101
|
Wang C, Adapa SR, Gibbons J, Sutton S, Jiang RHY. Punctuated chromatin states regulate Plasmodium falciparum antigenic variation at the intron and 2 kb upstream regions. BMC Genomics 2016; 17:652. [PMID: 27538502 PMCID: PMC4990864 DOI: 10.1186/s12864-016-3005-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/10/2016] [Indexed: 11/27/2022] Open
Abstract
Background Understanding the regulation mechanism of var gene expression is crucial for explaining antigenic variation in Plasmodium falciparum. Recent work observed that while all var genes produce transcripts, only a few var genes exhibit high expression levels. However, the global regulation of var expression and the relationship between epigenetic and genetic control remains to be established. Result We have systematically reanalyzed the existing genomic data including chromatin configurations and gene expressions; and for the first time used robust statistical methods to show that the intron and 2 kb upstream regions of each endogenous var gene always maintain high chromatin accessibility, with high potential to bind transcription factors (TFs). The levels of transcripts for different var gene family members are associated with this chromatin accessibility. Any given var gene thus shows punctuated chromatin states throughout the asexual life cycle. This is demonstrated by three independent transcript datasets. Chromatin accessibility in the var intron and 2 kb upstream regions are also positively correlated with their GC content, suggesting the level of var genes silencing might be encoded in their intron sequences. Interestingly, both var intron and 2 kb upstream regions exhibit higher chromatin accessibility when the genes have relatively lower transcription levels, suggesting a punctuated repressive function for these regulatory elements. Conclusion By integrating and analyzing epigenomic, genomic and transcriptomic data, our work reveals a novel distal element in var control. We found dynamic modulations of specific epigenetic marks around the var intron and distal upstream regions are involved in the general var gene expression patterns in malarial antigenic variation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3005-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chengqi Wang
- Department of Global Health (GH) & Center for Drug Discovery and Innovation (CDDI), College of Public Health, University of South Florida, Tampa, FL, 33612, USA
| | - Swamy R Adapa
- Department of Global Health (GH) & Center for Drug Discovery and Innovation (CDDI), College of Public Health, University of South Florida, Tampa, FL, 33612, USA
| | - Justin Gibbons
- Department of Global Health (GH) & Center for Drug Discovery and Innovation (CDDI), College of Public Health, University of South Florida, Tampa, FL, 33612, USA.,Department of Molecular Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Stephen Sutton
- Department of Global Health (GH) & Center for Drug Discovery and Innovation (CDDI), College of Public Health, University of South Florida, Tampa, FL, 33612, USA
| | - Rays H Y Jiang
- Department of Global Health (GH) & Center for Drug Discovery and Innovation (CDDI), College of Public Health, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
102
|
Guizetti J, Barcons-Simon A, Scherf A. Trans-acting GC-rich non-coding RNA at var expression site modulates gene counting in malaria parasite. Nucleic Acids Res 2016; 44:9710-9718. [PMID: 27466391 PMCID: PMC5175341 DOI: 10.1093/nar/gkw664] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 06/20/2016] [Accepted: 07/13/2016] [Indexed: 11/14/2022] Open
Abstract
Monoallelic expression of the var multigene family enables immune evasion of the malaria parasite Plasmodium falciparum in its human host. At a given time only a single member of the 60-member var gene family is expressed at a discrete perinuclear region called the 'var expression site'. However, the mechanism of var gene counting remains ill-defined. We hypothesize that activation factors associating specifically with the expression site play a key role in this process. Here, we investigate the role of a GC-rich non-coding RNA (ncRNA) gene family composed of 15 highly homologous members. GC-rich genes are positioned adjacent to var genes in chromosome-central gene clusters but are absent near subtelomeric var genes. Fluorescence in situ hybridization demonstrates that GC-rich ncRNA localizes to the perinuclear expression site of central and subtelomeric var genes in trans. Importantly, overexpression of distinct GC-rich ncRNA members disrupts the gene counting process at the single cell level and results in activation of a specific subset of var genes in distinct clones. We identify the first trans-acting factor targeted to the elusive perinuclear var expression site and open up new avenues to investigate ncRNA function in antigenic variation of malaria and other protozoan pathogens.
