101
|
Cannon JF, Pringle JR, Fiechter A, Khalil M. Characterization of glycogen-deficient glc mutants of Saccharomyces cerevisiae. Genetics 1994; 136:485-503. [PMID: 8150278 PMCID: PMC1205803 DOI: 10.1093/genetics/136.2.485] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Forty-eight mutants of Saccharomyces cerevisiae with defects in glycogen metabolism were isolated. The mutations defined eight GLC genes, the function of which were determined. Mutations in three of these genes activate the RAS/cAMP pathway either by impairment of a RAS GTPase-activating protein (GLC1/IRA1 and GLC4/IRA2) or by activating Ras2p (GLC5/RAS2). SNF1 protein kinase (GLC2) was found to be required for normal glycogen levels. Glycogen branching enzyme (GLC3) was found to be required for significant glycogen synthesis. GLC6 was shown to be allelic to CIF1 (and probably FDP1, BYP1 and GGS1), mutations in which were previously found to prevent growth on glucose; this gene is also the same as TPS1, which encodes a subunit of the trehalose-phosphate synthase. Mutations in GLC6 were capable of increasing or decreasing glycogen levels, at least in part via effects on the regulation of glycogen synthase. GLC7 encodes a type 1 protein phosphatase that contributes to the dephosphorylation (and hence activation) of glycogen synthase. GLC8 encodes a homologue of type 1 protein phosphatase inhibitor-2. The genetic map positions of GLC1/IRA1, GLC3, GLC4/IRA2, GLC6/CIF1/TPS1 (and the adjacent VAT2/VMA2), and GLC7 were clarified. From the data on GLC3, there may be a suppression of recombination near the chromosome V centromere, at least in some strains.
Collapse
Affiliation(s)
- J F Cannon
- Department of Molecular Microbiology and Immunology, University of Missouri-Columbia, School of Medicine 65212
| | | | | | | |
Collapse
|
102
|
A regulatory element in the CHA1 promoter which confers inducibility by serine and threonine on Saccharomyces cerevisiae genes. Mol Cell Biol 1994. [PMID: 8246977 DOI: 10.1128/mcb.13.12.7604] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CHA1 of Saccharomyces cerevisiae is the gene for the catabolic L-serine (L-threonine) dehydratase, which is responsible for biodegradation of serine and threonine. We have previously shown that expression of the CHA1 gene is transcriptionally induced by serine and threonine. Northern (RNA) analysis showed that the additional presence of good nitrogen sources affects induction. This may well be due to inducer exclusion. To identify interactions of cis-acting elements with trans activators of the CHA1 promoter, we performed band shift assays of nuclear protein extracts with CHA1 promoter fragments. By this approach, we identified a protein-binding site of the CHA1 promoter. The footprint of this protein contains the ABF1-binding site consensus sequence. This in vitro binding activity is present irrespectively of CHA1 induction. By deletion analysis, two other elements of the CHA1 promoter, UAS1CHA and UAS2CHA, which are needed for induction of the CHA1 gene were identified. Each of the two sequence elements is sufficient to confer serine and threonine induction upon the CYC1 promoter when substituting its upstream activating sequence. Further, in a cha4 mutant strain which is unable to grow with serine or threonine as the sole nitrogen source, the function of UAS1CHA, as well as that of UAS2CHA, is obstructed.
Collapse
|
103
|
Wenzel TJ, Luttik MA, van den Berg JA, de Steensma HY. Regulation of the PDA1 gene encoding the E1 alpha subunit of the pyruvate dehydrogenase complex from Saccharomyces cerevisiae. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 218:405-11. [PMID: 8269928 DOI: 10.1111/j.1432-1033.1993.tb18390.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Expression of the PDA1 gene encoding the E1 alpha subunit of the pyruvate dehydrogenase complex (PDH complex) and activity of the complex were investigated in cells grown under several conditions. Comparable amounts of PDA1 mRNA and E1 alpha subunit were detected in cells from batch and chemostat cultures grown on various carbon sources, showing constitutive expression of PDA1 at the transcriptional and translational levels. Induction of the regulatory GCN4 mechanism upon histidine starvation, using the anti-metabolite 3-amino-1,2,4-triazole, increased the levels of PDA1 mRNA by approximately 40%. However, a corresponding increase of E1 alpha concentration or activity of the PDH complex could not be detected. Hence, expression of the PDA1 gene is only regulated to a small extent, if at all, by the GCN4 mechanism. Contrary to the constant levels of PDA1 mRNA and E1 alpha subunit in both batch and chemostat cultures, the specific activity of the PDH complex varied with the culture conditions. The activity of the PDH complex in chemostat cultures was approximately two-threefold higher than in batch cultures grown on the same carbon sources. Overproduction of the E1 alpha subunit in batch cultures resulted in a two-threefold increase in the activity of the PDH complex. Taken together, these results indicate that the activity of the PDH complex is mainly regulated by post-translational modification of the E1 alpha subunit. Expression of PDA1 and activity of the PDH complex were also detected in cultures grown under conditions where no physiological significance of the PDH complex was expected, i.e. during anaerobic growth on glucose or aerobic growth on ethanol. Apparently, the switch from oxidative growth to fermentation occurs without much effect on the PDH complex. These observations suggest that the PDH complex has an alternative function besides sugar catabolism.
Collapse
Affiliation(s)
- T J Wenzel
- Department of Molecular and Cellular Biology, Leiden University, The Netherlands
| | | | | | | |
Collapse
|
104
|
Bornaes C, Ignjatovic MW, Schjerling P, Kielland-Brandt MC, Holmberg S. A regulatory element in the CHA1 promoter which confers inducibility by serine and threonine on Saccharomyces cerevisiae genes. Mol Cell Biol 1993; 13:7604-11. [PMID: 8246977 PMCID: PMC364832 DOI: 10.1128/mcb.13.12.7604-7611.1993] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
CHA1 of Saccharomyces cerevisiae is the gene for the catabolic L-serine (L-threonine) dehydratase, which is responsible for biodegradation of serine and threonine. We have previously shown that expression of the CHA1 gene is transcriptionally induced by serine and threonine. Northern (RNA) analysis showed that the additional presence of good nitrogen sources affects induction. This may well be due to inducer exclusion. To identify interactions of cis-acting elements with trans activators of the CHA1 promoter, we performed band shift assays of nuclear protein extracts with CHA1 promoter fragments. By this approach, we identified a protein-binding site of the CHA1 promoter. The footprint of this protein contains the ABF1-binding site consensus sequence. This in vitro binding activity is present irrespectively of CHA1 induction. By deletion analysis, two other elements of the CHA1 promoter, UAS1CHA and UAS2CHA, which are needed for induction of the CHA1 gene were identified. Each of the two sequence elements is sufficient to confer serine and threonine induction upon the CYC1 promoter when substituting its upstream activating sequence. Further, in a cha4 mutant strain which is unable to grow with serine or threonine as the sole nitrogen source, the function of UAS1CHA, as well as that of UAS2CHA, is obstructed.
