101
|
Stefano G, Renna L, Brandizzi F. BiFC for protein-protein interactions and protein topology: discussing an integrative approach for an old technique. Methods Mol Biol 2015; 1242:173-82. [PMID: 25408453 DOI: 10.1007/978-1-4939-1902-4_15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BiFC (Bimolecular Fluorescence Complementation) is one of the most widely used techniques to study protein-protein interactions as well as protein topology in living cells. This method allows the visualization of protein interactions or the analysis of their topology in the cell compartments where the proteins belong, without changing their chemical properties, as often occurs after mixing the content of different cellular compartments in cell extracts. Several laboratories use this method because it is relatively easy to perform; however, sometimes a positive protein-protein interaction BiFC signal (i.e., reconstitution of fluorescence of interacting protein pairs) does not necessarily mean that the tested proteins are actually interacting in vivo in a specific way. Here we describe the BiFC approach for assessing protein-protein interactions and for establishing protein topology and we discuss how to best perform this method to avoid false positive results when studying protein interactions in plant cells.
Collapse
Affiliation(s)
- Giovanni Stefano
- MSU-DOE Plant Research Lab, Michigan State University, 612 Wilson Road, Room 206A, East Lansing, MI, 48824-1312, USA
| | | | | |
Collapse
|
102
|
Metabolic engineering of higher plants and algae for isoprenoid production. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 148:161-99. [PMID: 25636485 DOI: 10.1007/10_2014_290] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Isoprenoids are a class of compounds derived from the five carbon precursors, dimethylallyl diphosphate, and isopentenyl diphosphate. These molecules present incredible natural chemical diversity, which can be valuable for humans in many aspects such as cosmetics, agriculture, and medicine. However, many terpenoids are only produced in small quantities by their natural hosts and can be difficult to generate synthetically. Therefore, much interest and effort has been directed toward capturing the genetic blueprint for their biochemistry and engineering it into alternative hosts such as plants and algae. These autotrophic organisms are attractive when compared to traditional microbial platforms because of their ability to utilize atmospheric CO2 as a carbon substrate instead of supplied carbon sources like glucose. This chapter will summarize important techniques and strategies for engineering the accumulation of isoprenoid metabolites into higher plants and algae by choosing the correct host, avoiding endogenous regulatory mechanisms, and optimizing potential flux into the target compound. Future endeavors will build on these efforts by fine-tuning product accumulation levels via the vast amount of available "-omic" data and devising metabolic engineering schemes that integrate this into a whole-organism approach. With the development of high-throughput transformation protocols and synthetic biology molecular tools, we have only begun to harness the power and utility of plant and algae metabolic engineering.
Collapse
|
103
|
Bobik K, Burch-Smith TM. Chloroplast signaling within, between and beyond cells. FRONTIERS IN PLANT SCIENCE 2015; 6:781. [PMID: 26500659 PMCID: PMC4593955 DOI: 10.3389/fpls.2015.00781] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/10/2015] [Indexed: 05/18/2023]
Abstract
The most conspicuous function of plastids is the oxygenic photosynthesis of chloroplasts, yet plastids are super-factories that produce a plethora of compounds that are indispensable for proper plant physiology and development. Given their origins as free-living prokaryotes, it is not surprising that plastids possess their own genomes whose expression is essential to plastid function. This semi-autonomous character of plastids requires the existence of sophisticated regulatory mechanisms that provide reliable communication between them and other cellular compartments. Such intracellular signaling is necessary for coordinating whole-cell responses to constantly varying environmental cues and cellular metabolic needs. This is achieved by plastids acting as receivers and transmitters of specific signals that coordinate expression of the nuclear and plastid genomes according to particular needs. In this review we will consider the so-called retrograde signaling occurring between plastids and nuclei, and between plastids and other organelles. Another important role of the plastid we will discuss is the involvement of plastid signaling in biotic and abiotic stress that, in addition to influencing retrograde signaling, has direct effects on several cellular compartments including the cell wall. We will also review recent evidence pointing to an intriguing function of chloroplasts in regulating intercellular symplasmic transport. Finally, we consider an intriguing yet less widely known aspect of plant biology, chloroplast signaling from the perspective of the entire plant. Thus, accumulating evidence highlights that chloroplasts, with their complex signaling pathways, provide a mechanism for exquisite regulation of plant development, metabolism and responses to the environment. As chloroplast processes are targeted for engineering for improved productivity the effect of such modifications on chloroplast signaling will have to be carefully considered in order to avoid unintended consequences on plant growth and development.
