute for Health and Medical Research, School of Medical Science, Griffith University, Gold Coast, Qld, Australia
| | | | | | | | | | | | | | | |
Collapse
|
137
|
Morgan CP, Bale TL. Sex differences in microRNA regulation of gene expression: no smoke, just miRs. Biol Sex Differ 2012; 3:22. [PMID: 23009289 PMCID: PMC3507674 DOI: 10.1186/2042-6410-3-22] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 09/22/2012] [Indexed: 11/10/2022] Open
Abstract
Males and females differ widely in morphology, physiology, and behavior leading to disparities in many health outcomes, including sex biases in the prevalence of many neurodevelopmental disorders. However, with the exception of a relatively small number of genes on the Y chromosome, males and females share a common genome. Therefore, sexual differentiation must in large part be a product of the sex biased expression of this shared genetic substrate. microRNAs (miRs) are small non-coding RNAs involved in the post-transcriptional regulation of up to 70% of protein-coding genes. The ability of miRs to regulate such a vast amount of the genome with a high degree of specificity makes them perfectly poised to play a critical role in programming of the sexually dimorphic brain. This review describes those characteristics of miRs that make them particularly amenable to this task, and examines the influences of both the sex chromosome complement as well as gonadal hormones on their regulation. Exploring miRs in the context of sex differences in disease, particularly in sex-biased neurodevelopmental disorders, may provide novel insight into the pathophysiology and potential therapeutic targets in disease treatment and prevention.
Collapse
Affiliation(s)
- Christopher P Morgan
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Ste, 201E, Philadelphia, PA, 19104-6046, USA.
| | | |
Collapse
|
138
|
Method for microRNA isolation from clinical serum samples. Anal Biochem 2012; 431:69-75. [PMID: 22982505 DOI: 10.1016/j.ab.2012.09.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 08/31/2012] [Accepted: 09/04/2012] [Indexed: 12/18/2022]
Abstract
MicroRNAs are a group of intracellular noncoding RNA molecules that have been implicated in a variety of human diseases. Because of their high stability in blood, microRNAs released into circulation could be potentially utilized as noninvasive biomarkers for diagnosis or prognosis. Current microRNA isolation protocols are specifically designed for solid tissues and are impractical for biomarker development utilizing small-volume serum samples on a large scale. Thus, a protocol for microRNA isolation from serum is needed to accommodate these conditions in biomarker development. To establish such a protocol, we developed a simplified approach to normalize sample input by using single synthetic spike-in microRNA. We evaluated three commonly used commercial microRNA isolation kits for the best performance by comparing RNA quality and yield. The manufacturer's protocol was further modified to improve the microRNA yield from 200μl of human serum. MicroRNAs isolated from a large set of clinical serum samples were tested on the miRCURY LNA real-time PCR panel and confirmed to be suitable for high-throughput microRNA profiling. In conclusion, we have established a proven method for microRNA isolation from clinical serum samples suitable for microRNA biomarker development.
Collapse
|
139
|
Udali S, Guarini P, Moruzzi S, Choi SW, Friso S. Cardiovascular epigenetics: from DNA methylation to microRNAs. Mol Aspects Med 2012; 34:883-901. [PMID: 22981780 DOI: 10.1016/j.mam.2012.08.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/25/2012] [Accepted: 08/25/2012] [Indexed: 12/14/2022]
Abstract
Epigenetic phenomena are defined as heritable mechanisms that establish and maintain mitotically stable patterns of gene expression without modifying the base sequence of DNA. The major epigenetic features of mammalian cells include DNA methylation, post-translational histone modifications and RNA-based mechanisms including those controlled by small non-coding RNAs (miRNAs). The impact of epigenetic mechanisms in cardiovascular pathophysiology is now emerging as a major player in the interface between genotype to phenotype variability. This topic of research has strict implications on disease development and progression, and opens up possible novel preventive strategies in cardiovascular disease. An important aspect of epigenetic mechanisms is that they are potentially reversible and may be influenced by nutritional-environmental factors and through gene-environment interactions, all of which have an important role in complex, multifactorial diseases such as those affecting the cardiovascular system. Gene expression regulation through the interplay of DNA methylation and histone modifications is well-established, although the knowledge about the function of epigenetic signatures in cardiovascular disease is still largely unexplored. The study of epigenetic markers is, therefore, a very promising frontier of science which may aid in a deeper understanding of molecular mechanisms underlying the modulation of gene expression in the biomolecule pathways linked to cardiovascular diseases. This review focuses on up-to-date knowledge pertaining to the role of epigenetics, from DNA methylation to miRNAs, in major cardiovascular diseases such as ischemic heart disease, hypertension, heart failure and stroke.