Collapse
Affiliation(s)
- C Bornaes
- Department of Genetics, University of Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
105
|
Guanine nucleotide exchange factor for eukaryotic translation initiation factor 2 in Saccharomyces cerevisiae: interactions between the essential subunits GCD2, GCD6, and GCD7 and the regulatory subunit GCN3. Mol Cell Biol 1993. [PMID: 8336705 DOI: 10.1128/mcb.13.8.4618] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphorylation of eukaryotic translation initiation factor 2 (eIF-2) in amino acid-starved cells of the yeast Saccharomyces cerevisiae reduces general protein synthesis but specifically stimulates translation of GCN4 mRNA. This regulatory mechanism is dependent on the nonessential GCN3 protein and multiple essential proteins encoded by GCD genes. Previous genetic and biochemical experiments led to the conclusion that GCD1, GCD2, and GCN3 are components of the GCD complex, recently shown to be the yeast equivalent of the mammalian guanine nucleotide exchange factor for eIF-2, known as eIF-2B. In this report, we identify new constituents of the GCD-eIF-2B complex and probe interactions between its different subunits. Biochemical evidence is presented that GCN3 is an integral component of the GCD-eIF-2B complex that, while dispensable, can be mutationally altered to have a substantial inhibitory effect on general translation initiation. The amino acid sequence changes for three gcd2 mutations have been determined, and we describe several examples of mutual suppression involving the gcd2 mutations and particular alleles of GCN3. These allele-specific interactions have led us to propose that GCN3 and GCD2 directly interact in the GCD-eIF-2B complex. Genetic evidence that GCD6 and GCD7 encode additional subunits of the GCD-eIF-2B complex was provided by the fact that reduced-function mutations in these genes are lethal in strains deleted for GCN3, the same interaction described previously for mutations in GCD1 and GCD2. Biochemical experiments showing that GCD6 and GCD7 copurify and coimmunoprecipitate with GCD1, GCD2, GCN3, and subunits of eIF-2 have confirmed that GCD6 and GCD7 are subunits of the GCD-eIF-2B complex. The fact that all five subunits of yeast eIF-2B were first identified as translational regulators of GCN4 strongly suggests that regulation of guanine nucleotide exchange on eIF-2 is a key control point for translation in yeast cells just as in mammalian cells.
Collapse
|
106
|
Bushman JL, Foiani M, Cigan AM, Paddon CJ, Hinnebusch AG. Guanine nucleotide exchange factor for eukaryotic translation initiation factor 2 in Saccharomyces cerevisiae: interactions between the essential subunits GCD2, GCD6, and GCD7 and the regulatory subunit GCN3. Mol Cell Biol 1993; 13:4618-31. [PMID: 8336705 PMCID: PMC360088 DOI: 10.1128/mcb.13.8.4618-4631.1993] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Phosphorylation of eukaryotic translation initiation factor 2 (eIF-2) in amino acid-starved cells of the yeast Saccharomyces cerevisiae reduces general protein synthesis but specifically stimulates translation of GCN4 mRNA. This regulatory mechanism is dependent on the nonessential GCN3 protein and multiple essential proteins encoded by GCD genes. Previous genetic and biochemical experiments led to the conclusion that GCD1, GCD2, and GCN3 are components of the GCD complex, recently shown to be the yeast equivalent of the mammalian guanine nucleotide exchange factor for eIF-2, known as eIF-2B. In this report, we identify new constituents of the GCD-eIF-2B complex and probe interactions between its different subunits. Biochemical evidence is presented that GCN3 is an integral component of the GCD-eIF-2B complex that, while dispensable, can be mutationally altered to have a substantial inhibitory effect on general translation initiation. The amino acid sequence changes for three gcd2 mutations have been determined, and we describe several examples of mutual suppression involving the gcd2 mutations and particular alleles of GCN3. These allele-specific interactions have led us to propose that GCN3 and GCD2 directly interact in the GCD-eIF-2B complex. Genetic evidence that GCD6 and GCD7 encode additional subunits of the GCD-eIF-2B complex was provided by the fact that reduced-function mutations in these genes are lethal in strains deleted for GCN3, the same interaction described previously for mutations in GCD1 and GCD2. Biochemical experiments showing that GCD6 and GCD7 copurify and coimmunoprecipitate with GCD1, GCD2, GCN3, and subunits of eIF-2 have confirmed that GCD6 and GCD7 are subunits of the GCD-eIF-2B complex. The fact that all five subunits of yeast eIF-2B were first identified as translational regulators of GCN4 strongly suggests that regulation of guanine nucleotide exchange on eIF-2 is a key control point for translation in yeast cells just as in mammalian cells.
Collapse
Affiliation(s)
- J L Bushman
- Section on Molecular Genetics of Lower Eukaryotes, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
107
|
GCN1, a translational activator of GCN4 in Saccharomyces cerevisiae, is required for phosphorylation of eukaryotic translation initiation factor 2 by protein kinase GCN2. Mol Cell Biol 1993. [PMID: 8497269 DOI: 10.1128/mcb.13.6.3541] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 (eIF-2 alpha) by the protein kinase GCN2 mediates increased translation of the transcriptional activator GCN4 in amino acid-starved yeast cells. We show that this key phosphorylation event and the attendant translational induction of GCN4 are dependent on the product of a previously uncharacterized gene, GCN1. Inactivation of GCN1 did not affect the level of eIF-2 alpha phosphorylation when mammalian eIF-2 alpha kinases were expressed in yeast cells in place of GCN2, arguing against an involvement of GCN1 in dephosphorylation of eIF-2 alpha. In addition, while GCN1 is required in vivo for phosphorylation of eIF-2 alpha by GCN2, cell extracts from gcn1 delta strains contained wild-type levels of GCN2 eIF-2 alpha-kinase activity. On the basis of these results, we propose that GCN1 is not needed for GCN2 kinase activity per se but is required for in vivo activation of GCN2 in response to the starvation signal, uncharged tRNA. GCN1 encodes a protein of 297 kDa with an 88-kDa region that is highly similar in sequence to translation elongation factor 3 identified in several fungal species. This sequence similarity raises the possibility that GCN1 interacts with ribosomes or tRNA molecules and functions in conjunction with GCN2 in monitoring uncharged tRNA levels during the process of translation elongation.
