101
|
Kremer D, Göttle P, Hartung HP, Küry P. Pushing Forward: Remyelination as the New Frontier in CNS Diseases. Trends Neurosci 2016; 39:246-263. [PMID: 26964504 DOI: 10.1016/j.tins.2016.02.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/01/2016] [Accepted: 02/09/2016] [Indexed: 01/25/2023]
Abstract
The evolutionary acquisition of myelin sheaths around large caliber axons in the central nervous system (CNS) represented a milestone in the development of vertebrate higher brain function. Myelin ensheathment of axons enabled saltatory conduction and thus accelerated information processing. However, a number of CNS diseases harm or destroy myelin and oligodendrocytes (myelin-producing cells), ultimately resulting in demyelination. In the adult CNS, new oligodendrocytes can be generated from a quiescent pool of precursor cells, which - upon differentiation - can replace lost myelin sheaths. The efficiency of this spontaneous regeneration is limited, which leads to incomplete remyelination and residual clinical symptoms. Here, we discuss CNS pathologies characterized by white matter degeneration and regeneration and highlight drugs that could potentially serve as remyelination therapies.
Collapse
Affiliation(s)
- David Kremer
- Department of Neurology, Medical Faculty, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Peter Göttle
- Department of Neurology, Medical Faculty, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, University of Düsseldorf, 40225 Düsseldorf, Germany.
| | - Patrick Küry
- Department of Neurology, Medical Faculty, University of Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
102
|
Srinivasan E, Rajasekaran R. Computational investigation of curcumin, a natural polyphenol that inhibits the destabilization and the aggregation of human SOD1 mutant (Ala4Val). RSC Adv 2016. [DOI: 10.1039/c6ra21927f] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Curcumin inhibits the aberrant aggregation in mutant SOD1 protein, thereby decreasing the propensity of β-sheets and the toxicity level.
Collapse
Affiliation(s)
- E. Srinivasan
- Computational Biology Lab
- Department of Biotechnology
- School of Bio Sciences and Technology
- VIT University
- Vellore 632014
| | - R. Rajasekaran
- Computational Biology Lab
- Department of Biotechnology
- School of Bio Sciences and Technology
- VIT University
- Vellore 632014
| |
Collapse
|
103
|
Abstract
The molecular structures of amyloid fibers and oligomers are required in order to understand and control their formation. Yet, their partially disordered and polymorphic nature hinders structural analyses. Fortunately, short segments from amyloid proteins, which exhibit similar biophysical properties to the full-length proteins, also form fibrils and oligomers and their atomic structures can be determined. Here we describe experimental procedures used to assess fiber-forming capabilities of amyloid peptide segments and their crystallization.
Collapse
Affiliation(s)
- Asher Moshe
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Meytal Landau
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - David Eisenberg
- Department of Biological Chemistry, Howard Hughes Medical Institute (HHMI), University of California Los Angeles (UCLA), 611 Charles Young Dr. East, Los Angeles, CA, 90095-1569, USA.
| |
Collapse
|
104
|
Zarei S, Carr K, Reiley L, Diaz K, Guerra O, Altamirano PF, Pagani W, Lodin D, Orozco G, Chinea A. A comprehensive review of amyotrophic lateral sclerosis. Surg Neurol Int 2015; 6:171. [PMID: 26629397 PMCID: PMC4653353 DOI: 10.4103/2152-7806.169561] [Citation(s) in RCA: 413] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/12/2015] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset fatal neurodegenerative disease affecting motor neurons with an incidence of about 1/100,000. Most ALS cases are sporadic, but 5–10% of the cases are familial ALS. Both sporadic and familial ALS (FALS) are associated with degeneration of cortical and spinal motor neurons. The etiology of ALS remains unknown. However, mutations of superoxide dismutase 1 have been known as the most common cause of FALS. In this study, we provide a comprehensive review of ALS. We cover all aspects of the disease including epidemiology, comorbidities, environmental risk factor, molecular mechanism, genetic factors, symptoms, diagnostic, treatment, and even the available supplement and management of ALS. This will provide the reader with an advantage of receiving a broad range of information about the disease.
