101
|
Abstract
Neurodegenerative diseases are, at present, major socio-economic burdens without effective treatments and their increasing prevalence means that these diseases will be a challenge for future generations. Neurodegenerative diseases may differ in etiology and pathology but are often caused by the accumulation of dysfunctional and aggregation-prone proteins. Autophagy, a conserved cellular mechanism, deals with cellular stress and waste product build-up and has been shown to reduce the accumulation of dysfunctional proteins in animal models of neurodegenerative diseases. Historically, progress in understanding the precise function of lipids has traditionally been far behind other biological molecules (like proteins) but emerging works demonstrate the importance of lipids in the autophagy pathway and how the disturbance of lipid metabolism is connected to neurodegeneration. Here we review how altered autophagy and the disturbance of lipid metabolism, particularly of phosphoinositols and sphingolipids, feature in neurodegenerative diseases and address work from the field that suggests that these potentially offer an opportunity of therapeutic intervention.
Collapse
Affiliation(s)
- Sergio Hernandez-Diaz
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000, Bordeaux, France
| | - Sandra-Fausia Soukup
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000, Bordeaux, France
| |
Collapse
|
102
|
Grimm C, Tang R. Could an endo-lysosomal ion channel be the Achilles heel of SARS-CoV2? Cell Calcium 2020; 88:102212. [PMID: 32402856 PMCID: PMC7201244 DOI: 10.1016/j.ceca.2020.102212] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 01/09/2023]
Abstract
The ongoing SARS-CoV2 outbreak has developed into a global pandemic. Despite previous outbreaks of SARS-CoV and the related MERS-CoV in recent years, neither a vaccine nor any other medication for an effective treatment are currently available. Endo-lysosomal two-pore cation channels have now emerged as potential novel targets for SARS-CoV treatment.
Collapse
|
103
|
Pan B, Li J, Parajuli N, Tian Z, Wu P, Lewno MT, Zou J, Wang W, Bedford L, Mayer RJ, Fang J, Liu J, Cui T, Su H, Wang X. The Calcineurin-TFEB-p62 Pathway Mediates the Activation of Cardiac Macroautophagy by Proteasomal Malfunction. Circ Res 2020; 127:502-518. [PMID: 32366200 DOI: 10.1161/circresaha.119.316007] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
RATIONALE The ubiquitin-proteasome system (UPS) and the autophagic-lysosomal pathway are pivotal to proteostasis. Targeting these pathways is emerging as an attractive strategy for treating cancer. However, a significant proportion of patients who receive a proteasome inhibitor-containing regime show cardiotoxicity. Moreover, UPS and autophagic-lysosomal pathway defects are implicated in cardiac pathogenesis. Hence, a better understanding of the cross-talk between the 2 catabolic pathways will help advance cardiac pathophysiology and medicine. OBJECTIVE Systemic proteasome inhibition (PSMI) was shown to increase p62/SQSTM1 expression and induce myocardial macroautophagy. Here we investigate how proteasome malfunction activates cardiac autophagic-lysosomal pathway. METHODS AND RESULTS Myocardial macroautophagy, TFEB (transcription factor EB) expression and activity, and p62 expression were markedly increased in mice with either cardiomyocyte-restricted ablation of Psmc1 (an essential proteasome subunit gene) or pharmacological PSMI. In cultured cardiomyocytes, PSMI-induced increases in TFEB activation and p62 expression were blunted by pharmacological and genetic calcineurin inhibition and by siRNA-mediated Molcn1 silencing. PSMI induced remarkable increases in myocardial autophagic flux in wild type mice but not p62 null (p62-KO) mice. Bortezomib-induced left ventricular wall thickening and diastolic malfunction was exacerbated by p62 deficiency. In cultured cardiomyocytes from wild type mice but not p62-KO mice, PSMI induced increases in LC3-II flux and the lysosomal removal of ubiquitinated proteins. Myocardial TFEB activation by PSMI as reflected by TFEB nuclear localization and target gene expression was strikingly less in p62-KO mice compared with wild type mice. CONCLUSIONS (1) The activation of cardiac macroautophagy by proteasomal malfunction is mediated by the Mocln1-calcineurin-TFEB-p62 pathway; (2) p62 unexpectedly exerts a feed-forward effect on TFEB activation by proteasome malfunction; and (3) targeting the Mcoln1 (mucolipin1)-calcineurin-TFEB-p62 pathway may provide new means to intervene cardiac autophagic-lysosomal pathway activation during proteasome malfunction.
Collapse
Affiliation(s)
- Bo Pan
- From the Division of Basic Biomedical Sciences, University of South Dakota, Sanford School of Medicine, Vermillion (B.P., J. Li, N.P., Z.T., P.W., M.T.L., H.S., X.W.)
| | - Jie Li
- From the Division of Basic Biomedical Sciences, University of South Dakota, Sanford School of Medicine, Vermillion (B.P., J. Li, N.P., Z.T., P.W., M.T.L., H.S., X.W.).,Vascular Biology Center and Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University (J. Li, J.Z., W.W., H.S.)
| | - Nirmal Parajuli
- From the Division of Basic Biomedical Sciences, University of South Dakota, Sanford School of Medicine, Vermillion (B.P., J. Li, N.P., Z.T., P.W., M.T.L., H.S., X.W.)
| | - Zongwen Tian
- From the Division of Basic Biomedical Sciences, University of South Dakota, Sanford School of Medicine, Vermillion (B.P., J. Li, N.P., Z.T., P.W., M.T.L., H.S., X.W.).,Department of Anatomy, Wuhan University College of Basic Medical Sciences, Hubei, China (Z.T.)
| | - Penglong Wu
- From the Division of Basic Biomedical Sciences, University of South Dakota, Sanford School of Medicine, Vermillion (B.P., J. Li, N.P., Z.T., P.W., M.T.L., H.S., X.W.).,Guangzhou Institute of Oncology, Tumor Hospital, Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangdong, China (P.W., W.W., J. Liu)
| | - Megan T Lewno
- From the Division of Basic Biomedical Sciences, University of South Dakota, Sanford School of Medicine, Vermillion (B.P., J. Li, N.P., Z.T., P.W., M.T.L., H.S., X.W.)
| | - Jianqiu Zou
- Vascular Biology Center and Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University (J. Li, J.Z., W.W., H.S.)
| | - Wenjuan Wang
- Vascular Biology Center and Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University (J. Li, J.Z., W.W., H.S.).,Guangzhou Institute of Oncology, Tumor Hospital, Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangdong, China (P.W., W.W., J. Liu)
| | - Lynn Bedford
- School of Life Sciences, University of Nottingham, United Kingdom (L.B.)
| | - R John Mayer
- The University of Nottingham Medical School, Queen's Medical Centre, United Kingdom (R.J.M.)
| | - Jing Fang
- Department of Drug Discovery and Biomedical Sciences (J.F.), University of South Carolina College of Pharmacy, Columbia
| | - Jinbao Liu
- Guangzhou Institute of Oncology, Tumor Hospital, Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangdong, China (P.W., W.W., J. Liu)
| | - Taixing Cui
- Department of Anatomy and Cell Biology (T.C.), University of South Carolina College of Pharmacy, Columbia
| | - Huabo Su
- From the Division of Basic Biomedical Sciences, University of South Dakota, Sanford School of Medicine, Vermillion (B.P., J. Li, N.P., Z.T., P.W., M.T.L., H.S., X.W.).,Vascular Biology Center and Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University (J. Li, J.Z., W.W., H.S.)
| | - Xuejun Wang
- From the Division of Basic Biomedical Sciences, University of South Dakota, Sanford School of Medicine, Vermillion (B.P., J. Li, N.P., Z.T., P.W., M.T.L., H.S., X.W.)
| |
Collapse
|
104
|
Al-Bari MAA, Xu P. Molecular regulation of autophagy machinery by mTOR-dependent and -independent pathways. Ann N Y Acad Sci 2020; 1467:3-20. [PMID: 31985829 DOI: 10.1111/nyas.14305] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/23/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022]
Abstract
Macroautophagy is a lysosomal degradative pathway or recycling process that maintains cellular homeostasis. This autophagy involves a series of sequential processing events, such as initiation; elongation and nucleation of the isolation membrane; cargo recruitment and maturation of the autophagosome (AP); transport of the AP; docking and fusion of the AP with a late endosome or lysosome; and regeneration of the lysosome by the autophagic lysosomal reformation cycle. These events are critically coordinated by the action of a set of several key components, including autophagy-related proteins (Atg), and regulated by intricate networks, such as mechanistic target of rapamycin (mTOR), a master regulator of autophagy, as well as mTOR-independent signaling pathways. Among mTOR-independent pathways, the transient receptor potential (TRP) calcium ion channel TRPML (mucolipin) subfamily is emerging as an important signaling channel to modulate lysosomal biogenesis and autophagy. This review discusses the recent advances in elucidating the molecular mechanisms and regulation of the autophagy process. Understanding these mechanisms may ultimately allow scientists and clinicians to control this process in order to improve human health.
Collapse
Affiliation(s)
| | - Pingyong Xu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
105
|
Santoni G, Morelli MB, Amantini C, Nabissi M, Santoni M, Santoni A. Involvement of the TRPML Mucolipin Channels in Viral Infections and Anti-viral Innate Immune Responses. Front Immunol 2020; 11:739. [PMID: 32425938 PMCID: PMC7212413 DOI: 10.3389/fimmu.2020.00739] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/31/2020] [Indexed: 12/23/2022] Open
Abstract
The TRPML channels (TRPML1, TRPML2, and TRPML3), belonging to the mucolipin TRP subfamily, primary localize to a population of membrane-bonded vesicles along the endocytosis, and exocytosis pathways. Human viruses enter host cells by plasma membrane penetration or by receptor-mediated endocytosis. TRPML2 enhances the infectivity of a number of enveloped viruses by promoting virus vesicular trafficking and escape from endosomal compartment. TRPML2 expression is stimulated by interferon and by several toll like receptor (TLR) activators, suggesting a possible role in the activation of the innate immune response. Noteworthy, TRPML1 plays a major role in single strand RNA/DNA trafficking into lysosomes and the lack of TRPML1 impairs the TLR-7 and TLR-9 ligand transportation to lysosomes resulting in decreased dendritic cell maturation/activation and migration to the lymph nodes. TRPML channels are also expressed by natural killer (NK) cells, a subset of innate lymphocytes with an essential role during viral infections; recent findings have indicated a role of TRPML1-mediated modulation of secretory lysosomes in NK cells education. Moreover, as also NK cells express TLR recognizing viral pattern, an increased TLR-mediated activation of cytokine production can be envisaged, suggesting a dual role in the NK cell-mediated antiviral responses. Overall, TRPML channels might play a double-edged sword in resistance to viral infections: on one side they can promote virus cellular entry and infectivity; on the other side, by regulating TLR responses in the various immune cells, they contribute to enhance antiviral innate and possibly adaptive immune responses.
Collapse
Affiliation(s)
- Giorgio Santoni
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, Camerino, Italy
| | | | - Consuelo Amantini
- Immunopathology Laboratory, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Massimo Nabissi
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Matteo Santoni
- Medical Oncology Unit, Hospital of Macerata, Macerata, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
106
|
Huang P, Xu M, Wu Y, Rizvi Syeda AK, Dong XP. Multiple facets of TRPML1 in autophagy. Cell Calcium 2020; 88:102196. [PMID: 32380434 DOI: 10.1016/j.ceca.2020.102196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/21/2020] [Indexed: 12/17/2022]
Abstract
Autophagy is an evolutionarily conserved pathway that is required for cellular homeostasis, growth and survival. In a recent study, Scotto-Rosato et al. demonstrate that TRPML1-mediated calcium release promotes autophagosome biogenesis by activating the CaMKKβ/VPS34 pathway, providing a new insight into the pathophysiological role of TRPML1 in human diseases.
Collapse
Affiliation(s)
- Peng Huang
- Collaborative Innovation Center for Biomedicine, School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Mengnan Xu
- Departments of Physiology and Biophysics, Dalhousie University, 5850 College Street, Halifax, B3H 4R2, Nova Scotia, Canada
| | - Yi Wu
- Collaborative Innovation Center for Biomedicine, School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Alia Kazim Rizvi Syeda
- Departments of Physiology and Biophysics, Dalhousie University, 5850 College Street, Halifax, B3H 4R2, Nova Scotia, Canada
| | - Xian-Ping Dong
- Departments of Physiology and Biophysics, Dalhousie University, 5850 College Street, Halifax, B3H 4R2, Nova Scotia, Canada.
| |
Collapse
|
107
|
Li D, Shao R, Wang N, Zhou N, Du K, Shi J, Wang Y, Zhao Z, Ye X, Zhang X, Xu H. Sulforaphane Activates a lysosome-dependent transcriptional program to mitigate oxidative stress. Autophagy 2020; 17:872-887. [PMID: 32138578 DOI: 10.1080/15548627.2020.1739442] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress underlies a number of pathological conditions, including cancer, neurodegeneration, and aging. Antioxidant-rich foods help maintain cellular redox homeostasis and mitigate oxidative stress, but the underlying mechanisms are not clear. For example, sulforaphane (SFN), an electrophilic compound that is enriched in cruciferous vegetables such as broccoli, is a potent inducer of cellular antioxidant responses. NFE2L2/NRF2 (nuclear factor, erythroid 2 like 2), a transcriptional factor that controls the expression of multiple detoxifying enzymes through antioxidant response elements (AREs), is a proposed target of SFN. NFE2L2/NRF2 is a target gene of TFEB (transcription factor EB), a master regulator of autophagic and lysosomal functions, which we show here to be potently activated by SFN. SFN induces TFEB nuclear translocation via a Ca2+-dependent but MTOR (mechanistic target of rapamycin kinase)-independent mechanism through a moderate increase in reactive oxygen species (ROS). Activated TFEB then boosts the expression of genes required for autophagosome and lysosome biogenesis, which are known to facilitate the clearance of damaged mitochondria. Notably, TFEB activity is required for SFN-induced protection against both acute oxidant bursts and chronic oxidative stress. Hence, by simultaneously activating macroautophagy/autophagy and detoxifying pathways, natural compound SFN may trigger a self-defense cellular mechanism that can effectively mitigate oxidative stress commonly associated with many metabolic and age-related diseases.Abbreviations: ANOVA: analyzes of variance; AREs: antioxidant response elements; Baf-A1: bafilomycin A1; BHA: butylhydroxyanisole; CAT: catechin hydrate; CCCP: carbonyl cyanide m- chlorophenylhydrazone; CLEAR: coordinated lysosomal expression and regulation; DCFH-DA: 2',7'-dichlorofluorescin diacetate; FBS: fetal bovine serum; GFP: green fluorescent protein; HMOX1/HO-1: heme oxygenase 1; KD: knockdown; KEAP1: kelch like ECH associated protein 1; KO: knockout; LAMP1: lysosomal associated membrane protein 1; MCOLN1/TRPML1: mucolipin 1; ML-SA1: mucolipin-specific synthetic agonist 1; ML-SI3: mucolipin-specific synthetic inhibitor 3; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin kinase complex 1; NAC: N-acetylcysteine; NFE2L2/NRF2: nuclear factor: erythroid 2 like 2; NPC: Niemann-Pick type C; PBS: phosphate-buffered saline; PPP2/PP2A: protein phosphatase 2; Q-PCR: real time polymerase chain reaction; ROS: reactive oxygen species; RPS6KB1/S6K1/p70S6K: ribosomal protein S6 kinase B1; SFN: sulforaphane; TFEB: transcription factor EB; WT, wild-type.
