101
|
Karplus PA, Diederichs K. Assessing and maximizing data quality in macromolecular crystallography. Curr Opin Struct Biol 2015. [PMID: 26209821 DOI: 10.1016/j.sbi.2015.07.003] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The quality of macromolecular crystal structures depends, in part, on the quality and quantity of the data used to produce them. Here, we review recent shifts in our understanding of how to use data quality indicators to select a high resolution cutoff that leads to the best model, and of the potential to greatly increase data quality through the merging of multiple measurements from multiple passes of single crystals or from multiple crystals. Key factors supporting this shift are the introduction of more robust correlation coefficient based indicators of the precision of merged data sets as well as the recognition of the substantial useful information present in extensive amounts of data once considered too weak to be of value.
Collapse
Affiliation(s)
- P Andrew Karplus
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR 97331, USA.
| | - Kay Diederichs
- University of Konstanz, Faculty of Biology, Box 647, D-78457 Konstanz, Germany.
| |
Collapse
|
102
|
Feng Y, Degen D, Wang X, Gigliotti M, Liu S, Zhang Y, Das D, Michalchuk T, Ebright YW, Talaue M, Connell N, Ebright RH. Structural Basis of Transcription Inhibition by CBR Hydroxamidines and CBR Pyrazoles. Structure 2015; 23:1470-1481. [PMID: 26190576 DOI: 10.1016/j.str.2015.06.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 06/12/2015] [Accepted: 06/15/2015] [Indexed: 11/30/2022]
Abstract
CBR hydroxamidines are small-molecule inhibitors of bacterial RNA polymerase (RNAP) discovered through high-throughput screening of synthetic-compound libraries. CBR pyrazoles are structurally related RNAP inhibitors discovered through scaffold hopping from CBR hydroxamidines. CBR hydroxamidines and pyrazoles selectively inhibit Gram-negative bacterial RNAP and exhibit selective antibacterial activity against Gram-negative bacteria. Here, we report crystal structures of the prototype CBR hydroxamidine, CBR703, and a CBR pyrazole in complex with E. coli RNAP holoenzyme. In addition, we define the full resistance determinant for CBR703, show that the binding site and resistance determinant for CBR703 do not overlap the binding sites and resistance determinants of other characterized RNAP inhibitors, show that CBR703 exhibits no or minimal cross-resistance with other characterized RNAP inhibitors, and show that co-administration of CBR703 with other RNAP inhibitors results in additive antibacterial activities. The results set the stage for structure-based optimization of CBR inhibitors as antibacterial drugs.
Collapse
Affiliation(s)
- Yu Feng
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - David Degen
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Xinyue Wang
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Matthew Gigliotti
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Shuang Liu
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Yu Zhang
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Deepankar Das
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Trevor Michalchuk
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Yon W Ebright
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Meliza Talaue
- Center for Biodefense, New Jersey Medical School, Rutgers University, Newark, NJ 07101, USA
| | - Nancy Connell
- Center for Biodefense, New Jersey Medical School, Rutgers University, Newark, NJ 07101, USA
| | - Richard H Ebright
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
103
|
Paget MS. Bacterial Sigma Factors and Anti-Sigma Factors: Structure, Function and Distribution. Biomolecules 2015; 5:1245-65. [PMID: 26131973 PMCID: PMC4598750 DOI: 10.3390/biom5031245] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/20/2015] [Accepted: 06/01/2015] [Indexed: 12/18/2022] Open
Abstract
Sigma factors are multi-domain subunits of bacterial RNA polymerase (RNAP) that play critical roles in transcription initiation, including the recognition and opening of promoters as well as the initial steps in RNA synthesis. This review focuses on the structure and function of the major sigma-70 class that includes the housekeeping sigma factor (Group 1) that directs the bulk of transcription during active growth, and structurally-related alternative sigma factors (Groups 2-4) that control a wide variety of adaptive responses such as morphological development and the management of stress. A recurring theme in sigma factor control is their sequestration by anti-sigma factors that occlude their RNAP-binding determinants. Sigma factors are then released through a wide variety of mechanisms, often involving branched signal transduction pathways that allow the integration of distinct signals. Three major strategies for sigma release are discussed: regulated proteolysis, partner-switching, and direct sensing by the anti-sigma factor.