Collapse
Affiliation(s)
- Sara Zarei
- Department of Medicine, San Juan Bautista School of Medicine, Caguas, USA
| | - Karen Carr
- Department of Medicine, San Juan Bautista School of Medicine, Caguas, USA
| | - Luz Reiley
- Department of Medicine, San Juan Bautista School of Medicine, Caguas, USA
| | - Kelvin Diaz
- Department of Medicine, San Juan Bautista School of Medicine, Caguas, USA
| | - Orleiquis Guerra
- Department of Medicine, San Juan Bautista School of Medicine, Caguas, USA
| | | | - Wilfredo Pagani
- Department of Medicine, San Juan Bautista School of Medicine, Caguas, USA
| | - Daud Lodin
- Department of Medicine, San Juan Bautista School of Medicine, Caguas, USA
| | - Gloria Orozco
- Department of Medicine, San Juan Bautista School of Medicine, Caguas, USA
| | - Angel Chinea
- Neurologist, Caribbean Neurological Center, Caguas, USA
| |
Collapse
|
105
|
Saelices L, Johnson LM, Liang WY, Sawaya MR, Cascio D, Ruchala P, Whitelegge J, Jiang L, Riek R, Eisenberg DS. Uncovering the Mechanism of Aggregation of Human Transthyretin. J Biol Chem 2015; 290:28932-43. [PMID: 26459562 PMCID: PMC4661406 DOI: 10.1074/jbc.m115.659912] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Indexed: 11/06/2022] Open
Abstract
The tetrameric thyroxine transport protein transthyretin (TTR) forms amyloid fibrils upon dissociation and monomer unfolding. The aggregation of transthyretin has been reported as the cause of the life-threatening transthyretin amyloidosis. The standard treatment of familial cases of TTR amyloidosis has been liver transplantation. Although aggregation-preventing strategies involving ligands are known, understanding the mechanism of TTR aggregation can lead to additional inhibition approaches. Several models of TTR amyloid fibrils have been proposed, but the segments that drive aggregation of the protein have remained unknown. Here we identify β-strands F and H as necessary for TTR aggregation. Based on the crystal structures of these segments, we designed two non-natural peptide inhibitors that block aggregation. This work provides the first characterization of peptide inhibitors for TTR aggregation, establishing a novel therapeutic strategy.
Collapse
Affiliation(s)
- Lorena Saelices
- From the Department of Biological Chemistry, Department of Chemistry and Biochemistry, and Howard Hughes Medical Institute, UCLA, Los Angeles, California 90095-1570, Swiss Federal Institute of Technology in Zürich (ETH), Physical Chemistry, ETH Hönggerberg, 8093 Zürich, Switzerland, and
| | - Lisa M Johnson
- From the Department of Biological Chemistry, Department of Chemistry and Biochemistry, and Howard Hughes Medical Institute, UCLA, Los Angeles, California 90095-1570
| | - Wilson Y Liang
- From the Department of Biological Chemistry, Department of Chemistry and Biochemistry, and Howard Hughes Medical Institute, UCLA, Los Angeles, California 90095-1570
| | - Michael R Sawaya
- From the Department of Biological Chemistry, Department of Chemistry and Biochemistry, and Howard Hughes Medical Institute, UCLA, Los Angeles, California 90095-1570
| | - Duilio Cascio
- From the Department of Biological Chemistry, Department of Chemistry and Biochemistry, and Howard Hughes Medical Institute, UCLA, Los Angeles, California 90095-1570
| | - Piotr Ruchala
- the Department of Psychiatry and Biobehavioral Sciences, UCLA and The Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, Los Angeles, California 90024
| | - Julian Whitelegge
- the Department of Psychiatry and Biobehavioral Sciences, UCLA and The Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, Los Angeles, California 90024
| | - Lin Jiang
- From the Department of Biological Chemistry, Department of Chemistry and Biochemistry, and Howard Hughes Medical Institute, UCLA, Los Angeles, California 90095-1570
| | - Roland Riek
- Swiss Federal Institute of Technology in Zürich (ETH), Physical Chemistry, ETH Hönggerberg, 8093 Zürich, Switzerland, and
| | - David S Eisenberg
- From the Department of Biological Chemistry, Department of Chemistry and Biochemistry, and Howard Hughes Medical Institute, UCLA, Los Angeles, California 90095-1570,
| |
Collapse
|
106
|