Collapse
Affiliation(s)
- Dan Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Rong Shao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Na Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Nan Zhou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Kaili Du
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jiahui Shi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yihan Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Zhuangzhuang Zhao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Xin Ye
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Xiaoli Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
108
|
Kim HK, Lee GH, Bhattarai KR, Lee MS, Back SH, Kim HR, Chae HJ. TMBIM6 (transmembrane BAX inhibitor motif containing 6) enhances autophagy through regulation of lysosomal calcium. Autophagy 2020; 17:761-778. [PMID: 32167007 PMCID: PMC8032251 DOI: 10.1080/15548627.2020.1732161] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lysosomal Ca2+ contributes to macroautophagy/autophagy, an intracellular process for the degradation of cytoplasmic material and organelles in the lysosomes to protect cells against stress responses. TMBIM6 (transmembrane BAX inhibitor motif containing 6) is a Ca2+ channel-like protein known to regulate ER stress response and apoptosis. In this study, we examined the as yet unknown role of TMBIM6 in regulating lysosomal Ca2+ levels. The Ca2+ efflux from the ER through TMBIM6 was found to increase the resting lysosomal Ca2+ level, in which ITPR-independent regulation of Ca2+ status was observed. Further, TMBIM6 regulated the local release of Ca2+ through lysosomal MCOLN1/TRPML1 channels under nutrient starvation or MTOR inhibition. The local Ca2+ efflux through MCOLN1 channels was found to activate PPP3/calcineurin, triggering TFEB (transcription factor EB) nuclear translocation, autophagy induction, and lysosome biogenesis. Upon genetic inactivation of TMBIM6, lysosomal Ca2+ and the associated TFEB nuclear translocation were decreased. Furthermore, autophagy flux was significantly enhanced in the liver or kidney from starved Tmbim6+/+ mice compared with that in the counter tmbim6-/- mice. Together, our observations indicated that under stress conditions, TMBIM6 increases lysosomal Ca2+ release, leading to PPP3/calcineurin-mediated TFEB activation and subsequently enhanced autophagy. Thus, TMBIM6, an ER membrane protein, is suggested to be a lysosomal Ca2+ modulator that coordinates with autophagy to alleviate metabolism stress.Abbreviations: AVs: autophagic vacuoles; CEPIA: calcium-measuring organelle-entrapped protein indicator; ER: endoplasmic reticulum; GPN: glycyl-L-phenylalanine-beta-naphthylamide; ITPR/IP3R: inositol 1,4,5-trisphosphate receptor; LAMP1: lysosomal associated membrane protein 1; MCOLN/TRPML: mucolipin; MEF: mouse embryonic fibroblast; ML-SA1: mucolipin synthetic agonist 1; MTORC1: mechanistic target of rapamycin kinase complex 1; RPS6KB1: ribosomal protein S6 kinase B1; SQSTM1: sequestosome 1; TFEB: transcription factor EB; TKO: triple knockout; TMBIM6/BI-1: transmembrane BAX inhibitor motif containing 6.
Collapse
Affiliation(s)
- Hyun-Kyoung Kim
- Department of Pharmacology and New Drug Development Research Institute, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Geum-Hwa Lee
- Department of Pharmacology and New Drug Development Research Institute, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Kashi Raj Bhattarai
- Department of Pharmacology and New Drug Development Research Institute, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Myung-Shik Lee
- Severance Biomedical Science Institute and Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung Hoon Back
- School of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Hyung-Ryong Kim
- College of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Han-Jung Chae
- Department of Pharmacology and New Drug Development Research Institute, Chonbuk National University Medical School, Jeonju, Republic of Korea
| |
Collapse
|
109
|
Khan N, Halcrow PW, Lakpa KL, Afghah Z, Miller NM, Dowdy SF, Geiger JD, Chen X. Two-pore channels regulate Tat endolysosome escape and Tat-mediated HIV-1 LTR transactivation. FASEB J 2020; 34:4147-4162. [PMID: 31950548 PMCID: PMC7079041 DOI: 10.1096/fj.201902534r] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/10/2019] [Accepted: 01/02/2020] [Indexed: 12/25/2022]
Abstract
HIV-1 Tat is essential for HIV-1 replication and appears to play an important role in the pathogenesis of HIV-associated neurological complications. Secreted from infected or transfected cells, Tat has the extraordinary ability to cross the plasma membrane. In the brain, Tat can be taken up by CNS cells via receptor-mediated endocytosis. Following endocytosis and its internalization into endolysosomes, Tat must be released in order for it to activate the HIV-1 LTR promoter and facilitate HIV-1 viral replication in the nucleus. However, the underlying mechanisms whereby Tat escapes endolysosomes remain unclear. Because Tat disrupts intracellular calcium homeostasis, we investigated the involvement of calcium in Tat endolysosome escape and subsequent LTR transactivation. We demonstrated that chelating endolysosome calcium with high-affinity rhodamine-dextran or chelating cytosolic calcium with BAPTA-AM attenuated Tat endolysosome escape and LTR transactivation. Significantly, we demonstrated that pharmacologically blocking and knocking down the endolysosome-resident two-pore channels (TPCs) attenuated Tat endolysosome escape and LTR transactivation. This calcium-mediated effect appears to be selective for TPCs because knocking down TRPML1 calcium channels was without effect. Our findings suggest that calcium released from TPCs is involved in Tat endolysosome escape and subsequent LTR transactivation. TPCs might represent a novel therapeutic target against HIV-1 infection and HIV-associated neurological complications.
Collapse
Affiliation(s)
- Nabab Khan
- Department of Biomedical SciencesUniversity of North Dakota School of Medicine and Health SciencesGrand ForksNDUSA
| | - Peter W. Halcrow
- Department of Biomedical SciencesUniversity of North Dakota School of Medicine and Health SciencesGrand ForksNDUSA
| | - Koffi L. Lakpa
- Department of Biomedical SciencesUniversity of North Dakota School of Medicine and Health SciencesGrand ForksNDUSA
| | - Zahra Afghah
- Department of Biomedical SciencesUniversity of North Dakota School of Medicine and Health SciencesGrand ForksNDUSA
| | - Nicole M. Miller
- Department of Biomedical SciencesUniversity of North Dakota School of Medicine and Health SciencesGrand ForksNDUSA
| | - Steven F. Dowdy
- Department of Cellular and Molecular MedicineUniversity of California San Diego (UCSD) School of MedicineLa JollaCAUSA
| | - Jonathan D. Geiger
- Department of Biomedical SciencesUniversity of North Dakota School of Medicine and Health SciencesGrand ForksNDUSA
| | - Xuesong Chen
- Department of Biomedical SciencesUniversity of North Dakota School of Medicine and Health SciencesGrand ForksNDUSA
| |
Collapse
|
110
|
Yu S, Wang Z, Ding L, Yang L. The regulation of TFEB in lipid homeostasis of non-alcoholic fatty liver disease: Molecular mechanism and promising therapeutic targets. Life Sci 2020; 246:117418. [PMID: 32057899 DOI: 10.1016/j.lfs.2020.117418] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/01/2020] [Accepted: 02/06/2020] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), which is characterized by disruption of lipid homeostasis, has been the leading cause of chronic liver disease worldwide. However, currently there is no effective therapy for NAFLD. Consequently, it is extremely urgent to explore the specific and effective target functioned as lipids regulator during the pathological process of NAFLD for the drug development. Transcription factor EB (TFEB) plays a crucial role in the regulation of lipid homeostasis through linking autophagy to energy metabolism at the transcriptional level. In this review, we summarize the currently available information regarding the mediation of TFEB in lipid metabolism during the pathological process of NAFLD, and the specific regulatory mechanism of TFEB activity. We further recapitulate TFEB as a promising therapeutic target for NAFLD, primarily through the regulation of lipid homeostasis, energy metabolism as well as immune defense. A better understanding of these key issues will be helpful to promote the development of therapeutic agents which specifically target TFEB to halt or reverse the pathological progression of NAFLD.
Collapse
Affiliation(s)
- Shenglan Yu
- Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengtao Wang
- Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Lili Ding
- Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China.
| | - Li Yang
- Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
111
|
Yu L, Zhang X, Yang Y, Li D, Tang K, Zhao Z, He W, Wang C, Sahoo N, Converso-Baran K, Davis CS, Brooks SV, Bigot A, Calvo R, Martinez NJ, Southall N, Hu X, Marugan J, Ferrer M, Xu H. Small-molecule activation of lysosomal TRP channels ameliorates Duchenne muscular dystrophy in mouse models. SCIENCE ADVANCES 2020; 6:eaaz2736. [PMID: 32128386 PMCID: PMC7032923 DOI: 10.1126/sciadv.aaz2736] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/22/2019] [Indexed: 05/12/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a devastating disease caused by mutations in dystrophin that compromise sarcolemma integrity. Currently, there is no treatment for DMD. Mutations in transient receptor potential mucolipin 1 (ML1), a lysosomal Ca2+ channel required for lysosomal exocytosis, produce a DMD-like phenotype. Here, we show that transgenic overexpression or pharmacological activation of ML1 in vivo facilitates sarcolemma repair and alleviates the dystrophic phenotypes in both skeletal and cardiac muscles of mdx mice (a mouse model of DMD). Hallmark dystrophic features of DMD, including myofiber necrosis, central nucleation, fibrosis, elevated serum creatine kinase levels, reduced muscle force, impaired motor ability, and dilated cardiomyopathies, were all ameliorated by increasing ML1 activity. ML1-dependent activation of transcription factor EB (TFEB) corrects lysosomal insufficiency to diminish muscle damage. Hence, targeting lysosomal Ca2+ channels may represent a promising approach to treat DMD and related muscle diseases.
Collapse
MESH Headings
- Animals
- Biomarkers
- Biopsy
- Disease Models, Animal
- Dystrophin/genetics
- Fluorescent Antibody Technique
- Gene Expression
- Lysosomes/drug effects
- Lysosomes/metabolism
- Mice
- Mice, Inbred mdx
- Mice, Transgenic
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Myocardium/metabolism
- Myocardium/pathology
- Transient Receptor Potential Channels/agonists
Collapse
Affiliation(s)
- Lu Yu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4114 Biological Sciences Building, 1105 North University, Ann Arbor, MI 48109, USA
| | - Xiaoli Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4114 Biological Sciences Building, 1105 North University, Ann Arbor, MI 48109, USA
| | - Yexin Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4114 Biological Sciences Building, 1105 North University, Ann Arbor, MI 48109, USA
| | - Dan Li
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4114 Biological Sciences Building, 1105 North University, Ann Arbor, MI 48109, USA
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Kaiyuan Tang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4114 Biological Sciences Building, 1105 North University, Ann Arbor, MI 48109, USA
| | - Zifan Zhao
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4114 Biological Sciences Building, 1105 North University, Ann Arbor, MI 48109, USA
| | - Wanwan He
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4114 Biological Sciences Building, 1105 North University, Ann Arbor, MI 48109, USA
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ce Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4114 Biological Sciences Building, 1105 North University, Ann Arbor, MI 48109, USA
| | - Nirakar Sahoo
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4114 Biological Sciences Building, 1105 North University, Ann Arbor, MI 48109, USA
- Department of Biology, The University of Texas Rio Grande Valley, 1201 W University Dr., Edinburg, TX 78539, USA
| | - Kimber Converso-Baran
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carol S. Davis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Susan V. Brooks
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anne Bigot
- Sorbonne Université, INSERM, AIM, Center for Research in Myology, UMRS974, GH Pitié-Salpétrière, 75651 Paris Cedex 13, France
| | - Raul Calvo
- NIH/NCATS/NCGC, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | | | - Noel Southall
- NIH/NCATS/NCGC, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Xin Hu
- NIH/NCATS/NCGC, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Juan Marugan
- NIH/NCATS/NCGC, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Marc Ferrer
- NIH/NCATS/NCGC, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4114 Biological Sciences Building, 1105 North University, Ann Arbor, MI 48109, USA
- Corresponding author.