Collapse
Affiliation(s)
- Silvia Udali
- Department of Medicine, University of Verona School of Medicine, Verona, Italy
| | | | | | | | | |
Collapse
|
140
|
Wang L, Chen X, Zheng Y, Li F, Lu Z, Chen C, Liu J, Wang Y, Peng Y, Shen Z, Gao J, Zhu M, Chen H. MiR-23a inhibits myogenic differentiation through down regulation of fast myosin heavy chain isoforms. Exp Cell Res 2012; 318:2324-34. [PMID: 22771720 DOI: 10.1016/j.yexcr.2012.06.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 06/19/2012] [Accepted: 06/26/2012] [Indexed: 11/20/2022]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that repress the expression of their target genes post-transcriptionally. MiRNAs participate in the regulation of a variety of biological processes, including development and diseases. However, the functional role and molecular mechanism by which miRNAs regulate skeletal muscle development and differentiation are not fully understood. In this report, we identified miR-23a as a key regulator of skeletal muscle differentiation. Using bioinformatics analyses, miR-23a is predicted to target multiple adult fast myosin heavy chain (Myh) genes, including Myh 1, 2 and 4. Luciferase reporter assays show that miR-23a directly targets the 3' untranslated regions (UTRs) of these mRNAs. Interestingly, the expression level of mature miR-23a is inversely correlated with myogenic progression in mouse skeletal muscle. Both gain- and loss-of-function studies using C2C12 myoblasts demonstrate that miR-23a inhibits myogenic differentiation. These findings therefore reveal a novel role of miR-23a in regulating myogenic differentiation via inhibiting the expression of fast myosin heavy chain isoforms.
Collapse
Affiliation(s)
- Li Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210046, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Abstract
MicroRNAs have been implicated as important mediators of cancer cell homeostasis, and accumulating data suggest compelling roles for them in the apoptosis pathway. X-linked inhibitor of apoptosis protein (XIAP) is a potent caspase inhibitor and an important barrier to apoptotic cell death, but the mechanisms which determine the diverse range of XIAP expression seen in cancer remains unclear. In this study, we present evidence that miR-24 directly targets the 3′UTR of the XIAP mRNA to exert translational repression. Using a heuristic algorithm of bioinformatics analysis and in vitro screening, we identified miR-24 as a candidate regulator of XIAP expression. Array CGH and SKY analysis reveal that genomic copy number loss at the miR-24 locus is concordant with loss of endogenous miR-24 in cancer cells. Using a luciferase construct of the XIAP 3′UTR, we showed that miR-24 specifically coordinates to the XIAP mRNA. And interference with miR-24’s binding of the critical seed region, resulting from site-directed mutagenesis of the 3′UTR, significantly abrogated miR-24’s effects on XIAP expression. Moreover, miR-24 over-expression can overcome apoptosis-resistance in cancer cells via down-regulation of XIAP expression, and the resulting cancer cell death induced by TRAIL is executed by the canonical caspase-mediated apoptosis pathway. In summary, our data suggest a novel mechanism by which miR-24 directly modulates XIAP expression level and consequently the apoptosis threshold in cancer cells.
