101
|
Sindhi R, Rohan V, Bukowinski A, Tadros S, de Ville de Goyet J, Rapkin L, Ranganathan S. Liver Transplantation for Pediatric Liver Cancer. Cancers (Basel) 2020; 12:cancers12030720. [PMID: 32204368 PMCID: PMC7140094 DOI: 10.3390/cancers12030720] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
Unresectable hepatocellular carcinoma (HCC) was first removed successfully with total hepatectomy and liver transplantation (LT) in a child over five decades ago. Since then, children with unresectable liver cancer have benefitted greatly from LT and a confluence of several equally important endeavors. Regional and trans-continental collaborations have accelerated the development and standardization of chemotherapy regimens, which provide disease control to enable LT, and also serve as a test of unresectability. In the process, tumor histology, imaging protocols, and tumor staging have also matured to better assess response and LT candidacy. Significant trends include a steady increase in the incidence of and use of LT for hepatoblastoma, and a significant improvement in survival after LT for HCC with each decade. Although LT is curative for most unresectable primary liver sarcomas, such as embryonal sarcoma, the malignant rhabdoid tumor appears relapse-prone despite chemotherapy and LT. Pediatric liver tumors remain rare, and diagnostic uncertainty in some settings can potentially delay treatment or lead to the selection of less effective chemotherapy. We review the current knowledge relevant to diagnosis, LT candidacy, and post-transplant outcomes for these tumors, emphasizing recent observations made from large registries or larger series.
Collapse
Affiliation(s)
- Rakesh Sindhi
- Hillman Center for Pediatric Transplantation, UPMC-Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; (A.B.); (S.T.)
- Correspondence: ; Tel.: +1-412-692-7123
| | - Vinayak Rohan
- Medical University of South Carolina, Charleston, SC 29403, USA;
| | - Andrew Bukowinski
- Hillman Center for Pediatric Transplantation, UPMC-Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; (A.B.); (S.T.)
| | - Sameh Tadros
- Hillman Center for Pediatric Transplantation, UPMC-Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; (A.B.); (S.T.)
| | - Jean de Ville de Goyet
- Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), 90127 Palermo, Italy;
| | - Louis Rapkin
- Department of Hematology/Oncology, UPMC-Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
| | - Sarangarajan Ranganathan
- Department of Pathology, Children’s Hospital Medical Center of Cincinnati, Cincinnati, OH 45229, USA;
| |
Collapse
|
102
|
Ranganathan S, Lopez-Terrada D, Alaggio R. Hepatoblastoma and Pediatric Hepatocellular Carcinoma: An Update. Pediatr Dev Pathol 2020; 23:79-95. [PMID: 31554479 DOI: 10.1177/1093526619875228] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatoblastomas (HBs) and pediatric hepatocellular carcinomas (HCCs) together account for almost 80% of primary malignant liver tumors in children and adolescents/young adults. Children's Hepatic International Collaboration (CHIC), Children's Oncology Group (COG), SociétéInternationale d'Oncologie Pédiatrique (SIOP), and International Childhood Liver Tumors Strategy Group trials have contributed to define prognostic factors and risk stratification in these tumors. The recently proposed histologic International Consensus classification of HB and HCC in children based on retrospective analysis from CHIC cases represents the base to define entities with homogeneous clinicopathologic and molecular features. This review will provide a morphologic guide for the upcoming International Liver Tumor treatment trial (Pediatric Hepatic International Tumour Trial) to be conducted through several continents. There will be an emphasis on molecular features and immunohistochemical markers for the definition of the individual histologic subtypes of HB and to better characterize the group of liver tumors in the provisional category of hepatocellular neoplasm-not otherwise specified. A brief overview of HCC in children will also be provided.
Collapse
Affiliation(s)
- Sarangarajan Ranganathan
- Department of Pathology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Pathology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas
| | - Dolores Lopez-Terrada
- Department of Pathology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Pathology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas
| | - Rita Alaggio
- Department of Pathology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Pathology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas
| |
Collapse
|
103
|
Singhi AD, Wood LD, Parks E, Torbenson MS, Felsenstein M, Hruban RH, Nikiforova MN, Wald AI, Kaya C, Nikiforov YE, Favazza L, He J, McGrath K, Fasanella KE, Brand RE, Lennon AM, Furlan A, Dasyam AK, Zureikat AH, Zeh HJ, Lee K, Bartlett DL, Slivka A. Recurrent Rearrangements in PRKACA and PRKACB in Intraductal Oncocytic Papillary Neoplasms of the Pancreas and Bile Duct. Gastroenterology 2020; 158:573-582.e2. [PMID: 31678302 PMCID: PMC7010554 DOI: 10.1053/j.gastro.2019.10.028] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND & AIMS Intraductal oncocytic papillary neoplasms (IOPNs) of the pancreas and bile duct contain epithelial cells with numerous, large mitochondria and are cystic precursors to pancreatic ductal adenocarcinoma (PDAC) and cholangiocarcinoma (CCA), respectively. However, IOPNs do not have the genomic alterations found in other pancreatobiliary neoplasms. In fact, no recurrent genomic alterations have been described in IOPNs. PDACs without activating mutations in KRAS contain gene rearrangements, so we investigated whether IOPNs have recurrent fusions in genes. METHODS We analyzed 20 resected pancreatic IOPNs and 3 resected biliary IOPNs using a broad RNA-based targeted sequencing panel to detect cancer-related fusion genes. Four invasive PDACs and 2 intrahepatic CCAs from the same patients as the IOPNs, were also available for analysis. Samples of pancreatic cyst fluid (n = 5, collected before surgery) and bile duct brushings (n = 2) were analyzed for translocations. For comparison, we analyzed pancreatobiliary lesions from 126 patients without IOPN (controls). RESULTS All IOPNs evaluated were found to have recurring fusions of ATP1B1-PRKACB (n = 13), DNAJB1-PRKACA (n = 6), or ATP1B1-PRKACA (n = 4). These fusions also were found in corresponding invasive PDACs and intrahepatic CCAs, as well as in matched pancreatic cyst fluid and bile duct brushings. These gene rearrangements were absent from all 126 control pancreatobiliary lesions. CONCLUSIONS We identified fusions in PRKACA and PRKACB genes in pancreatic and biliary IOPNs, as well as in PDACs and pancreatic cyst fluid and bile duct cells from the same patients. We did not identify these gene fusions in 126 control pancreatobiliary lesions. These fusions might be used to identify patients at risk for IOPNs and their associated invasive carcinomas.