Collapse
Affiliation(s)
- Mark S Paget
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.
| |
Collapse
|
104
|
Gupta AM, Pal P, Mandal S. Structural analysis of sigma E interactions with core RNA polymerase and its cognate P-hsp20 promoter of Mycobacterium tuberculosis. J Biomol Struct Dyn 2015; 34:792-9. [PMID: 26006066 DOI: 10.1080/07391102.2015.1054432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Alternate sigma factor plays an important role for the survival of Mycobacterium tuberculosis in adverse environmental condition. Stress-induced sigma factors are major cause for expression of genes involved in pathogenesis, dormancy and various unusual environmental conditions. In the present work, an attempt has been made to characterize one of such M. tuberculosis (Mtb) sigma factor, SigE. The structures of Mtb-SigE and Mtb-β have been predicted using comparative modelling techniques and validated. Effort has also been implied to understand the nature of interaction of SigE with the core RNA polymerase subunits which have well identified the amino acid residues in the binding interface and prompted the fact that Mtb-β' and Mtb-β interact with domain 2 and domain 4 of Mtb-SigE, respectively. Furthermore, intermolecular docking study predicted the interface between the Mtb-SigE and its putative promoter P-hsp20. The report confers the probable amino acid residues and the nitrogenous bases involved in the recognition of P-hsp20 by the sigma factor to initiate the transcription process.
Collapse
Affiliation(s)
- Aayatti Mallick Gupta
- a Department of Microbiology , University of Calcutta , 35, Ballygunge Circular Road, Kolkata 700019 , India
| | - Purab Pal
- a Department of Microbiology , University of Calcutta , 35, Ballygunge Circular Road, Kolkata 700019 , India
| | - Sukhendu Mandal
- a Department of Microbiology , University of Calcutta , 35, Ballygunge Circular Road, Kolkata 700019 , India
| |
Collapse
|
105
|
E. coli RNA Polymerase Determinants of Open Complex Lifetime and Structure. J Mol Biol 2015; 427:2435-2450. [PMID: 26055538 DOI: 10.1016/j.jmb.2015.05.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/29/2015] [Accepted: 05/29/2015] [Indexed: 11/24/2022]
Abstract
In transcription initiation by Escherichia coli RNA polymerase (RNAP), initial binding to promoter DNA triggers large conformational changes, bending downstream duplex DNA into the RNAP cleft and opening 13bp to form a short-lived open intermediate (I2). Subsequent conformational changes increase lifetimes of λPR and T7A1 open complexes (OCs) by >10(5)-fold and >10(2)-fold, respectively. OC lifetime is a target for regulation. To characterize late conformational changes, we determine effects on OC dissociation kinetics of deletions in RNAP mobile elements σ(70) region 1.1 (σ1.1), β' jaw and β' sequence insertion 3 (SI3). In very stable OC formed by the wild type WT RNAP with λPR (RPO) and by Δσ1.1 RNAP with λPR or T7A1, we conclude that downstream duplex DNA is bound to the jaw in an assembly with SI3, and bases -4 to +2 of the nontemplate strand discriminator region are stably bound in a positively charged track in the cleft. We deduce that polyanionic σ1.1 destabilizes OC by competing for binding sites in the cleft and on the jaw with the polyanionic discriminator strand and downstream duplex, respectively. Examples of σ1.1-destabilized OC are the final T7A1 OC and the λPR I3 intermediate OC. Deleting σ1.1 and either β' jaw or SI3 equalizes OC lifetimes for λPR and T7A1. DNA closing rates are similar for both promoters and all RNAP variants. We conclude that late conformational changes that stabilize OC, like early ones that bend the duplex into the cleft, are primary targets of regulation, while the intrinsic DNA opening/closing step is not.
Collapse
|
106
|
Abstract
Transcription initiation is a highly regulated step of gene expression. Here, we discuss the series of large conformational changes set in motion by initial specific binding of bacterial RNA polymerase (RNAP) to promoter DNA and their relevance for regulation. Bending and wrapping of the upstream duplex facilitates bending of the downstream duplex into the active site cleft, nucleating opening of 13 bp in the cleft. The rate-determining opening step, driven by binding free energy, forms an unstable open complex, probably with the template strand in the active site. At some promoters, this initial open complex is greatly stabilized by rearrangements of the discriminator region between the -10 element and +1 base of the nontemplate strand and of mobile in-cleft and downstream elements of RNAP. The rate of open complex formation is regulated by effects on the rapidly-reversible steps preceding DNA opening, while open complex lifetime is regulated by effects on the stabilization of the initial open complex. Intrinsic DNA opening-closing appears less regulated. This noncovalent mechanism and its regulation exhibit many analogies to mechanisms of enzyme catalysis.