Collapse
Affiliation(s)
- Julien Guizetti
- Unité de Biologie des Interactions Hôte-Parasite, Institut Pasteur, Paris, 75724, France .,INSERM U1201, F-75724 Paris, France.,CNRS ERL9195, F-75724 Paris, France
| | - Anna Barcons-Simon
- Unité de Biologie des Interactions Hôte-Parasite, Institut Pasteur, Paris, 75724, France.,INSERM U1201, F-75724 Paris, France.,CNRS ERL9195, F-75724 Paris, France
| | - Artur Scherf
- Unité de Biologie des Interactions Hôte-Parasite, Institut Pasteur, Paris, 75724, France .,INSERM U1201, F-75724 Paris, France.,CNRS ERL9195, F-75724 Paris, France
| |
Collapse
|
103
|
The nuclear envelope and gene organization in parasitic protozoa: Specializations associated with disease. Mol Biochem Parasitol 2016; 209:104-113. [PMID: 27475118 DOI: 10.1016/j.molbiopara.2016.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/12/2016] [Accepted: 07/26/2016] [Indexed: 12/11/2022]
Abstract
The parasitic protozoa Trypanosoma brucei and Plasmodium falciparum are lethal human parasites that have developed elegant strategies of immune evasion by antigenic variation. Despite the vast evolutionary distance between the two taxa, both parasites employ strict monoallelic expression of their membrane proteins, variant surface glycoproteins in Trypanosomes and the var, rif and stevor genes in Plasmodium, in order to evade their host's immune system. Additionally, both telomeric location and epigenetic controls are prominent features of these membrane proteins. As such, telomeres, chromatin structure and nuclear organization all contribute to control of gene expression and immune evasion. Here, we discuss the importance of epigenetics and sub-nuclear context for the survival of these disease-causing parasites.
Collapse
|
104
|
Tao H, Cao W, Yang JJ, Shi KH, Zhou X, Liu LP, Li J. Long noncoding RNA H19 controls DUSP5/ERK1/2 axis in cardiac fibroblast proliferation and fibrosis. Cardiovasc Pathol 2016; 25:381-9. [PMID: 27318893 DOI: 10.1016/j.carpath.2016.05.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 05/19/2016] [Accepted: 05/21/2016] [Indexed: 01/29/2023] Open
Abstract
Down-regulation of DUSP5 has been shown to increase cell proliferation. DUSP5 expression is regulated through epigenetic events involving LncRNA H19 human choriocarcinoma cell line. However, the molecular mechanisms of H19 modulating the DUSP5 expression in cardiac fibrosis remain largely unknown. Here, we identify H19 negatively regulation of DUSP5 gene expression in cardiac fibroblast and fibrosis tissues. In vivo, the expression levels of H19, DUSP5, α-SMA, p-ERK1/2, and ERK1/2 in cardiac fibrosis tissue were estimated by Western blotting, quantitative reverse transcription-polymerase chain reaction and immunohistochemistry. In vitro stimulation of freshly isolated rat cardiac fibroblasts with recombinant marine TGF-β1 was performed, followed by quantitative reverse transcription-polymerase chain reaction and Western blotting to detect changes in H19, DUSP5, p-ERK1/2, and ERK1/2 levels. Cardiac fibroblasts were transfected with pEX-3-H19 overexpressing, H19-RNAi down-regulating, or pEGFP-C1-DUSP5 overexpressing. Finally, cell proliferation was assessed by the MTT assay and cell cycle. H19 endogenous expression is overexpressed in cardiac fibroblast and fibrosis tissues, and an opposite pattern is observed for DUSP5. H19 ectopic overexpression reduces DUSP5 abundance and increases the proliferation of cardiac fibroblast, whereas H19 silencing causes the opposite effects. In a broader perspective, these results demonstrated that LncRNA H19 contributes to cardiac fibroblast proliferation and fibrosis, which act in part through repression of DUSP5/ERK1/2.
Collapse
Affiliation(s)
- Hui Tao
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Wei Cao
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Jing-Jing Yang
- Department of Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Kai-Hu Shi
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, China.
| | - Xiao Zhou
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, China.