Collapse
|
108
|
Marton MJ, Crouch D, Hinnebusch AG. GCN1, a translational activator of GCN4 in Saccharomyces cerevisiae, is required for phosphorylation of eukaryotic translation initiation factor 2 by protein kinase GCN2. Mol Cell Biol 1993; 13:3541-56. [PMID: 8497269 PMCID: PMC359824 DOI: 10.1128/mcb.13.6.3541-3556.1993] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 (eIF-2 alpha) by the protein kinase GCN2 mediates increased translation of the transcriptional activator GCN4 in amino acid-starved yeast cells. We show that this key phosphorylation event and the attendant translational induction of GCN4 are dependent on the product of a previously uncharacterized gene, GCN1. Inactivation of GCN1 did not affect the level of eIF-2 alpha phosphorylation when mammalian eIF-2 alpha kinases were expressed in yeast cells in place of GCN2, arguing against an involvement of GCN1 in dephosphorylation of eIF-2 alpha. In addition, while GCN1 is required in vivo for phosphorylation of eIF-2 alpha by GCN2, cell extracts from gcn1 delta strains contained wild-type levels of GCN2 eIF-2 alpha-kinase activity. On the basis of these results, we propose that GCN1 is not needed for GCN2 kinase activity per se but is required for in vivo activation of GCN2 in response to the starvation signal, uncharged tRNA. GCN1 encodes a protein of 297 kDa with an 88-kDa region that is highly similar in sequence to translation elongation factor 3 identified in several fungal species. This sequence similarity raises the possibility that GCN1 interacts with ribosomes or tRNA molecules and functions in conjunction with GCN2 in monitoring uncharged tRNA levels during the process of translation elongation.
Collapse
Affiliation(s)
- M J Marton
- Section on Molecular Genetics of Lower Eukaryotes, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | | | | |
Collapse
|
109
|
Truncated protein phosphatase GLC7 restores translational activation of GCN4 expression in yeast mutants defective for the eIF-2 alpha kinase GCN2. Mol Cell Biol 1992. [PMID: 1333044 DOI: 10.1128/mcb.12.12.5700] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GCN2 is a protein kinase in Saccharomyces cerevisiae that is required for increased expression of the transcriptional activator GCN4 in amino acid-starved cells. GCN2 stimulates GCN4 synthesis at the translational level by phosphorylating the alpha subunit of eukaryotic translation initiation factor 2 (eIF-2). We identified a truncated form of the GLC7 gene, encoding the catalytic subunit of a type 1 protein phosphatase, by its ability to restore derepression of GCN4 expression in a strain containing the partially defective gcn2-507 allele. Genetic analysis suggests that the truncated GLC7 allele has a dominant negative phenotype, reducing the level of native type 1 protein phosphatase activity in the cell. The truncated form of GLC7 does not suppress the regulatory defect associated with a gcn2 deletion or a mutation in the phosphorylation site of eIF-2 alpha (Ser-51). In addition, the presence of multiple copies of wild-type GLC7 impairs the derepression of GCN4 that occurs in response to amino acid starvation or dominant-activating mutations in GCN2. These findings suggest that the phosphatase activity of GLC7 acts in opposition to the kinase activity of GCN2 in modulating the level of eIF-2 alpha phosphorylation and the translational efficiency of GCN4 mRNA. This conclusion is supported by biochemical studies showing that the truncated GLC7 allele increases the level of eIF-2 alpha phosphorylation in the gcn2-507 mutant to a level approaching that seen in wild-type cells under starvation conditions. The truncated GLC7 allele also leads to reduced glycogen accumulation, indicating that this protein phosphatase is involved in regulating diverse metabolic pathways in yeast cells.
Collapse
|
110
|
Wek RC, Cannon JF, Dever TE, Hinnebusch AG. Truncated protein phosphatase GLC7 restores translational activation of GCN4 expression in yeast mutants defective for the eIF-2 alpha kinase GCN2. Mol Cell Biol 1992; 12:5700-10. [PMID: 1333044 PMCID: PMC360510 DOI: 10.1128/mcb.12.12.5700-5710.1992] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
GCN2 is a protein kinase in Saccharomyces cerevisiae that is required for increased expression of the transcriptional activator GCN4 in amino acid-starved cells. GCN2 stimulates GCN4 synthesis at the translational level by phosphorylating the alpha subunit of eukaryotic translation initiation factor 2 (eIF-2). We identified a truncated form of the GLC7 gene, encoding the catalytic subunit of a type 1 protein phosphatase, by its ability to restore derepression of GCN4 expression in a strain containing the partially defective gcn2-507 allele. Genetic analysis suggests that the truncated GLC7 allele has a dominant negative phenotype, reducing the level of native type 1 protein phosphatase activity in the cell. The truncated form of GLC7 does not suppress the regulatory defect associated with a gcn2 deletion or a mutation in the phosphorylation site of eIF-2 alpha (Ser-51). In addition, the presence of multiple copies of wild-type GLC7 impairs the derepression of GCN4 that occurs in response to amino acid starvation or dominant-activating mutations in GCN2. These findings suggest that the phosphatase activity of GLC7 acts in opposition to the kinase activity of GCN2 in modulating the level of eIF-2 alpha phosphorylation and the translational efficiency of GCN4 mRNA. This conclusion is supported by biochemical studies showing that the truncated GLC7 allele increases the level of eIF-2 alpha phosphorylation in the gcn2-507 mutant to a level approaching that seen in wild-type cells under starvation conditions. The truncated GLC7 allele also leads to reduced glycogen accumulation, indicating that this protein phosphatase is involved in regulating diverse metabolic pathways in yeast cells.
Collapse
Affiliation(s)
- R C Wek
- Section on Molecular Genetics of Lower Eukaryotes, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
111
|
Coordinate regulation of glycogen metabolism in the yeast Saccharomyces cerevisiae. Induction of glycogen branching enzyme. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42169-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
112
|
Kelly R, Kwon-Chung KJ. A zinc finger protein from Candida albicans is involved in sucrose utilization. J Bacteriol 1992; 174:222-32. [PMID: 1729210 PMCID: PMC205699 DOI: 10.1128/jb.174.1.222-232.1992] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A sucrose-inducible alpha-glucosidase activity that hydrolyzes sucrose in Candida albicans has been demonstrated previously. The enzyme is assayable in whole cells and was inhibited by both sucrose and maltose. A C. albicans gene (CASUC1) that affects sucrose utilization and alpha-glucosidase activity was cloned by expression in a Saccharomyces cerevisiae suc2 mutant (2102) devoid of invertase genes. CASUC1 enabled the S. cerevisiae mutant to utilize both sucrose and maltose. DNA sequence analysis revealed that CASUC1 encodes a putative zinc finger-containing protein with 28% identity to a maltose-regulatory gene (MAL63) of S. cerevisiae. The gene products of CASUC1 and MAL63 are approximately the same size (501 and 470 amino acids, respectively), and each contains a single zinc finger located at the N terminus. The zinc fingers of CASUC1 and MAL63 comprise six conserved cysteines (C6 zinc finger) and are of the general form Cys-Xaa2-Cys-Xaa6-Cys-Xaavariable-Cys-Xaa2-Cys-+ ++Xaa6-Cys (where Xaan indicates a stretch of the indicated number of any amino acids). Both contain five amino acids in the variable region. CASUC1 also complemented the maltose utilization defect of an S. cerevisiae mutant (TCY-137) containing a defined mutation in a maltose-regulatory gene. The sucrose utilization defect of type II Candida stellatoidea, a sucrase-negative mutant of C. albicans, was corrected by CASUC1. Determinations of alpha-glucosidase activity in whole cells revealed that activity was restored in transformants cultivated on either sucrose or maltose. To our knowledge, this is the first zinc finger-encoding gene, as well as the first putative regulatory gene, to be identified in C. albicans.