Collapse
|
107
|
Structural biology of bacterial RNA polymerase. Biomolecules 2015; 5:848-64. [PMID: 25970587 PMCID: PMC4496699 DOI: 10.3390/biom5020848] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/10/2015] [Accepted: 04/13/2015] [Indexed: 11/17/2022] Open
Abstract
Since its discovery and characterization in the early 1960s (Hurwitz, J. The discovery of RNA polymerase. J. Biol. Chem. 2005, 280, 42477-42485), an enormous amount of biochemical, biophysical and genetic data has been collected on bacterial RNA polymerase (RNAP). In the late 1990s, structural information pertaining to bacterial RNAP has emerged that provided unprecedented insights into the function and mechanism of RNA transcription. In this review, I list all structures related to bacterial RNAP (as determined by X-ray crystallography and NMR methods available from the Protein Data Bank), describe their contributions to bacterial transcription research and discuss the role that small molecules play in inhibiting bacterial RNA transcription.
Collapse
|
108
|
Mekler V, Severinov K. RNA polymerase molecular beacon as tool for studies of RNA polymerase-promoter interactions. Methods 2015; 86:19-26. [PMID: 25956222 DOI: 10.1016/j.ymeth.2015.04.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 10/23/2022] Open
Abstract
The molecular details of formation of transcription initiation complex upon the interaction of bacterial RNA polymerase (RNAP) with promoters are not completely understood. One way to address this problem is to understand how RNAP interacts with different parts of promoter DNA. A recently developed fluorometric RNAP molecular beacon assay allows one to monitor the RNAP interactions with various unlabeled DNA probes and quantitatively characterize partial RNAP-promoter interactions. This paper focuses on methodological aspects of application of this powerful assay to study the mechanism of transcription initiation complex formation by Escherichia coli RNA polymerase σ(70) holoenzyme and its regulation by bacterial and phage encoded factors.
Collapse
Affiliation(s)
- Vladimir Mekler
- Waksman Institute of Microbiology, Rutgers, State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Konstantin Severinov
- Waksman Institute of Microbiology, Rutgers, State University of New Jersey, Piscataway, NJ 08854, USA; Skolkovo Institute of Science and Technology, 143025 Skolkovo, Russia; Institutes of Gene Biology and Molecular Genetics, Russian Academy of Sciences, 119334 Moscow, Russia.
| |
Collapse
|
109
|
Lenneman BR, Rothman-Denes LB. Structural and biochemical investigation of bacteriophage N4-encoded RNA polymerases. Biomolecules 2015; 5:647-67. [PMID: 25924224 PMCID: PMC4496689 DOI: 10.3390/biom5020647] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/01/2015] [Accepted: 04/13/2015] [Indexed: 11/16/2022] Open
Abstract
Bacteriophage N4 regulates the temporal expression of its genome through the activity of three distinct RNA polymerases (RNAP). Expression of the early genes is carried out by a phage-encoded, virion-encapsidated RNAP (vRNAP) that is injected into the host at the onset of infection and transcribes the early genes. These encode the components of new transcriptional machinery (N4 RNAPII and cofactors) responsible for the synthesis of middle RNAs. Both N4 RNAPs belong to the T7-like "single-subunit" family of polymerases. Herein, we describe their mechanisms of promoter recognition, regulation, and roles in the phage life cycle.
Collapse
Affiliation(s)
- Bryan R Lenneman
- Committee on Genetics, Genomics, and Systems Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA.
| | - Lucia B Rothman-Denes
- Committee on Genetics, Genomics, and Systems Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA.