Collapse
Affiliation(s)
| | - Tessa M. Burch-Smith
- *Correspondence: Tessa M. Burch-Smith, Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, 1414 Cumberland Avenue, M407 Walters Life Science, Knoxville, TN 37932, USA,
| |
Collapse
|
104
|
Laursen T, Møller BL, Bassard JE. Plasticity of specialized metabolism as mediated by dynamic metabolons. TRENDS IN PLANT SCIENCE 2015; 20:20-32. [PMID: 25435320 DOI: 10.1016/j.tplants.2014.11.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/24/2014] [Accepted: 11/07/2014] [Indexed: 05/02/2023]
Abstract
The formation of specialized metabolites enables plants to respond to biotic and abiotic stresses, but requires the sequential action of multiple enzymes. To facilitate swift production and to avoid leakage of potentially toxic and labile intermediates, many of the biosynthetic pathways are thought to organize in multienzyme clusters termed metabolons. Dynamic assembly and disassembly enable the plant to rapidly switch the product profile and thereby prioritize its resources. The lifetime of metabolons is largely unknown mainly due to technological limitations. This review focuses on the factors that facilitate and stimulate the dynamic assembly of metabolons, including microenvironments, noncatalytic proteins, and allosteric regulation. Understanding how plants organize carbon fluxes within their metabolic grids would enable targeted bioengineering of high-value specialized metabolites.
Collapse
Affiliation(s)
- Tomas Laursen
- VILLUM Research Center for Plant Plasticity, Center for Synthetic Biology 'bioSYNergy', and Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Birger Lindberg Møller
- VILLUM Research Center for Plant Plasticity, Center for Synthetic Biology 'bioSYNergy', and Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark; Carlsberg Laboratory, 10 Gamle Carlsberg Vej, DK-1799 Copenhagen V, Denmark.
| | - Jean-Etienne Bassard
- VILLUM Research Center for Plant Plasticity, Center for Synthetic Biology 'bioSYNergy', and Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| |
Collapse
|
105
|
Stefano G, Hawes C, Brandizzi F. ER - the key to the highway. CURRENT OPINION IN PLANT BIOLOGY 2014; 22:30-38. [PMID: 25259957 PMCID: PMC4250414 DOI: 10.1016/j.pbi.2014.09.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 05/18/2023]
Abstract
The endoplasmic reticulum (ER) is the key organelle at the start of the secretory pathway and the list of its functions is continually growing. The ER organization as a tubular/cisternal network at the cortex of plant cells has recently been shown to be governed by the membrane tubulation proteins of the reticulon family working alongside plant atlastin homologues, members of the RHD3 group of proteins. Such a network has intimate connections with other organelles such as peroxisomes via peroxules, chloroplasts, Golgi bodies and at the cell cortex to the plasma membrane with cytoskeleton at so called 'anchor/contact sites'. The ER network is by no means static displaying a range of different movements and acting as a subcellular highway supports the motility of organelles such as peroxisomes, mitochondria and Golgi bodies plus the transport of macromolecules such as viral movement proteins, nucleocapsid proteins and RNA. Here we highlight recent and exciting discoveries on the maintenance of the ER structure and its role on movement and biology of other organelles.
Collapse
Affiliation(s)
- Giovanni Stefano
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, United States; Department of Plant Biology, Michigan State University, East Lansing, MI 48824, United States
| | - Chris Hawes
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, United States; Department of Plant Biology, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
106
|
Prinz WA. Bridging the gap: membrane contact sites in signaling, metabolism, and organelle dynamics. ACTA ACUST UNITED AC 2014; 205:759-69. [PMID: 24958771 PMCID: PMC4068136 DOI: 10.1083/jcb.201401126] [Citation(s) in RCA: 303] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Regions of close apposition between two organelles, often referred to as membrane contact sites (MCSs), mostly form between the endoplasmic reticulum and a second organelle, although contacts between mitochondria and other organelles have also begun to be characterized. Although these contact sites have been noted since cells first began to be visualized with electron microscopy, the functions of most of these domains long remained unclear. The last few years have witnessed a dramatic increase in our understanding of MCSs, revealing the critical roles they play in intracellular signaling, metabolism, the trafficking of metabolites, and organelle inheritance, division, and transport.
Collapse
Affiliation(s)
- William A Prinz
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
107
|
Pick TR, Weber APM. Unknown components of the plastidial permeome. FRONTIERS IN PLANT SCIENCE 2014; 5:410. [PMID: 25191333 PMCID: PMC4137279 DOI: 10.3389/fpls.2014.00410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/01/2014] [Indexed: 05/29/2023]
Abstract
Beyond their role in photosynthesis plastids provide a plethora of additional metabolic functions to plant cells. For example, they harbor complete biosynthetic pathways for the de novo synthesis of carotenoids, fatty acids, and amino acids. Furthermore plastids contribute important reactions to multi-compartmentalized pathways, such as photorespiration or plant hormone syntheses, and they depend on the import of essential molecules that they cannot synthesize themselves, such as ascorbic acid. This causes a high traffic of metabolites across the plastid envelope. Although it was recently shown that non-polar substrates could be exchanged between the plastid and the ER without involving transporters, various essential transport processes are mediated by highly selective but still unknown metabolite transporters. This review focuses on selected components of the plastidial permeome that are predicted to exist but that have not yet been identified as molecular entities, such as the transporters for isopentenyl diphosphate (IPP) or ascorbic acid.