Collapse
Affiliation(s)
- R Kelly
- Laboratory of Clinical Investigation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892
| | | |
Collapse
|
113
|
Braus GH. Aromatic amino acid biosynthesis in the yeast Saccharomyces cerevisiae: a model system for the regulation of a eukaryotic biosynthetic pathway. Microbiol Rev 1991; 55:349-70. [PMID: 1943992 PMCID: PMC372824 DOI: 10.1128/mr.55.3.349-370.1991] [Citation(s) in RCA: 131] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This review focuses on the gene-enzyme relationships and the regulation of different levels of the aromatic amino acid biosynthetic pathway in a simple eukaryotic system, the unicellular yeast Saccharomyces cerevisiae. Most reactions of this branched pathway are common to all organisms which are able to synthesize tryptophan, phenylalanine, and tyrosine. The current knowledge about the two main control mechanisms of the yeast aromatic amino acid biosynthesis is reviewed. (i) At the transcriptional level, most structural genes are regulated by the transcriptional activator GCN4, the regulator of the general amino acid control network, which couples transcriptional derepression to amino acid starvation of numerous structural genes in multiple amino acid biosynthetic pathways. (ii) At the enzyme level, the carbon flow is controlled mainly by modulating the enzyme activities at the first step of the pathway and at the branch points by feedback action of the three aromatic amino acid end products. Implications of these findings for the relationship of S. cerevisiae to prokaryotic as well as to higher eukaryotic organisms and for general regulatory mechanisms occurring in a living cell such as initiation of transcription, enzyme regulation, and the regulation of a metabolic branch point are discussed.
Collapse
Affiliation(s)
- G H Braus
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule Zürich, CH-8092, Switzerland
| |
Collapse
|
114
|
Cuenoud B, Schepartz A. A general scheme for incorporating nonnatural functionality into peptides. Tetrahedron Lett 1991. [DOI: 10.1016/s0040-4039(00)92697-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
115
|
Association of RAP1 binding sites with stringent control of ribosomal protein gene transcription in Saccharomyces cerevisiae. Mol Cell Biol 1991. [PMID: 2017175 DOI: 10.1128/mcb.11.5.2723] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An amino acid limitation in bacteria elicits a global response, called stringent control, that leads to reduced synthesis of rRNA and ribosomal proteins and increased expression of amino acid biosynthetic operons. We have used the antimetabolite 3-amino-1,2,4-triazole to cause histidine limitation as a means to elicit the stringent response in the yeast Saccharomyces cerevisiae. Fusions of the yeast ribosomal protein genes RPL16A, CRY1, RPS16A, and RPL25 with the Escherichia coli lacZ gene were used to show that the expression of these genes is reduced by a factor of 2 to 5 during histidine-limited exponential growth and that this regulation occurs at the level of transcription. Stringent regulation of the four yeast ribosomal protein genes was shown to be associated with a nucleotide sequence, known as the UASrpg (upstream activating sequence for ribosomal protein genes), that binds the transcriptional regulatory protein RAP1. The RAP1 binding sites also appeared to mediate the greater ribosomal protein gene expression observed in cells growing exponentially than in cells in stationary phase. Although expression of the ribosomal protein genes was reduced in response to histidine limitation, the level of RAP1 DNA-binding activity in cell extracts was unaffected. Yeast strains bearing a mutation in any one of the genes GCN1 to GCN4 are defective in derepression of amino acid biosynthetic genes in 10 different pathways under conditions of histidine limitation. These Gcn- mutants showed wild-type regulation of ribosomal protein gene expression, which suggests that separate regulatory pathways exist in S. cerevisiae for the derepression of amino acid biosynthetic genes and the repression of ribosomal protein genes in response to amino acid starvation.
Collapse
|
116
|
Moehle CM, Hinnebusch AG. Association of RAP1 binding sites with stringent control of ribosomal protein gene transcription in Saccharomyces cerevisiae. Mol Cell Biol 1991; 11:2723-35. [PMID: 2017175 PMCID: PMC360042 DOI: 10.1128/mcb.11.5.2723-2735.1991] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
An amino acid limitation in bacteria elicits a global response, called stringent control, that leads to reduced synthesis of rRNA and ribosomal proteins and increased expression of amino acid biosynthetic operons. We have used the antimetabolite 3-amino-1,2,4-triazole to cause histidine limitation as a means to elicit the stringent response in the yeast Saccharomyces cerevisiae. Fusions of the yeast ribosomal protein genes RPL16A, CRY1, RPS16A, and RPL25 with the Escherichia coli lacZ gene were used to show that the expression of these genes is reduced by a factor of 2 to 5 during histidine-limited exponential growth and that this regulation occurs at the level of transcription. Stringent regulation of the four yeast ribosomal protein genes was shown to be associated with a nucleotide sequence, known as the UASrpg (upstream activating sequence for ribosomal protein genes), that binds the transcriptional regulatory protein RAP1. The RAP1 binding sites also appeared to mediate the greater ribosomal protein gene expression observed in cells growing exponentially than in cells in stationary phase. Although expression of the ribosomal protein genes was reduced in response to histidine limitation, the level of RAP1 DNA-binding activity in cell extracts was unaffected. Yeast strains bearing a mutation in any one of the genes GCN1 to GCN4 are defective in derepression of amino acid biosynthetic genes in 10 different pathways under conditions of histidine limitation. These Gcn- mutants showed wild-type regulation of ribosomal protein gene expression, which suggests that separate regulatory pathways exist in S. cerevisiae for the derepression of amino acid biosynthetic genes and the repression of ribosomal protein genes in response to amino acid starvation.