| |
Collapse
|
112
|
Yang C, Zhu Z, Tong BCK, Iyaswamy A, Xie WJ, Zhu Y, Sreenivasmurthy SG, Senthilkumar K, Cheung KH, Song JX, Zhang HJ, Li M. A stress response p38 MAP kinase inhibitor SB202190 promoted TFEB/TFE3-dependent autophagy and lysosomal biogenesis independent of p38. Redox Biol 2020; 32:101445. [PMID: 32037305 PMCID: PMC7264467 DOI: 10.1016/j.redox.2020.101445] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/15/2020] [Accepted: 01/27/2020] [Indexed: 12/22/2022] Open
Abstract
TFEB (transcription factor EB) and TFE3 (transcription factor E3) are “master regulators” of autophagy and lysosomal biogenesis. The stress response p38 mitogen-activated protein (MAP) kinases affect multiple intracellular responses including inflammation, cell growth, differentiation, cell death, senescence, tumorigenesis, and autophagy. Small molecule p38 MAP kinase inhibitors such as SB202190 are widely used in dissection of related signal transduction mechanisms including redox biology and autophagy. Here, we initially aimed to investigate the links between p38 MAP kinase and TFEB/TFE3-mediated autophagy and lysosomal biogenesis. Unexpectedly, we found that only SB202190, rather than several other p38 inhibitors, promotes TFEB and TFE3 to translocate from the cytosol into the nucleus and subsequently enhances autophagy and lysosomal biogenesis. In addition, siRNA-mediated Tfeb and Tfe3 knockdown effectively attenuated SB202190-induced gene expression and lysosomal biogenesis. Mechanistical studies showed that TFEB and TFE3 activation in response to SB202190 is dependent on PPP3/calcineurin rather than on the inhibition of p38 or MTOR signaling, the main pathway for regulating TFEB and TFE3 activation. Importantly, SB202190 increased intracellular calcium levels, and calcium chelator BAPTAP-AM blocked SB202190-induced TFEB and TFE3 activation as well as autophagy and lysosomal biogenesis. Moreover, endoplasmic reticulum (ER) calcium is required for TFEB and TFE3 activation in response to SB202190. In summary, we identified a previously uncharacterized role of SB202190 in activating TFEB- and TFE3-dependent autophagy and lysosomal biogenesis via ER calcium release and subsequent calcium-dependent PPP3/calcineurin activation, leading to dephosphorylation of TFEB and TFE3. Given the importance of p38 MAP kinase invarious conditions including oxidative stress, the findings collectively indicate that SB202190 should not be used as a specific inhibitor for elucidating the p38 MAP kinase biological functions due to its potential effect on activating autophagy-lysosomal axis. A stress response p38 MAP kinase inhibitor SB202190 promoted TFEB/TFE3-dependent autophagy and lysosomal biogenesis. SB202190-induced TFEB/TFE3 activation is independent of p38 MAP kinase inhibition. SB202190-induced TFEB/TFE3 activation is independent of mTOR inhibition. ER calcium-induced PPP3/calcineurin is required for TFEB/TFE3 activation in response to SB202190.
Collapse
Affiliation(s)
- Chuanbin Yang
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Zhou Zhu
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Benjamin Chun-Kit Tong
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Ashok Iyaswamy
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Wen-Jian Xie
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yu Zhu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Sravan Gopalkrishnashetty Sreenivasmurthy
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Krishnamoorthi Senthilkumar
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - King-Ho Cheung
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Ju-Xian Song
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong-Jie Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Min Li
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China.
| |
Collapse
|
113
|
Zhang X, Chen W, Li P, Calvo R, Southall N, Hu X, Bryant-Genevier M, Feng X, Geng Q, Gao C, Yang M, Tang K, Ferrer M, Marugan JJ, Xu H. Agonist-specific voltage-dependent gating of lysosomal two-pore Na + channels. eLife 2019; 8:e51423. [PMID: 31825310 PMCID: PMC6905855 DOI: 10.7554/elife.51423] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/23/2019] [Indexed: 12/12/2022] Open
Abstract
Mammalian two-pore-channels (TPC1, 2; TPCN1, TPCN2) are ubiquitously- expressed, PI(3,5)P2-activated, Na+-selective channels in the endosomes and lysosomes that regulate luminal pH homeostasis, membrane trafficking, and Ebola viral infection. Whereas the channel activity of TPC1 is strongly dependent on membrane voltage, TPC2 lacks such voltage dependence despite the presence of the presumed 'S4 voltage-sensing' domains. By performing high-throughput screening followed by lysosomal electrophysiology, here we identified a class of tricyclic anti-depressants (TCAs) as small-molecule agonists of TPC channels. TCAs activate both TPC1 and TPC2 in a voltage-dependent manner, referred to as Lysosomal Na+ channel Voltage-dependent Activators (LyNa-VAs). We also identified another compound which, like PI(3,5)P2, activates TPC2 independent of voltage, suggesting the existence of agonist-specific gating mechanisms. Our identification of small-molecule TPC agonists should facilitate the studies of the cell biological roles of TPCs and can also readily explain the reported effects of TCAs in the modulation of autophagy and lysosomal functions.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborUnited States
| | - Wei Chen
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborUnited States
| | - Ping Li
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborUnited States
- Collaborative Innovation Center of Yangtze River Delta Region Green PharmaceuticalsZhejiang University of TechnologyHangzhouChina
| | - Raul Calvo
- National Center for Advancing Translational Sciences (NCATS)Medical Center DriveRockvilleUnited States
| | - Noel Southall
- National Center for Advancing Translational Sciences (NCATS)Medical Center DriveRockvilleUnited States
| | - Xin Hu
- National Center for Advancing Translational Sciences (NCATS)Medical Center DriveRockvilleUnited States
| | - Melanie Bryant-Genevier
- National Center for Advancing Translational Sciences (NCATS)Medical Center DriveRockvilleUnited States
| | - Xinghua Feng
- Collaborative Innovation Center of Yangtze River Delta Region Green PharmaceuticalsZhejiang University of TechnologyHangzhouChina
| | - Qi Geng
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborUnited States
| | - Chenlang Gao
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborUnited States
| | - Meimei Yang
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborUnited States
- Department of NeurologyThe Fourth Hospital of Harbin Medical UniversityHarbinChina
| | - Kaiyuan Tang
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborUnited States
| | - Marc Ferrer
- National Center for Advancing Translational Sciences (NCATS)Medical Center DriveRockvilleUnited States
| | - Juan Jose Marugan
- National Center for Advancing Translational Sciences (NCATS)Medical Center DriveRockvilleUnited States
| | - Haoxing Xu
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborUnited States
| |
Collapse
|
114
|
Scotto Rosato A, Montefusco S, Soldati C, Di Paola S, Capuozzo A, Monfregola J, Polishchuk E, Amabile A, Grimm C, Lombardo A, De Matteis MA, Ballabio A, Medina DL. TRPML1 links lysosomal calcium to autophagosome biogenesis through the activation of the CaMKKβ/VPS34 pathway. Nat Commun 2019; 10:5630. [PMID: 31822666 PMCID: PMC6904751 DOI: 10.1038/s41467-019-13572-w] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 11/14/2019] [Indexed: 12/24/2022] Open
Abstract
The lysosomal calcium channel TRPML1, whose mutations cause the lysosomal storage disorder (LSD) mucolipidosis type IV (MLIV), contributes to upregulate autophagic genes by inducing the nuclear translocation of the transcription factor EB (TFEB). Here we show that TRPML1 activation also induces autophagic vesicle (AV) biogenesis through the generation of phosphatidylinositol 3-phosphate (PI3P) and the recruitment of essential PI3P-binding proteins to the nascent phagophore in a TFEB-independent manner. Thus, TRPML1 activation of phagophore formation requires the calcium-dependent kinase CaMKKβ and AMPK, which increase the activation of ULK1 and VPS34 autophagic protein complexes. Consistently, cells from MLIV patients show a reduced recruitment of PI3P-binding proteins to the phagophore during autophagy induction, suggesting that altered AV biogenesis is part of the pathological features of this disease. Together, we show that TRPML1 is a multistep regulator of autophagy that may be targeted for therapeutic purposes to treat LSDs and other autophagic disorders. It was known that prolonged TRMPL1 activation induces TFEB translocation and upregulates autophagic gene regulation. Here, the authors show that acute TRMPL1 activation also induces autophagy through VPS34 and by lysosomal calcium release independent of TFEB.
Collapse
Affiliation(s)
- A Scotto Rosato
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy.,Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
| | - S Montefusco
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - C Soldati
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - S Di Paola
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - A Capuozzo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - J Monfregola
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - E Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - A Amabile
- Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells, and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, 20132, Milan, Italy
| | - C Grimm
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
| | - A Lombardo
- Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells, and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, 20132, Milan, Italy
| | - M A De Matteis
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | - A Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy.,Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy.,Baylor College of Medicine, Houston, Texas, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
| | - D L Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy. .,Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy.
| |
Collapse
|
115
|
Morgan AJ, Yuan Y, Patel S, Galione A. Does lysosomal rupture evoke Ca 2+ release? A question of pores and stores. Cell Calcium 2019; 86:102139. [PMID: 31881482 DOI: 10.1016/j.ceca.2019.102139] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 02/04/2023]
Abstract
Lysosomotropic agents have been used to permeabilize lysosomes and thereby implicate these organelles in diverse cellular processes. Since lysosomes are Ca2+ stores, this rupturing action, particularly that induced by GPN, has also been used to rapidly release Ca2+ from lysosomes. However, a recent study has questioned the mechanism of action of GPN and concluded that, acutely, it does not permeabilize lysosomes but releases Ca2+ directly from the ER instead. We therefore appraise these provocative findings in the context of the existing literature. We suggest that further work is required to unequivocally rule out lysosomes as contributors to GPN-evoked Ca2+ signals.
Collapse
Affiliation(s)
- Anthony J Morgan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, United Kingdom.
| | - Yu Yuan
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Sandip Patel
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, United Kingdom
| |
Collapse
|
116
|
Yu J, Yang J. Ion channels as potential redox sensors in lysosomes. Channels (Austin) 2019; 13:477-482. [PMID: 31662029 PMCID: PMC6833971 DOI: 10.1080/19336950.2019.1684428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/26/2019] [Accepted: 09/15/2019] [Indexed: 02/08/2023] Open
Abstract
Lysosomes are central organelles that recycle materials and energy to maintain intracellular homeostasis. Lysosomes are capable of sensing environmental cues such as nutrition to regulate their function accordingly. Whether lysosomes can sense redox signaling, however, was unclear. Here in this review, we summarized recent evidence of lysosomal ion channel as redox sensors for this organelle. We also discussed their roles in lysosomal diseases that features imbalanced redox.
Collapse
Affiliation(s)
- Jie Yu
- Sports Science Research Center, Zhejiang College of Sports, Hangzhou, China
| | - Junsheng Yang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
117
|
Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat Rev Mol Cell Biol 2019; 21:101-118. [DOI: 10.1038/s41580-019-0185-4] [Citation(s) in RCA: 408] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2019] [Indexed: 12/11/2022]
|
118
|
Rahmani S, Defferrari MS, Wakarchuk WW, Antonescu CN. Energetic adaptations: Metabolic control of endocytic membrane traffic. Traffic 2019; 20:912-931. [DOI: 10.1111/tra.12705] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/11/2019] [Accepted: 10/13/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Sadia Rahmani
- Department of Chemistry and BiologyRyerson University Toronto Ontario Canada
| | | | - Warren W. Wakarchuk
- Department of Chemistry and BiologyRyerson University Toronto Ontario Canada
- Department of Biological SciencesUniversity of Alberta Edmonton Alberta Canada
| | - Costin N. Antonescu
- Department of Chemistry and BiologyRyerson University Toronto Ontario Canada
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital Toronto Ontario Canada
| |
Collapse
|
119
|
Min SH, Suzuki A, Weaver L, Guzman J, Chung Y, Jin H, Gonzalez F, Trasorras C, Zhao L, Spruce LA, Seeholzer SH, Behrens EM, Abrams CS. PIKfyve Deficiency in Myeloid Cells Impairs Lysosomal Homeostasis in Macrophages and Promotes Systemic Inflammation in Mice. Mol Cell Biol 2019; 39:e00158-19. [PMID: 31427458 PMCID: PMC6791654 DOI: 10.1128/mcb.00158-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/29/2019] [Accepted: 08/12/2019] [Indexed: 01/15/2023] Open
Abstract
Macrophages are professional phagocytes that are essential for host defense and tissue homeostasis. Proper membrane trafficking and degradative functions of the endolysosomal system are known to be critical for the function of these cells. We have found that PIKfyve, the kinase that synthesizes the endosomal phosphoinositide phosphatidylinositol-3,5-bisphosphate, is an essential regulator of lysosomal biogenesis and degradative functions in macrophages. Genetically engineered mice lacking PIKfyve in their myeloid cells (PIKfyvefl/fl LysM-Cre) develop diffuse tissue infiltration of foamy macrophages, hepatosplenomegaly, and systemic inflammation. PIKfyve loss in macrophages causes enlarged endolysosomal compartments and impairs the lysosomal degradative function. Moreover, PIKfyve deficiency increases the cellular levels of lysosomal proteins. Although PIKfyve deficiency reduced the activation of mTORC1 pathway and was associated with increased cleavage of TFEB proteins, this does not translate into transcriptional activation of lysosomal genes, suggesting that PIKfyve modulates the abundance of lysosomal proteins by affecting the degradation of these proteins. Our study shows that PIKfyve modulation of lysosomal degradative activity and protein expression is essential to maintain lysosomal homeostasis in macrophages.