Collapse
Affiliation(s)
- Aatur D Singhi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.
| | - Laura D Wood
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Emma Parks
- Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Michael S Torbenson
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, Rochester, Minnesota
| | - Matthäus Felsenstein
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ralph H Hruban
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Marina N Nikiforova
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Abigail I Wald
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Cihan Kaya
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Yuri E Nikiforov
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Laura Favazza
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Jin He
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kevin McGrath
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Kenneth E Fasanella
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Randall E Brand
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Anne Marie Lennon
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alessandro Furlan
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Anil K Dasyam
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Amer H Zureikat
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Herbert J Zeh
- Department of Surgery, University of Texas Southwestern, Dallas, Texas
| | - Kenneth Lee
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - David L Bartlett
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Adam Slivka
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
104
|
Fan T, Hu Y, Xin J, Zhao M, Wang J. Analyzing the genes and pathways related to major depressive disorder via a systems biology approach. Brain Behav 2020; 10:e01502. [PMID: 31875662 PMCID: PMC7010578 DOI: 10.1002/brb3.1502] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Major depressive disorder (MDD) is a mental disorder caused by the combination of genetic, environmental, and psychological factors. Over the years, a number of genes potentially associated with MDD have been identified. However, in many cases, the role of these genes and their relationship in the etiology and development of MDD remains unclear. Under such situation, a systems biology approach focusing on the function correlation and interaction of the candidate genes in the context of MDD will provide useful information on exploring the molecular mechanisms underlying the disease. METHODS We collected genes potentially related to MDD by screening the human genetic studies deposited in PubMed (https://www.ncbi.nlm.nih.gov/pubmed). The main biological themes within the genes were explored by function and pathway enrichment analysis. Then, the interaction of genes was analyzed in the context of protein-protein interaction network and a MDD-specific network was built by Steiner minimal tree algorithm. RESULTS We collected 255 candidate genes reported to be associated with MDD from available publications. Functional analysis revealed that biological processes and biochemical pathways related to neuronal development, endocrine, cell growth and/or survivals, and immunology were enriched in these genes. The pathways could be largely grouped into three modules involved in biological procedures related to nervous system, the immune system, and the endocrine system, respectively. From the MDD-specific network, 35 novel genes potentially associated with the disease were identified. CONCLUSION By means of network- and pathway-based methods, we explored the molecular mechanism underlying the pathogenesis of MDD at a systems biology level. Results from our work could provide valuable clues for understanding the molecular features of MDD.
Collapse
Affiliation(s)
- Ting Fan
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Ying Hu
- Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China
| | - Juncai Xin
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Mengwen Zhao
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Ju Wang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| |
Collapse
|
105
|
Jewell ML, Gibson JR, Guy CD, Hyun J, Du K, Oh SH, Premont RT, Hsu DS, Ribar T, Gregory SG, Diehl AME. Single-Cell RNA Sequencing Identifies Yes-Associated Protein 1-Dependent Hepatic Mesothelial Progenitors in Fibrolamellar Carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:93-107. [PMID: 31669305 PMCID: PMC10069284 DOI: 10.1016/j.ajpath.2019.09.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/23/2019] [Accepted: 09/26/2019] [Indexed: 12/29/2022]
Abstract
Fibrolamellar carcinoma (FLC) is characterized by in-frame fusion of DnaJ heat shock protein family (Hsp40) member B1 (DNAJB1) with protein kinase cAMP-activated catalytic subunit α (PRKACA) and by dense desmoplasia. Surgery is the only effective treatment because mechanisms supporting tumor survival are unknown. We used single-cell RNA sequencing to characterize a patient-derived FLC xenograft model and identify therapeutic targets. Human FLC cells segregated into four discrete clusters that all expressed the oncogene Yes-associated protein 1 (YAP1). The two communities most enriched with cells coexpressing FLC markers [CD68, A-kinase anchoring protein 12 (AKAP12), cytokeratin 7, epithelial cell adhesion molecule (EPCAM), and carbamoyl palmitate synthase-1] also had the most cells expressing YAP1 and its proproliferative target genes (AREG and CCND1), suggesting these were proliferative FLC cell clusters. The other two clusters were enriched with cells expressing profibrotic YAP1 target genes, ACTA2, ELN, and COL1A1, indicating these were fibrogenic FLC cells. All clusters expressed the YAP1 target gene and mesothelial progenitor marker mesothelin, and many mesothelin-positive cells coexpressed albumin. Trajectory analysis predicted that the four FLC communities were derived from a single cell type transitioning among phenotypic states. After establishing a novel FLC cell line that harbored the DNAJB1-PRKACA fusion, YAP1 was inhibited, which significantly reduced expression of known YAP1 target genes as well as cell growth and migration. Thus, both FLC epithelial and stromal cells appear to arise from DNAJB1-PRKACA fusion in a YAP1-dependent liver mesothelial progenitor, identifying YAP1 as a target for FLC therapy.
Collapse
Affiliation(s)
- Mark L Jewell
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Jason R Gibson
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| | - Cynthia D Guy
- Department of Pathology, Duke University, Durham, North Carolina
| | - Jeongeun Hyun
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Kuo Du
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Seh-Hoon Oh
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Richard T Premont
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - David S Hsu
- Duke Cancer Institute, Duke University, Durham, North Carolina
| | - Thomas Ribar
- Duke Cancer Institute, Duke University, Durham, North Carolina
| | - Simon G Gregory
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| | - Anna Mae E Diehl
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina.
| |
Collapse
|
106
|
Abstract
Cancer arises from a single cell through a series of acquired mutations and epigenetic alterations. Tumors gradually develop into a complex tissue comprised of phenotypically heterogeneous cancer cell populations, as well as noncancer cells that make up the tumor microenvironment. The phenotype, or state, of each cancer and stromal cell is influenced by a plethora of cell-intrinsic and cell-extrinsic factors. The diversity of these cellular states promotes tumor progression, enables metastasis, and poses a challenge for effective cancer treatments. Thus, the identification of strategies for the therapeutic manipulation of tumor heterogeneity would have significant clinical implications. A major barrier in the field is the difficulty in functionally investigating heterogeneity in tumors in cancer patients. Here we review how mouse models of human cancer can be leveraged to interrogate tumor heterogeneity and to help design better therapeutic strategies.