Collapse
Affiliation(s)
- C M Moehle
- Section on Molecular Genetics of Lower Eukaryotes, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | | |
Collapse
|
117
|
Morishita T, Uno I. Genetic and molecular analyses of the SUP201 gene: a tRNA(3Arg) nonsense suppressor of yeast cyrl-2. J Bacteriol 1991; 173:2406-8. [PMID: 2007560 PMCID: PMC207795 DOI: 10.1128/jb.173.7.2406-2408.1991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The temperature-sensitive cyr1-2 mutant in Saccharomyces cerevisiae produces low levels of adenylate cyclase and cyclic AMP at 25 degrees C and is unable to synthesize repressible acid phosphatase at 25 degrees C. Suppressor mutants of cyr1-2 were isolated by detecting acid phosphatase activity. One of the dominant suppressor mutations isolated was designated SUP201 and characterized. The SUP201 mutant gene was isolated from a gene library made from cyr1-2 SUP201 mutant DNA. Nucleotide sequence analysis of the cloned SUP201 gene revealed that the SUP201 gene was a mutated tRNA gene flanking GCN4, which worked as a UGA suppressor.
Collapse
Affiliation(s)
- T Morishita
- Institute of Applied Microbiology, University of Tokyo, Japan
| | | |
Collapse
|
118
|
CAP is a bifunctional component of the Saccharomyces cerevisiae adenylyl cyclase complex. Mol Cell Biol 1991. [PMID: 1996090 DOI: 10.1128/mcb.11.3.1248] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CAP, a protein from Saccharomyces cerevisiae that copurifies with adenylyl cyclase, appears to be required for yeast cells to be fully responsive to RAS proteins. CAP also appears to be required for normal cell morphology and responsiveness to nutrient deprivation and excess. We describe here a molecular and phenotypic analysis of the CAP protein. The N-terminal domain is necessary and sufficient for cellular response to activated RAS protein, while the C-terminal domain is necessary and sufficient for normal cellular morphology and responses to nutrient extremes. Thus, CAP is a novel example of a bifunctional component involved in the regulation of diverse signal transduction pathways.
Collapse
|
119
|
Characterization of Neurospora CPC1, a bZIP DNA-binding protein that does not require aligned heptad leucines for dimerization. Mol Cell Biol 1991. [PMID: 1824960 DOI: 10.1128/mcb.11.2.935] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CPC1 is the transcriptional activator of amino acid biosynthetic genes of Neurospora crassa. CPC1 function in vivo was abolished upon deletion of segments of cpc-1 corresponding to the presumed transcription activation domain, the DNA-binding and dimerization domains, or a 52-residue connector segment of CPC1. A truncated CPC1 polypeptide containing only the carboxy-terminal 57-residue segment of CPC1 was sufficient to form homodimers that bound DNA. However, deletion of the segment of cpc-1 corresponding to the connector segment in the full-length CPC1 polypeptide abolished DNA binding. Removal of a segment of cpc-1 corresponding to the GIn-rich region of CPC1 reduced in vivo function only slightly. The homologous transcription activator of Saccharomyces cerevisiae, GCN4, did not substitute for CPC1 in N. crassa. Chimeric CPC1-GCN4 polypeptides that contained the GCN4 transcriptional activation domain or the domain of GCN4 that corresponds to the essential 52-residue connector segment of CPC1, functioned with reduced efficiency. However, a chimeric polypeptide containing the GCN4 DNA-binding and dimerization domains in place of those of CPC1 functioned essentially as well as wild-type CPC1. The basic and dimerization domains of CPC1 were characterized by introducing deletions or site-directed amino acid replacements. The basic region was required for DNA binding but not for dimerization. CPC1 has a short dimerization domain containing heptad residues Leu-1, Leu-2, Trp-3, and His-4. When Val was substituted for Leu-1 or Leu-2, CPC1 was fully active, but when Val replaced Trp-3, dimerization and DNA binding were prevented. DNA band shift analyses with CPC1 heterodimers demonstrated that CPC1 does not require aligned heptad leucine residues for dimerization. Replacement of two charged residues located between Leu-1 and Leu-2 of CPC1 abolished dimerization and DNA binding.
Collapse
|
120
|
CAP is a bifunctional component of the Saccharomyces cerevisiae adenylyl cyclase complex. Mol Cell Biol 1991; 11:1248-57. [PMID: 1996090 PMCID: PMC369396 DOI: 10.1128/mcb.11.3.1248-1257.1991] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
CAP, a protein from Saccharomyces cerevisiae that copurifies with adenylyl cyclase, appears to be required for yeast cells to be fully responsive to RAS proteins. CAP also appears to be required for normal cell morphology and responsiveness to nutrient deprivation and excess. We describe here a molecular and phenotypic analysis of the CAP protein. The N-terminal domain is necessary and sufficient for cellular response to activated RAS protein, while the C-terminal domain is necessary and sufficient for normal cellular morphology and responses to nutrient extremes. Thus, CAP is a novel example of a bifunctional component involved in the regulation of diverse signal transduction pathways.
Collapse
|
121
|
Suppression of ribosomal reinitiation at upstream open reading frames in amino acid-starved cells forms the basis for GCN4 translational control. Mol Cell Biol 1991. [PMID: 1986242 DOI: 10.1128/mcb.11.1.486] [Citation(s) in RCA: 126] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GCN4 encodes a transcriptional activator of amino acid-biosynthetic genes in Saccharomyces cerevisiae that is regulated at the translational level by upstream open reading frames (uORFs) in its mRNA leader. uORF4 (counting from the 5' end) is sufficient to repress GCN4 under nonstarvation conditions; uORF1 is required to overcome the inhibitory effect of uORF4 and stimulate GCN4 translation in amino acid-starved cells. Insertions of sequences with the potential to form secondary structure around uORF4 abolish derepression, indicating that ribosomes reach GCN4 by traversing uORF4 sequences rather than by binding internally to the GCN4 start site. By showing that wild-type regulation occurred even when uORF4 was elongated to overlap GCN4 by 130 nucleotides, we provide strong evidence that those ribosomes which translate GCN4 do so by ignoring the uORF4 AUG start codon. This conclusion is in accord with the fact that translation of a uORF4-lacZ fusion was lower in a derepressed gcd1 mutant than in a nonderepressible gcn2 strain. We also show that increasing the distance between uORF1 and uORF4 to the wild-type spacing that separates uORF1 from GCN4 specifically impaired the ability of uORF1 to derepress GCN4 translation. As expected, this alteration led to increased uORF4-lacZ translation in gcd1 cells. Our results suggest that under starvation conditions, a substantial fraction of ribosomes that translate uORF1 fail to reassemble the factors needed for reinitiation by the time they scan to uORF4, but become competent to reinitiate after scanning the additional sequences to GCN4. Under nonstarvation conditions, ribosomes would recover more rapidly from uORF1 translation, causing them all to reinitiate at uORF4 rather than at GCN4.