| | - Li-Ping Liu
- Department of Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
105
|
Andreadaki M, Deligianni E, Nika F, Siden-Kiamos I. Expression of the Plasmodium berghei actin II gene is controlled by elements in a long genomic region. Parasitol Res 2016; 115:3261-5. [PMID: 27225004 DOI: 10.1007/s00436-016-5133-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/13/2016] [Indexed: 12/11/2022]
Abstract
Plasmodium parasites have two actin isoforms. Actin I is ubiquitously expressed, while the second actin isoform is expressed in the sexual stages and ookinetes. Reverse genetic analysis revealed two phenotypes in parasites lacking the protein: a block in male gametogenesis (exflagellation) and a second phenotype in oocyst development, dependent upon the expression of the gene in female gametocytes. Here, we report that the genetic complementation of two independent mutants lacking actin II does not fully restore wild-type function. Constructs were integrated in the c-rrna locus, previously used for expression of transgenes, in order to determine the dependence of expression on actin II flanking genomic regions. Partial restoration of male gametogenesis was achieved when the transgene contained, in addition to the coding region, 1.2 kb upstream of the actin II open reading frame. Another transgene, which comprised 2.7 kb of actin II 5' flanking regions and the cognate 3' downstream sequence, fully restored exflagellation. However, in both complemented strains, oocyst development was severely impaired compared to the WT. These data suggest that male gametocyte expression of actin II is dependent upon extensive flanking regions, while female expression requires even longer genomic sequences for correct expression of the gene.
Collapse
Affiliation(s)
- Maria Andreadaki
- Institute of Molecular Biology and Biotechnology, FORTH, N. Plastira 100, Vassilika Vouton, Heraklion, GR-700 13, Greece.,Department of Biology, University of Crete, Heraklion, Greece
| | - Elena Deligianni
- Institute of Molecular Biology and Biotechnology, FORTH, N. Plastira 100, Vassilika Vouton, Heraklion, GR-700 13, Greece
| | - Frantzeska Nika
- Institute of Molecular Biology and Biotechnology, FORTH, N. Plastira 100, Vassilika Vouton, Heraklion, GR-700 13, Greece.,Department of Biology, University of Crete, Heraklion, Greece
| | - Inga Siden-Kiamos
- Institute of Molecular Biology and Biotechnology, FORTH, N. Plastira 100, Vassilika Vouton, Heraklion, GR-700 13, Greece.
| |
Collapse
|
106
|
Deroost K, Pham TT, Opdenakker G, Van den Steen PE. The immunological balance between host and parasite in malaria. FEMS Microbiol Rev 2015; 40:208-57. [PMID: 26657789 DOI: 10.1093/femsre/fuv046] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2015] [Indexed: 12/16/2022] Open
Abstract
Coevolution of humans and malaria parasites has generated an intricate balance between the immune system of the host and virulence factors of the parasite, equilibrating maximal parasite transmission with limited host damage. Focusing on the blood stage of the disease, we discuss how the balance between anti-parasite immunity versus immunomodulatory and evasion mechanisms of the parasite may result in parasite clearance or chronic infection without major symptoms, whereas imbalances characterized by excessive parasite growth, exaggerated immune reactions or a combination of both cause severe pathology and death, which is detrimental for both parasite and host. A thorough understanding of the immunological balance of malaria and its relation to other physiological balances in the body is of crucial importance for developing effective interventions to reduce malaria-related morbidity and to diminish fatal outcomes due to severe complications. Therefore, we discuss in this review the detailed mechanisms of anti-malarial immunity, parasite virulence factors including immune evasion mechanisms and pathogenesis. Furthermore, we propose a comprehensive classification of malaria complications according to the different types of imbalances.
Collapse
Affiliation(s)
- Katrien Deroost
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000 Leuven, Belgium The Francis Crick Institute, Mill Hill Laboratory, London, NW71AA, UK
| | - Thao-Thy Pham
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| | - Philippe E Van den Steen
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
107
|
Yang JJ, Tao H, Deng ZY, Lu C, Li J. Non-coding RNA-mediated epigenetic regulation of liver fibrosis. Metabolism 2015; 64:1386-94. [PMID: 26362725 DOI: 10.1016/j.metabol.2015.08.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/06/2015] [Accepted: 08/08/2015] [Indexed: 12/27/2022]
Abstract
Hepatic stellate cells (HSC) activation plays a key role in liver fibrosis. Numerous studies have indicated that non-coding RNAs (ncRNAs) control liver fibrosis and fibroblasts proliferation. Greater knowledge of the role of the ncRNAs-mediated epigenetic mechanism in liver fibrosis could improve understanding of the liver fibrosis pathogenesis. The aim of this review is to describe the present knowledge about the ncRNAs significantly participating in liver fibrosis and HSC activation, and look ahead on new perspectives of ncRNAs-mediated epigenetic mechanism research. Moreover, we will discuss examples of non-coding RNAs that interact with histone modification or DNA methylation to regulate gene expression in liver fibrosis. Diverse classes of ncRNAs, ranging from microRNAs (miRs) to long non-coding RNAs (LncRNAs), have emerged as key regulators of several important aspects of function, including cell proliferation, activation, etc. In addition, recent advances suggest the important role of ncRNAs transcripts in epigenetic gene regulation. Targeting the miRs and LncRNAs can be a promising direction in liver fibrosis treatment. We discuss new perspectives of miRs and LncRNAs in liver fibrosis and HSC activation, mainly including interaction with histone modification or DNA methylation to regulate gene expression. These epigenetic mechanisms form powerful ncRNAs surveillance systems that may represent new targets for liver fibrosis therapeutic intervention.