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA.
| |
Collapse
|
110
|
Weiss A, Shaw LN. Small things considered: the small accessory subunits of RNA polymerase in Gram-positive bacteria. FEMS Microbiol Rev 2015; 39:541-54. [PMID: 25878038 DOI: 10.1093/femsre/fuv005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2015] [Indexed: 01/21/2023] Open
Abstract
The DNA-dependent RNA polymerase core enzyme in Gram-positive bacteria consists of seven subunits. Whilst four of them (α2ββ(')) are essential, three smaller subunits, δ, ε and ω (∼9-21.5 kDa), are considered accessory. Both δ and ω have been viewed as integral components of RNAP for several decades; however, ε has only recently been described. Functionally these three small subunits carry out a variety of tasks, imparting important, supportive effects on the transcriptional process of Gram-positive bacteria. While ω is thought to have a wide range of roles, reaching from maintaining structural integrity of RNAP to σ factor recruitment, the only suggested function for ε thus far is in protecting cells from phage infection. The third subunit, δ, has been shown to have distinct influences in maintaining transcriptional specificity, and thus has a key role in cellular fitness. Collectively, all three accessory subunits, although dispensable under laboratory conditions, are often thought to be crucial for proper RNAP function. Herein we provide an overview of the available literature on each subunit, summarizing landmark findings that have deepened our understanding of these proteins and their function, and outline future challenges in understanding the role of these small subunits in the transcriptional process.
Collapse
Affiliation(s)
- Andy Weiss
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Lindsey N Shaw
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
111
|
Zuo Y, Steitz TA. Crystal structures of the E. coli transcription initiation complexes with a complete bubble. Mol Cell 2015; 58:534-40. [PMID: 25866247 DOI: 10.1016/j.molcel.2015.03.010] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/12/2015] [Accepted: 03/06/2015] [Indexed: 11/15/2022]
Abstract
During transcription initiation, RNA polymerase binds to promoter DNA to form an initiation complex containing a DNA bubble and enters into abortive cycles of RNA synthesis before escaping the promoter to transit into the elongation phase for processive RNA synthesis. Here we present the crystal structures of E. coli transcription initiation complexes containing a complete transcription bubble and de novo synthesized RNA oligonucleotides at about 6-Å resolution. The structures show how RNA polymerase recognizes DNA promoters that contain spacers of different lengths and reveal a bridging interaction between the 5'-triphosphate of the nascent RNA and the σ factor that may function to stabilize the short RNA-DNA hybrids during the early stage of transcription initiation. The conformation of the RNA oligonucleotides and the paths of the DNA strands in the complete initiation complexes provide insights into the mechanism that controls both the abortive and productive RNA synthesis.
Collapse
Affiliation(s)
- Yuhong Zuo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Thomas A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, New Haven, CT 06510, USA; Department of Chemistry, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
112
|
Campagne S, Allain FHT, Vorholt JA. Extra Cytoplasmic Function sigma factors, recent structural insights into promoter recognition and regulation. Curr Opin Struct Biol 2015; 30:71-78. [PMID: 25678040 DOI: 10.1016/j.sbi.2015.01.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/20/2015] [Indexed: 10/24/2022]
Abstract
Bacterial transcription initiation is controlled by sigma factors, the RNA polymerase (RNAP) subunits responsive for promoter specificity. While the primary sigma factor ensures the bulk of transcription during growth, a major strategy used by bacteria to regulate gene expression consists of modifying the RNAP promoter specificity by means of alternative sigma factors. Among these factors, Extra Cytoplasmic Function sigma factors (σ(ECF)) constitute the most abundant group and are generally kept inactive by specific anti-sigma factors that are directly or indirectly sensitive to environmental stimuli. When activated by anti-sigma factor release, σ(ECF) turn on the transcription of dedicated regulons, which trigger adaptive responses for the survival of the cell. Recent structural studies have deciphered the molecular basis for σ(ECF) promoter recognition and original regulatory mechanisms.