Collapse
Affiliation(s)
- Tuomas Tammela
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Julien Sage
- Department of Pediatrics and Department of Genetics, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
107
|
Alves-Bezerra M, Furey N, Johnson CG, Bissig KD. Using CRISPR/Cas9 to model human liver disease. JHEP Rep 2019; 1:392-402. [PMID: 32039390 PMCID: PMC7005665 DOI: 10.1016/j.jhepr.2019.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/15/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023] Open
Abstract
CRISPR/Cas9 gene editing has revolutionised biomedical research. The ease of design has allowed many groups to apply this technology for disease modelling in animals. While the mouse remains the most commonly used organism for embryonic editing, CRISPR is now increasingly performed with high efficiency in other species. The liver is also amenable to somatic genome editing, and some delivery methods already allow for efficient editing in the whole liver. In this review, we describe CRISPR-edited animals developed for modelling a broad range of human liver disorders, such as acquired and inherited hepatic metabolic diseases and liver cancers. CRISPR has greatly expanded the repertoire of animal models available for the study of human liver disease, advancing our understanding of their pathophysiology and providing new opportunities to develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Michele Alves-Bezerra
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA.,Stem Cells and Regenerative Medicine Center (STAR), Baylor College of Medicine, Houston, TX, USA
| | - Nika Furey
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA.,Stem Cells and Regenerative Medicine Center (STAR), Baylor College of Medicine, Houston, TX, USA.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Collin G Johnson
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA.,Stem Cells and Regenerative Medicine Center (STAR), Baylor College of Medicine, Houston, TX, USA
| | - Karl-Dimiter Bissig
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA.,Stem Cells and Regenerative Medicine Center (STAR), Baylor College of Medicine, Houston, TX, USA.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.,Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC, USA
| |
Collapse
|
108
|
Zhang S, Wu X, Diao P, Wang C, Wang D, Li S, Wang Y, Cheng J. Identification of a prognostic alternative splicing signature in oral squamous cell carcinoma. J Cell Physiol 2019; 235:4804-4813. [PMID: 31637730 DOI: 10.1002/jcp.29357] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/07/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Shuting Zhang
- Jiangsu Key Laboratory of Oral Disease Nanjing Medical University Jiangsu China
| | - Xiang Wu
- Jiangsu Key Laboratory of Oral Disease Nanjing Medical University Jiangsu China
| | - Pengfei Diao
- Jiangsu Key Laboratory of Oral Disease Nanjing Medical University Jiangsu China
| | - Chenxing Wang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology Nanjing Medical University Nanjing China
| | - Dongmiao Wang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology Nanjing Medical University Nanjing China
| | - Sheng Li
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology Nanjing Medical University Nanjing China
| | - Yanling Wang
- Jiangsu Key Laboratory of Oral Disease Nanjing Medical University Jiangsu China
| | - Jie Cheng
- Jiangsu Key Laboratory of Oral Disease Nanjing Medical University Jiangsu China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology Nanjing Medical University Nanjing China
| |
Collapse
|
109
|
|
110
|
Molecular and histological correlations in liver cancer. J Hepatol 2019; 71:616-630. [PMID: 31195064 DOI: 10.1016/j.jhep.2019.06.001] [Citation(s) in RCA: 355] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/22/2019] [Accepted: 06/01/2019] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is a highly heterogeneous cancer, both at the molecular and histological level. High-throughput sequencing and gene expression profiling have identified distinct transcriptomic subclasses and numerous recurrent genetic alterations; several HCC subtypes characterised by histological features have also been identified. HCC phenotype appears to be closely related to particular gene mutations, tumour subgroups and/or oncogenic pathways. Non-proliferative tumours display a well-differentiated phenotype. Among this molecular subgroup, CTNNB1-mutated HCCs constitute a homogeneous subtype, exhibiting cholestasis and microtrabecular and pseudoglandular architectural patterns. Another non-proliferative subtype has a gene expression pattern similar to that of mature hepatocytes (G4) and displays a steatohepatitic phenotype. In contrast, proliferative HCCs are most often poorly differentiated, and notably include tumours with progenitor features. A novel morphological variant of proliferative HCC - designated "macrotrabecular-massive" - was recently shown to be associated with angiogenesis activation and poor prognosis. Altogether, these findings may help to translate our knowledge of HCC biology into clinical practice, resulting in improved precision medicine for patients with this highly aggressive malignancy. This manuscript reviews the most recent data in this exciting field, discussing future directions and challenges.
Collapse
|
111
|
Wu H, Li X, Li H. Gene fusions and chimeric RNAs, and their implications in cancer. Genes Dis 2019; 6:385-390. [PMID: 31832518 PMCID: PMC6889028 DOI: 10.1016/j.gendis.2019.08.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/03/2019] [Accepted: 08/21/2019] [Indexed: 01/26/2023] Open
Abstract
Gene fusions are appreciated as ideal cancer biomarkers and therapeutic targets. Chimeric RNAs are traditionally thought to be products of gene fusions, and thus, also cancer-specific. Recent research has demonstrated that chimeric RNAs can be generated by intergenic splicing in the absence of gene fusion, and such chimeric RNAs are also found in normal physiology. These new findings challenge the traditional theory of chimeric RNAs exclusivity to cancer, and complicates use of chimeric RNAs in cancer detection. Here, we provide an overview of gene fusions and chimeric RNAs, and emphasize their differences. We note that gene fusions are able to generate chimeric RNAs in accordance with the central dogma of biology, and that chimeric RNAs may also be able to influence the generation of the gene fusions per the “horse before the cart” hypothesis. We further expand upon the “horse before the cart” hypothesis, summarizing current evidence in support of the theory and exploring its potential impact on the field.
Collapse
Affiliation(s)
- Hao Wu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Xiaorong Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Hui Li
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
- Corresponding author. Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA. Fax: +1 434 2437244. http://lilab.medicine.virginia.edu
| |
Collapse
|
112
|
Riehle KJ, Kenerson HL, Riggle KM, Turnham R, Sullivan K, Bauer R, Scott JD, Yeung RS. Neurotensin as a source of cyclic AMP and co-mitogen in fibrolamellar hepatocellular carcinoma. Oncotarget 2019; 10:5092-5102. [PMID: 31489118 PMCID: PMC6707953 DOI: 10.18632/oncotarget.27149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/28/2019] [Indexed: 12/20/2022] Open
Abstract
Fibrolamellar hepatocellular carcinomas (FL-HCCs) possess a unique mutation that encodes a chimeric form of protein kinase A (DNAJ-PKAc), which includes a chaperonin binding domain. DNAJ-PKAc retains most of the biochemical properties of the native enzyme, however, and activity remains dependent on cAMP. We thus speculated that a persistent source of cAMP is necessary to promote FL-HCC carcinogenesis, and that neurotensin (NTS) may drive cAMP production in this setting, given that NS serum and tumor levels are elevated in many patients with FL-HCC. We examined expression of NTS pathway components in human FL-HCCs and paired normal livers, and determined the role of NTS in driving proliferation in tumor slice cultures. Cultured hepatocytes were used to determine interactions between NTS and other proliferative pathways, and to determine the effects of NTS on cAMP production and PKA activity. We found that the NTS pathway is up-regulated in human FL-HCCs, and that NTS activates cAMP and PKA in hepatocytes. NTS increases proliferation in the presence of epidermal growth factor (EGF), and NTS-induced proliferation is dependent on NTSR1 and the EGFR/MEK pathway. We conclude that NTS serves as a co-mitogen in FL-HCC, and provides a source of cAMP to facilitate ongoing activation of DNAJ-PKAc.