Collapse
Affiliation(s)
| | - Andreas P. M. Weber
- *Correspondence: Andreas P. M. Weber, Institut für Biochemie der Pflanzen, Cluster of Excellence on Plant Sciences, Heinrich-Heine Universität Düsseldorf, Universitätstrasse 1, D-40225 Düsseldorf, Germany e-mail:
| |
Collapse
|
108
|
Mehrshahi P, Johnny C, DellaPenna D. Redefining the metabolic continuity of chloroplasts and ER. TRENDS IN PLANT SCIENCE 2014; 19:501-7. [PMID: 24679997 DOI: 10.1016/j.tplants.2014.02.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/20/2014] [Accepted: 02/21/2014] [Indexed: 05/06/2023]
Abstract
As a hub for plant metabolism, plastids extensively exchange metabolites with the extraplastid environment. For polar metabolites, membrane transporters mediate this exchange, but for many plastid-synthesized nonpolar compounds, such transporters remain elusive. Here, we discuss recent data from transorganellar complementation studies that demonstrate that enzymes in one organelle can directly access nonpolar metabolites from a companion organelle. We propose that a mechanism, based on hemifused-membranes at plastid-endoplasmic reticulum (ER) contact sites, facilitates interorganellar interactions and allows enzymes direct, transporter-independent access to a range of nonpolar compounds in both organelle membranes. In a wider context, interorganellar metabolism at hemifusion interfaces would allow evolution of membrane-spanning pathways for the many thousands of nonpolar metabolites in the plant kingdom to be uncoupled from coevolution with nonpolar metabolite transporters.
Collapse
Affiliation(s)
- Payam Mehrshahi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Cassandra Johnny
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Dean DellaPenna
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
109
|
Hurlock AK, Roston RL, Wang K, Benning C. Lipid trafficking in plant cells. Traffic 2014; 15:915-32. [PMID: 24931800 DOI: 10.1111/tra.12187] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/12/2014] [Accepted: 06/12/2014] [Indexed: 12/29/2022]
Abstract
Plant cells contain unique organelles such as chloroplasts with an extensive photosynthetic membrane. In addition, specialized epidermal cells produce an extracellular cuticle composed primarily of lipids, and storage cells accumulate large amounts of storage lipids. As lipid assembly is associated only with discrete membranes or organelles, there is a need for extensive lipid trafficking within plant cells, more so in specialized cells and sometimes also in response to changing environmental conditions such as phosphate deprivation. Because of the complexity of plant lipid metabolism and the inherent recalcitrance of membrane lipid transporters, the mechanisms of lipid transport within plant cells are not yet fully understood. Recently, several new proteins have been implicated in different aspects of plant lipid trafficking. While these proteins provide only first insights into limited aspects of lipid transport phenomena in plant cells, they represent exciting opportunities for further studies.
Collapse
Affiliation(s)
- Anna K Hurlock
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA; Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | | | | | | |
Collapse
|
110
|
Courdavault V, Papon N, Clastre M, Giglioli-Guivarc'h N, St-Pierre B, Burlat V. A look inside an alkaloid multisite plant: the Catharanthus logistics. CURRENT OPINION IN PLANT BIOLOGY 2014; 19:43-50. [PMID: 24727073 DOI: 10.1016/j.pbi.2014.03.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/14/2014] [Accepted: 03/15/2014] [Indexed: 05/12/2023]
Abstract
Environmental pressures forced plants to diversify specialized metabolisms to accumulate noxious molecules such as alkaloids constituting one of the largest classes of defense metabolites. Catharanthus roseus produces monoterpene indole alkaloids via a highly elaborated biosynthetic pathway whose characterization greatly progressed with the recent expansion of transcriptomic resources. The complex architecture of this pathway, sequentially distributed in at least four cell types and further compartmentalized into several organelles, involves partially identified inter-cellular and intra-cellular translocation events acting as potential key-regulators of metabolic fluxes. The description of this spatial organization and the inherent secretion and sequestration of metabolites not only provide new insight into alkaloid cell biology and its involvement in plant defense processes but also present new biotechnological challenges for synthetic biology.
Collapse
Affiliation(s)
- Vincent Courdavault
- Université François-Rabelais de Tours, EA2106 'Biomolécules et Biotechnologies Végétales', Tours, France.