Collapse
|
122
|
Paluh JL, Yanofsky C. Characterization of Neurospora CPC1, a bZIP DNA-binding protein that does not require aligned heptad leucines for dimerization. Mol Cell Biol 1991; 11:935-44. [PMID: 1824960 PMCID: PMC359753 DOI: 10.1128/mcb.11.2.935-944.1991] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
CPC1 is the transcriptional activator of amino acid biosynthetic genes of Neurospora crassa. CPC1 function in vivo was abolished upon deletion of segments of cpc-1 corresponding to the presumed transcription activation domain, the DNA-binding and dimerization domains, or a 52-residue connector segment of CPC1. A truncated CPC1 polypeptide containing only the carboxy-terminal 57-residue segment of CPC1 was sufficient to form homodimers that bound DNA. However, deletion of the segment of cpc-1 corresponding to the connector segment in the full-length CPC1 polypeptide abolished DNA binding. Removal of a segment of cpc-1 corresponding to the GIn-rich region of CPC1 reduced in vivo function only slightly. The homologous transcription activator of Saccharomyces cerevisiae, GCN4, did not substitute for CPC1 in N. crassa. Chimeric CPC1-GCN4 polypeptides that contained the GCN4 transcriptional activation domain or the domain of GCN4 that corresponds to the essential 52-residue connector segment of CPC1, functioned with reduced efficiency. However, a chimeric polypeptide containing the GCN4 DNA-binding and dimerization domains in place of those of CPC1 functioned essentially as well as wild-type CPC1. The basic and dimerization domains of CPC1 were characterized by introducing deletions or site-directed amino acid replacements. The basic region was required for DNA binding but not for dimerization. CPC1 has a short dimerization domain containing heptad residues Leu-1, Leu-2, Trp-3, and His-4. When Val was substituted for Leu-1 or Leu-2, CPC1 was fully active, but when Val replaced Trp-3, dimerization and DNA binding were prevented. DNA band shift analyses with CPC1 heterodimers demonstrated that CPC1 does not require aligned heptad leucine residues for dimerization. Replacement of two charged residues located between Leu-1 and Leu-2 of CPC1 abolished dimerization and DNA binding.
Collapse
Affiliation(s)
- J L Paluh
- Department of Biological Sciences, Stanford University, California 94305
| | | |
Collapse
|
123
|
Suppression of ribosomal reinitiation at upstream open reading frames in amino acid-starved cells forms the basis for GCN4 translational control. Mol Cell Biol 1991; 11:486-96. [PMID: 1986242 PMCID: PMC359655 DOI: 10.1128/mcb.11.1.486-496.1991] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
GCN4 encodes a transcriptional activator of amino acid-biosynthetic genes in Saccharomyces cerevisiae that is regulated at the translational level by upstream open reading frames (uORFs) in its mRNA leader. uORF4 (counting from the 5' end) is sufficient to repress GCN4 under nonstarvation conditions; uORF1 is required to overcome the inhibitory effect of uORF4 and stimulate GCN4 translation in amino acid-starved cells. Insertions of sequences with the potential to form secondary structure around uORF4 abolish derepression, indicating that ribosomes reach GCN4 by traversing uORF4 sequences rather than by binding internally to the GCN4 start site. By showing that wild-type regulation occurred even when uORF4 was elongated to overlap GCN4 by 130 nucleotides, we provide strong evidence that those ribosomes which translate GCN4 do so by ignoring the uORF4 AUG start codon. This conclusion is in accord with the fact that translation of a uORF4-lacZ fusion was lower in a derepressed gcd1 mutant than in a nonderepressible gcn2 strain. We also show that increasing the distance between uORF1 and uORF4 to the wild-type spacing that separates uORF1 from GCN4 specifically impaired the ability of uORF1 to derepress GCN4 translation. As expected, this alteration led to increased uORF4-lacZ translation in gcd1 cells. Our results suggest that under starvation conditions, a substantial fraction of ribosomes that translate uORF1 fail to reassemble the factors needed for reinitiation by the time they scan to uORF4, but become competent to reinitiate after scanning the additional sequences to GCN4. Under nonstarvation conditions, ribosomes would recover more rapidly from uORF1 translation, causing them all to reinitiate at uORF4 rather than at GCN4.
Collapse
|
124
|
Messenguy F, Scherens B. Induction of "General Control" and thermotolerance in cdc mutants of Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1990; 224:257-63. [PMID: 2277643 DOI: 10.1007/bf00271559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In Saccharomyces cerevisiae starvation for a single amino acid activates the transcription of a set of genes belonging to different amino acid biosynthetic pathways (General Control, GC). We show that mutants affected in GC regulation are also affected in their response to thermal stress. Moreover, growth conditions that are known to induce heat shock proteins induce the GC response. However, unlike heat shock proteins, the transcriptional activator of GC, GCN4, is not induced after a short exposure to heat, and in gcn mutant strains induction of heat resistance is normal.
Collapse
Affiliation(s)
- F Messenguy
- Institut de Recherches du C.E.R.I.A., Vrije Universiteit Brussel, Belgium
| | | |
Collapse
|
125
|
Hannig EM, Williams NP, Wek RC, Hinnebusch AG. The translational activator GCN3 functions downstream from GCN1 and GCN2 in the regulatory pathway that couples GCN4 expression to amino acid availability in Saccharomyces cerevisiae. Genetics 1990; 126:549-62. [PMID: 2249755 PMCID: PMC1204211 DOI: 10.1093/genetics/126.3.549] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The GCN4 protein of S. cerevisiae is a transcriptional activator of amino acid biosynthetic genes which are subject to general amino acid control. GCN3, a positive regulator required for increased GCN4 expression in amino acid-starved cells, is thought to function by antagonism of one or more negative regulators encoded by GCD genes. We isolated gcn3c alleles that lead to constitutively derepressed expression of GCN4 and amino acid biosynthetic genes under its control. These mutations map in the protein-coding sequences and, with only one exception, do not increase the steady-state level of GCN3 protein. All of the gcn3c alleles lead to derepression of genes under the general control in the absence of GCN1 and GCN2, two other positive regulators of GCN4 expression. This finding suggests that GCN3 functions downstream from GCN1 and GCN2 in the general control pathway. In accord with this idea, constitutively derepressing alleles of GCN2 are greatly dependent on GCN3 for their derepressed phenotype. The gcn3c alleles that are least dependent on GCN1 and GCN2 for derepression cause slow-growth under nonstarvation conditions. In addition, all of the gcn3c alleles are less effective than wild-type GCN3 in overcoming the temperature-sensitive lethality associated with certain mutations in the negative regulator GCD2. These results suggest that activation of GCN3 positive regulatory function by the gcn3c mutations involves constitutive antagonism of GCD2 function, leading to reduced growth rates and derepression of GCN4 expression in the absence of amino acid starvation.