Collapse
|
142
|
Yang X, Zhou Y, Peng S, Wu L, Lin HY, Wang S, Wang H. Differentially expressed plasma microRNAs in premature ovarian failure patients and the potential regulatory function of mir-23a in granulosa cell apoptosis. Reproduction 2012; 144:235-44. [PMID: 22653319 DOI: 10.1530/rep-11-0371] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent studies implicate the regulatory function of microRNAs (miRNAs) in oocyte maturation and ovarian follicular development. Differentially expressed miRNAs are found in the plasma of premature ovarian failure (POF) patients and normal cycling women. In this study, miRNA-regulated signaling pathways and related genes were described using Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis. The effect of mir-23a on granulosa cell apoptosis was also studied by examining the protein expression of X-linked inhibitor of apoptosis protein (XIAP) and caspase-3, followed by subsequent counting of apoptotic cells after Hoechst 33258 staining. Both GO analysis and pathway analysis suggested that many signaling pathways, including the AKT signaling pathway, steroid hormone receptor signaling pathways, and others, were regulated by this group of differentially expressed miRNAs. A decrease in XIAP expression (mRNA and protein level) and caspase-3 protein levels and an increase in cleaved caspase-3 protein were observed in human ovarian granulosa cells transfected with pre-mir-23a, along with an increased occurrence of apoptosis. In conclusion, differentially expressed miRNAs in the plasma of POF patients may have regulatory effects on proliferation and apoptosis of granulosa cells by affecting different signaling pathways. Mir-23a may play important roles in regulating apoptosis via decreasing XIAP expression in human ovarian granulosa cells.
Collapse
Affiliation(s)
- Xiaokui Yang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100006, China
| | | | | | | | | | | | | |
Collapse
|
143
|
Wang K, Lin ZQ, Long B, Li JH, Zhou J, Li PF. Cardiac hypertrophy is positively regulated by MicroRNA miR-23a. J Biol Chem 2011; 287:589-599. [PMID: 22084234 DOI: 10.1074/jbc.m111.266940] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNAs that mediate post-transcriptional gene silencing. Myocardial hypertrophy is frequently associated with the development of heart failure. A variety of miRNAs are involved in the regulation of cardiac hypertrophy, however, the molecular targets of miRNAs in the cardiac hypertrophic cascades remain to be fully identified. We produced miR-23a transgenic mice, and these mice exhibit exaggerated cardiac hypertrophy in response to the stimulation with phenylephrine or pressure overload by transverse aortic banding. The endogenous miR-23a is up-regulated upon treatment with phenylephrine, endothelin-1, or transverse aortic banding. Knockdown of miR-23a attenuates hypertrophic responses. To identify the downstream targets of miR-23a, we found that transcription factor Foxo3a is suppressed by miR-23a. Luciferase assay indicates that miR-23a directly inhibits the translation activity of Foxo3a 3' UTR. Introduction or knockdown of miR-23a leads to the alterations of Foxo3a protein levels. Enforced expression of the constitutively active form of Foxo3a counteracts the provocative effect of miR-23a on hypertrophy. Furthermore, we observed that miR-23a is able to alter the expression levels of manganese superoxide dismutase and the consequent reactive oxygen species, and this effect is mediated by Foxo3a. In addition, our results show that miR-23a and Foxo3a bi-transgenic mice exhibit a reduced hypertrophic response compared with the miR-23a transgenic mice alone. Our present study reveals that miR-23a can mediate the hypertrophic signal through regulating Foxo3a. They form an axis in hypertrophic machinery and can be targets for the development of hypertrophic treatment.
Collapse
Affiliation(s)
- Kun Wang
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhi-Qiang Lin
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Long
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian-Hui Li
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Zhou
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Pei-Feng Li
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
144
|
Yang Z, Wang L. Regulation of microRNA expression and function by nuclear receptor signaling. Cell Biosci 2011; 1:31. [PMID: 21936947 PMCID: PMC3192659 DOI: 10.1186/2045-3701-1-31] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 09/21/2011] [Indexed: 01/10/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA transcripts that affect various cellular pathways by serving as regulators of gene expression at the translational and transcriptional level. Nuclear receptors (NRs) are ligand-activated transcription factors that regulate gene transcription by binding to the promoter region or by interacting with other transcription factors. NRs can regulate miRNA expression either at the transcriptional level, or through posttranscriptional maturation by interacting with miRNA processing factors. This review will summarize recent advances in knowledge of the modulation of miRNA expression by NRs. Increased understanding of the molecular basis of miRNA expression may enable new therapeutic interventions that modulate miRNA activities through NR-mediated signaling.
Collapse
Affiliation(s)
- Zhihong Yang
- Departments of Medicine and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| | | |
Collapse
|