| | - Nicolas Papon
- Université François-Rabelais de Tours, EA2106 'Biomolécules et Biotechnologies Végétales', Tours, France
| | - Marc Clastre
- Université François-Rabelais de Tours, EA2106 'Biomolécules et Biotechnologies Végétales', Tours, France
| | | | - Benoit St-Pierre
- Université François-Rabelais de Tours, EA2106 'Biomolécules et Biotechnologies Végétales', Tours, France
| | - Vincent Burlat
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, Auzeville, F-31326 Castanet-Tolosan, France; CNRS, UMR 5546, BP 42617, Auzeville, F-31326 Castanet-Tolosan, France
| |
Collapse
|
111
|
Paul P, Simm S, Mirus O, Scharf KD, Fragkostefanakis S, Schleiff E. The complexity of vesicle transport factors in plants examined by orthology search. PLoS One 2014; 9:e97745. [PMID: 24844592 PMCID: PMC4028247 DOI: 10.1371/journal.pone.0097745] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 04/24/2014] [Indexed: 11/18/2022] Open
Abstract
Vesicle transport is a central process to ensure protein and lipid distribution in eukaryotic cells. The current knowledge on the molecular components and mechanisms of this process is majorly based on studies in Saccharomyces cerevisiae and Arabidopsis thaliana, which revealed 240 different proteinaceous factors either experimentally proven or predicted to be involved in vesicle transport. In here, we performed an orthologue search using two different algorithms to identify the components of the secretory pathway in yeast and 14 plant genomes by using the 'core-set' of 240 factors as bait. We identified 4021 orthologues and (co-)orthologues in the discussed plant species accounting for components of COP-II, COP-I, Clathrin Coated Vesicles, Retromers and ESCRTs, Rab GTPases, Tethering factors and SNAREs. In plants, we observed a significantly higher number of (co-)orthologues than yeast, while only 8 tethering factors from yeast seem to be absent in the analyzed plant genomes. To link the identified (co-)orthologues to vesicle transport, the domain architecture of the proteins from yeast, genetic model plant A. thaliana and agriculturally relevant crop Solanum lycopersicum has been inspected. For the orthologous groups containing (co-)orthologues from yeast, A. thaliana and S. lycopersicum, we observed the same domain architecture for 79% (416/527) of the (co-)orthologues, which documents a very high conservation of this process. Further, publically available tissue-specific expression profiles for a subset of (co-)orthologues found in A. thaliana and S. lycopersicum suggest that some (co-)orthologues are involved in tissue-specific functions. Inspection of localization of the (co-)orthologues based on available proteome data or localization predictions lead to the assignment of plastid- as well as mitochondrial localized (co-)orthologues of vesicle transport factors and the relevance of this is discussed.
Collapse
Affiliation(s)
- Puneet Paul
- Department of Biosciences Molecular Cell Biology of Plants
| | - Stefan Simm
- Department of Biosciences Molecular Cell Biology of Plants
| | - Oliver Mirus
- Department of Biosciences Molecular Cell Biology of Plants
| | | | | | - Enrico Schleiff
- Department of Biosciences Molecular Cell Biology of Plants
- Cluster of Excellence Frankfurt
- Center of Membrane Proteomics; Goethe University Frankfurt, Frankfurt/Main, Germany
- * E-mail:
| |
Collapse
|
112
|
Mueller SJ, Reski R. Evolution and communication of subcellular compartments: An integrated approach. PLANT SIGNALING & BEHAVIOR 2014; 9:e28993. [PMID: 24786592 PMCID: PMC4091571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 04/23/2014] [Accepted: 04/23/2014] [Indexed: 02/28/2024]
Abstract
Compartmentation is a fundamental feature of eukaryotic cells and the basis for metabolic complexity. We recently reported on the protein compartmentation in the moss Physcomitrella patens. This study utilized a combination of quantitative proteomics, comparative genomics, and single protein tagging and provided data on the postendosymbiotic evolution of plastids and mitochondria, on organellar communication, as well as on inter- and intracellular heterogeneity of organelles. We highlight potential organelle interaction hubs with specific protein content such as plastid stromules, and report on the plasticity of protein targeting to organelles.
Collapse
Affiliation(s)
- Stefanie J Mueller
- Plant Biotechnology; Faculty of Biology; University of Freiburg; Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology; Faculty of Biology; University of Freiburg; Freiburg, Germany
- BIOSS—Centre for Biological Signalling Studies; Freiburg, Germany
- FRIAS—Freiburg Institute for Advanced Studies; Freiburg, Germany
- TIP—Trinational Institute for Plant Research; Freiburg, Germany
| |
Collapse
|
113
|
Mueller SJ, Reski R. Evolution and communication of subcellular compartments: An integrated approach. PLANT SIGNALING & BEHAVIOR 2014; 9:28993. [PMID: 24786592 PMCID: PMC4091571 DOI: 10.4161/psb.28993] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 04/23/2014] [Accepted: 04/23/2014] [Indexed: 05/23/2023]
Abstract
Compartmentation is a fundamental feature of eukaryotic cells and the basis for metabolic complexity. We recently reported on the protein compartmentation in the moss Physcomitrella patens. This study utilized a combination of quantitative proteomics, comparative genomics, and single protein tagging and provided data on the postendosymbiotic evolution of plastids and mitochondria, on organellar communication, as well as on inter- and intracellular heterogeneity of organelles. We highlight potential organelle interaction hubs with specific protein content such as plastid stromules, and report on the plasticity of protein targeting to organelles.