Collapse
Affiliation(s)
- E M Hannig
- Section on Molecular Genetics of Lower Eukaryotes, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
126
|
Schmidheini T, Mösch HU, Graf R, Braus GH. A GCN4 protein recognition element is not sufficient for GCN4-dependent regulation of transcription in the ARO7 promoter of Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1990; 224:57-64. [PMID: 2277632 DOI: 10.1007/bf00259451] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The gene ARO7 encodes the monofunctional enzyme chorismate mutase, a branch point enzyme in the aromatic amino acid biosynthetic pathway in Saccharomyces cerevisiae. We investigated the transcription of the ARO7 gene. Three 5' ends at positions -36, -56 and -73 and the 3' end of the transcripts 146 bp downstream of the translational stop codon were mapped. As in the promoters of other aromatic amino acid biosynthetic genes, a recognition element for the GCN4 transcriptional activator of amino acid biosynthesis is located 425 base pairs (bp) upstream of the first transcriptional start point. This element binds GCN4 specifically in vitro. Northern analysis and determination of the specific enzyme activity reveals however, that the element is not sufficient to mediate transcriptional regulation by GCN4 in vivo. We thus suggest that in addition to a consensus sequence capable of binding the GCN4 protein other factors like, for example, chromatin structure, determine whether a recognition site for a transcription factor functions as an upstream activation sequence.
Collapse
Affiliation(s)
- T Schmidheini
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Zürich, Switzerland
| | | | | | | |
Collapse
|
127
|
Weiss MA. Thermal unfolding studies of a leucine zipper domain and its specific DNA complex: implications for scissor's grip recognition. Biochemistry 1990; 29:8020-4. [PMID: 2261459 DOI: 10.1021/bi00487a004] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A newly recognized class of eukaryotic transcription factors is characterized by a bipartite sequence motif, consisting of a C-terminal dimerization region (the leucine zipper) and an N-terminal basic region (which mediates DNA binding). In studies of isolated leucine zipper peptides, the dimerization region has been characterized as a coiled coil of parallel alpha-helices. To extend these studies to a functional DNA-binding domain, we describe CD studies of the thermal unfolding and refolding of a 58-residue fragment of GCN4, the yeast homologue of the c-Jun protooncoprotein. This fragment, which contains the complete leucine zipper and basic region, retains the DNA-binding properties of the intact protein. The GCN4 DNA-binding domain exhibits two independent helix-coil unfolding transitions. The major transition (midpoint 65 degrees C) is due to dissociation of the dimer in accord with previous studies of an isolated leucine zipper. A novel pretransition in the temperature range 0-40 degrees C is also observed, which reflects partial stabilization of the nascent helix in the basic region. Remarkably, complete folding of the basic region as an alpha-helix requires specific DNA binding, and the protein-DNA complex exhibits a single cooperative unfolding transition. These results support a major feature of the recently proposed "scissor's grip" model of DNA recognition, in which the basic regions extend from the leucine zipper as bifurcating alpha-helical arms.
Collapse
Affiliation(s)
- M A Weiss
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
128
|
Adams AE, Johnson DI, Longnecker RM, Sloat BF, Pringle JR. CDC42 and CDC43, two additional genes involved in budding and the establishment of cell polarity in the yeast Saccharomyces cerevisiae. J Biophys Biochem Cytol 1990; 111:131-42. [PMID: 2195038 PMCID: PMC2116161 DOI: 10.1083/jcb.111.1.131] [Citation(s) in RCA: 486] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Budding in the yeast Saccharomyces cerevisiae involves a polarized deposition of new cell surface material that is associated with a highly asymmetric disposition of the actin cytoskeleton. Mutants defective in gene CDC24, which are unable to bud or establish cell polarity, have been of great interest with regard to both the mechanisms of cellular morphogenesis and the mechanisms that coordinate cell-cycle events. To gain further insights into these problems, we sought additional mutants with defects in budding. We report here that temperature-sensitive mutants defective in genes CDC42 and CDC43, like cdc24 mutants, fail to bud but continue growth at restrictive temperature, and thus arrest as large unbudded cells. Nearly all of the arrested cells appear to begin nuclear cycles (as judged by the occurrence of DNA replication and the formation and elongation of mitotic spindles), and many go on to complete nuclear division, supporting the hypothesis that the events associated with budding and those of the nuclear cycle represent two independent pathways within the cell cycle. The arrested mutant cells display delocalized cell-surface deposition associated with a loss of asymmetry of the actin cytoskeleton. CDC42 maps distal to the rDNA on chromosome XII and CDC43 maps near lys5 on chromosome VII.
Collapse
Affiliation(s)
- A E Adams
- Department of Biology, University of Michigan, Ann Arbor 48109
| | | | | | | | | |
Collapse
|
129
|
Affiliation(s)
- J M Verdier
- Département de Biologie (SBCH), Centre d'Etudes Nucléaires de Saclay, Gif-Sur-Yvette, France
| |
Collapse
|
130
|
Identification of positive-acting domains in GCN2 protein kinase required for translational activation of GCN4 expression. Mol Cell Biol 1990. [PMID: 2188100 DOI: 10.1128/mcb.10.6.2820] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GCN4 is a transcriptional activator of amino acid-biosynthetic genes in the yeast Saccharomyces cerevisiae. GCN2, a translational activator of GCN4 expression, contains a domain homologous to the catalytic subunit of eucaryotic protein kinases. Substitution of a highly conserved lysine residue in the kinase domain abolished GCN2 regulatory function in vivo and its ability to autophosphorylate in vitro, indicating that GCN2 acts as a protein kinase in stimulating GCN4 expression. Elevated GCN2 gene dosage led to derepression of GCN4 under nonstarvation conditions; however, we found that GCN2 mRNA and protein levels did not increase in wild-type cells in response to amino acid starvation. Therefore, it appears that GCN2 protein kinase function is stimulated posttranslationally in amino acid-starved cells. Three dominant-constitutive GCN2 point mutations were isolated that led to derepressed GCN4 expression under nonstarvation conditions. Two of the GCN2(Con) mutations mapped in the kinase domain itself. The third mapped just downstream from a carboxyl-terminal segment homologous to histidyl-tRNA synthetase (HisRS), which we suggested might function to detect uncharged tRNA in amino acid-starved cells and activate the adjacent protein kinase moiety. Deletions and substitutions in the HisRS-related sequences and in the carboxyl-terminal segment in which one of the GCN2(Con) mutation mapped abolished GCN2 positive regulatory function in vivo without lowering autophosphorylation activity in vitro. These results suggest that sequences flanking the GCN2 protein kinase moiety are positive-acting domains required to increase recognition of physiological substrates or lower the requirement for uncharged tRNA to activate kinase activity under conditions of amino acid starvation.