Collapse
Affiliation(s)
| | | | - Kevin M. Riggle
- Department of Surgery, University of Washington, Seattle, WA, USA
| | - Rigney Turnham
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Kevin Sullivan
- Department of Surgery, University of Washington, Seattle, WA, USA
| | - Renay Bauer
- Department of Surgery, University of Washington, Seattle, WA, USA
| | - John D. Scott
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Raymond S. Yeung
- Department of Surgery, University of Washington, Seattle, WA, USA
| |
Collapse
|
113
|
Cheng JS, Tsai WL, Liu PF, Goan YG, Lin CW, Tseng HH, Lee CH, Shu CW. The MAP3K7-mTOR Axis Promotes the Proliferation and Malignancy of Hepatocellular Carcinoma Cells. Front Oncol 2019; 9:474. [PMID: 31214512 PMCID: PMC6558008 DOI: 10.3389/fonc.2019.00474] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/17/2019] [Indexed: 12/28/2022] Open
Abstract
Targeted therapy is currently limited for patients with hepatocellular carcinoma (HCC) due to the lack of suitable targets. Kinases play pivotal roles in many cellular biological processes, whereas dysregulation of kinases may lead to various diseases, particularly cancer. However, the role of kinases in HCC malignancy remains unclear. In this study, we employed a kinome small interfering RNA (siRNA) library, comprising 710 kinase-related genes, to screen whether any kinases were essential for cell proliferation in various HCC cell lines. Through a kinome siRNA library screening, we found that MAP3K7 was a crucial gene for HCC cell proliferation. Pharmacological or genetic ablation of MAP3K7 diminished the growth, migration, and invasion of HCC cells, including primary HCC cells. Stable knockdown of MAP3K7 attenuated tumor formation in a spheroid cell culture model and tumor xenograft mouse model. In addition, silencing MAP3K7 reduced the phosphorylation and expression of mammalian target of rapamycin (mTOR) in HCC cells. MAP3K7 expression was positively correlated with mTOR expression in tumors of patients with HCC. Higher co-expression of MAP3K7 and mTOR was significantly associated with poor prognosis of HCC. Taken together, our results revealed that the MAP3K7-mTOR axis might promote tumorigenesis and malignancy, which provides a potential marker or therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Jin-Shiung Cheng
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Wei-Lun Tsai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Feng Liu
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yih-Gang Goan
- Division of Thoracic Surgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chih-Wen Lin
- Division of Gastroenterology and Hepatology, E-Da Dachang Hospital, I-Shou University, Kaohsiung, Taiwan.,School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
| | - Ho-Hsing Tseng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Cheng-Hsin Lee
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chih-Wen Shu
- School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
114
|
Cao B, Lu TW, Martinez Fiesco JA, Tomasini M, Fan L, Simon SM, Taylor SS, Zhang P. Structures of the PKA RIα Holoenzyme with the FLHCC Driver J-PKAcα or Wild-Type PKAcα. Structure 2019; 27:816-828.e4. [PMID: 30905674 PMCID: PMC6506387 DOI: 10.1016/j.str.2019.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/11/2019] [Accepted: 02/28/2019] [Indexed: 01/07/2023]
Abstract
Fibrolamellar hepatocellular carcinoma (FLHCC) is driven by J-PKAcα, a kinase fusion chimera of the J domain of DnaJB1 with PKAcα, the catalytic subunit of protein kinase A (PKA). Here we report the crystal structures of the chimeric fusion RIα2:J-PKAcα2 holoenzyme formed by J-PKAcα and the PKA regulatory (R) subunit RIα, and the wild-type (WT) RIα2:PKAcα2 holoenzyme. The chimeric and WT RIα holoenzymes have quaternary structures different from the previously solved WT RIβ and RIIβ holoenzymes. The WT RIα holoenzyme showed the same configuration as the chimeric RIα2:J-PKAcα2 holoenzyme and a distinct second conformation. The J domains are positioned away from the symmetrical interface between the two RIα:J-PKAcα heterodimers in the chimeric fusion holoenzyme and are highly dynamic. The structural and dynamic features of these holoenzymes enhance our understanding of the fusion chimera protein J-PKAcα that drives FLHCC as well as the isoform specificity of PKA.
Collapse
Affiliation(s)
- Baohua Cao
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Tsan-Wen Lu
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Juliana A Martinez Fiesco
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Michael Tomasini
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | - Lixin Fan
- Small-Angle X-ray Scattering Core Facility, Center for Cancer Research of the National Cancer Institute, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Sanford M Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | - Susan S Taylor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Ping Zhang
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
115
|
Turnham RE, Smith FD, Kenerson HL, Omar MH, Golkowski M, Garcia I, Bauer R, Lau HT, Sullivan KM, Langeberg LK, Ong SE, Riehle KJ, Yeung RS, Scott JD. An acquired scaffolding function of the DNAJ-PKAc fusion contributes to oncogenic signaling in fibrolamellar carcinoma. eLife 2019; 8:44187. [PMID: 31063128 PMCID: PMC6533061 DOI: 10.7554/elife.44187] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/05/2019] [Indexed: 12/22/2022] Open
Abstract
Fibrolamellar carcinoma (FLC) is a rare liver cancer. FLCs uniquely produce DNAJ-PKAc, a chimeric enzyme consisting of a chaperonin-binding domain fused to the Cα subunit of protein kinase A. Biochemical analyses of clinical samples reveal that a unique property of this fusion enzyme is the ability to recruit heat shock protein 70 (Hsp70). This cellular chaperonin is frequently up-regulated in cancers. Gene-editing of mouse hepatocytes generated disease-relevant AML12DNAJ-PKAc cell lines. Further analyses indicate that the proto-oncogene A-kinase anchoring protein-Lbc is up-regulated in FLC and functions to cluster DNAJ-PKAc/Hsp70 sub-complexes with a RAF-MEK-ERK kinase module. Drug screening reveals Hsp70 and MEK inhibitor combinations that selectively block proliferation of AML12DNAJ-PKAc cells. Phosphoproteomic profiling demonstrates that DNAJ-PKAc biases the signaling landscape toward ERK activation and engages downstream kinase cascades. Thus, the oncogenic action of DNAJ-PKAc involves an acquired scaffolding function that permits recruitment of Hsp70 and mobilization of local ERK signaling. Fibrolamellar carcinoma (or FLC for short) is a rare type of liver cancer that affects teenagers and young adults. FLC tumors are often resistant to standard radiotherapy or chemotherapy treatments. The only way to treat FLC is to remove tumors by surgery. However, often the tumors come back after initial treatment and spread to other locations. Therefore, there is a genuine need to improve the treatment options available to FLC patients. The tumor cells of FLC patients contain a genetic defect that fuses together two genes, which produce proteins called DNAJ and PKAc. Normally, DNAJ helps other proteins in the cell to fold into their correct shapes, while PKAc is an enzyme that can control how cells communicate. However, it is not clear what the abnormal DNAJ-PKAc fusion protein does, or how it causes FLC. Turnham, Smith et al. have now used gene editing to make mouse liver cells that mimic the human FLC mutation. Biochemical experiments on these cells showed that the DNAJ-PKAc protein brings together unique combinations of enzymes that drive uncontrolled cell growth. Analyzing cells taken from tumors in FLC patients confirmed that these enzymes are also activated in the human disease. Turnham, Smith et al. also found that combinations of drugs that simultaneously target the DNAJ-PKAc protein and the recruited enzymes slowed down the growth of FLC cells. More experiments are now needed to test these drug combinations on human FLC cells or in mice.