Collapse
Affiliation(s)
- Stefanie J Mueller
- Plant Biotechnology; Faculty of Biology; University of Freiburg; Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology; Faculty of Biology; University of Freiburg; Freiburg, Germany
- BIOSS—Centre for Biological Signalling Studies; Freiburg, Germany
- FRIAS—Freiburg Institute for Advanced Studies; Freiburg, Germany
- TIP—Trinational Institute for Plant Research; Freiburg, Germany
| |
Collapse
|
114
|
Mueller SJ, Lang D, Hoernstein SN, Lang EG, Schuessele C, Schmidt A, Fluck M, Leisibach D, Niegl C, Zimmer AD, Schlosser A, Reski R. Quantitative analysis of the mitochondrial and plastid proteomes of the moss Physcomitrella patens reveals protein macrocompartmentation and microcompartmentation. PLANT PHYSIOLOGY 2014; 164:2081-95. [PMID: 24515833 PMCID: PMC3982764 DOI: 10.1104/pp.114.235754] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 02/07/2014] [Indexed: 05/22/2023]
Abstract
Extant eukaryotes are highly compartmentalized and have integrated endosymbionts as organelles, namely mitochondria and plastids in plants. During evolution, organellar proteomes are modified by gene gain and loss, by gene subfunctionalization and neofunctionalization, and by changes in protein targeting. To date, proteomics data for plastids and mitochondria are available for only a few plant model species, and evolutionary analyses of high-throughput data are scarce. We combined quantitative proteomics, cross-species comparative analysis of metabolic pathways, and localizations by fluorescent proteins in the model plant Physcomitrella patens in order to assess evolutionary changes in mitochondrial and plastid proteomes. This study implements data-mining methodology to classify and reliably reconstruct subcellular proteomes, to map metabolic pathways, and to study the effects of postendosymbiotic evolution on organellar pathway partitioning. Our results indicate that, although plant morphologies changed substantially during plant evolution, metabolic integration of organelles is largely conserved, with exceptions in amino acid and carbon metabolism. Retargeting or regulatory subfunctionalization are common in the studied nucleus-encoded gene families of organelle-targeted proteins. Moreover, complementing the proteomic analysis, fluorescent protein fusions revealed novel proteins at organelle interfaces such as plastid stromules (stroma-filled tubules) and highlight microcompartments as well as intercellular and intracellular heterogeneity of mitochondria and plastids. Thus, we establish a comprehensive data set for mitochondrial and plastid proteomes in moss, present a novel multilevel approach to organelle biology in plants, and place our findings into an evolutionary context.
Collapse
|
115
|
Maeda H, Song W, Sage T, DellaPenna D. Role of callose synthases in transfer cell wall development in tocopherol deficient Arabidopsis mutants. FRONTIERS IN PLANT SCIENCE 2014; 5:46. [PMID: 24600460 PMCID: PMC3928550 DOI: 10.3389/fpls.2014.00046] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/29/2014] [Indexed: 05/24/2023]
Abstract
Tocopherols (vitamin E) are lipid-soluble antioxidants produced by all plants and algae, and many cyanobacteria, yet their functions in these photosynthetic organisms are still not fully understood. We have previously reported that the vitamin E deficient 2 (vte2) mutant of Arabidopsis thaliana is sensitive to low temperature (LT) due to impaired transfer cell wall (TCW) development and photoassimilate export associated with massive callose deposition in transfer cells of the phloem. To further understand the roles of tocopherols in LT induced TCW development we compared the global transcript profiles of vte2 and wild-type leaves during LT treatment. Tocopherol deficiency had no significant impact on global gene expression in permissive conditions, but significantly affected expression of 77 genes after 48 h of LT treatment. In vte2 relative to wild type, genes associated with solute transport were repressed, while those involved in various pathogen responses and cell wall modifications, including two members of callose synthase gene family, GLUCAN SYNTHASE LIKE 4 (GSL4) and GSL11, were induced. However, introduction of gsl4 or gsl11 mutations individually into the vte2 background did not suppress callose deposition or the overall LT-induced phenotypes of vte2. Intriguingly, introduction of a mutation disrupting GSL5, the major GSL responsible for pathogen-induced callose deposition, into vte2 substantially reduced vascular callose deposition at LT, but again had no effect on the photoassimilate export phenotype of LT-treated vte2. These results suggest that GSL5 plays a major role in TCW callose deposition in LT-treated vte2 but that this GSL5-dependent callose deposition is not the primary cause of the impaired photoassimilate export phenotype.