Collapse
|
113
|
Hattangady DS, Singh AK, Muthaiyan A, Jayaswal RK, Gustafson JE, Ulanov AV, Li Z, Wilkinson BJ, Pfeltz RF. Genomic, Transcriptomic and Metabolomic Studies of Two Well-Characterized, Laboratory-Derived Vancomycin-Intermediate Staphylococcus aureus Strains Derived from the Same Parent Strain. Antibiotics (Basel) 2015; 4:76-112. [PMID: 27025616 PMCID: PMC4790321 DOI: 10.3390/antibiotics4010076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 11/20/2014] [Accepted: 12/10/2014] [Indexed: 11/16/2022] Open
Abstract
Complete genome comparisons, transcriptomic and metabolomic studies were performed on two laboratory-selected, well-characterized vancomycin-intermediate Staphylococcus aureus (VISA) derived from the same parent MRSA that have changes in cell wall composition and decreased autolysis. A variety of mutations were found in the VISA, with more in strain 13136p(-)m⁺V20 (vancomycin MIC = 16 µg/mL) than strain 13136p(-)m⁺V5 (MIC = 8 µg/mL). Most of the mutations have not previously been associated with the VISA phenotype; some were associated with cell wall metabolism and many with stress responses, notably relating to DNA damage. The genomes and transcriptomes of the two VISA support the importance of gene expression regulation to the VISA phenotype. Similarities in overall transcriptomic and metabolomic data indicated that the VISA physiologic state includes elements of the stringent response, such as downregulation of protein and nucleotide synthesis, the pentose phosphate pathway and nutrient transport systems. Gene expression for secreted virulence determinants was generally downregulated, but was more variable for surface-associated virulence determinants, although capsule formation was clearly inhibited. The importance of activated stress response elements could be seen across all three analyses, as in the accumulation of osmoprotectant metabolites such as proline and glutamate. Concentrations of potential cell wall precursor amino acids and glucosamine were increased in the VISA strains. Polyamines were decreased in the VISA, which may facilitate the accrual of mutations. Overall, the studies confirm the wide variability in mutations and gene expression patterns that can lead to the VISA phenotype.
Collapse
Affiliation(s)
- Dipti S Hattangady
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA.
| | - Atul K Singh
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA.
| | - Arun Muthaiyan
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA.
| | | | - John E Gustafson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Alexander V Ulanov
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL 61807, USA.
| | - Zhong Li
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL 61807, USA.
| | - Brian J Wilkinson
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA.
| | - Richard F Pfeltz
- BD Diagnostic Systems, Microbiology Research and Development, Sparks, MD 21152, USA.
| |
Collapse
|
114
|
Abstract
Bacterial RNA polymerase is the first point of gene expression and a validated target for antibiotics. Studied for several decades, the Escherichia coli transcriptional apparatus is by far the best characterized, with numerous RNA polymerase mutants and auxiliary factors isolated and analyzed in great detail. Since the E. coli enzyme was refractory to crystallization, structural studies have been focused on Thermus RNA polymerases, revealing atomic details of the catalytic center and RNA polymerase interactions with nucleic acids, antibiotics, and regulatory proteins. However, numerous differences between these enzymes, including resistance of Thermus RNA polymerases to some antibiotics, underscored the importance of the E. coli enzyme structures. Three groups published these long awaited structures in 2013, enabling functional and structural studies of the same model system. This progress was made possible, in large part, by the use of multicistronic vectors for expression of the E. coli enzyme in large quantities and in a highly active form. Here we describe the commonly used vectors and procedures for purification of the E. coli RNA polymerase.
Collapse
|
115
|
Davis E, Chen J, Leon K, Darst SA, Campbell EA. Mycobacterial RNA polymerase forms unstable open promoter complexes that are stabilized by CarD. Nucleic Acids Res 2014; 43:433-45. [PMID: 25510492 PMCID: PMC4288152 DOI: 10.1093/nar/gku1231] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli has served as the archetypal organism on which the overwhelming majority of biochemical characterizations of bacterial RNA polymerase (RNAP) have been focused; the properties of E. coli RNAP have been accepted as generally representative for all bacterial RNAPs. Here, we directly compare the initiation properties of a mycobacterial transcription system with E. coli RNAP on two different promoters. The detailed characterizations include abortive transcription assays, RNAP/promoter complex stability assays and DNAse I and KMnO4 footprinting. Based on footprinting, we find that promoter complexes formed by E. coli and mycobacterial RNAPs use very similar protein/DNA interactions and generate the same transcription bubbles. However, we find that the open promoter complexes formed by E. coli RNAP on the two promoters tested are highly stable and essentially irreversible (with lifetimes much greater than 1 h), while the open promoter complexes on the same two promoters formed by mycobacterial RNAP are very unstable (lifetimes of about 2 min or less) and readily reversible. We show here that CarD, an essential mycobacterial transcription activator that is not found in E. coli, stabilizes the mycobacterial RNAP/open promoter complexes considerably by preventing transcription bubble collapse.