Collapse
Affiliation(s)
- Rigney E Turnham
- Department of Pharmacology, University of Washington Medical Center, Seattle, United States
| | - F Donelson Smith
- Department of Pharmacology, University of Washington Medical Center, Seattle, United States
| | - Heidi L Kenerson
- Department of Surgery, University of Washington Medical Center, Seattle, United States
| | - Mitchell H Omar
- Department of Pharmacology, University of Washington Medical Center, Seattle, United States
| | - Martin Golkowski
- Department of Pharmacology, University of Washington Medical Center, Seattle, United States
| | - Irvin Garcia
- Department of Pharmacology, University of Washington Medical Center, Seattle, United States
| | - Renay Bauer
- Department of Surgery, University of Washington Medical Center, Seattle, United States
| | - Ho-Tak Lau
- Department of Pharmacology, University of Washington Medical Center, Seattle, United States
| | - Kevin M Sullivan
- Department of Surgery, University of Washington Medical Center, Seattle, United States
| | - Lorene K Langeberg
- Department of Pharmacology, University of Washington Medical Center, Seattle, United States
| | - Shao-En Ong
- Department of Pharmacology, University of Washington Medical Center, Seattle, United States
| | - Kimberly J Riehle
- Department of Surgery, University of Washington Medical Center, Seattle, United States
| | - Raymond S Yeung
- Department of Surgery, University of Washington Medical Center, Seattle, United States
| | - John D Scott
- Department of Pharmacology, University of Washington Medical Center, Seattle, United States
| |
Collapse
|
116
|
Codina A, Renauer PA, Wang G, Chow RD, Park JJ, Ye H, Zhang K, Dong MB, Gassaway B, Ye L, Errami Y, Shen L, Chang A, Jain D, Herbst RS, Bosenberg M, Rinehart J, Fan R, Chen S. Convergent Identification and Interrogation of Tumor-Intrinsic Factors that Modulate Cancer Immunity In Vivo. Cell Syst 2019; 8:136-151.e7. [PMID: 30797773 DOI: 10.1016/j.cels.2019.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 11/03/2018] [Accepted: 01/22/2019] [Indexed: 12/20/2022]
Abstract
The genetic makeup of cancer cells directs oncogenesis and influences the tumor microenvironment. In this study, we massively profiled genes that functionally drive tumorigenesis using genome-scale in vivo CRISPR screens in hosts with different levels of immunocompetence. As a convergent hit from these screens, Prkar1a mutant cells are able to robustly outgrow as tumors in fully immunocompetent hosts. Functional interrogation showed that Prkar1a loss greatly altered the transcriptome and proteome involved in inflammatory and immune responses as well as extracellular protein production. Single-cell transcriptomic profiling and flow cytometry analysis mapped the tumor microenvironment of Prkar1a mutant tumors and revealed the transcriptomic alterations in host myeloid cells. Taken together, our data suggest that tumor-intrinsic mutations in Prkar1a lead to drastic alterations in the genetic program of cancer cells, thereby remodeling the tumor microenvironment.
Collapse
Affiliation(s)
- Adan Codina
- System Biology Institute, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA; Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA; Center for Cancer Systems Biology, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA; MCGD Program, Yale University, 333 Cedar Street, New Haven, CT 06510, USA
| | - Paul A Renauer
- System Biology Institute, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA; Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA; Center for Cancer Systems Biology, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA; MCGD Program, Yale University, 333 Cedar Street, New Haven, CT 06510, USA
| | - Guangchuan Wang
- System Biology Institute, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA; Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA; Center for Cancer Systems Biology, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA
| | - Ryan D Chow
- System Biology Institute, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA; Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA; Center for Cancer Systems Biology, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA; Yale M.D.-Ph.D. Program, 367 Cedar Street, New Haven, CT 06510, USA
| | - Jonathan J Park
- System Biology Institute, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA; Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA; Center for Cancer Systems Biology, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA; Yale M.D.-Ph.D. Program, 367 Cedar Street, New Haven, CT 06510, USA
| | - Hanghui Ye
- System Biology Institute, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA; Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA; Center for Cancer Systems Biology, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA
| | - Kerou Zhang
- Center for Cancer Systems Biology, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA; Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, CT 06511, USA
| | - Matthew B Dong
- System Biology Institute, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA; Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA; Center for Cancer Systems Biology, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA; Yale M.D.-Ph.D. Program, 367 Cedar Street, New Haven, CT 06510, USA
| | - Brandon Gassaway
- System Biology Institute, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA; Center for Cancer Systems Biology, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA; Department of Cellular and Molecular Physiology, Yale University, 333 Cedar St., New Haven, CT 06520, USA
| | - Lupeng Ye
- System Biology Institute, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA; Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA; Center for Cancer Systems Biology, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA
| | - Youssef Errami
- System Biology Institute, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA; Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA; Center for Cancer Systems Biology, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA
| | - Li Shen
- System Biology Institute, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA; Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA; Center for Cancer Systems Biology, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA
| | - Alan Chang
- System Biology Institute, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA; Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA; Center for Cancer Systems Biology, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA
| | - Dhanpat Jain
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Roy S Herbst
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA; Smilow Cancer Hospital, 35 Park St, New Haven, CT 06510, USA; Yale Comprehensive Cancer Center, 20 York Street, Ste North Pavilion 4, New Haven, CT 06510, USA
| | - Marcus Bosenberg
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Comprehensive Cancer Center, 20 York Street, Ste North Pavilion 4, New Haven, CT 06510, USA; Department of Dermatology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jesse Rinehart
- System Biology Institute, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA; Center for Cancer Systems Biology, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA; Department of Cellular and Molecular Physiology, Yale University, 333 Cedar St., New Haven, CT 06520, USA
| | - Rong Fan
- Center for Cancer Systems Biology, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA; Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, CT 06511, USA
| | - Sidi Chen
- System Biology Institute, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA; Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA; Center for Cancer Systems Biology, Integrated Science & Technology Center, 850 West Campus Drive, West Haven, CT 06516, USA; MCGD Program, Yale University, 333 Cedar Street, New Haven, CT 06510, USA; Yale M.D.-Ph.D. Program, 367 Cedar Street, New Haven, CT 06510, USA; Yale Comprehensive Cancer Center, 20 York Street, Ste North Pavilion 4, New Haven, CT 06510, USA; Immunobiology Program, The Anlyan Center, 300 Cedar Street, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
117
|
Dinh TA, Jewell ML, Kanke M, Francisco A, Sritharan R, Turnham RE, Lee S, Kastenhuber ER, Wauthier E, Guy CD, Yeung RS, Lowe SW, Reid LM, Scott JD, Diehl AM, Sethupathy P. MicroRNA-375 Suppresses the Growth and Invasion of Fibrolamellar Carcinoma. Cell Mol Gastroenterol Hepatol 2019; 7:803-817. [PMID: 30763770 PMCID: PMC6468197 DOI: 10.1016/j.jcmgh.2019.01.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND & AIMS Fibrolamellar carcinoma (FLC) is a rare liver cancer that primarily affects adolescents and young adults. It is characterized by a heterozygous approximately 400-kb deletion on chromosome 19 that results in a unique fusion between DnaJ heat shock protein family member B1 (DNAJB1) and the alpha catalytic subunit of protein kinase A (PRKACA). The role of microRNAs (miRNAs) in FLC remains unclear. We identified dysregulated miRNAs in FLC and investigated whether dysregulation of 1 key miRNA contributes to FLC pathogenesis. METHODS We analyzed small RNA sequencing (smRNA-seq) data from The Cancer Genome Atlas to identify dysregulated miRNAs in primary FLC tumors and validated the findings in 3 independent FLC cohorts. smRNA-seq also was performed on a FLC patient-derived xenograft model as well as purified cell populations of the liver to determine whether key miRNA changes were tumor cell-intrinsic. We then used clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (Cas9) technology and transposon-mediated gene transfer in mice to determine if the presence of DNAJB1-PRKACA is sufficient to suppress miR-375 expression. Finally, we established a new FLC cell line and performed colony formation and scratch wound assays to determine the functional consequences of miR-375 overexpression. RESULTS We identified miR-375 as the most dysregulated miRNA in primary FLC tumors (27-fold down-regulation; P = .009). miR-375 expression also was decreased significantly in a FLC patient-derived xenograft model compared to 4 different cell populations of the liver. Introduction of DNAJB1-PRKACA by clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 engineering and transposon-mediated somatic gene transfer in mice was sufficient to induce significant loss of miR-375 expression (P < .05). Overexpression of miR-375 in FLC cells inhibited Hippo signaling pathway proteins, including yes-associated protein 1 and connective tissue growth factor, and suppressed cell proliferation and migration (P < .05). CONCLUSIONS We identified miR-375 as the most down-regulated miRNA in FLC tumors and showed that overexpression of miR-375 mitigated tumor cell growth and invasive potential. These findings open a potentially new molecular therapeutic approach. Further studies are necessary to determine how DNAJB1-PRKACA suppresses miR-375 expression and whether miR-375 has additional important targets in this tumor. Transcript profiling: GEO accession numbers: GSE114974 and GSE125602.