Collapse
Affiliation(s)
- Hiroshi Maeda
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast Lansing, MI, USA
- Cell and Molecular Biology Program, Michigan State UniversityEast Lansing, MI, USA
- Department of Botany, University of Wisconsin-MadisonMadison, WI, USA
| | - Wan Song
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast Lansing, MI, USA
- Genetics Program, Michigan State UniversityEast Lansing, MI, USA
| | - Tammy Sage
- Department of Ecology and Evolutionary Biology, University of TorontoToronto, ON, Canada
| | - Dean DellaPenna
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast Lansing, MI, USA
| |
Collapse
|
116
|
Karamat F, Olry A, Munakata R, Koeduka T, Sugiyama A, Paris C, Hehn A, Bourgaud F, Yazaki K. A coumarin-specific prenyltransferase catalyzes the crucial biosynthetic reaction for furanocoumarin formation in parsley. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:627-38. [PMID: 24354545 DOI: 10.1111/tpj.12409] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 12/05/2013] [Accepted: 12/06/2013] [Indexed: 05/09/2023]
Abstract
Furanocoumarins constitute a sub-family of coumarin compounds with important defense properties against pathogens and insects, as well as allelopathic functions in plants. Furanocoumarins are divided into two sub-groups according to the alignment of the furan ring with the lactone structure: linear psoralen and angular angelicin derivatives. Determination of furanocoumarin type is based on the prenylation position of the common precursor of all furanocoumarins, umbelliferone, at C6 or C8, which gives rise to the psoralen or angelicin derivatives, respectively. Here, we identified a membrane-bound prenyltransferase PcPT from parsley (Petroselinum crispum), and characterized the properties of the gene product. PcPT expression in various parsley tissues is increased by UV irradiation, with a concomitant increase in furanocoumarin production. This enzyme has strict substrate specificity towards umbelliferone and dimethylallyl diphosphate, and a strong preference for the C6 position of the prenylated product (demethylsuberosin), leading to linear furanocoumarins. The C8-prenylated derivative (osthenol) is also formed, but to a much lesser extent. The PcPT protein is targeted to the plastids in planta. Introduction of this PcPT into the coumarin-producing plant Ruta graveolens showed increased consumption of endogenous umbelliferone. Expression of PcPT and a 4-coumaroyl CoA 2'-hydroxylase gene in Nicotiana benthamiana, which does not produce furanocoumarins, resulted in formation of demethylsuberosin, indicating that furanocoumarin production may be reconstructed by a metabolic engineering approach. The results demonstrate that a single prenyltransferase, such as PcPT, opens the pathway to linear furanocoumarins in parsley, but may also catalyze the synthesis of osthenol, the first intermediate committed to the angular furanocoumarin pathway, in other plants.
Collapse
Affiliation(s)
- Fazeelat Karamat
- Laboratoire Agronomie et Environnement Nancy-Colmar, UMR 1121, Université de Lorraine, 2 Avenue de la Forêt de Haye TSA 40602, 54518, Vandoeuvre-lès-Nancy, France; Laboratoire Agronomie et Environnement Nancy-Colmar, UMR 1121, INRA, 2 Avenue de la Forêt de Haye TSA 40602, 54518, Vandoeuvre-lès-Nancy, France
| | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Stefano G, Renna L, Brandizzi F. The endoplasmic reticulum exerts control over organelle streaming during cell expansion. J Cell Sci 2014; 127:947-53. [PMID: 24424025 DOI: 10.1242/jcs.139907] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Cytoplasmic streaming is crucial for cell homeostasis and expansion but the precise driving forces are largely unknown. In plants, partial loss of cytoplasmic streaming due to chemical and genetic ablation of myosins supports the existence of yet-unknown motors for organelle movement. Here we tested a role of the endoplasmic reticulum (ER) as propelling force for cytoplasmic streaming during cell expansion. Through quantitative live-cell analyses in wild-type Arabidopsis thaliana cells and mutants with compromised ER structure and streaming, we demonstrate that cytoplasmic streaming undergoes profound changes during cell expansion and that it depends on motor forces co-exerted by the ER and the cytoskeleton.
Collapse
Affiliation(s)
- Giovanni Stefano
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
118
|
Abstract
Plastid division is fundamental to the biology of plant cells. Division by binary fission entails the coordinated assembly and constriction of four concentric rings, two internal and two external to the organelle. The internal FtsZ ring and external dynamin-like ARC5/DRP5B ring are connected across the two envelopes by the membrane proteins ARC6, PARC6, PDV1, and PDV2. Assembly-stimulated GTPase activity drives constriction of the FtsZ and ARC5/DRP5B rings, which together with the plastid-dividing rings pull and squeeze the envelope membranes until the two daughter plastids are formed, with the final separation requiring additional proteins. The positioning of the division machinery is controlled by the chloroplast Min system, which confines FtsZ-ring formation to the plastid midpoint. The dynamic morphology of plastids, especially nongreen plastids, is also considered here, particularly in relation to the production of stromules and plastid-derived vesicles and their possible roles in cellular communication and plastid functionality.
Collapse
|
119
|
Plant amino acid-derived vitamins: biosynthesis and function. Amino Acids 2013; 46:809-24. [PMID: 24368523 DOI: 10.1007/s00726-013-1653-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 12/14/2013] [Indexed: 02/06/2023]
Abstract
Vitamins are essential organic compounds for humans, having lost the ability to de novo synthesize them. Hence, they represent dietary requirements, which are covered by plants as the main dietary source of most vitamins (through food or livestock's feed). Most vitamins synthesized by plants present amino acids as precursors (B1, B2, B3, B5, B7, B9 and E) and are therefore linked to plant nitrogen metabolism. Amino acids play different roles in their biosynthesis and metabolism, either incorporated into the backbone of the vitamin or as amino, sulfur or one-carbon group donors. There is a high natural variation in vitamin contents in crops and its exploitation through breeding, metabolic engineering and agronomic practices can enhance their nutritional quality. While the underlying biochemical roles of vitamins as cosubstrates or cofactors are usually common for most eukaryotes, the impact of vitamins B and E in metabolism and physiology can be quite different on plants and animals. Here, we first aim at giving an overview of the biosynthesis of amino acid-derived vitamins in plants, with a particular focus on how this knowledge can be exploited to increase vitamin contents in crops. Second, we will focus on the functions of these vitamins in both plants and animals (and humans in particular), to unravel common and specific roles for vitamins in evolutionary distant organisms, in which these amino acid-derived vitamins play, however, an essential role.