Collapse
Affiliation(s)
- Sang Hee Min
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Aae Suzuki
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Lehn Weaver
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jessica Guzman
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Yutein Chung
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Huiyan Jin
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Francina Gonzalez
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Claire Trasorras
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Liang Zhao
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Lynn A Spruce
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Edward M Behrens
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Charles S Abrams
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Pathology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
120
|
Sub-nanomolar sensitive GZnP3 reveals TRPML1-mediated neuronal Zn 2+ signals. Nat Commun 2019; 10:4806. [PMID: 31641116 PMCID: PMC6805855 DOI: 10.1038/s41467-019-12761-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 09/27/2019] [Indexed: 02/07/2023] Open
Abstract
Although numerous fluorescent Zn2+ sensors have been reported, it is unclear whether and how Zn2+ can be released from the intracellular compartments into the cytosol due to a lack of probes that can detect physiological dynamics of cytosolic Zn2+. Here, we create a genetically encoded sensor, GZnP3, which demonstrates unprecedented sensitivity for Zn2+ at sub-nanomolar concentrations. Using GZnP3 as well as GZnP3-derived vesicular targeted probes, we provide the first direct evidence that Zn2+ can be released from endolysosomal vesicles to the cytosol in primary hippocampal neurons through the TRPML1 channel. Such TRPML1-mediated Zn2+ signals are distinct from Ca2+ in that they are selectively present in neurons, sustain longer, and are significantly higher in neurites as compared to the soma. Together, our work not only creates highly sensitive probes for investigating sub-nanomolar Zn2+ dynamics, but also reveals new pools of Zn2+ signals that can play critical roles in neuronal function. Numerous fluorescent Zn2+ sensors are available but most are unsuitable to detect physiological dynamics of cytosolic Zn2+. In this study, the authors present a genetically encoded sensor with sub-nanomolar sensitivity and show that Zn2 + is released from endolysosomal vesicles via TRPML1 in neurons.
Collapse
|
121
|
Lycorine Attenuates Autophagy in Osteoclasts via an Axis of mROS/TRPML1/TFEB to Reduce LPS-Induced Bone Loss. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8982147. [PMID: 31687088 PMCID: PMC6800915 DOI: 10.1155/2019/8982147] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/26/2019] [Indexed: 12/21/2022]
Abstract
Lycorine, a plant alkaloid, exhibits anti-inflammatory activity by acting in macrophages that share precursor cells with osteoclasts (OCs). We hypothesized that lycorine might decrease bone loss by acting in OCs after lipopolysaccharide (LPS) stimulation, since OCs play a main role in LPS-induced bone loss. Microcomputerized tomography (μCT) analysis revealed that lycorine attenuated LPS-induced bone loss in mice. In vivo tartrate-resistant acid phosphatase (TRAP) staining showed that increased surface area and number of OCs in LPS-treated mice were also decreased by lycorine treatment, suggesting that OCs are responsible for the bone-sparing effect of lycorine. In vitro, the increased number and activity of OCs induced by LPS were reduced by lycorine. Lycorine also decreased LPS-induced autophagy in OCs by evaluation of decreased lipidated form of microtubule-associated proteins 1A/1B light chain 3B (LC3) (LC3II) and increased sequestosome 1 (p62). Lycorine attenuated oxidized transient receptor potential cation channel, mucolipin subfamily (TRPML1) by reducing mitochondrial reactive oxygen species (mROS) and decreased transcription factor EB (TFEB) nuclear translocation. Lycorine reduced the number and activity of OCs by decreasing autophagy in OCs via an axis of mROS/TRPML1/TFEB. Collectively, lycorine protected against LPS-induced bone loss by acting in OCs. Our data highlight the therapeutic potential of lycorine for protection against inflammatory bone loss.
Collapse
|
122
|
Calcium Dyshomeostasis and Lysosomal Ca 2+ Dysfunction in Amyotrophic Lateral Sclerosis. Cells 2019; 8:cells8101216. [PMID: 31597311 PMCID: PMC6829585 DOI: 10.3390/cells8101216] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/24/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022] Open
Abstract
Recent findings in the understanding of amyotrophic lateral sclerosis (ALS) revealed that alteration in calcium (Ca2+) homeostasis may largely contribute to motor neuron demise. A large part of these alterations is due to dysfunctional Ca2+-storing organelles, including the endoplasmic reticulum (ER) and mitochondria. Very recently, lysosomal Ca2+ dysfunction has emerged as an important pathological change leading to neuronal loss in ALS. Remarkably, the Ca2+-storing organelles are interacting with each other at specialized domains controlling mitochondrial dynamics, ER/lysosomal function, and autophagy. This occurs as a result of interaction between specific ionic channels and Ca2+-dependent proteins located in each structure. Therefore, the dysregulation of these ionic mechanisms could be considered as a key element in the neurodegenerative process. This review will focus on the possible role of lysosomal Ca2+ dysfunction in the pathogenesis of several neurodegenerative diseases, including ALS and shed light on the possibility that specific lysosomal Ca2+ channels might represent new promising targets for preventing or at least delaying neurodegeneration in ALS.
Collapse
|
123
|
de Campos CB, Zhu YX, Sepetov N, Romanov S, Bruins LA, Shi CX, Stein CK, Petit JL, Polito AN, Sharik ME, Meermeier EW, Ahmann GJ, Armenta IDL, Kruse J, Bergsagel PL, Chesi M, Meurice N, Braggio E, Stewart AK. Identification of PIKfyve kinase as a target in multiple myeloma. Haematologica 2019; 105:1641-1649. [PMID: 31582538 PMCID: PMC7271606 DOI: 10.3324/haematol.2019.222729] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 09/26/2019] [Indexed: 01/03/2023] Open
Abstract
The cellular cytotoxicity of APY0201, a PIKfyve inhibitor, against multiple myeloma was initially identified in an unbiased in vitro chemical library screen. The activity of APY0201 was confirmed in all 25 cell lines tested and in 40% of 100 ex vivo patient-derived primary samples, with increased activity in primary samples harboring trisomies and lacking t(11;14). The broad anti-multiple myeloma activity of PIKfyve inhibitors was further demonstrated in confirmatory screens and showed the superior potency of APY0201 when compared to the PIKfyve inhibitors YM201636 and apilimod, with a mid-point half maximal effective concentration (EC50) at nanomolar concentrations in, respectively, 65%, 40%, and 5% of the tested cell lines. Upregulation of genes in the lysosomal pathway and increased cellular vacuolization were observed in vitro following APY0201 treatment, although these cellular effects did not correlate well with responsiveness. We confirm that PIKfyve inhibition is associated with activation of the transcription factor EB, a master regulator of lysosomal biogenesis and autophagy. Furthermore, we established an assay measuring autophagy as a predictive marker of APY0201 sensitivity. Overall, these findings indicate promising activity of PIKfyve inhibitors secondary to disruption of autophagy in multiple myeloma and suggest a strategy to enrich for likely responders.
Collapse
Affiliation(s)
| | - Yuan Xiao Zhu
- Division of Hematology/Oncology, Mayo Clinic Arizona, Scottsdale, AZ
| | | | | | - Laura Ann Bruins
- Division of Hematology/Oncology, Mayo Clinic Arizona, Scottsdale, AZ
| | - Chang-Xin Shi
- Division of Hematology/Oncology, Mayo Clinic Arizona, Scottsdale, AZ
| | - Caleb K Stein
- Division of Hematology/Oncology, Mayo Clinic Arizona, Scottsdale, AZ
| | - Joachim L Petit
- Division of Hematology/Oncology, Mayo Clinic Arizona, Scottsdale, AZ
| | - Alysia N Polito
- Division of Hematology/Oncology, Mayo Clinic Arizona, Scottsdale, AZ
| | - Meaghen E Sharik
- Division of Hematology/Oncology, Mayo Clinic Arizona, Scottsdale, AZ
| | - Erin W Meermeier
- Division of Hematology/Oncology, Mayo Clinic Arizona, Scottsdale, AZ
| | - Gregory J Ahmann
- Division of Hematology/Oncology, Mayo Clinic Arizona, Scottsdale, AZ
| | | | - Jonas Kruse
- Division of Hematology/Oncology, Mayo Clinic Arizona, Scottsdale, AZ
| | - P Leif Bergsagel
- Division of Hematology/Oncology, Mayo Clinic Arizona, Scottsdale, AZ
| | - Marta Chesi
- Division of Hematology/Oncology, Mayo Clinic Arizona, Scottsdale, AZ
| | - Nathalie Meurice
- Division of Hematology/Oncology, Mayo Clinic Arizona, Scottsdale, AZ
| | - Esteban Braggio
- Division of Hematology/Oncology, Mayo Clinic Arizona, Scottsdale, AZ
| | - A Keith Stewart
- Division of Hematology/Oncology, Mayo Clinic Arizona, Scottsdale, AZ
| |
Collapse
|
124
|
Yin C, Zhang H, Liu X, Zhang H, Zhang Y, Bai X, Wang L, Li H, Li X, Zhang S, Zhang L, Zhang Y. Downregulated MCOLN1 Attenuates The Progression Of Non-Small-Cell Lung Cancer By Inhibiting Lysosome-Autophagy. Cancer Manag Res 2019; 11:8607-8617. [PMID: 31576167 PMCID: PMC6765329 DOI: 10.2147/cmar.s216538] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/06/2019] [Indexed: 12/24/2022] Open
Abstract
Objectives Autophagy plays various roles in non-small-cell lung cancer (NSCLC). MCOLN1, a reactive oxygen species sensor, can regulate autophagy via lysosomal Ca(2+); however, the role of MCOLN1 in NSCLC is largely unknown. This study aimed to explore the effects of MCOLN1 on proliferation, invasion and migration in NSCLC and the underling mechanisms. Materials and methods The tissues of NSCLC patients were collected, then MCOLN1 expression in tumor and adjacent tissues was measured and its relationship with pathological staging was analyzed. The Cell Counting Kit-8 (CCK-8) assay, wound healing assay and transwell migration assay were used to evaluate the proliferation, migration and invasion ability, respectively. Live-cell imaging and transmission electron microscopy (TEM) were used to observe autophagic flux and autolysosomes. Results It was found that MCOLN1 expression was significantly decreased in human NSCLC tissues compared with normal lung tissues while more MCOLN1 in stage III–IV was shown than stage I–II, indicating that MCOLN1 increased along with the progression of NSCLC. Furthermore, CCK-8 assay, wound healing assay and transwell migration assay confirmed that the inhibition of MCOLN1 suppressed NSCLC cells proliferation migration and invasion. Overexpression of MCOLN1 promoted autophagy in A549 and H1299 cells with increased LC3-II/I, lamp1 expression and autolysosomes as well as autophagic flux shown by live-cell imaging and TEM. Conclusion Our study shows that downregulated MCOLN1 reduced lysosome-autophagy activity contributing to inhibited tumor progression, which reveals a novel role of MCOLN1 in NSCLC, and targeting MCOLN1 may be a therapeutic potential for NSCLC. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/-I_WZ7bSq9s
Collapse
Affiliation(s)
- Chuntong Yin
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China
| | - Han Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China
| | - Xin Liu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, People's Republic of China
| | - Haiying Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, People's Republic of China
| | - Yue Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, People's Republic of China
| | - Xue Bai
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, People's Republic of China
| | - Lei Wang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, People's Republic of China
| | - Huimin Li
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, People's Republic of China
| | - Xia Li
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, People's Republic of China
| | - Shuqian Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, People's Republic of China
| | - Linyou Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China
| | - Yong Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, People's Republic of China
| |
Collapse
|
125
|
Yordanov TE, Hipolito VEB, Liebscher G, Vogel GF, Stasyk T, Herrmann C, Geley S, Teis D, Botelho RJ, Hess MW, Huber LA. Biogenesis of lysosome-related organelles complex-1 (BORC) regulates late endosomal/lysosomal size through PIKfyve-dependent phosphatidylinositol-3,5-bisphosphate. Traffic 2019; 20:674-696. [PMID: 31314175 PMCID: PMC6771566 DOI: 10.1111/tra.12679] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 01/02/2023]
Abstract
Mechanisms that control lysosomal function are essential for cellular homeostasis. Lysosomes adapt in size and number to cellular needs but little is known about the underlying molecular mechanism. We demonstrate that the late endosomal/lysosomal multimeric BLOC-1-related complex (BORC) regulates the size of these organelles via PIKfyve-dependent phosphatidylinositol-3,5-bisphosphate [PI(3,5)P2 ] production. Deletion of the core BORC component Diaskedin led to increased levels of PI(3,5)P2 , suggesting activation of PIKfyve, and resulted in enhanced lysosomal reformation and subsequent reduction in lysosomal size. This process required AMP-activated protein kinase (AMPK), a known PIKfyve activator, and was additionally dependent on the late endosomal/lysosomal adaptor, mitogen-activated protein kinases and mechanistic target of rapamycin activator (LAMTOR/Ragulator) complex. Consistently, in response to glucose limitation, AMPK activated PIKfyve, which induced lysosomal reformation with increased baseline autophagy and was coupled to a decrease in lysosomal size. These adaptations of the late endosomal/lysosomal system reversed under glucose replete growth conditions. In summary, our results demonstrate that BORC regulates lysosomal reformation and size in response to glucose availability.
Collapse
Affiliation(s)
- Teodor E. Yordanov
- Division of Cell Biology, BiocenterMedical University of InnsbruckInnsbruckAustria
| | - Victoria E. B. Hipolito
- Department of Chemistry and Biology and the Graduate Program in Molecular ScienceRyerson UniversityTorontoOntarioCanada
| | - Gudrun Liebscher
- Division of Cell Biology, BiocenterMedical University of InnsbruckInnsbruckAustria
| | - Georg F. Vogel
- Division of Cell Biology, BiocenterMedical University of InnsbruckInnsbruckAustria
- Department of Pediatrics IMedical University of InnsbruckInnsbruckAustria
| | - Taras Stasyk
- Division of Cell Biology, BiocenterMedical University of InnsbruckInnsbruckAustria
| | - Caroline Herrmann
- Division of Cell Biology, BiocenterMedical University of InnsbruckInnsbruckAustria
| | - Stephan Geley
- Division of Molecular Pathophysiology, BiocenterMedical University of InnsbruckInnsbruckAustria
| | - David Teis
- Division of Cell Biology, BiocenterMedical University of InnsbruckInnsbruckAustria
| | - Roberto J. Botelho
- Department of Chemistry and Biology and the Graduate Program in Molecular ScienceRyerson UniversityTorontoOntarioCanada
| | - Michael W. Hess
- Division of Histology and EmbryologyMedical University of InnsbruckInnsbruckAustria
| | - Lukas A. Huber
- Division of Cell Biology, BiocenterMedical University of InnsbruckInnsbruckAustria
- Austrian Drug Screening Institute, ADSIInnsbruckAustria
| |
Collapse
|
126
|
Phosphoinositides in the control of lysosome function and homeostasis. Biochem Soc Trans 2019; 47:1173-1185. [PMID: 31383818 DOI: 10.1042/bst20190158] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/11/2022]
Abstract
Lysosomes are the main degradative compartments of mammalian cells and serve as platforms for cellular nutrient signaling and sterol transport. The diverse functions of lysosomes and their adaptation to extracellular and intracellular cues are tightly linked to the spatiotemporally controlled synthesis, turnover and interconversion of lysosomal phosphoinositides, minor phospholipids that define membrane identity and couple membrane dynamics to cell signaling. How precisely lysosomal phosphoinositides act and which effector proteins within the lysosome membrane or at the lysosomal surface recognize them is only now beginning to emerge. Importantly, mutations in phosphoinositide metabolizing enzyme cause lysosomal dysfunction and are associated with numerous diseases ranging from neurodegeneration to cancer. Here, we discuss the phosphoinositides and phosphoinositide metabolizing enzymes implicated in lysosome function and homeostasis and outline perspectives for future research.