Collapse
Affiliation(s)
- Elizabeth Davis
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - James Chen
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Katherine Leon
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Seth A Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Elizabeth A Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
116
|
Mekler V, Minakhin L, Borukhov S, Mustaev A, Severinov K. Coupling of downstream RNA polymerase-promoter interactions with formation of catalytically competent transcription initiation complex. J Mol Biol 2014; 426:3973-3984. [PMID: 25311862 DOI: 10.1016/j.jmb.2014.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/05/2014] [Accepted: 10/06/2014] [Indexed: 01/22/2023]
Abstract
Bacterial RNA polymerase (RNAP) makes extensive contacts with duplex DNA downstream of the transcription bubble in initiation and elongation complexes. We investigated the role of downstream interactions in formation of catalytically competent transcription initiation complex by measuring initiation activity of stable RNAP complexes with model promoter DNA fragments whose downstream ends extend from +3 to +21 relative to the transcription start site at +1. We found that DNA downstream of position +6 does not play a significant role in transcription initiation when RNAP-promoter interactions upstream of the transcription start site are strong and promoter melting region is AT rich. Further shortening of downstream DNA dramatically reduces efficiency of transcription initiation. The boundary of minimal downstream DNA duplex needed for efficient transcription initiation shifted further away from the catalytic center upon increasing the GC content of promoter melting region or in the presence of bacterial stringent response regulators DksA and ppGpp. These results indicate that the strength of RNAP-downstream DNA interactions has to reach a certain threshold to retain the catalytically competent conformation of the initiation complex and that establishment of contacts between RNAP and downstream DNA can be coupled with promoter melting. The data further suggest that RNAP interactions with DNA immediately downstream of the transcription bubble are particularly important for initiation of transcription. We hypothesize that these active center-proximal contacts stabilize the DNA template strand in the active center cleft and/or position the RNAP clamp domain to allow RNA synthesis.
Collapse
Affiliation(s)
- Vladimir Mekler
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, NJ 08854, USA.
| | - Leonid Minakhin
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, NJ 08854, USA
| | - Sergei Borukhov
- Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Arkady Mustaev
- Public Health Research Institute Center, New Jersey Medical School, Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey, NJ 07103, USA
| | - Konstantin Severinov
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, NJ 08854, USA; Department of Biochemistry and Molecular Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Institutes of Gene Biology and Molecular Genetics, Russian Academy of Sciences, Leninsky Avenue, 14, 119991 Moscow, Russia.
| |
Collapse
|
117
|
Closed for business: exit-channel coupling to active site conformation in bacterial RNA polymerase. Nat Struct Mol Biol 2014; 21:741-2. [DOI: 10.1038/nsmb.2883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
118
|
Competence for genetic transformation in Streptococcus pneumoniae: mutations in σA bypass the comW requirement. J Bacteriol 2014; 196:3724-34. [PMID: 25112479 DOI: 10.1128/jb.01933-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Competence for genetic transformation in the genus Streptococcus depends on an alternative sigma factor, σ(X), for coordinated synthesis of 23 proteins, which together establish the X state by permitting lysis of incompetent streptococci, uptake of DNA fragments, and integration of strands of that DNA into the resident genome. Initiation of transient accumulation of high levels of σ(X) is coordinated between cells by transcription factors linked to peptide pheromone signals. In Streptococcus pneumoniae, elevated σ(X) is insufficient for development of full competence without coexpression of a second competence-specific protein, ComW. ComW, shared by eight species in the Streptococcus mitis and Streptococcus anginosus groups, is regulated by the same pheromone circuit that controls σ(X), but its role in expression of the σ(X) regulon is unknown. Using the strong, but not absolute, dependence of transformation on comW as a selective tool, we collected 27 independent comW bypass mutations and mapped them to 10 single-base transitions, all within rpoD, encoding the primary sigma factor subunit of RNA polymerase, σ(A). Eight mapped to sites in rpoD region 4 that are implicated in interaction with the core β subunit, indicating that ComW may act to facilitate competition of the alternative sigma factor σ(X) for access to core polymerase.