Collapse
|
120
|
Ginglinger JF, Boachon B, Höfer R, Paetz C, Köllner TG, Miesch L, Lugan R, Baltenweck R, Mutterer J, Ullmann P, Beran F, Claudel P, Verstappen F, Fischer MJ, Karst F, Bouwmeester H, Miesch M, Schneider B, Gershenzon J, Ehlting J, Werck-Reichhart D. Gene coexpression analysis reveals complex metabolism of the monoterpene alcohol linalool in Arabidopsis flowers. THE PLANT CELL 2013; 25:4640-57. [PMID: 24285789 PMCID: PMC3875741 DOI: 10.1105/tpc.113.117382] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/16/2013] [Accepted: 11/05/2013] [Indexed: 05/20/2023]
Abstract
The cytochrome P450 family encompasses the largest family of enzymes in plant metabolism, and the functions of many of its members in Arabidopsis thaliana are still unknown. Gene coexpression analysis pointed to two P450s that were coexpressed with two monoterpene synthases in flowers and were thus predicted to be involved in monoterpenoid metabolism. We show that all four selected genes, the two terpene synthases (TPS10 and TPS14) and the two cytochrome P450s (CYP71B31 and CYP76C3), are simultaneously expressed at anthesis, mainly in upper anther filaments and in petals. Upon transient expression in Nicotiana benthamiana, the TPS enzymes colocalize in vesicular structures associated with the plastid surface, whereas the P450 proteins were detected in the endoplasmic reticulum. Whether they were expressed in Saccharomyces cerevisiae or in N. benthamiana, the TPS enzymes formed two different enantiomers of linalool: (-)-(R)-linalool for TPS10 and (+)-(S)-linalool for TPS14. Both P450 enzymes metabolize the two linalool enantiomers to form different but overlapping sets of hydroxylated or epoxidized products. These oxygenated products are not emitted into the floral headspace, but accumulate in floral tissues as further converted or conjugated metabolites. This work reveals complex linalool metabolism in Arabidopsis flowers, the ecological role of which remains to be determined.
Collapse
Affiliation(s)
- Jean-François Ginglinger
- Institute of Plant Molecular Biology, Centre National de la Recherche Scientifique Unité Propre de Recherche 2357, University of Strasbourg, F-67000 Strasbourg, France
| | - Benoit Boachon
- Institute of Plant Molecular Biology, Centre National de la Recherche Scientifique Unité Propre de Recherche 2357, University of Strasbourg, F-67000 Strasbourg, France
| | - René Höfer
- Institute of Plant Molecular Biology, Centre National de la Recherche Scientifique Unité Propre de Recherche 2357, University of Strasbourg, F-67000 Strasbourg, France
| | - Christian Paetz
- Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | | | - Laurence Miesch
- Laboratoire de Chimie Organique Synthétique, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7177, University of Strasbourg, France
| | - Raphael Lugan
- Institute of Plant Molecular Biology, Centre National de la Recherche Scientifique Unité Propre de Recherche 2357, University of Strasbourg, F-67000 Strasbourg, France
| | - Raymonde Baltenweck
- Laboratoire Métabolisme Secondaire de la Vigne, Institut National de la Recherche Agronomique Unité Mixte de Recherche 1131, University of Strasbourg, Colmar, F-68021 France
| | - Jérôme Mutterer
- Institute of Plant Molecular Biology, Centre National de la Recherche Scientifique Unité Propre de Recherche 2357, University of Strasbourg, F-67000 Strasbourg, France
| | - Pascaline Ullmann
- Institute of Plant Molecular Biology, Centre National de la Recherche Scientifique Unité Propre de Recherche 2357, University of Strasbourg, F-67000 Strasbourg, France
| | - Franziska Beran
- Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Patricia Claudel
- Laboratoire Métabolisme Secondaire de la Vigne, Institut National de la Recherche Agronomique Unité Mixte de Recherche 1131, University of Strasbourg, Colmar, F-68021 France
| | - Francel Verstappen
- Laboratory of Plant Physiology, Wageningen University, 6700 AR Wageningen, The Netherlands
| | - Marc J.C. Fischer
- Laboratoire Métabolisme Secondaire de la Vigne, Institut National de la Recherche Agronomique Unité Mixte de Recherche 1131, University of Strasbourg, Colmar, F-68021 France
| | - Francis Karst
- Laboratoire Métabolisme Secondaire de la Vigne, Institut National de la Recherche Agronomique Unité Mixte de Recherche 1131, University of Strasbourg, Colmar, F-68021 France
| | - Harro Bouwmeester
- Laboratory of Plant Physiology, Wageningen University, 6700 AR Wageningen, The Netherlands
| | - Michel Miesch
- Laboratoire de Chimie Organique Synthétique, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7177, University of Strasbourg, France
| | - Bernd Schneider
- Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | | | - Jürgen Ehlting