Collapse
|
127
|
Krogsaeter EK, Biel M, Wahl-Schott C, Grimm C. The protein interaction networks of mucolipins and two-pore channels. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2019; 1866:1111-1123. [PMID: 30395881 PMCID: PMC7111325 DOI: 10.1016/j.bbamcr.2018.10.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND The endolysosomal, non-selective cation channels, two-pore channels (TPCs) and mucolipins (TRPMLs), regulate intracellular membrane dynamics and autophagy. While partially compensatory for each other, isoform-specific intracellular distribution, cell-type expression patterns, and regulatory mechanisms suggest different channel isoforms confer distinct properties to the cell. SCOPE OF REVIEW Briefly, established TPC/TRPML functions and interaction partners ('interactomes') are discussed. Novel TRPML3 interactors are shown, and a meta-analysis of experimentally obtained channel interactomes conducted. Accordingly, interactomes are compared and contrasted, and subsequently described in detail for TPC1, TPC2, TRPML1, and TRPML3. MAJOR CONCLUSIONS TPC interactomes are well-defined, encompassing intracellular membrane organisation proteins. TRPML interactomes are varied, encompassing cardiac contractility- and chaperone-mediated autophagy proteins, alongside regulators of intercellular signalling. GENERAL SIGNIFICANCE Comprising recently proposed targets to treat cancers, infections, metabolic disease and neurodegeneration, the advancement of TPC/TRPML understanding is of considerable importance. This review proposes novel directions elucidating TPC/TRPML relevance in health and disease. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- Einar K Krogsaeter
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Munich (LMU) Nussbaumstrasse 26, 80336 Munich
| | - Martin Biel
- Department of Pharmacy - Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Germany
| | - Christian Wahl-Schott
- Hannover Medical School, Institute for Neurophysiology, OE 4230, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Christian Grimm
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Munich (LMU) Nussbaumstrasse 26, 80336 Munich.
| |
Collapse
|
128
|
Pan HY, Alamri AH, Valapala M. Nutrient deprivation and lysosomal stress induce activation of TFEB in retinal pigment epithelial cells. Cell Mol Biol Lett 2019; 24:33. [PMID: 31160892 PMCID: PMC6537441 DOI: 10.1186/s11658-019-0159-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 05/15/2019] [Indexed: 12/03/2022] Open
Abstract
Background Induction of lysosomal function and autophagy is regarded as an adaptive mechanism in response to cellular stress. The transcription factor EB (TFEB) has been identified as a master regulator of lysosomal function and autophagy. TFEB is a member of the microphthalmia family of bHLH-LZ transcription factors that includes other members such as micropthalmia-associated transcription factor (MITF), TFE3, and TFEC. TFEB controls lysosome biogenesis and autophagy by upregulation of a family of genes belonging to the Coordinated Lysosomal Expression and Regulation (CLEAR) network. Here, we investigated the expression of TFEB in cells subjected to nutrient deprivation and lysosomal stress. We studied transcriptional induction of TFEB-regulated genes in response to nutrient deprivation and lysosomal stress in retinal pigment epithelial (RPE) cells. Furthermore, we also investigated the induction of autophagy and lysosomal genes upon overexpression of constitutively active form of TFEB. Methods Expression of TFEB and MITF protein levels were evaluated in cells subjected to prolonged periods of nutrient deprivation. mRNA levels of the CLEAR network genes was measured by quantitative real time PCR (qRT-PCR) analysis in cells deprived of nutrients, treated with ammonium chloride and upon overexpression of constitutively active TFEB. Immunostaining with LC3 antibody was used to measure autophagy flux. Labeling with lysoTracker dye was used to assess lysosomes. Results Our results show that nutrient deprivation increases protein levels of TFEB and MITF in ARPE-19 cells. Nutrient stress induces the expression of lysosomal (LAMP1, CTSD MCOLN1, SGSH) and autophagy (BECN1) genes. Lysosomal stress also increases the expression of lysosomal (ATP6V0A1 and LAMP1) and autophagy (p62 and BECN1) genes. Our results show that overexpression of constitutively active TFEB also induces the expression of CLEAR network genes. Conclusions Collectively, these observations suggest that nutrient stress induces the protein expression of both MITF and TFEB in ARPE-19 cells. TFEB-regulated transcriptional program plays an important role in adaptive response of cells during both nutrient and lysosomal stress.
Collapse
Affiliation(s)
- Hsuan-Yeh Pan
- 1School of Optometry, Indiana University, Bloomington, IN 47405 USA
| | - Abdulla H Alamri
- 2State University of New York College of Optometry, 33 42nd St., New York, NY 10036 USA
| | - Mallika Valapala
- 1School of Optometry, Indiana University, Bloomington, IN 47405 USA
| |
Collapse
|
129
|
Zhang X, Chen W, Gao Q, Yang J, Yan X, Zhao H, Su L, Yang M, Gao C, Yao Y, Inoki K, Li D, Shao R, Wang S, Sahoo N, Kudo F, Eguchi T, Ruan B, Xu H. Rapamycin directly activates lysosomal mucolipin TRP channels independent of mTOR. PLoS Biol 2019; 17:e3000252. [PMID: 31112550 PMCID: PMC6528971 DOI: 10.1371/journal.pbio.3000252] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/18/2019] [Indexed: 02/06/2023] Open
Abstract
Rapamycin (Rap) and its derivatives, called rapalogs, are being explored in clinical trials targeting cancer and neurodegeneration. The underlying mechanisms of Rap actions, however, are not well understood. Mechanistic target of rapamycin (mTOR), a lysosome-localized protein kinase that acts as a critical regulator of cellular growth, is believed to mediate most Rap actions. Here, we identified mucolipin 1 (transient receptor potential channel mucolipin 1 [TRPML1], also known as MCOLN1), the principle Ca2+ release channel in the lysosome, as another direct target of Rap. Patch-clamping of isolated lysosomal membranes showed that micromolar concentrations of Rap and some rapalogs activated lysosomal TRPML1 directly and specifically. Pharmacological inhibition or genetic inactivation of mTOR failed to mimic the Rap effect. In vitro binding assays revealed that Rap bound directly to purified TRPML1 proteins with a micromolar affinity. In both healthy and disease human fibroblasts, Rap and rapalogs induced autophagic flux via nuclear translocation of transcription factor EB (TFEB). However, such effects were abolished in TRPML1-deficient cells or by TRPML1 inhibitors. Hence, Rap and rapalogs promote autophagy via a TRPML1-dependent mechanism. Given the demonstrated roles of TRPML1 and TFEB in cellular clearance, we propose that lysosomal TRPML1 may contribute a significant portion to the in vivo neuroprotective and anti-aging effects of Rap via an augmentation of autophagy and lysosomal biogenesis.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Wei Chen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Qiong Gao
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Junsheng Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Xueni Yan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Han Zhao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Lin Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Meimei Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Neurology, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Chenlang Gao
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yao Yao
- Department of Integrative and Molecular Physiology and Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ken Inoki
- Department of Integrative and Molecular Physiology and Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Dan Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Rong Shao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Shiyi Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Nirakar Sahoo
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan
| | - Benfang Ruan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
- * E-mail: (HX); (BR)
| | - Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (HX); (BR)
| |
Collapse
|
130
|
Liu EA, Lieberman AP. The intersection of lysosomal and endoplasmic reticulum calcium with autophagy defects in lysosomal diseases. Neurosci Lett 2019; 697:10-16. [PMID: 29704574 PMCID: PMC6202281 DOI: 10.1016/j.neulet.2018.04.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/13/2018] [Accepted: 04/24/2018] [Indexed: 01/01/2023]
Abstract
The lysosomal storage disorders (LSDs) encompass a group of more than 50 inherited diseases characterized by the accumulation of lysosomal substrates. Two-thirds of patients experience significant neurological symptoms, but the mechanisms of neurodegeneration are not well understood. Interestingly, a wide range of LSDs show defects in both autophagy and Ca2+ homeostasis, which is notable as Ca2+ is a key regulator of autophagy. The crosstalk between these pathways in the context of LSD pathogenesis is not well characterized, but further understanding of this relationship could open up promising therapeutic targets. This review discusses the role of endoplasmic reticulum and lysosomal Ca2+ in autophagy regulation and highlights what is known about defects in autophagy and Ca2+ homeostasis in two LSDs, Niemann-Pick type C disease and Gaucher disease.
Collapse
Affiliation(s)
- Elaine A Liu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| |
Collapse
|
131
|
Fernandez-Mosquera L, Yambire KF, Couto R, Pereyra L, Pabis K, Ponsford AH, Diogo CV, Stagi M, Milosevic I, Raimundo N. Mitochondrial respiratory chain deficiency inhibits lysosomal hydrolysis. Autophagy 2019; 15:1572-1591. [PMID: 30917721 PMCID: PMC6693470 DOI: 10.1080/15548627.2019.1586256] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mitochondria are key organelles for cellular metabolism, and regulate several processes including cell death and macroautophagy/autophagy. Here, we show that mitochondrial respiratory chain (RC) deficiency deactivates AMP-activated protein kinase (AMPK, a key regulator of energy homeostasis) signaling in tissue and in cultured cells. The deactivation of AMPK in RC-deficiency is due to increased expression of the AMPK-inhibiting protein FLCN (folliculin). AMPK is found to be necessary for basal lysosomal function, and AMPK deactivation in RC-deficiency inhibits lysosomal function by decreasing the activity of the lysosomal Ca2+ channel MCOLN1 (mucolipin 1). MCOLN1 is regulated by phosphoinositide kinase PIKFYVE and its product PtdIns(3,5)P2, which is also decreased in RC-deficiency. Notably, reactivation of AMPK, in a PIKFYVE-dependent manner, or of MCOLN1 in RC-deficient cells, restores lysosomal hydrolytic capacity. Building on these data and the literature, we propose that downregulation of the AMPK-PIKFYVE-PtdIns(3,5)P2-MCOLN1 pathway causes lysosomal Ca2+ accumulation and impaired lysosomal catabolism. Besides unveiling a novel role of AMPK in lysosomal function, this study points to the mechanism that links mitochondrial malfunction to impaired lysosomal catabolism, underscoring the importance of AMPK and the complexity of organelle cross-talk in the regulation of cellular homeostasis. Abbreviation: ΔΨm: mitochondrial transmembrane potential; AMP: adenosine monophosphate; AMPK: AMP-activated protein kinase; ATG5: autophagy related 5; ATP: adenosine triphosphate; ATP6V0A1: ATPase, H+ transporting, lysosomal, V0 subbunit A1; ATP6V1A: ATPase, H+ transporting, lysosomal, V0 subbunit A; BSA: bovine serum albumin; CCCP: carbonyl cyanide-m-chlorophenylhydrazone; CREB1: cAMP response element binding protein 1; CTSD: cathepsin D; CTSF: cathepsin F; DMEM: Dulbecco’s modified Eagle’s medium; DMSO: dimethyl sulfoxide; EBSS: Earl’s balanced salt solution; ER: endoplasmic reticulum; FBS: fetal bovine serum; FCCP: carbonyl cyanide-p-trifluoromethoxyphenolhydrazone; GFP: green fluorescent protein; GPN: glycyl-L-phenylalanine 2-naphthylamide; LAMP1: lysosomal associated membrane protein 1; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MCOLN1/TRPML1: mucolipin 1; MEF: mouse embryonic fibroblast; MITF: melanocyte inducing transcription factor; ML1N*2-GFP: probe used to detect PtdIns(3,5)P2 based on the transmembrane domain of MCOLN1; MTORC1: mechanistic target of rapamycin kinase complex 1; NDUFS4: NADH:ubiquinone oxidoreductase subunit S4; OCR: oxygen consumption rate; PBS: phosphate-buffered saline; pcDNA: plasmid cytomegalovirus promoter DNA; PCR: polymerase chain reaction; PtdIns3P: phosphatidylinositol-3-phosphate; PtdIns(3,5)P2: phosphatidylinositol-3,5-bisphosphate; PIKFYVE: phosphoinositide kinase, FYVE-type zinc finger containing; P/S: penicillin-streptomycin; PVDF: polyvinylidene fluoride; qPCR: quantitative real time polymerase chain reaction; RFP: red fluorescent protein; RNA: ribonucleic acid; SDS-PAGE: sodium dodecyl sulfate polyacrylamide gel electrophoresis; shRNA: short hairpin RNA; siRNA: small interfering RNA; TFEB: transcription factor EB; TFE3: transcription factor binding to IGHM enhancer 3; TMRM: tetramethylrhodamine, methyl ester, perchlorate; ULK1: unc-51 like autophagy activating kinase 1; ULK2: unc-51 like autophagy activating kinase 2; UQCRC1: ubiquinol-cytochrome c reductase core protein 1; v-ATPase: vacuolar-type H+-translocating ATPase; WT: wild-type
Collapse
Affiliation(s)
- Lorena Fernandez-Mosquera
- a Institute of Cellular Biochemistry, University Medical Center Goettingen , Goettingen , Germany.,b Doctoral Program in Molecular Medicine, Georg August University Goettingen , Goettingen , Germany
| | - King Faisal Yambire
- a Institute of Cellular Biochemistry, University Medical Center Goettingen , Goettingen , Germany.,c International Max-Planck Research School in Neuroscience , Goettingen , Germany.,d European Neuroscience Institute Goettingen, University Medical Center Goettingen and Max-Planck Society , Goettingen , Germany
| | - Renata Couto
- a Institute of Cellular Biochemistry, University Medical Center Goettingen , Goettingen , Germany.,e Doctoral Program in Molecular Biology of Cells, Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, University of Goettingen , Goettingen , Germany
| | - Leonardo Pereyra
- a Institute of Cellular Biochemistry, University Medical Center Goettingen , Goettingen , Germany.,e Doctoral Program in Molecular Biology of Cells, Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, University of Goettingen , Goettingen , Germany
| | - Kamil Pabis
- a Institute of Cellular Biochemistry, University Medical Center Goettingen , Goettingen , Germany
| | - Amy H Ponsford
- f Institute of Translational Medicine, University of Liverpool , Liverpool , UK
| | - Cátia V Diogo
- a Institute of Cellular Biochemistry, University Medical Center Goettingen , Goettingen , Germany
| | - Massimiliano Stagi
- f Institute of Translational Medicine, University of Liverpool , Liverpool , UK
| | - Ira Milosevic
- d European Neuroscience Institute Goettingen, University Medical Center Goettingen and Max-Planck Society , Goettingen , Germany
| | - Nuno Raimundo
- a Institute of Cellular Biochemistry, University Medical Center Goettingen , Goettingen , Germany
| |
Collapse
|
132
|
Boudewyn LC, Walkley SU. Current concepts in the neuropathogenesis of mucolipidosis type IV. J Neurochem 2019; 148:669-689. [PMID: 29770442 PMCID: PMC6239999 DOI: 10.1111/jnc.14462] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/29/2018] [Accepted: 05/02/2018] [Indexed: 12/11/2022]
Abstract
Mucolipidosis type IV (MLIV) is an autosomal recessive, lysosomal storage disorder causing progressively severe intellectual disability, motor and speech deficits, retinal degeneration often culminating in blindness, and systemic disease causing a shortened lifespan. MLIV results from mutations in the gene MCOLN1 encoding the transient receptor potential channel mucolipin-1. It is an ultra-rare disease and is currently known to affect just over 100 diagnosed individuals. The last decade has provided a wealth of research focused on understanding the role of the enigmatic mucolipin-1 protein in cell and brain function and how its absence causes disease. This review explores our current understanding of the mucolipin-1 protein in relation to neuropathogenesis in MLIV and describes recent findings implicating mucolipin-1's important role in mechanistic target of rapamycin and TFEB (transcription factor EB) signaling feedback loops as well as in the function of the greater endosomal/lysosomal system. In addition to addressing the vital role of mucolipin-1 in the brain, we also report new data on the question of whether haploinsufficiency as would be anticipated in MCOLN1 heterozygotes is associated with any evidence of neuron dysfunction or disease. Greater insights into the role of mucolipin-1 in the nervous system can be expected to shed light not only on MLIV disease but also on numerous processes governing normal brain function. This article is part of the Special Issue "Lysosomal Storage Disorders".