Collapse
Affiliation(s)
- Timothy A Dinh
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Mark L Jewell
- Department of Medicine, School of Medicine, Duke University, Durham, North Carolina
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Adam Francisco
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Ramja Sritharan
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Rigney E Turnham
- Department of Pharmacology, School of Medicine, University of Washington, Seattle, Washington
| | - Seona Lee
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Edward R Kastenhuber
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Eliane Wauthier
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Cynthia D Guy
- Department of Pathology, School of Medicine, Duke University, Durham, North Carolina
| | - Raymond S Yeung
- Department of Surgery, University of Washington, Seattle, Washington
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Lola M Reid
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - John D Scott
- Department of Pharmacology, School of Medicine, University of Washington, Seattle, Washington
| | - Anna M Diehl
- Department of Medicine, School of Medicine, Duke University, Durham, North Carolina.
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York.
| |
Collapse
|
118
|
Kastenhuber ER, Craig J, Ramsey J, Sullivan KM, Sage J, de Oliveira S, Riehle KJ, Scott JD, Gordan JD, Bardeesy N, Abou-Alfa GK. Road map for fibrolamellar carcinoma: progress and goals of a diversified approach. J Hepatocell Carcinoma 2019; 6:41-48. [PMID: 30951568 PMCID: PMC6362920 DOI: 10.2147/jhc.s194764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fibrolamellar carcinoma is a rare liver cancer, which primarily afflicts adolescents and young adults worldwide and is frequently lethal. Given the rarity of this disease, patient recruitment for clinical trials remains a challenge. In November 2017, the Second Fibrolamellar Cancer Foundation Scientific Summit (Stamford, CT, USA) provided an opportunity for investigators to discuss recent advances in the characterization of the disease and its surrounding liver and immune context. The Fibrolamellar Cancer Foundation has thus set out a road map to identify and test therapeutic targets in the most efficient possible manner.
Collapse
Affiliation(s)
- Edward R Kastenhuber
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA, .,Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John Craig
- Fibrolamellar Cancer Foundation, Greenwich, CT, USA
| | - Jon Ramsey
- Department of Biochemistry, University of Vermont Cancer Center, Burlington, VT, USA
| | - Kevin M Sullivan
- Northwest Liver Research Program, University of Washington, Seattle, WA, USA
| | - Julien Sage
- Department of Pediatrics, Stanford University, Stanford, CA, USA.,Department of Genetics, Stanford University, Stanford, CA, USA
| | - Sofia de Oliveira
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Kimberly J Riehle
- Northwest Liver Research Program, University of Washington, Seattle, WA, USA
| | - John D Scott
- Northwest Liver Research Program, University of Washington, Seattle, WA, USA
| | - John D Gordan
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Nabeel Bardeesy
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Ghassan K Abou-Alfa
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA, .,Department of Medicine, Weill Cornell School of Medicine, New York, NY, USA,
| |
Collapse
|
119
|
Yu YP, Liu P, Nelson J, Hamilton RL, Bhargava R, Michalopoulos G, Chen Q, Zhang J, Ma D, Pennathur A, Luketich J, Nalesnik M, Tseng G, Luo JH. Identification of recurrent fusion genes across multiple cancer types. Sci Rep 2019; 9:1074. [PMID: 30705370 PMCID: PMC6355770 DOI: 10.1038/s41598-019-38550-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/27/2018] [Indexed: 01/21/2023] Open
Abstract
Chromosome changes are one of the hallmarks of human malignancies. Chromosomal rearrangement is frequent in human cancers. One of the consequences of chromosomal rearrangement is gene fusions in the cancer genome. We have previously identified a panel of fusion genes in aggressive prostate cancers. In this study, we showed that 6 of these fusion genes are present in 7 different types of human malignancies with variable frequencies. Among them, the CCNH-C5orf30 and TRMT11-GRIK2 gene fusions were found in breast cancer, colon cancer, non-small cell lung cancer, esophageal adenocarcinoma, glioblastoma multiforme, ovarian cancer and liver cancer, with frequencies ranging from 12.9% to 85%. In contrast, four other gene fusions (mTOR-TP53BP1, TMEM135-CCDC67, KDM4-AC011523.2 and LRRC59-FLJ60017) are less frequent. Both TRMT11-GRIK2 and CCNH-C5orf30 are also frequently present in lymph node metastatic cancer samples from the breast, colon and ovary. Thus, detecting these fusion transcripts may have significant biological and clinical implications in cancer patient management.
Collapse
Affiliation(s)
- Yan-Ping Yu
- Departments of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Peng Liu
- Departments of Biostatistics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Joel Nelson
- Departments of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Ronald L Hamilton
- Departments of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Rohit Bhargava
- Departments of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - George Michalopoulos
- Departments of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Qi Chen
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas, Kansas City, KS, 66160, USA
| | - Jun Zhang
- Department of Medicine, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Deqin Ma
- Department of Pathology, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Arjun Pennathur
- Departments of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - James Luketich
- Departments of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Michael Nalesnik
- Departments of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - George Tseng
- Departments of Biostatistics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Jian-Hua Luo
- Departments of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
120
|
Niola F, Dagnæs-Hansen F, Frödin M. In Vivo Editing of the Adult Mouse Liver Using CRISPR/Cas9 and Hydrodynamic Tail Vein Injection. Methods Mol Biol 2019; 1961:329-341. [PMID: 30912055 DOI: 10.1007/978-1-4939-9170-9_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
CRISPR/Cas9 technology allows facile modification of the genome in virtually any desired way through the use of easily designed plasmid constructs that express a gRNA targeting a genomic site-of-interest and Cas9. Hydrodynamic tail vein injection, on the other hand, is a simple method to deliver "naked" plasmid DNA to 5-40% of the hepatocytes of the liver of adult mice. Here, we describe how these two techniques can be combined to create a workflow for fast, easy, and cost-efficient in vivo genome editing of the adult mouse liver. Using this method, large cohorts of mice with genetically modified livers can be established within 3 weeks to generate models for gene function in normal physiology and diseases of the liver.