S-Nitrosoglutathione Reductase Plays Opposite Roles in SH-SY5Y Models of Parkinson's Disease and Amyotrophic Lateral Sclerosis. Mediators Inflamm 2015; 2015:536238. [PMID: 26491229 PMCID: PMC4600557 DOI: 10.1155/2015/536238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 03/22/2015] [Accepted: 05/13/2015] [Indexed: 11/17/2022] Open
Abstract
Oxidative and nitrosative stresses have been reported as detrimental phenomena concurring to the onset of several neurodegenerative diseases. Here we reported that the ectopic modulation of the denitrosylating enzyme S-nitrosoglutathione reductase (GSNOR) differently impinges on the phenotype of two SH-SY5Y-based in vitro models of neurodegeneration, namely, Parkinson's disease (PD) and familial amyotrophic lateral sclerosis (fALS). In particular, we provide evidence that GSNOR-knocking down protects SH-SY5Y against PD toxins, while, by contrast, its upregulation is required for G93A-SOD1 expressing cells resistance to NO-releasing drugs. Although completely opposite, both conditions are characterized by Nrf2 localization in the nuclear compartment: in the first case induced by GSNOR silencing, while in the second one underlying the antinitrosative response. Overall, our results demonstrate that GSNOR expression has different effect on neuronal viability in dependence on the stimulus applied and suggest that GSNOR could be a responsive gene downstream of Nrf2 activation.
Collapse
|
107
|
Sequence-dependent abnormal aggregation of human Tau fragment in an inducible cell model. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1561-73. [DOI: 10.1016/j.bbadis.2015.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/27/2015] [Accepted: 04/14/2015] [Indexed: 11/15/2022]
|
108
|
Bicchi I, Emiliani C, Vescovi A, Martino S. The Big Bluff of Amyotrophic Lateral Sclerosis Diagnosis: The Role of Neurodegenerative Disease Mimics. NEURODEGENER DIS 2015; 15:313-21. [PMID: 26227992 DOI: 10.1159/000435917] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 06/12/2015] [Indexed: 11/19/2022] Open
Abstract
Neurodegenerative diseases include a significant number of pathologies affecting the nervous system. Generally, the primary cause of each disease is specific; however, recently, it was shown that they may be correlated at molecular level. This aspect, together with the exhibition of similar symptoms, renders the diagnosis of these disorders difficult. Amyotrophic lateral sclerosis is one of these pathologies. Herein, we report several cases of amyotrophic lateral sclerosis misdiagnosed as a consequence of features that are common to several neurodegenerative diseases, such as Parkinson's, Huntington's and Alzheimer's disease, spinal muscular atrophy, progressive bulbar palsy, spastic paraplegia and frontotemporal dementia, and mostly with the lysosomal storage disorder GM2 gangliosidosis. Overall reports highlight that the differential diagnosis for amyotrophic lateral sclerosis should include correlated mechanisms.
Collapse
Affiliation(s)
- Ilaria Bicchi
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | | | | | | |
Collapse
|
109
|
Abstract
A longstanding challenge in studies of neurodegenerative disease has been that the pathologic protein aggregates in live tissue are not amenable to structural and kinetic analysis by conventional methods. The situation is put in focus by the current progress in demarcating protein aggregation in vitro, exposing new mechanistic details that are now calling for quantitative in vivo comparison. In this study, we bridge this gap by presenting a direct comparison of the aggregation kinetics of the ALS-associated protein superoxide dismutase 1 (SOD1) in vitro and in transgenic mice. The results based on tissue sampling by quantitative antibody assays show that the SOD1 fibrillation kinetics in vitro mirror with remarkable accuracy the spinal cord aggregate buildup and disease progression in transgenic mice. This similarity between in vitro and in vivo data suggests that, despite the complexity of live tissue, SOD1 aggregation follows robust and simplistic rules, providing new mechanistic insights into the ALS pathology and organism-level manifestation of protein aggregation phenomena in general.