Collapse
|
119
|
Abstract
RNA polymerase in bacteria is a multisubunit protein complex that is essential for gene expression. We have identified a new subunit of RNA polymerase present in the high-A+T Firmicutes phylum of Gram-positive bacteria and have named it ε. Previously ε had been identified as a small protein (ω1) that copurified with RNA polymerase. We have solved the structure of ε by X-ray crystallography and show that it is not an ω subunit. Rather, ε bears remarkable similarity to the Gp2 family of phage proteins involved in the inhibition of host cell transcription following infection. Deletion of ε shows no phenotype and has no effect on the transcriptional profile of the cell. Determination of the location of ε within the assembly of RNA polymerase core by single-particle analysis suggests that it binds toward the downstream side of the DNA binding cleft. Due to the structural similarity of ε with Gp2 and the fact they bind similar regions of RNA polymerase, we hypothesize that ε may serve a role in protection from phage infection.
Collapse
|
120
|
Feklístov A, Sharon BD, Darst SA, Gross CA. Bacterial sigma factors: a historical, structural, and genomic perspective. Annu Rev Microbiol 2014; 68:357-76. [PMID: 25002089 DOI: 10.1146/annurev-micro-092412-155737] [Citation(s) in RCA: 350] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transcription initiation is the crucial focal point of gene expression in prokaryotes. The key players in this process, sigma factors (σs), associate with the catalytic core RNA polymerase to guide it through the essential steps of initiation: promoter recognition and opening, and synthesis of the first few nucleotides of the transcript. Here we recount the key advances in σ biology, from their discovery 45 years ago to the most recent progress in understanding their structure and function at the atomic level. Recent data provide important structural insights into the mechanisms whereby σs initiate promoter opening. We discuss both the housekeeping σs, which govern transcription of the majority of cellular genes, and the alternative σs, which direct RNA polymerase to specialized operons in response to environmental and physiological cues. The review concludes with a genome-scale view of the extracytoplasmic function σs, the most abundant group of alternative σs.
Collapse
|
121
|
|
122
|
Severinov K, Minakhin L, Sekine SI, Lopatina A, Yokoyama S. Molecular basis of RNA polymerase promoter specificity switch revealed through studies of Thermus bacteriophage transcription regulator. BACTERIOPHAGE 2014; 4:e29399. [PMID: 25105059 PMCID: PMC4124052 DOI: 10.4161/bact.29399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 05/29/2014] [Accepted: 05/29/2014] [Indexed: 12/12/2022]
Abstract
Transcription initiation is the central point of gene expression regulation. Understanding of molecular mechanism of transcription regulation requires, ultimately, the structural understanding of consequences of transcription factors binding to DNA-dependent RNA polymerase (RNAP), the enzyme of transcription. We recently determined a structure of a complex between transcription factor gp39 encoded by a Thermus bacteriophage and Thermus RNAP holoenzyme. In this addendum to the original publication, we highlight structural insights that explain the ability of gp39 to act as an RNAP specificity switch which inhibits transcription initiation from a major class of bacterial promoters, while allowing transcription from a minor promoter class to continue.