Collapse
Affiliation(s)
- Francesco Niola
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | | | - Morten Frödin
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
121
|
Li Yim AYF, de Bruyn JR, Duijvis NW, Sharp C, Ferrero E, de Jonge WJ, Wildenberg ME, Mannens MMAM, Buskens CJ, D’Haens GR, Henneman P, te Velde AA. A distinct epigenetic profile distinguishes stenotic from non-inflamed fibroblasts in the ileal mucosa of Crohn's disease patients. PLoS One 2018; 13:e0209656. [PMID: 30589872 PMCID: PMC6307755 DOI: 10.1371/journal.pone.0209656] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 12/10/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The chronic remitting and relapsing intestinal inflammation characteristic of Crohn's disease frequently leads to fibrosis and subsequent stenosis of the inflamed region. Approximately a third of all Crohn's disease patients require resection at some stage in their disease course. As the pathogenesis of Crohn's disease associated fibrosis is largely unknown, a strong necessity exists to better understand the pathophysiology thereof. METHODS In this study, we investigated changes of the DNA methylome and transcriptome of ileum-derived fibroblasts associated to the occurrence of Crohn's disease associated fibrosis. Eighteen samples were included in a DNA methylation array and twenty-one samples were used for RNA sequencing. RESULTS Most differentially methylated regions and differentially expressed genes were observed when comparing stenotic with non-inflamed samples. By contrast, few differences were observed when comparing Crohn's disease with non-Crohn's disease, or inflamed with non-inflamed tissue. Integrative methylation and gene expression analyses revealed dysregulation of genes associated to the PRKACA and E2F1 network, which is involved in cell cycle progression, angiogenesis, epithelial to mesenchymal transition, and bile metabolism. CONCLUSION Our research provides evidence that the methylome and the transcriptome are systematically dysregulated in stenosis-associated fibroblasts.
Collapse
Affiliation(s)
- Andrew Y. F. Li Yim
- Genome Diagnostics Laboratory, Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Epigenetics Discovery Performance Unit, GlaxoSmithKline, Stevenage, United Kingdom
| | - Jessica R. de Bruyn
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Gastroenterology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Nicolette W. Duijvis
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Catriona Sharp
- Epigenetics Discovery Performance Unit, GlaxoSmithKline, Stevenage, United Kingdom
| | - Enrico Ferrero
- Computational Biology, Target Sciences, GlaxoSmithKline, Stevenage, United Kingdom
| | - Wouter J. de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Manon E. Wildenberg
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Marcel M. A. M. Mannens
- Genome Diagnostics Laboratory, Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Christianne J. Buskens
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Geert R. D’Haens
- Department of Gastroenterology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Peter Henneman
- Genome Diagnostics Laboratory, Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Anje A. te Velde
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- * E-mail:
| |
Collapse
|
122
|
Moon SH, Huang CH, Houlihan SL, Regunath K, Freed-Pastor WA, Morris JP, Tschaharganeh DF, Kastenhuber ER, Barsotti AM, Culp-Hill R, Xue W, Ho YJ, Baslan T, Li X, Mayle A, de Stanchina E, Zender L, Tong DR, D'Alessandro A, Lowe SW, Prives C. p53 Represses the Mevalonate Pathway to Mediate Tumor Suppression. Cell 2018; 176:564-580.e19. [PMID: 30580964 DOI: 10.1016/j.cell.2018.11.011] [Citation(s) in RCA: 313] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 08/24/2018] [Accepted: 11/09/2018] [Indexed: 12/14/2022]
Abstract
There are still gaps in our understanding of the complex processes by which p53 suppresses tumorigenesis. Here we describe a novel role for p53 in suppressing the mevalonate pathway, which is responsible for biosynthesis of cholesterol and nonsterol isoprenoids. p53 blocks activation of SREBP-2, the master transcriptional regulator of this pathway, by transcriptionally inducing the ABCA1 cholesterol transporter gene. A mouse model of liver cancer reveals that downregulation of mevalonate pathway gene expression by p53 occurs in premalignant hepatocytes, when p53 is needed to actively suppress tumorigenesis. Furthermore, pharmacological or RNAi inhibition of the mevalonate pathway restricts the development of murine hepatocellular carcinomas driven by p53 loss. Like p53 loss, ablation of ABCA1 promotes murine liver tumorigenesis and is associated with increased SREBP-2 maturation. Our findings demonstrate that repression of the mevalonate pathway is a crucial component of p53-mediated liver tumor suppression and outline the mechanism by which this occurs.
Collapse
Affiliation(s)
- Sung-Hwan Moon
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Chun-Hao Huang
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cell and Developmental Biology Program, Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Shauna L Houlihan
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kausik Regunath
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | - John P Morris
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Darjus F Tschaharganeh
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Edward R Kastenhuber
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anthony M Barsotti
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Rachel Culp-Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Wen Xue
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Yu-Jui Ho
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Timour Baslan
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xiang Li
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cell and Developmental Biology Program, Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Allison Mayle
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elisa de Stanchina
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lars Zender
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - David R Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
123
|
Sullivan KM, Kenerson HL, Pillarisetty VG, Riehle KJ, Yeung RS. Precision oncology in liver cancer. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:285. [PMID: 30105235 DOI: 10.21037/atm.2018.06.14] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
With the widespread adoption of molecular profiling in clinical oncology practice, many physicians are faced with making therapeutic decisions based upon isolated genomic alterations. For example, epidermal growth factor receptor tyrosine kinase inhibitors (TKIs) are effective in EGFR-mutant non-small cell lung cancers (NSCLC) while anti-EGFR monoclonal antibodies are ineffective in Ras-mutant colorectal cancers. The matching of mutations with drugs aimed at their respective gene products represents the current state of "precision" oncology. Despite the great expectations of this approach, only a fraction of cancers responds to 'targeted' interventions, and many early responders will ultimately develop resistance to these agents. The underwhelming success of mutation-driven therapies across all cancer types is not due to an inability to detect genetic changes in tumors; rather a deficit in functional insight into the genomic alterations that give rise to each cancer. The Achilles heel of precision oncology thus remains the lack of a robust functional understanding of an individual cancer genome that then allows prediction of the best therapy and resultant outcome for that patient. Current practice focuses on one 'actionable' mutation at a time, while solid cancers typically possess many mutations that involve different cellular sub-populations within a tumor. No method or platform currently exists to guide the interpretation of these complex data, nor to accurately predict response to treatment. This problem is particularly germane to primary liver cancers (PLC), for which only a handful of targeted therapies have been introduced. Here, we will review strategies aimed at overcoming some of these challenges in precision oncology, using liver cancer as an example.