Collapse
Affiliation(s)
- Lauren C. Boudewyn
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, New York
| | - Steven U. Walkley
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
133
|
Endolysosomal Ca 2+ Signalling and Cancer Hallmarks: Two-Pore Channels on the Move, TRPML1 Lags Behind! Cancers (Basel) 2018; 11:cancers11010027. [PMID: 30591696 PMCID: PMC6356888 DOI: 10.3390/cancers11010027] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 12/22/2022] Open
Abstract
The acidic vesicles of the endolysosomal (EL) system are emerging as an intracellular Ca2+ store implicated in the regulation of multiple cellular functions. The EL Ca2+ store releases Ca2+ through a variety of Ca2+-permeable channels, including Transient Receptor Potential (TRP) Mucolipin 1-3 (TRPML1-3) and two-pore channels 1-2 (TPC1-2), whereas EL Ca2+ refilling is sustained by the proton gradient across the EL membrane and/or by the endoplasmic reticulum (ER). EL Ca2+ signals may be either spatially restricted to control vesicle trafficking, autophagy and membrane repair or may be amplified into a global Ca2+ signal through the Ca2+-dependent recruitment of ER-embedded channels. Emerging evidence suggested that nicotinic acid adenine dinucleotide phosphate (NAADP)-gated TPCs sustain multiple cancer hallmarks, such as migration, invasiveness and angiogenesis. Herein, we first survey the EL Ca2+ refilling and release mechanisms and then focus on the oncogenic role of EL Ca2+ signaling. While the evidence in favor of TRPML1 involvement in neoplastic transformation is yet to be clearly provided, TPCs are emerging as an alternative target for anticancer therapies.
Collapse
|
134
|
Martínez-Fábregas J, Prescott A, van Kasteren S, Pedrioli DL, McLean I, Moles A, Reinheckel T, Poli V, Watts C. Lysosomal protease deficiency or substrate overload induces an oxidative-stress mediated STAT3-dependent pathway of lysosomal homeostasis. Nat Commun 2018; 9:5343. [PMID: 30559339 PMCID: PMC6297226 DOI: 10.1038/s41467-018-07741-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/18/2018] [Indexed: 12/21/2022] Open
Abstract
Diverse cellular processes depend on the lysosomal protease system but how cells regulate lysosomal proteolytic capacity is only partly understood. We show here that cells can respond to protease/substrate imbalance in this compartment by de novo expression of multiple lysosomal hydrolases. This response, exemplified here either by loss of asparagine endopeptidase (AEP) or other lysosomal cysteine proteases, or by increased endocytic substrate load, is not dependent on the transcription factor EB (TFEB) but rather is triggered by STAT3 activation downstream of lysosomal oxidative stress. Similar lysosomal adaptations are seen in mice and cells expressing a constitutively active form of STAT3. Our results reveal how cells can increase lysosomal protease capacity under ‘fed’ rather than ‘starved’ conditions that activate the TFEB system. In addition, STAT3 activation due to lysosomal stress likely explains the hyperproliferative kidney disease and splenomegaly observed in AEP-deficient mice. How cells regulate their lysosomal proteolytic capacity is only partly understood. Here, the authors show that lysosomal protease deficiency or substrate overload induces lysosomal stress leading to activation of a STAT3-dependent, TFEB-independent pathway of lysosomal hydrolase expression.
Collapse
Affiliation(s)
- Jonathan Martínez-Fábregas
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| | - Alan Prescott
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Sander van Kasteren
- Division of Bio-Organic Chemistry, Leiden Institute of Chemistry, Einsteinweg 55, Leiden, 2333CC, Netherlands
| | - Deena Leslie Pedrioli
- Division of Molecular Medicine, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.,Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurestrasse190, 8057 Zurich, Switzerland
| | - Irwin McLean
- Division of Molecular Medicine, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Anna Moles
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Institute of Biomedical Research of Barcelona, Spanish Research Council, Barcelona, 08036, Spain
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Medical Faculty, Albert-Ludwigs-University, Freiburg, D-79104, Germany
| | - Valeria Poli
- Department of Genetics, Biology and Biochemistry, University of Turin, Via Nizza 52, 10126, Turin, Italy
| | - Colin Watts
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
135
|
McKenna MC, Schuck PF, Ferreira GC. Fundamentals of CNS energy metabolism and alterations in lysosomal storage diseases. J Neurochem 2018; 148:590-599. [PMID: 30144055 DOI: 10.1111/jnc.14577] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/05/2018] [Accepted: 08/22/2018] [Indexed: 01/03/2023]
Abstract
The brain has a very high requirement for energy. Adult brain relies on glucose as an energy substrate, whereas developing brain can utilize alternative substrates as well as glucose for energy and for the biosynthesis of lipids and proteins required for brain development. Metabolism provides the energy required to support all cellular functions and brain development and building blocks for macromolecules. Lysosomes are organelles involved in breakdown of biological compounds including proteins and complex lipids in the body and brain. Recent studies suggest that lysosomal dysfunction can damage neurons and/or alter neurotransmitter homeostasis. Several studies also implicate mitochondrial dysfunction in the pathophysiology of brain damage in lysosomal storage diseases. This manuscript provides a brief review of energy metabolism and the key pathways involved in metabolism in brain. Roles of lysosomes related to metabolism and neurotransmission are discussed, and evidence for mitochondrial dysfunction in several lysosomal storage diseases is presented. This article is part of the Special Issue "Lysosomal Storage Disorders".
Collapse
Affiliation(s)
- Mary C McKenna
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Patricia F Schuck
- School of Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Gustavo C Ferreira
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Rio Grande do Sul, Brazil
| |
Collapse
|
136
|
Healy TM, Brennan RS, Whitehead A, Schulte PM. Tolerance traits related to climate change resilience are independent and polygenic. GLOBAL CHANGE BIOLOGY 2018; 24:5348-5360. [PMID: 29995321 DOI: 10.1111/gcb.14386] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/06/2018] [Indexed: 05/21/2023]
Abstract
The resilience of organisms to climate change through adaptive evolution is dependent on the extent of genetically based variation in key phenotypic traits and the nature of genetic associations between them. For aquatic animals, upper thermal tolerance and hypoxia tolerance are likely to be a important determinants of sensitivity to climate change. To determine the genetic basis of these traits and to detect associations between them, we compared naturally occurring populations of two subspecies of Atlantic killifish, Fundulus heteroclitus, that differ in both thermal and hypoxia tolerance. Multilocus association mapping demonstrated that 47 and 35 single nucleotide polymorphisms (SNPs) explained 43.4% and 51.9% of variation in thermal and hypoxia tolerance, respectively, suggesting that genetic mechanisms underlie a substantial proportion of variation in each trait. However, no explanatory SNPs were shared between traits, and upper thermal tolerance varied approximately linearly with latitude, whereas hypoxia tolerance exhibited a steep phenotypic break across the contact zone between the subspecies. These results suggest that upper thermal tolerance and hypoxia tolerance are neither phenotypically correlated nor genetically associated, and thus that rates of adaptive change in these traits can be independently fine-tuned by natural selection. This modularity of important traits can underpin the evolvability of organisms to complex future environmental change.
Collapse
Affiliation(s)
- Timothy M Healy
- The University of British Columbia, Department of Zoology, Vancouver, British Columbia, Canada
| | - Reid S Brennan
- Department of Environmental Toxicology, University of California-Davis, Davis, California
| | - Andrew Whitehead
- Department of Environmental Toxicology, University of California-Davis, Davis, California
| | - Patricia M Schulte
- The University of British Columbia, Department of Zoology, Vancouver, British Columbia, Canada
| |
Collapse
|
137
|
Boland B, Yu WH, Corti O, Mollereau B, Henriques A, Bezard E, Pastores GM, Rubinsztein DC, Nixon RA, Duchen MR, Mallucci GR, Kroemer G, Levine B, Eskelinen EL, Mochel F, Spedding M, Louis C, Martin OR, Millan MJ. Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing. Nat Rev Drug Discov 2018; 17:660-688. [PMID: 30116051 DOI: 10.1038/nrd.2018.109] [Citation(s) in RCA: 379] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurodegenerative disorders of ageing (NDAs) such as Alzheimer disease, Parkinson disease, frontotemporal dementia, Huntington disease and amyotrophic lateral sclerosis represent a major socio-economic challenge in view of their high prevalence yet poor treatment. They are often called 'proteinopathies' owing to the presence of misfolded and aggregated proteins that lose their physiological roles and acquire neurotoxic properties. One reason underlying the accumulation and spread of oligomeric forms of neurotoxic proteins is insufficient clearance by the autophagic-lysosomal network. Several other clearance pathways are also compromised in NDAs: chaperone-mediated autophagy, the ubiquitin-proteasome system, extracellular clearance by proteases and extrusion into the circulation via the blood-brain barrier and glymphatic system. This article focuses on emerging mechanisms for promoting the clearance of neurotoxic proteins, a strategy that may curtail the onset and slow the progression of NDAs.
Collapse
Affiliation(s)
- Barry Boland
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Wai Haung Yu
- Department of Pathology and Cell Biology, Taub Institute for Alzheimer's Disease Research, Columbia University, New York, NY, USA
| | - Olga Corti
- ICM Institute for Brain and Spinal Cord, Paris, France
| | | | | | - Erwan Bezard
- CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Greg M Pastores
- Department of Metabolic Diseases, Mater Misericordiae University Hospital, Dublin, Ireland
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge and UK Dementia Research Institute, Cambridge Biomedical Campus, Cambridge, UK
| | - Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA.,Departments of Psychiatry and Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Michael R Duchen
- UCL Consortium for Mitochondrial Research and Department of Cell and Developmental Biology, University College London, London, UK
| | - Giovanna R Mallucci
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Guido Kroemer
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.,Pôle de Biologie, Hopitâl Européen George Pompidou (AP-HP), Paris, France
| | - Beth Levine
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Howard Hughes Medical Institute, Dallas, TX, USA
| | | | - Fanny Mochel
- INSERM U 1127, Brain and Spine Institute, Paris, France
| | | | - Caroline Louis
- Centre for Therapeutic Innovation in Neuropsychiatry, IDR Servier, 78290 Croissy sur Seine, France
| | - Olivier R Martin
- Université d'Orléans & CNRS, Institut de Chimie Organique et Analytique (ICOA), Orléans, France
| | - Mark J Millan
- Centre for Therapeutic Innovation in Neuropsychiatry, IDR Servier, 78290 Croissy sur Seine, France
| |
Collapse
|
138
|
Roest G, La Rovere RM, Bultynck G, Parys JB. IP 3 Receptor Properties and Function at Membrane Contact Sites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 981:149-178. [PMID: 29594861 DOI: 10.1007/978-3-319-55858-5_7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) is a ubiquitously expressed Ca2+-release channel localized in the endoplasmic reticulum (ER). The intracellular Ca2+ signals originating from the activation of the IP3R regulate multiple cellular processes including the control of cell death versus cell survival via their action on apoptosis and autophagy. The exact role of the IP3Rs in these two processes does not only depend on their activity, which is modulated by the cytosolic composition (Ca2+, ATP, redox status, …) and by various types of regulatory proteins, including kinases and phosphatases as well as by a number of oncogenes and tumor suppressors, but also on their intracellular localization, especially at the ER-mitochondrial and ER-lysosomal interfaces. At these interfaces, Ca2+ microdomains are formed, in which the Ca2+ concentration is finely regulated by the different ER, mitochondrial and lysosomal Ca2+-transport systems and also depends on the functional and structural interactions existing between them. In this review, we therefore discuss the most recent insights in the role of Ca2+ signaling in general, and of the IP3R in particular, in the control of basal mitochondrial bioenergetics, apoptosis, and autophagy at the level of inter-organellar contact sites.