Collapse
|
110
|
Scarff CA, Almeida B, Fraga J, Macedo-Ribeiro S, Radford SE, Ashcroft AE. Examination of Ataxin-3 (atx-3) Aggregation by Structural Mass Spectrometry Techniques: A Rationale for Expedited Aggregation upon Polyglutamine (polyQ) Expansion. Mol Cell Proteomics 2015; 14:1241-53. [PMID: 25700012 PMCID: PMC4424396 DOI: 10.1074/mcp.m114.044610] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/18/2015] [Indexed: 01/13/2023] Open
Abstract
Expansion of polyglutamine stretches leads to the formation of polyglutamine-containing neuronal aggregates and neuronal death in nine diseases for which there currently are no treatments or cures. This is largely due to a lack in understanding of the mechanisms by which expanded polyglutamine regions contribute to aggregation and disease. To complicate matters further, several of the polyglutamine-disease related proteins, including ataxin-3, have a multistage aggregation mechanism in which flanking domain self-assembly precedes polyglutamine aggregation yet is influenced by polyglutamine expansion. How polyglutamine expansion influences flanking domain aggregation is poorly understood. Here, we use a combination of mass spectrometry and biophysical approaches to investigate this issue for ataxin-3. We show that the conformational dynamics of the flanking Josephin domain in ataxin-3 with an expanded polyglutamine tract are altered in comparison to those exhibited by its nonexpanded counterpart, specifically within the aggregation-prone region of the Josephin domain (amino acid residues 73-96). Expansion thus exposes this region more frequently in ataxin-3 containing an expanded polyglutamine tract, providing a molecular explanation of why aggregation is accelerated upon polyglutamine expansion. Here, harnessing the power of ion mobility spectrometry-mass spectrometry, oligomeric species formed during aggregation are characterized and a model for oligomer growth proposed. The results suggest that a conformational change occurs at the dimer level that initiates self-assembly. New insights into ataxin-3 fibril architecture are also described, revealing the region of the Josephin domain involved in protofibril formation and demonstrating that polyglutamine aggregation proceeds as a distinct second step after protofibril formation without requiring structural rearrangement of the protofibril core. Overall, the results enable the effect of polyglutamine expansion on every stage of ataxin-3 self-assembly, from monomer through to fibril, to be described and a rationale for expedited aggregation upon polyglutamine expansion to be provided.
Collapse
Affiliation(s)
- Charlotte A Scarff
- From the ‡Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Bruno Almeida
- §IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-4180 Porto, Portugal
| | - Joana Fraga
- §IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-4180 Porto, Portugal
| | - Sandra Macedo-Ribeiro
- §IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-4180 Porto, Portugal
| | - Sheena E Radford
- From the ‡Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK;
| | - Alison E Ashcroft
- From the ‡Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK;
| |
Collapse
|
111
|
Wu S, Yi J, Zhang YG, Zhou J, Sun J. Leaky intestine and impaired microbiome in an amyotrophic lateral sclerosis mouse model. Physiol Rep 2015; 3:3/4/e12356. [PMID: 25847918 PMCID: PMC4425962 DOI: 10.14814/phy2.12356] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Emerging evidence has demonstrated that intestinal homeostasis and the microbiome play essential roles in neurological diseases, such as Parkinson's disease. Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by a progressive loss of motor neurons and muscle atrophy. Currently, there is no effective treatment. Most patients die within 3–5 years due to respiratory paralysis. Although the death of motor neurons is a hallmark of ALS, other organs may also contribute to the disease progression. We examined the gut of an ALS mouse model, G93A, which expresses mutant superoxide dismutase (SOD1G93A), and discovered a damaged tight junction structure and increased permeability with a significant reduction in the expression levels of tight junction protein ZO-1 and the adherens junction protein E-cadherin. Furthermore, our data demonstrated increased numbers of abnormal Paneth cells in the intestine of G93A mice. Paneth cells are specialized intestinal epithelial cells that can sense microbes and secrete antimicrobial peptides, thus playing key roles in host innate immune responses and shaping the gut microbiome. A decreased level of the antimicrobial peptides defensin 5 alpha was indeed found in the ALS intestine. These changes were associated with a shifted profile of the intestinal microbiome, including reduced levels of Butyrivibrio Fibrisolvens, Escherichia coli, and Fermicus, in G93A mice. The relative abundance of bacteria was shifted in G93A mice compared to wild-type mice. Principal coordinate analysis indicated a difference in fecal microbial communities between ALS and wild-type mice. Taken together, our study suggests a potential novel role of the intestinal epithelium and microbiome in the progression of ALS.