Collapse
Affiliation(s)
- Kevin M Sullivan
- Northwest Liver Research Program, Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Heidi L Kenerson
- Northwest Liver Research Program, Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Venu G Pillarisetty
- Northwest Liver Research Program, Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Kimberly J Riehle
- Northwest Liver Research Program, Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Raymond S Yeung
- Northwest Liver Research Program, Department of Surgery, University of Washington, Seattle, Washington, USA
| |
Collapse
|
124
|
Kersten CA, Sloey EN, Zhou E, Peng Y, Torbenson MS, Guo Y. WITHDRAWN: Fibrolamellar hepatocellular carcinoma: Exploring molecular mechanisms and differentiation pathways to better understand disease outcomes and prognosis. LIVER RESEARCH 2018. [DOI: 10.1016/j.livres.2017.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
125
|
Wu J, Gao F, Xu T, Deng X, Wang C, Yang X, Hu Z, Long Y, He X, Liang G, Ren D, Dai T. miR-503 suppresses the proliferation and metastasis of esophageal squamous cell carcinoma by triggering autophagy via PKA/mTOR signaling. Int J Oncol 2018; 52:1427-1442. [PMID: 29568867 PMCID: PMC5873897 DOI: 10.3892/ijo.2018.4320] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/14/2018] [Indexed: 12/24/2022] Open
Abstract
MicroRNA (miR)-503 is involved in the regulation of the malignant phenotype in multiple tumor types, and has been proven to be a novel diagnostic and therapeutic target; however, its function and mechanisms of action have not yet been fully elucidated in esophageal squamous cell carcinoma (ESCC). In the current study, we detected miR‑503 expression by RT‑qPCR and found that miR‑503 expression was increased in ESCC, but negatively correlated with lymph node metastasis, TNM stage and tumor differentiation. Functionally, we confirmed that miR‑503 inhibited the proliferation and metastasis of ESCC cells by triggering cellular autophagy. Mechanistically, we confirmed that miR‑503 exerted its biological effects by targeting protein kinase CAMP‑activated catalytic subunit alpha (PRKACA) in ESCC by dual luciferase reporter assay. Moreover, miR‑503 was found to trigger autophagy in ESCC cells through the protein kinase A (PKA)/mammalian target of rapamycin (mTOR) pathway. Taken together, our results demonstrate that miR‑503 suppresses the proliferation and metastasis of ESCC via the activation of autophagy, mediated by the PKA/mTOR signaling pathway.
Collapse
Affiliation(s)
- Jian Wu
- Department of Thoracic Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Fengxia Gao
- Department of Immunology, College of Basic Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Tao Xu
- Department of Thoracic Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xin Deng
- Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Chao Wang
- Department of Thoracic Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xiaoyan Yang
- Department of Thoracic Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Zhi Hu
- Department of Thoracic Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yang Long
- Experiment Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xuemei He
- Experiment Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Guannan Liang
- Experiment Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Delian Ren
- Department of Immunology, College of Basic Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Tianyang Dai
- Department of Thoracic Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
126
|
|
127
|
Tomasini MD, Wang Y, Karamafrooz A, Li G, Beuming T, Gao J, Taylor SS, Veglia G, Simon SM. Conformational Landscape of the PRKACA-DNAJB1 Chimeric Kinase, the Driver for Fibrolamellar Hepatocellular Carcinoma. Sci Rep 2018; 8:720. [PMID: 29335433 PMCID: PMC5768683 DOI: 10.1038/s41598-017-18956-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/19/2017] [Indexed: 01/14/2023] Open
Abstract
In fibrolamellar hepatocellular carcinoma a single genetic deletion results in the fusion of the first exon of the heat shock protein 40, DNAJB1, which encodes the J domain, with exons 2-10 of the catalytic subunit of protein kinase A, PRKACA. This produces an enzymatically active chimeric protein J-PKAcα. We used molecular dynamics simulations and NMR to analyze the conformational landscape of native and chimeric kinase, and found an ensemble of conformations. These ranged from having the J-domain tucked under the large lobe of the kinase, similar to what was reported in the crystal structure, to others where the J-domain was dislodged from the core of the kinase and swinging free in solution. These simulated dislodged states were experimentally captured by NMR. Modeling of the different conformations revealed no obvious steric interactions of the J-domain with the rest of the RIIβ holoenzyme.
Collapse
Affiliation(s)
- Michael D Tomasini
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Yingjie Wang
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA.,Department of Biochemistry, Molecular Biology, and Biophysics. University of Minnesota, Minneapolis, MN, 55455, USA
| | - Adak Karamafrooz
- Department of Biochemistry, Molecular Biology, and Biophysics. University of Minnesota, Minneapolis, MN, 55455, USA
| | - Geoffrey Li
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Thijs Beuming
- Schrödinger Inc., 120 West 45th Street, New York, NY, 10036, USA
| | - Jiali Gao
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA.,Theoretical Chemistry Institute, Jilin University, Changchun, Jilin Province, 130028, People's Republic of China
| | - Susan S Taylor
- Department of Pharmacology, University of California, San Diego, CA, 92093, USA.,Department of Chemistry and Biochemistry, University of California, San Diego, CA, 92093, USA
| | - Gianluigi Veglia
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA.,Department of Biochemistry, Molecular Biology, and Biophysics. University of Minnesota, Minneapolis, MN, 55455, USA
| | - Sanford M Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
128
|
Søberg K, Skålhegg BS. The Molecular Basis for Specificity at the Level of the Protein Kinase a Catalytic Subunit. Front Endocrinol (Lausanne) 2018; 9:538. [PMID: 30258407 PMCID: PMC6143667 DOI: 10.3389/fendo.2018.00538] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/24/2018] [Indexed: 12/16/2022] Open
Abstract
Assembly of multi enzyme complexes at subcellular localizations by anchoring- and scaffolding proteins represents a pivotal mechanism for achieving spatiotemporal regulation of cellular signaling after hormone receptor targeting [for review, see (1)]. In the 3' 5'-cyclic adenosine monophosphate (cAMP) dependent protein kinase (PKA) signaling pathway it is generally accepted that specificity is secured at several levels. This includes at the first level stimulation of receptors coupled to heterotrimeric G proteins which through stimulation of adenylyl cyclase (AC) forms the second messenger cAMP. Cyclic AMP has several receptors including PKA. PKA is a tetrameric holoenzyme consisting of a regulatory (R) subunit dimer and two catalytic (C) subunits. The R subunit is the receptor for cAMP and compartmentalizes cAMP signals through binding to cell and tissue-specifically expressed A kinase anchoring proteins (AKAPs). The current dogma tells that in the presence of cAMP, PKA dissociates into an R subunit dimer and two C subunits which are free to phosphorylate relevant substrates in the cytosol and nucleus. The release of the C subunit has raised the question how specificity of the cAMP and PKA signaling pathway is maintained when the C subunit no longer is attached to the R subunit-AKAP complex. An increasing body of evidence points toward a regulatory role of the cAMP and PKA signaling pathway by targeting the C subunits to various C subunit binding proteins in the cytosol and nucleus. Moreover, recent identification of isoform specific amino acid sequences, motifs and three dimensional structures have together provided new insight into how PKA at the level of the C subunit may act in a highly isoform-specific fashion. Here we discuss recent understanding of specificity of the cAMP and PKA signaling pathway based on C subunit subcellular targeting as well as evolution of the C subunit structure that may contribute to the dynamic regulation of C subunit activity.
Collapse
Affiliation(s)
- Kristoffer Søberg
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Bjørn Steen Skålhegg
- Section for Molecular Nutrition, University of Oslo, Oslo, Norway
- *Correspondence: Bjørn Steen Skålhegg
| |
Collapse
|
129
|
Kersten CA, Sloey EN, Zhou E, Peng Y, Torbenson MS, Guo Y. Fibrolamellar hepatocellular carcinoma: Exploring molecular mechanisms and differentiation pathways to better understand disease outcomes and prognosis. LIVER RESEARCH 2017. [DOI: 10.1016/j.livres.2017.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|