Collapse
Affiliation(s)
- Jing-Jing Yang
- Department of Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China, 230601
| | - Hui Tao
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, China, 230601
| | - Zi-Yu Deng
- Department of Scientific and Educational, The Second Hospital of Anhui Medical University, Hefei, China, 230601.
| | - Chao Lu
- Department of Scientific and Educational, The Second Hospital of Anhui Medical University, Hefei, China, 230601
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, China, 230032.
| |
Collapse
|
108
|
Karmodiya K, Pradhan SJ, Joshi B, Jangid R, Reddy PC, Galande S. A comprehensive epigenome map of Plasmodium falciparum reveals unique mechanisms of transcriptional regulation and identifies H3K36me2 as a global mark of gene suppression. Epigenetics Chromatin 2015; 8:32. [PMID: 26388940 PMCID: PMC4574195 DOI: 10.1186/s13072-015-0029-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/08/2015] [Indexed: 12/14/2022] Open
Abstract
Background Role of epigenetic mechanisms towards regulation of the complex life cycle/pathogenesis of Plasmodium falciparum, the causative agent of malaria, has been poorly understood. To elucidate stage-specific epigenetic regulation, we performed genome-wide mapping of multiple histone modifications of P. falciparum. Further to understand the differences in transcription regulation in P. falciparum and its host, human, we compared their histone modification profiles. Results Our comprehensive comparative analysis suggests distinct mode of transcriptional regulation in malaria parasite by virtue of poised genes and differential histone modifications. Furthermore, analysis of histone modification profiles predicted 562 genes producing anti-sense RNAs and 335 genes having bidirectional promoter activity, which raises the intriguing possibility of RNA-mediated regulation of transcription in P. falciparum. Interestingly, we found that H3K36me2 acts as a global repressive mark and gene regulation is fine tuned by the ratio of activation marks to H3K36me2 in P. falciparum. This novel mechanism of gene regulation is supported by the fact that knockout of SET genes (responsible for H3K36 methylation) leads to up-regulation of genes with highest occupancy of H3K36me2 in wild-type P. falciparum. Moreover, virulence (var) genes are mostly poised and marked by a unique set of activation (H4ac) and repression (H3K9me3) marks, which are mutually exclusive to other Plasmodium housekeeping genes. Conclusions Our study reveals unique plasticity in the epigenetic regulation in P. falciparum which can influence parasite virulence and pathogenicity. The observed differences in the histone code and transcriptional regulation in P. falciparum and its host will open new avenues for epigenetic drug development against malaria parasite. Electronic supplementary material The online version of this article (doi:10.1186/s13072-015-0029-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Krishanpal Karmodiya
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra India
| | - Saurabh J Pradhan
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra India
| | - Bhagyashree Joshi
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra India
| | - Rahul Jangid
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra India
| | - Puli Chandramouli Reddy
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra India
| | - Sanjeev Galande
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra India.,Centre of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pune, India.,National Centre for Cell Science, Pune, India
| |
Collapse
|
109
|
Wei G, Zhao Y, Zhang Q, Pan W. Dual regulatory effects of non-coding GC-rich elements on the expression of virulence genes in malaria parasites. INFECTION GENETICS AND EVOLUTION 2015; 36:490-499. [PMID: 26299885 DOI: 10.1016/j.meegid.2015.08.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/12/2015] [Accepted: 08/18/2015] [Indexed: 01/19/2023]
Abstract
As the primary virulence factor of falciparum malaria, var genes harboring mutually exclusive expression pattern lead to antigenic variation and immune evasion of this pathogen in human host. Although various mechanisms contribute to silence of var genes, little is known of transcriptional activation pathways of a single var gene and maintenance of its active state with other silent var loci. Here, we report a monoallelic expression pattern of the non-coding GC-elements flanking chromosomal internal var genes, and transcript from the active one was required for activation of the var gene in the same array. Meanwhile, GFP reporter assays revealed a repressive effect on the adjacent gene induced by DNA motifs of the insulator-like GC-element, which was linked to heterochromatin subnuclear localization. Taken together, these data for the first time provide experimental evidence of the dual cis- and trans-acting regulatory functions of the GC-elements in both silence and activation of var genes, which would advance our understanding of the complex regulatory network of the virulence gene family in P. falciparum.