Collapse
Affiliation(s)
- Shaoping Wu
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois
| | - Jianxun Yi
- Department of Physiology, Kansas City University of Medicine and Bioscience, Kansas, Missouri
| | - Yong-Guo Zhang
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois
| | - Jingsong Zhou
- Department of Physiology, Kansas City University of Medicine and Bioscience, Kansas, Missouri
| | - Jun Sun
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
112
|
Structural and kinetic analysis of protein-aggregate strains in vivo using binary epitope mapping. Proc Natl Acad Sci U S A 2015; 112:4489-94. [PMID: 25802384 DOI: 10.1073/pnas.1419228112] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Despite considerable progress in uncovering the molecular details of protein aggregation in vitro, the cause and mechanism of protein-aggregation disease remain poorly understood. One reason is that the amount of pathological aggregates in neural tissue is exceedingly low, precluding examination by conventional approaches. We present here a method for determination of the structure and quantity of aggregates in small tissue samples, circumventing the above problem. The method is based on binary epitope mapping using anti-peptide antibodies. We assessed the usefulness and versatility of the method in mice modeling the neurodegenerative disease amyotrophic lateral sclerosis, which accumulate intracellular aggregates of superoxide dismutase-1. Two strains of aggregates were identified with different structural architectures, molecular properties, and growth kinetics. Both were different from superoxide dismutase-1 aggregates generated in vitro under a variety of conditions. The strains, which seem kinetically under fragmentation control, are associated with different disease progressions, complying with and adding detail to the growing evidence that seeding, infectivity, and strain dependence are unifying principles of neurodegenerative disease.
Collapse
|
113
|
Luo T, Robinson DN. Kinetic Monte Carlo simulations of the assembly of filamentous biomacromolecules by dimer addition mechanism. RSC Adv 2015; 5:3922-3929. [PMID: 25574377 PMCID: PMC4283931 DOI: 10.1039/c4ra09189b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In cells, several important biomacromolecules form oligomers through a dimer addition mechanism. Rate equations based on mean field approximations are usually employed to describe the assembly process. However, such equations often require multiple assumptions that mask some detailed changes of the biomolecular configurations during aggregations. Here, we present a Kinetic Monte Carlo simulation scheme to account for the diffusion and rotation of dimers on two-dimensional hexagonal lattices while naturally including the stochastic features. We investigate the effects of the interaction energy between dimers, the diffusion coefficient and the concentration of dimers on the aggregation by dimer addition mechanism. Our simulations identified unusual double-S shape evolutions of aggregation kinetics, which are probably associated with the formation of metastable clusters.
Collapse
Affiliation(s)
- Tianzhi Luo
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Douglas N. Robinson
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
114
|
Estácio SG, Leal SS, Cristóvão JS, Faísca PFN, Gomes CM. Calcium binding to gatekeeper residues flanking aggregation-prone segments underlies non-fibrillar amyloid traits in superoxide dismutase 1 (SOD1). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:118-26. [PMID: 25463043 DOI: 10.1016/j.bbapap.2014.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/14/2014] [Accepted: 11/18/2014] [Indexed: 12/26/2022]
Abstract
Calcium deregulation is a central feature among neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Calcium accumulates in the spinal and brain stem motor neurons of ALS patients triggering multiple pathophysiological processes which have been recently shown to include direct effects on the aggregation cascade of superoxide dismutase 1 (SOD1). SOD1 is a Cu/Zn enzyme whose demetallated form is implicated in ALS protein deposits, contributing to toxic gain of function phenotypes. Here we undertake a combined experimental and computational study aimed at establishing the molecular details underlying the regulatory effects of Ca(2+) over SOD1 aggregation potential. Isothermal titration calorimetry indicates entropy driven low affinity association of Ca(2+) ions to apo SOD1, at pH7.5 and 37°C. Molecular dynamics simulations denote a noticeable loss of native structure upon Ca(2+) association that is especially prominent at the zinc-binding and electrostatic loops, whose decoupling is known to expose the central SOD1 β-barrel triggering aggregation. Structural mapping of the preferential apo SOD1 Ca(2+) binding locations reveals that among the most frequent ligands for Ca(2+) are negatively-charged gatekeeper residues located in boundary positions with respect to segments highly prone to edge-to-edge aggregation. Calcium interactions thus diminish gatekeeping roles of these residues, by shielding repulsive interactions via stacking between aggregating β-sheets, partly blocking fibril formation and promoting amyloidogenic oligomers such as those found in ALS inclusions. Interestingly, many fALS mutations occur at these positions, disclosing how Ca(2+) interactions recreate effects similar to those of genetic defects, a finding with relevance to understand sporadic ALS pathomechanisms.