Collapse
Affiliation(s)
- Gemma Roest
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Leuven, Belgium
| | - Rita M La Rovere
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Leuven, Belgium
| | - Geert Bultynck
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Leuven, Belgium.
| | - Jan B Parys
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Leuven, Belgium.
| |
Collapse
|
139
|
Weinstock LD, Furness AM, Herron SS, Smith SS, Sankar SB, DeRosa SG, Gao D, Mepyans ME, Scotto Rosato A, Medina DL, Vardi A, Ferreira NS, Cho SM, Futerman AH, Slaugenhaupt SA, Wood LB, Grishchuk Y. Fingolimod phosphate inhibits astrocyte inflammatory activity in mucolipidosis IV. Hum Mol Genet 2018; 27:2725-2738. [PMID: 29771310 PMCID: PMC6915831 DOI: 10.1093/hmg/ddy182] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/09/2018] [Accepted: 05/08/2018] [Indexed: 12/25/2022] Open
Abstract
Mucolipidosis IV (MLIV) is an orphan neurodevelopmental disease that causes severe neurologic dysfunction and loss of vision. Currently there is no therapy for MLIV. It is caused by loss of function of the lysosomal channel mucolipin-1, also known as TRPML1. Knockout of the Mcoln1 gene in a mouse model mirrors clinical and neuropathologic signs in humans. Using this model, we previously observed robust activation of microglia and astrocytes in early symptomatic stages of disease. Here we investigate the consequence of mucolipin-1 loss on astrocyte inflammatory activation in vivo and in vitro and apply a pharmacologic approach to restore Mcoln1-/- astrocyte homeostasis using a clinically approved immunomodulator, fingolimod. We found that Mcoln1-/- mice over-express numerous pro-inflammatory cytokines, some of which were also over-expressed in astrocyte cultures. Changes in the cytokine profile in Mcoln1-/- astrocytes are concomitant with changes in phospho-protein signaling, including activation of PI3K/Akt and MAPK pathways. Fingolimod promotes cytokine homeostasis, down-regulates signaling within the PI3K/Akt and MAPK pathways and restores the lysosomal compartment in Mcoln1-/- astrocytes. These data suggest that fingolimod is a promising candidate for preclinical evaluation in our MLIV mouse model, which, in case of success, can be rapidly translated into clinical trial.
Collapse
Affiliation(s)
- Laura D Weinstock
- George W. Woodruff School of Mechanical Engineering, Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory, Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, 315 Ferst Dr., Atlanta, GA, USA
| | - Amanda M Furness
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Harvard Medical School, 185 Cambridge St., Boston, MA, USA
| | - Shawn S Herron
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Harvard Medical School, 185 Cambridge St., Boston, MA, USA
| | - Sierra S Smith
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Harvard Medical School, 185 Cambridge St., Boston, MA, USA
| | - Sitara B Sankar
- George W. Woodruff School of Mechanical Engineering, Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory, Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, 315 Ferst Dr., Atlanta, GA, USA
| | - Samantha G DeRosa
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Harvard Medical School, 185 Cambridge St., Boston, MA, USA
| | - Dadi Gao
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Harvard Medical School, 185 Cambridge St., Boston, MA, USA
| | - Molly E Mepyans
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Harvard Medical School, 185 Cambridge St., Boston, MA, USA
| | - Anna Scotto Rosato
- Telethon Institute of Genetics and Medicine (TIGEM), via Campi Flegrei 34, Pozzuoli (NA), Italy
| | - Diego L Medina
- Telethon Institute of Genetics and Medicine (TIGEM), via Campi Flegrei 34, Pozzuoli (NA), Italy
| | - Ayelet Vardi
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Natalia S Ferreira
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Winterthurerstrasse 260, Zurich, Switzerland
| | - Soo Min Cho
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Susan A Slaugenhaupt
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Harvard Medical School, 185 Cambridge St., Boston, MA, USA
| | - Levi B Wood
- George W. Woodruff School of Mechanical Engineering, Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory, Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, 315 Ferst Dr., Atlanta, GA, USA
| | - Yulia Grishchuk
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Harvard Medical School, 185 Cambridge St., Boston, MA, USA
| |
Collapse
|
140
|
Choy CH, Saffi G, Gray MA, Wallace C, Dayam RM, Ou ZYA, Lenk G, Puertollano R, Watkins SC, Botelho RJ. Lysosome enlargement during inhibition of the lipid kinase PIKfyve proceeds through lysosome coalescence. J Cell Sci 2018; 131:jcs.213587. [PMID: 29661845 DOI: 10.1242/jcs.213587] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/10/2018] [Indexed: 01/07/2023] Open
Abstract
Lysosomes receive and degrade cargo from endocytosis, phagocytosis and autophagy. They also play an important role in sensing and instructing cells on their metabolic state. The lipid kinase PIKfyve generates phosphatidylinositol-3,5-bisphosphate to modulate lysosome function. PIKfyve inhibition leads to impaired degradative capacity, ion dysregulation, abated autophagic flux and a massive enlargement of lysosomes. Collectively, this leads to various physiological defects, including embryonic lethality, neurodegeneration and overt inflammation. The reasons for such drastic lysosome enlargement remain unclear. Here, we examined whether biosynthesis and/or fusion-fission dynamics contribute to swelling. First, we show that PIKfyve inhibition activates TFEB, TFE3 and MITF, enhancing lysosome gene expression. However, this did not augment lysosomal protein levels during acute PIKfyve inhibition, and deletion of TFEB and/or related proteins did not impair lysosome swelling. Instead, PIKfyve inhibition led to fewer but enlarged lysosomes, suggesting that an imbalance favouring lysosome fusion over fission causes lysosome enlargement. Indeed, conditions that abated fusion curtailed lysosome swelling in PIKfyve-inhibited cells.
Collapse
Affiliation(s)
- Christopher H Choy
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada, M5B2K3.,The Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada, M5B2K3
| | - Golam Saffi
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada, M5B2K3.,The Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada, M5B2K3
| | - Matthew A Gray
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada, M5B2K3
| | - Callen Wallace
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Roya M Dayam
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada, M5B2K3.,The Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada, M5B2K3
| | - Zhen-Yi A Ou
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada, M5B2K3
| | - Guy Lenk
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rosa Puertollano
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, Building 50, Room 3537, Bethesda, MD 20892, USA
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Roberto J Botelho
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada, M5B2K3 .,The Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada, M5B2K3
| |
Collapse
|
141
|
Sterea AM, Almasi S, El Hiani Y. The hidden potential of lysosomal ion channels: A new era of oncogenes. Cell Calcium 2018; 72:91-103. [PMID: 29748137 DOI: 10.1016/j.ceca.2018.02.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/28/2018] [Accepted: 02/28/2018] [Indexed: 01/14/2023]
Abstract
Lysosomes serve as the control centre for cellular clearance. These membrane-bound organelles receive biomolecules destined for degradation from intracellular and extracellular pathways; thus, facilitating the production of energy and shaping the fate of the cell. At the base of their functionality are the lysosomal ion channels which mediate the function of the lysosome through the modulation of ion influx and efflux. Ion channels form pores in the membrane of lysosomes and allow the passage of ions, a seemingly simple task which harbours the potential of overthrowing the cell's stability. Considered the master regulators of ion homeostasis, these integral membrane proteins enable the proper operation of the lysosome. Defects in the structure or function of these ion channels lead to the development of lysosomal storage diseases, neurodegenerative diseases and cancer. Although more than 50 years have passed since their discovery, lysosomes are not yet fully understood, with their ion channels being even less well characterized. However, significant improvements have been made in the development of drugs targeted against these ion channels as a means of combating diseases. In this review, we will examine how Ca2+, K+, Na+ and Cl- ion channels affect the function of the lysosome, their involvement in hereditary and spontaneous diseases, and current ion channel-based therapies.
Collapse
Affiliation(s)
- Andra M Sterea
- Departments of Physiology & Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Shekoufeh Almasi
- Departments of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Yassine El Hiani
- Departments of Physiology & Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
142
|
Sun X, Yang Y, Zhong XZ, Cao Q, Zhu XH, Zhu X, Dong XP. A negative feedback regulation of MTORC1 activity by the lysosomal Ca 2+ channel MCOLN1 (mucolipin 1) using a CALM (calmodulin)-dependent mechanism. Autophagy 2018; 14:38-52. [PMID: 29460684 DOI: 10.1080/15548627.2017.1389822] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Macroautophagy/autophagy is an evolutionarily conserved pathway that is required for cellular homeostasis, growth and survival. The lysosome plays an essential role in autophagy regulation. For example, the activity of MTORC1, a master regulator of autophagy, is regulated by nutrients within the lysosome. Starvation inhibits MTORC1 causing autophagy induction. Given that MTORC1 is critical for protein synthesis and cellular homeostasis, a feedback regulatory mechanism must exist to restore MTORC1 during starvation. However, the molecular mechanism underlying this feedback regulation is unclear. In this study, we report that starvation activates the lysosomal Ca2+ release channel MCOLN1 (mucolipin 1) by relieving MTORC1's inhibition of the channel. Activated MCOLN1 in turn facilitates MTORC1 activity that requires CALM (calmodulin). Moreover, both MCOLN1 and CALM are necessary for MTORC1 reactivation during prolonged starvation. Our data suggest that lysosomal Ca2+ signaling is an essential component of the canonical MTORC1-dependent autophagy pathway and MCOLN1 provides a negative feedback regulation of MTORC1 to prevent excessive loss of MTORC1 function during starvation. The feedback regulation may be important for maintaining cellular homeostasis during starvation, as well as many other stressful or disease conditions.
Collapse
Affiliation(s)
- Xue Sun
- a Department of Physiology and Biophysics , Dalhousie University, Sir Charles Tupper Medical Building , Halifax , Nova Scotia, Canada.,d Key Laboratory of Molecular Epigenetics of Ministry of Education , Institute of Cytology and Genetics, Northeast Normal University , Changchun , Jilin , China
| | - Yiming Yang
- a Department of Physiology and Biophysics , Dalhousie University, Sir Charles Tupper Medical Building , Halifax , Nova Scotia, Canada
| | - Xi Zoë Zhong
- a Department of Physiology and Biophysics , Dalhousie University, Sir Charles Tupper Medical Building , Halifax , Nova Scotia, Canada
| | - Qi Cao
- a Department of Physiology and Biophysics , Dalhousie University, Sir Charles Tupper Medical Building , Halifax , Nova Scotia, Canada
| | - Xin-Hong Zhu
- b Institute of Mental Health, Southern Medical University , Guangzhou , China.,c Key Laboratory of Psychiatric Disorders of Guangdong Province , Guangzhou , China
| | - Xiaojuan Zhu
- d Key Laboratory of Molecular Epigenetics of Ministry of Education , Institute of Cytology and Genetics, Northeast Normal University , Changchun , Jilin , China
| | - Xian-Ping Dong
- a Department of Physiology and Biophysics , Dalhousie University, Sir Charles Tupper Medical Building , Halifax , Nova Scotia, Canada
| |
Collapse
|
143
|
Woldemichael T, Keswani RK, Rzeczycki PM, Murashov MD, LaLone V, Gregorka B, Swanson JA, Stringer KA, Rosania GR. Reverse Engineering the Intracellular Self-Assembly of a Functional Mechanopharmaceutical Device. Sci Rep 2018; 8:2934. [PMID: 29440773 PMCID: PMC5811454 DOI: 10.1038/s41598-018-21271-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/31/2018] [Indexed: 12/19/2022] Open
Abstract
Weakly basic, poorly soluble chemical agents could be exploited as building blocks for constructing sophisticated molecular devices inside the cells of living organisms. Here, using experimental and computational approaches, we probed the relationship between the biological mechanisms mediating lysosomal ion homeostasis and the self-assembly of a weakly basic small molecule building block (clofazimine) into a functional, mechanopharmaceutical device (intracellular Crystal-Like Drug Inclusions – “CLDIs”) in macrophage lysosomes. Physicochemical considerations indicate that the intralysosomal stabilization of the self-assembled mechanopharmaceutical device depends on the pHmax of the weakly basic building block and its affinity for chloride, both of which are consistent with the pH and chloride content of a physiological lysosomal microenvironment. Most importantly, in vitro and in silico studies revealed that high expression levels of the vacuolar ATPase (V-ATPase), irrespective of the expression levels of chloride channels, are necessary and sufficient to explain the cell-type dependent formation, stabilization, and biocompatibility of the self-assembled mechanopharmaceutical device within macrophages.