Collapse
Affiliation(s)
- Guiying Wei
- Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, China
| | - Yuemeng Zhao
- Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, China
| | - Qingfeng Zhang
- Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, China.
| | - Weiqing Pan
- Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, China; Department of Tropical Infectious Diseases, Second Military Medical University, 800 Xiang Yin Road, Shanghai 200433, China.
| |
Collapse
|
110
|
Zhang Y, Cao X. Long noncoding RNAs in innate immunity. Cell Mol Immunol 2015; 13:138-47. [PMID: 26277893 PMCID: PMC4786632 DOI: 10.1038/cmi.2015.68] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 06/13/2015] [Indexed: 12/15/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been shown to play important roles in immune cell development and immune responses through different mechanisms, such as dosage compensation, imprinting, enhancer function, and transcriptional regulation. Although the functions of most lncRNAs are unclear, some lncRNAs have been found to control transcriptional or post-transcriptional regulation of the innate and adaptive immune responses via new methods of protein–protein interactions or pairing with DNA and RNA. Interestingly, increasing evidence has elucidated the importance of lncRNAs in the interaction between hosts and pathogens. In this review, an overview of the lncRNAs modes of action, as well as the important and diversified roles of lncRNAs in immunity, are provided, and an emerging paradigm of lncRNAs in regulating innate immune responses is highlighted.
Collapse
|
111
|
Rovira-Graells N, Crowley VM, Bancells C, Mira-Martínez S, Ribas de Pouplana L, Cortés A. Deciphering the principles that govern mutually exclusive expression of Plasmodium falciparum clag3 genes. Nucleic Acids Res 2015. [PMID: 26202963 PMCID: PMC4787829 DOI: 10.1093/nar/gkv730] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The product of the Plasmodium falciparum genes clag3.1 and clag3.2 plays a fundamental role in malaria parasite biology by determining solute transport into infected erythrocytes. Expression of the two clag3 genes is mutually exclusive, such that a single parasite expresses only one of the two genes at a time. Here we investigated the properties and mechanisms of clag3 mutual exclusion using transgenic parasite lines with extra copies of clag3 promoters located either in stable episomes or integrated in the parasite genome. We found that the additional clag3 promoters in these transgenic lines are silenced by default, but under strong selective pressure parasites with more than one clag3 promoter simultaneously active are observed, demonstrating that clag3 mutual exclusion is strongly favored but it is not strict. We show that silencing of clag3 genes is associated with the repressive histone mark H3K9me3 even in parasites with unusual clag3 expression patterns, and we provide direct evidence for heterochromatin spreading in P. falciparum. We also found that expression of a neighbor ncRNA correlates with clag3.1 expression. Altogether, our results reveal a scenario where fitness costs and non-deterministic molecular processes that favor mutual exclusion shape the expression patterns of this important gene family.
Collapse
Affiliation(s)
- Núria Rovira-Graells
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, 08036 Barcelona, Catalonia, Spain Institute for Research in Biomedicine (IRB), 08028 Barcelona, Catalonia, Spain
| | - Valerie M Crowley
- Institute for Research in Biomedicine (IRB), 08028 Barcelona, Catalonia, Spain
| | - Cristina Bancells
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, 08036 Barcelona, Catalonia, Spain
| | - Sofía Mira-Martínez
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, 08036 Barcelona, Catalonia, Spain
| | - Lluís Ribas de Pouplana
- Institute for Research in Biomedicine (IRB), 08028 Barcelona, Catalonia, Spain Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Catalonia, Spain
| | - Alfred Cortés
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, 08036 Barcelona, Catalonia, Spain Institute for Research in Biomedicine (IRB), 08028 Barcelona, Catalonia, Spain Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Catalonia, Spain
| |
Collapse
|
112
|
The antisense antigen switch. Nat Rev Microbiol 2015; 13:188-9. [DOI: 10.1038/nrmicro3455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|