Collapse
Affiliation(s)
- Sílvia G Estácio
- Centro de Física da Matéria Condensada, Universidade de Lisboa, Lisboa, Portugal; Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| | - Sónia S Leal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Joana S Cristóvão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Patrícia F N Faísca
- Centro de Física da Matéria Condensada, Universidade de Lisboa, Lisboa, Portugal; Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| | - Cláudio M Gomes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
115
|
Shi Y, Abdolvahabi A, Shaw BF. Protein charge ladders reveal that the net charge of ALS-linked superoxide dismutase can be different in sign and magnitude from predicted values. Protein Sci 2014; 23:1417-33. [PMID: 25052939 DOI: 10.1002/pro.2526] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/19/2014] [Accepted: 07/21/2014] [Indexed: 12/12/2022]
Abstract
This article utilized "protein charge ladders"-chemical derivatives of proteins with similar structure, but systematically altered net charge-to quantify how missense mutations that cause amyotrophic lateral sclerosis (ALS) affect the net negative charge (Z) of superoxide dismutase-1 (SOD1) as a function of subcellular pH and Zn(2+) stoichiometry. Capillary electrophoresis revealed that the net charge of ALS-variant SOD1 can be different in sign and in magnitude-by up to 7.4 units per dimer at lysosomal pH-than values predicted from standard pKa values of amino acids and formal oxidation states of metal ions. At pH 7.4, the G85R, D90A, and G93R substitutions diminished the net negative charge of dimeric SOD1 by up to +2.29 units more than predicted; E100K lowered net charge by less than predicted. The binding of a single Zn(2+) to mutant SOD1 lowered its net charge by an additional +2.33 ± 0.01 to +3.18 ± 0.02 units, however, each protein regulated net charge when binding a second, third, or fourth Zn(2+) (ΔZ < 0.44 ± 0.07 per additional Zn(2+) ). Both metalated and apo-SOD1 regulated net charge across subcellular pH, without inverting from negative to positive at the theoretical pI. Differential scanning calorimetry, hydrogen-deuterium exchange, and inductively coupled plasma mass spectrometry confirmed that the structure, stability, and metal content of mutant proteins were not significantly affected by lysine acetylation. Measured values of net charge should be used when correlating the biophysical properties of a specific ALS-variant SOD1 protein with its observed aggregation propensity or clinical phenotype.
Collapse
Affiliation(s)
- Yunhua Shi
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, 76798-7348
| | | | | |
Collapse
|
116
|
Sheng Y, Abreu IA, Cabelli DE, Maroney MJ, Miller AF, Teixeira M, Valentine JS. Superoxide dismutases and superoxide reductases. Chem Rev 2014; 114:3854-918. [PMID: 24684599 PMCID: PMC4317059 DOI: 10.1021/cr4005296] [Citation(s) in RCA: 676] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Yuewei Sheng
- Department
of Chemistry and Biochemistry, University
of California Los Angeles, Los
Angeles, California 90095, United States
| | - Isabel A. Abreu
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
- Instituto
de Biologia Experimental e Tecnológica, Av. da República,
Qta. do Marquês, Estação Agronómica Nacional,
Edificio IBET/ITQB, 2780-157, Oeiras, Portugal
| | - Diane E. Cabelli
- Chemistry
Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Michael J. Maroney
- Department
of Chemistry, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Anne-Frances Miller
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - Miguel Teixeira
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Joan Selverstone Valentine
- Department
of Chemistry and Biochemistry, University
of California Los Angeles, Los
Angeles, California 90095, United States
- Department
of Bioinspired Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| |
Collapse
|