Collapse
Affiliation(s)
- Tehetina Woldemichael
- Biophysics Program, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, USA
| | - Rahul K Keswani
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Phillip M Rzeczycki
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Mikhail D Murashov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Vernon LaLone
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Brian Gregorka
- CLCI: Center for Live-Cell Imaging, Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Joel A Swanson
- Program in Immunology and Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kathleen A Stringer
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Gus R Rosania
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
144
|
Hipolito VEB, Ospina-Escobar E, Botelho RJ. Lysosome remodelling and adaptation during phagocyte activation. Cell Microbiol 2018; 20. [PMID: 29349904 DOI: 10.1111/cmi.12824] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/11/2018] [Accepted: 01/15/2018] [Indexed: 12/30/2022]
Abstract
Lysosomes are acidic and hydrolytic organelles responsible for receiving and digesting cargo acquired during endocytosis, phagocytosis, and autophagy. For macrophages and dendritic cells, the lysosome is kingpin, playing a direct role in microbe killing and antigen processing for presentation. Strikingly, the historic view that lysosomes are homogeneous and static organelles is being replaced with a more elegant paradigm, in which lysosomes are heterogeneous, dynamic, and respond to cellular needs. For example, lysosomes are signalling platforms that integrate stress detection and molecular decision hubs such as the mTOR complex 1 and AMPK to modulate cellular activity. These signals can even adjust lysosome activity by modulating transcription factors such as transcription factor EB (TFEB) and TFE3 that govern lysosome gene expression. Here, we review lysosome remodelling and adaptation during macrophage and dendritic cell stimulation. First, we assess the functional outcomes and regulatory mechanisms driving the dramatic restructuring of lysosomes from globular organelles into a tubular network during phagocyte activation. Second, we discuss lysosome adaptation and scaling in macrophages driven by TFEB and TFE3 stimulation in response to phagocytosis and microbe challenges. Collectively, we are beginning to appreciate that lysosomes are dynamic and adapt to serve phagocyte differentiation in response to microbes and immune stress.
Collapse
Affiliation(s)
- Victoria E B Hipolito
- Department of Chemistry and Biology and the Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, Canada
| | - Erika Ospina-Escobar
- Department of Chemistry and Biology and the Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, Canada
| | - Roberto J Botelho
- Department of Chemistry and Biology and the Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, Canada
| |
Collapse
|
145
|
Gómez NM, Lu W, Lim JC, Kiselyov K, Campagno KE, Grishchuk Y, Slaugenhaupt SA, Pfeffer BA, Fliesler SJ, Mitchell CH. Robust lysosomal calcium signaling through channel TRPML1 is impaired by lysosomal lipid accumulation. FASEB J 2018; 32:782-794. [PMID: 29030399 PMCID: PMC5888396 DOI: 10.1096/fj.201700220rr] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/26/2017] [Indexed: 12/20/2022]
Abstract
The transient receptor potential cation channel mucolipin 1 (TRPML1) channel is a conduit for lysosomal calcium efflux, and channel activity may be affected by lysosomal contents. The lysosomes of retinal pigmented epithelial (RPE) cells are particularly susceptible to build-up of lysosomal waste products because they must degrade the outer segments phagocytosed daily from adjacent photoreceptors; incomplete degradation leads to accumulation of lipid waste in lysosomes. This study asks whether stimulation of TRPML1 can release lysosomal calcium in RPE cells and whether such release is affected by lysosomal accumulations. The TRPML agonist ML-SA1 raised cytoplasmic calcium levels in mouse RPE cells, hesRPE cells, and ARPE-19 cells; this increase was rapid, robust, reversible, and reproducible. The increase was not altered by extracellular calcium removal or by thapsigargin but was eliminated by lysosomal rupture with glycyl-l-phenylalanine-β-naphthylamide. Treatment with desipramine to inhibit acid sphingomyelinase or YM201636 to inhibit PIKfyve also reduced the cytoplasmic calcium increase triggered by ML-SA1, whereas RPE cells from TRPML1-/- mice showed no response to ML-SA1. Cotreatment with chloroquine and U18666A induced formation of neutral, autofluorescent lipid in RPE lysosomes and decreased lysosomal Ca2+ release. Lysosomal Ca2+ release was also impaired in RPE cells from the ATP-binding cassette, subfamily A, member 4-/- mouse model of Stargardt's retinal dystrophy. Neither TRPML1 mRNA nor total lysosomal calcium levels were altered in these models, suggesting a more direct effect on the channel. In summary, stimulation of TRPML1 elevates cytoplasmic calcium levels in RPE cells, but this response is reduced by lysosomal accumulation.-Gómez, N. M., Lu, W. Lim, J. C., Kiselyov, K., Campagno, K. E., Grishchuk, Y., Slaugenhaupt, S. A., Pfeffer, B., Fliesler, S. J., Mitchell, C. H. Robust lysosomal calcium signaling through channel TRPML1 is impaired by lysosomal lipid accumulation.
Collapse
Affiliation(s)
- Néstor Más Gómez
- Department of Anatomy and Cell Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wennan Lu
- Department of Anatomy and Cell Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jason C. Lim
- Department of Anatomy and Cell Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kirill Kiselyov
- Department of Biological Science, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Keith E. Campagno
- Department of Anatomy and Cell Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yulia Grishchuk
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Susan A. Slaugenhaupt
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Bruce A. Pfeffer
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York (SUNY)–University at Buffalo, Buffalo, New York, USA
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York (SUNY)–University at Buffalo, Buffalo, New York, USA
- State University of New York (SUNY)–Eye Institute, Buffalo, New York, USA
- Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, New York, USA
| | - Steven J. Fliesler
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York (SUNY)–University at Buffalo, Buffalo, New York, USA
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York (SUNY)–University at Buffalo, Buffalo, New York, USA
- State University of New York (SUNY)–Eye Institute, Buffalo, New York, USA
- Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, New York, USA
| | - Claire H. Mitchell
- Department of Anatomy and Cell Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
146
|
Zhou X, Li M, Su D, Jia Q, Li H, Li X, Yang J. Cryo-EM structures of the human endolysosomal TRPML3 channel in three distinct states. Nat Struct Mol Biol 2017; 24:1146-1154. [PMID: 29106414 PMCID: PMC5747366 DOI: 10.1038/nsmb.3502] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/10/2017] [Indexed: 12/23/2022]
Abstract
TRPML3 channels are mainly localized to endolysosomes and play a critical role in the endocytic pathway. Their dysfunction causes deafness and pigmentation defects in mice. TRPML3 activity is inhibited by low endolysosomal pH. Here we present cryo-electron microscopy (cryo-EM) structures of human TRPML3 in the closed, agonist-activated, and low-pH-inhibited states, with resolutions of 4.06, 3.62, and 4.65 Å, respectively. The agonist ML-SA1 lodges between S5 and S6 and opens an S6 gate. A polycystin-mucolipin domain (PMD) forms a luminal cap. S1 extends into this cap, forming a 'gating rod' that connects directly to a luminal pore loop, which undergoes dramatic conformational changes in response to low pH. S2 extends intracellularly and interacts with several intracellular regions to form a 'gating knob'. These unique structural features, combined with the results of electrophysiological studies, indicate a new mechanism by which luminal pH and other physiological modulators such as PIP2 regulate TRPML3 by changing S1 and S2 conformations.
Collapse
Affiliation(s)
- Xiaoyuan Zhou
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Minghui Li
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Deyuan Su
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, and Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Qi Jia
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| | - Huan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, and Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Xueming Li
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jian Yang
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, and Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
147
|
Kondratskyi A, Kondratska K, Skryma R, Klionsky DJ, Prevarskaya N. Ion channels in the regulation of autophagy. Autophagy 2017; 14:3-21. [PMID: 28980859 PMCID: PMC5846505 DOI: 10.1080/15548627.2017.1384887] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 09/07/2017] [Accepted: 09/21/2017] [Indexed: 12/18/2022] Open
Abstract
Autophagy is a cellular process in which the cell degrades and recycles its own constituents. Given the crucial role of autophagy in physiology, deregulation of autophagic machinery is associated with various diseases. Hence, a thorough understanding of autophagy regulatory mechanisms is crucially important for the elaboration of efficient treatments for different diseases. Recently, ion channels, mediating ion fluxes across cellular membranes, have emerged as important regulators of both basal and induced autophagy. However, the mechanisms by which specific ion channels regulate autophagy are still poorly understood, thus underscoring the need for further research in this field. Here we discuss the involvement of major types of ion channels in autophagy regulation.
Collapse
Affiliation(s)
- Artem Kondratskyi
- Inserm, U-1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, University of Lille 1, Villeneuve d'Ascq, France
| | - Kateryna Kondratska
- Inserm, U-1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, University of Lille 1, Villeneuve d'Ascq, France
| | - Roman Skryma
- Inserm, U-1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, University of Lille 1, Villeneuve d'Ascq, France
| | - Daniel J. Klionsky
- Life Sciences Institute, and Department of Molecular, Cellular and Developmental Biology; University of Michigan, Ann Arbor, MI, USA
| | - Natalia Prevarskaya
- Inserm, U-1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, University of Lille 1, Villeneuve d'Ascq, France
| |
Collapse
|
148
|
Woldemichael T, Rosania GR. The physiological determinants of drug-induced lysosomal stress resistance. PLoS One 2017; 12:e0187627. [PMID: 29117253 PMCID: PMC5678708 DOI: 10.1371/journal.pone.0187627] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/03/2017] [Indexed: 01/01/2023] Open
Abstract
Many weakly basic, lipophilic drugs accumulate in lysosomes and exert complex, pleiotropic effects on organelle structure and function. Thus, modeling how perturbations of lysosomal physiology affect the maintenance of lysosomal ion homeostasis is necessary to elucidate the key factors which determine the toxicological effects of lysosomotropic agents, in a cell-type dependent manner. Accordingly, a physiologically-based mathematical modeling and simulation approach was used to explore the dynamic, multi-parameter phenomenon of lysosomal stress. With this approach, parameters that are either directly involved in lysosomal ion transportation or lysosomal morphology were transiently altered to investigate their downstream effects on lysosomal physiology reflected by the changes they induce in lysosomal pH, chloride, and membrane potential. In addition, combinations of parameters were simultaneously altered to assess which parameter was most critical for recovery of normal lysosomal physiology. Lastly, to explore the relationship between organelle morphology and induced stress, we investigated the effects of parameters controlling organelle geometry on the restoration of normal lysosomal physiology following a transient perturbation. Collectively, our results indicate a key, interdependent role of V-ATPase number and membrane proton permeability in lysosomal stress tolerance. This suggests that the cell-type dependent regulation of V-ATPase subunit expression and turnover, together with the proton permeability properties of the lysosomal membrane, is critical to understand the differential sensitivity or resistance of different cell types to the toxic effects of lysosomotropic drugs.
Collapse
Affiliation(s)
- Tehetina Woldemichael
- Biophysics Program, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gus R. Rosania
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
149
|
Choy CH, Han BK, Botelho RJ. Phosphoinositide Diversity, Distribution, and Effector Function: Stepping Out of the Box. Bioessays 2017; 39. [PMID: 28977683 DOI: 10.1002/bies.201700121] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/31/2017] [Indexed: 12/26/2022]
Abstract
Phosphoinositides (PtdInsPs) modulate a plethora of functions including signal transduction and membrane trafficking. PtdInsPs are thought to consist of seven interconvertible species that localize to a specific organelle, to which they recruit a set of cognate effector proteins. Here, in reviewing the literature, we argue that this model needs revision. First, PtdInsPs can carry a variety of acyl chains, greatly boosting their molecular diversity. Second, PtdInsPs are more promiscuous in their localization than is usually acknowledged. Third, PtdInsP interconversion is likely achieved through kinase-phosphatase enzyme complexes that coordinate their activities and channel substrates without affecting bulk substrate population. Additionally, we contend that despite hundreds of PtdInsP effectors, our attention is biased toward few proteins. Lastly, we recognize that PtdInsPs can act to nucleate coincidence detection at the effector level, as in PDK1 and Akt. Overall, better integrated models of PtdInsP regulation and function are not only possible but needed.
Collapse
Affiliation(s)
- Christopher H Choy
- Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada M5B2K3.,Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada M5B2K3
| | - Bong-Kwan Han
- The Intelligent Synthetic Biology Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Roberto J Botelho
- Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada M5B2K3.,Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada M5B2K3
| |
Collapse
|
150
|
Chen CC, Butz ES, Chao YK, Grishchuk Y, Becker L, Heller S, Slaugenhaupt SA, Biel M, Wahl-Schott C, Grimm C. Small Molecules for Early Endosome-Specific Patch Clamping. Cell Chem Biol 2017; 24:907-916.e4. [PMID: 28732201 DOI: 10.1016/j.chembiol.2017.05.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/30/2017] [Accepted: 05/26/2017] [Indexed: 12/31/2022]
Abstract
To resolve the subcellular distribution of endolysosomal ion channels, we have established a novel experimental approach to selectively patch clamp Rab5 positive early endosomes (EE) versus Rab7/LAMP1-positive late endosomes/lysosomes (LE/LY). To functionally characterize ion channels in endolysosomal membranes with the patch-clamp technique, it is important to develop techniques to selectively enlarge the respective organelles. We found here that two small molecules, wortmannin and latrunculin B, enlarge Rab5-positive EE when combined but not Rab7-, LAMP1-, or Rab11 (RE)-positive vesicles. The two compounds act rapidly, specifically, and are readily applicable in contrast to genetic approaches or previously used compounds such as vacuolin, which enlarges EE, RE, and LE/LY. We apply this approach here to measure currents mediated by TRPML channels, in particular TRPML3, which we found to be functionally active in both EE and LE/LY in overexpressing cells as well as in endogenously expressing CD11b+ lung-tissue macrophages.
Collapse
Affiliation(s)
- Cheng-Chang Chen
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Elisabeth S Butz
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Yu-Kai Chao
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Yulia Grishchuk
- Department of Neurology, Center for Human Genetic Research, Massachusetts General Hospital, Harvard University, Boston, MA 02114, USA
| | - Lars Becker
- Departments of Otolaryngology - HNS and Molecular & Cellular Physiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Stefan Heller
- Departments of Otolaryngology - HNS and Molecular & Cellular Physiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Susan A Slaugenhaupt
- Department of Neurology, Center for Human Genetic Research, Massachusetts General Hospital, Harvard University, Boston, MA 02114, USA
| | - Martin Biel
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Christian Wahl-Schott
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| | - Christian Grimm
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| |
Collapse
|