- Department of Biology, Centre for Forest Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Danièle Werck-Reichhart
- Institute of Plant Molecular Biology, Centre National de la Recherche Scientifique Unité Propre de Recherche 2357, University of Strasbourg, F-67000 Strasbourg, France
| |
Collapse
|
121
|
Boudière L, Michaud M, Petroutsos D, Rébeillé F, Falconet D, Bastien O, Roy S, Finazzi G, Rolland N, Jouhet J, Block MA, Maréchal E. Glycerolipids in photosynthesis: composition, synthesis and trafficking. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:470-80. [PMID: 24051056 DOI: 10.1016/j.bbabio.2013.09.007] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/30/2013] [Accepted: 09/08/2013] [Indexed: 12/26/2022]
Abstract
Glycerolipids constituting the matrix of photosynthetic membranes, from cyanobacteria to chloroplasts of eukaryotic cells, comprise monogalactosyldiacylglycerol, digalactosyldiacylglycerol, sulfoquinovosyldiacylglycerol and phosphatidylglycerol. This review covers our current knowledge on the structural and functional features of these lipids in various cellular models, from prokaryotes to eukaryotes. Their relative proportions in thylakoid membranes result from highly regulated and compartmentalized metabolic pathways, with a cooperation, in the case of eukaryotes, of non-plastidic compartments. This review also focuses on the role of each of these thylakoid glycerolipids in stabilizing protein complexes of the photosynthetic machinery, which might be one of the reasons for their fascinating conservation in the course of evolution. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components.
Collapse
Affiliation(s)
- Laurence Boudière
- Laboratoire de Physiologie Cellulaire, Végétale, CNRS UMR 5168, CEA iRTSV, Univ. Grenoble Alpes, INRA USC 1359, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Morgane Michaud
- Laboratoire de Physiologie Cellulaire, Végétale, CNRS UMR 5168, CEA iRTSV, Univ. Grenoble Alpes, INRA USC 1359, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Dimitris Petroutsos
- Laboratoire de Physiologie Cellulaire, Végétale, CNRS UMR 5168, CEA iRTSV, Univ. Grenoble Alpes, INRA USC 1359, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Fabrice Rébeillé
- Laboratoire de Physiologie Cellulaire, Végétale, CNRS UMR 5168, CEA iRTSV, Univ. Grenoble Alpes, INRA USC 1359, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Denis Falconet
- Laboratoire de Physiologie Cellulaire, Végétale, CNRS UMR 5168, CEA iRTSV, Univ. Grenoble Alpes, INRA USC 1359, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Olivier Bastien
- Laboratoire de Physiologie Cellulaire, Végétale, CNRS UMR 5168, CEA iRTSV, Univ. Grenoble Alpes, INRA USC 1359, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Sylvaine Roy
- Laboratoire de Physiologie Cellulaire, Végétale, CNRS UMR 5168, CEA iRTSV, Univ. Grenoble Alpes, INRA USC 1359, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Giovanni Finazzi
- Laboratoire de Physiologie Cellulaire, Végétale, CNRS UMR 5168, CEA iRTSV, Univ. Grenoble Alpes, INRA USC 1359, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Norbert Rolland
- Laboratoire de Physiologie Cellulaire, Végétale, CNRS UMR 5168, CEA iRTSV, Univ. Grenoble Alpes, INRA USC 1359, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire, Végétale, CNRS UMR 5168, CEA iRTSV, Univ. Grenoble Alpes, INRA USC 1359, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Maryse A Block
- Laboratoire de Physiologie Cellulaire, Végétale, CNRS UMR 5168, CEA iRTSV, Univ. Grenoble Alpes, INRA USC 1359, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France.
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire, Végétale, CNRS UMR 5168, CEA iRTSV, Univ. Grenoble Alpes, INRA USC 1359, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France.
| |
Collapse
|
122
|
Abstract
Stromules are thin projections from plastids that are generally longer and more abundant on non-green plastids than on chloroplasts. Occasionally stromules can be observed to connect two plastid bodies with one another. However, photobleaching of GFP-labeled plastids and stromules in 2000 demonstrated that plastids do not form a network like the endoplasmic reticulum, resulting in the proposal that stromules have major functions other than transfer of material from one plastid to another. The absence of a network was confirmed in 2012 with the use of a photoconvertible fluorescent protein, but the prior observations of movement of proteins between plastids were challenged. We review published evidence and provide new experiments that demonstrate trafficking of fluorescent protein between plastids as well as movement of proteins within stromules that emanate from a single plastid and discuss the possible function of stromules.
Collapse
|