Collapse
Affiliation(s)
- Konstantin Severinov
- Waksman Institute; Rutgers; The State University of New Jersey; Piscataway, NJ USA ; St. Petersburg Polytechnical State University; St. Petersburg, Russia ; Skolkovo Institute of Science and Technology; Skolkovo, Russia
| | - Leonid Minakhin
- Waksman Institute; Rutgers; The State University of New Jersey; Piscataway, NJ USA
| | - Shun-Ichi Sekine
- RIKEN Systems and Structural Biology Center; Tsurumi-ku, Yokohama Japan ; Division of Structural and Synthetic Biology; RIKEN Center for Life Science Technologies; Tsurumi-ku, Yokohama Japan
| | - Anna Lopatina
- St. Petersburg Polytechnical State University; St. Petersburg, Russia ; Institutes of Gene Biology and Molecular Genetics; Russian Academy of Sciences; Moscow, Russia
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center; Tsurumi-ku, Yokohama Japan ; RIKEN Structural Biology Laboratory; Tsurumi-ku, Yokohama Japan
| |
Collapse
|
123
|
Degen D, Feng Y, Zhang Y, Ebright KY, Ebright YW, Gigliotti M, Vahedian-Movahed H, Mandal S, Talaue M, Connell N, Arnold E, Fenical W, Ebright RH. Transcription inhibition by the depsipeptide antibiotic salinamide A. eLife 2014; 3:e02451. [PMID: 24843001 PMCID: PMC4029172 DOI: 10.7554/elife.02451] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 04/18/2014] [Indexed: 12/12/2022] Open
Abstract
We report that bacterial RNA polymerase (RNAP) is the functional cellular target of the depsipeptide antibiotic salinamide A (Sal), and we report that Sal inhibits RNAP through a novel binding site and mechanism. We show that Sal inhibits RNA synthesis in cells and that mutations that confer Sal-resistance map to RNAP genes. We show that Sal interacts with the RNAP active-center 'bridge-helix cap' comprising the 'bridge-helix N-terminal hinge', 'F-loop', and 'link region'. We show that Sal inhibits nucleotide addition in transcription initiation and elongation. We present a crystal structure that defines interactions between Sal and RNAP and effects of Sal on RNAP conformation. We propose that Sal functions by binding to the RNAP bridge-helix cap and preventing conformational changes of the bridge-helix N-terminal hinge necessary for nucleotide addition. The results provide a target for antibacterial drug discovery and a reagent to probe conformation and function of the bridge-helix N-terminal hinge.DOI: http://dx.doi.org/10.7554/eLife.02451.001.
Collapse
Affiliation(s)
- David Degen
- Waksman Institute, Rutgers University, Piscataway, United States
| | - Yu Feng
- Waksman Institute, Rutgers University, Piscataway, United States
| | - Yu Zhang
- Waksman Institute, Rutgers University, Piscataway, United States
| | | | - Yon W Ebright
- Waksman Institute, Rutgers University, Piscataway, United States
| | | | | | - Sukhendu Mandal
- Waksman Institute, Rutgers University, Piscataway, United States
| | - Meliza Talaue
- Center for Biodefense, New Jersey Medical School, Rutgers University, Newark, United States
| | - Nancy Connell
- Center for Biodefense, New Jersey Medical School, Rutgers University, Newark, United States
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, United States
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, United States
| | | |
Collapse
|
124
|
Malinen AM, NandyMazumdar M, Turtola M, Malmi H, Grocholski T, Artsimovitch I, Belogurov GA. CBR antimicrobials alter coupling between the bridge helix and the β subunit in RNA polymerase. Nat Commun 2014; 5:3408. [PMID: 24598909 PMCID: PMC3959191 DOI: 10.1038/ncomms4408] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/06/2014] [Indexed: 01/17/2023] Open
Abstract
Bacterial RNA polymerase (RNAP) is a validated target for antibacterial drugs. CBR703 series antimicrobials allosterically inhibit transcription by binding to a conserved α helix (β' bridge helix, BH) that interconnects the two largest RNAP subunits. Here we show that disruption of the BH-β subunit contacts by amino-acid substitutions invariably results in accelerated catalysis, slowed-down forward translocation and insensitivity to regulatory pauses. CBR703 partially reverses these effects in CBR-resistant RNAPs while inhibiting catalysis and promoting pausing in CBR-sensitive RNAPs. The differential response of variant RNAPs to CBR703 suggests that the inhibitor binds in a cavity walled by the BH, the β' F-loop and the β fork loop. Collectively, our data are consistent with a model in which the β subunit fine tunes RNAP elongation activities by altering the BH conformation, whereas CBRs deregulate transcription by increasing coupling between the BH and the β subunit.
Collapse
Affiliation(s)
- Anssi M. Malinen
- Department of Biochemistry, University of Turku, Turku 20014, Finland
| | - Monali NandyMazumdar
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Matti Turtola
- Department of Biochemistry, University of Turku, Turku 20014, Finland
| | - Henri Malmi
- Department of Biochemistry, University of Turku, Turku 20014, Finland
| | - Thadee Grocholski
- Department of Biochemistry, University of Turku, Turku 20014, Finland
| | - Irina Artsimovitch
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
125
|
Structure of Escherichia coli RNA polymerase holoenzyme at last. Proc Natl Acad Sci U S A 2013; 110:19662-3. [PMID: 24272941 DOI: 10.1073/pnas.1320604110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|