Collapse
|
131
|
Wek RC, Ramirez M, Jackson BM, Hinnebusch AG. Identification of positive-acting domains in GCN2 protein kinase required for translational activation of GCN4 expression. Mol Cell Biol 1990; 10:2820-31. [PMID: 2188100 PMCID: PMC360643 DOI: 10.1128/mcb.10.6.2820-2831.1990] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
GCN4 is a transcriptional activator of amino acid-biosynthetic genes in the yeast Saccharomyces cerevisiae. GCN2, a translational activator of GCN4 expression, contains a domain homologous to the catalytic subunit of eucaryotic protein kinases. Substitution of a highly conserved lysine residue in the kinase domain abolished GCN2 regulatory function in vivo and its ability to autophosphorylate in vitro, indicating that GCN2 acts as a protein kinase in stimulating GCN4 expression. Elevated GCN2 gene dosage led to derepression of GCN4 under nonstarvation conditions; however, we found that GCN2 mRNA and protein levels did not increase in wild-type cells in response to amino acid starvation. Therefore, it appears that GCN2 protein kinase function is stimulated posttranslationally in amino acid-starved cells. Three dominant-constitutive GCN2 point mutations were isolated that led to derepressed GCN4 expression under nonstarvation conditions. Two of the GCN2(Con) mutations mapped in the kinase domain itself. The third mapped just downstream from a carboxyl-terminal segment homologous to histidyl-tRNA synthetase (HisRS), which we suggested might function to detect uncharged tRNA in amino acid-starved cells and activate the adjacent protein kinase moiety. Deletions and substitutions in the HisRS-related sequences and in the carboxyl-terminal segment in which one of the GCN2(Con) mutation mapped abolished GCN2 positive regulatory function in vivo without lowering autophosphorylation activity in vitro. These results suggest that sequences flanking the GCN2 protein kinase moiety are positive-acting domains required to increase recognition of physiological substrates or lower the requirement for uncharged tRNA to activate kinase activity under conditions of amino acid starvation.
Collapse
Affiliation(s)
- R C Wek
- Unit on Molecular Genetics of Lower Eukaryotes, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
132
|
Ko CH, Buckley AM, Gaber RF. TRK2 is required for low affinity K+ transport in Saccharomyces cerevisiae. Genetics 1990; 125:305-12. [PMID: 2199312 PMCID: PMC1204020 DOI: 10.1093/genetics/125.2.305] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
TRK1, the gene encoding the high affinity K+ transporter in Saccharomyces cerevisiae, is nonessential due to the existence of a functionally independent low affinity transporter. To identify the gene(s) encoding the low affinity K+ transporter, we screened trk1 delta cells for mutants (Kla-) that require higher concentrations of K+ in the medium to support growth. trk1 delta trk2 mutants require up to tenfold higher concentrations of K+ to exhibit normal growth compared to trk1 delta TRK2 cells. K+ and 86Rb+ transport assays demonstrate that the mutant phenotype is due to defective K+ transport (uptake). Each of 38 independent mutants contains a mutation in the same gene, TRK2. Cells deficient for both high and low affinity K+ transport (trk1 delta trk2) exhibit hypersensitivity to low extracellular pH that can be suppressed by high concentrations of K+ but not Na+. TRK1 completely suppresses both the K+ transport defect and low pH hypersensitivity of trk2 cells, suggesting that TRK1 and TRK2 are functionally independent.
Collapse
Affiliation(s)
- C H Ko
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208
| | | | | |
Collapse
|
133
|
Wakem LP, Sherman F. Chromosomal assignment of mutations by specific chromosome loss in the yeast Saccharomyces cerevisiae. Genetics 1990; 125:333-40. [PMID: 2199315 PMCID: PMC1204023 DOI: 10.1093/genetics/125.2.333] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Yeast 2-microns plasmids were integrated near the centromere of a different chromosome in each of 16 cir0 mapping strains of Saccharomyces cerevisiae. The specific chromosomes containing the integrated 2-microns plasmid DNA were lost at a high frequency after crossing the cir0 strains to cir+ strains. A recessive mutation in a cir+ strain can then be easily assigned to its chromosome using this set of mapping strains, since the phenotype of the recessive mutation will be manifested only in diploids having the integrated 2-microns plasmid and the unmapped mutation on homologous chromosomes.
Collapse
Affiliation(s)
- L P Wakem
- Department of Biochemistry, University of Rochester School of Medicine and Dentistry, New York 14642
| | | |
Collapse
|
134
|
Oas TG, McIntosh LP, O'Shea EK, Dahlquist FW, Kim PS. Secondary structure of a leucine zipper determined by nuclear magnetic resonance spectroscopy. Biochemistry 1990; 29:2891-4. [PMID: 2337572 DOI: 10.1021/bi00464a001] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Previous work has shown that a synthetic peptide corresponding to the leucine zipper region of the yeast transcriptional activator GCN4 forms a stable dimer of alpha-helices and that the helices are oriented in a parallel manner. Two-dimensional nuclear magnetic resonance spectroscopy (NMR) is used here to demonstrate that the helix is continuous for at least 32 of the 33 residues in the peptide. The results also indicate that the dimer is symmetric. It is therefore unlikely that the interdigitation model for the structure of leucine zippers is correct, since interdigitation of leucine residues in a parallel dimer would lead to an asymmetric structure. The data are consistent with a coiled-coil structure.
Collapse
Affiliation(s)
- T G Oas
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | | | | | | | | |
Collapse
|
135
|
Arginine restriction induced by delta-N-(phosphonacetyl)-L-ornithine signals increased expression of HIS3, TRP5, CPA1, and CPA2 in Saccharomyces cerevisiae. Mol Cell Biol 1990. [PMID: 2689869 DOI: 10.1128/mcb.9.11.4882] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
delta-N-(Phosphonacetyl)-L-ornithine (PALO), a transition state analog inhibitor of ornithine transcarbamylase, induced arginine limitation in vivo in Saccharomyces cerevisiae. Arginine restriction caused increased expression of HIS3 and TRP5, measured by the beta-galactosidase activity in strains carrying chromosomally integrated fusions of the promoter regions of each gene with the lacZ gene of Escherichia coli. The increase in beta-galactosidase activity induced by PALO was reversed by the addition of arginine and was dependent on GCN4 protein. These results indicate that PALO, like 3-amino-1,2,4-triazole DL-5-methyltryptophan, can be used to study the effect of limitation of a single amino acid, arginine, on the expression of genes under the general amino acid control regulatory system. Arginine deprivation imposed by PALO also caused increased expression of CPA1 and CPA2, coding respectively for the small and large subunits of arginine-specific carbamyl-phosphate synthetase. The observed increase was GCN4 dependent and was genetically separable from arginine-specific repression of CPA1 mRNA translation. The 5'-flanking regions of CPA1 (reported previously) and CPA2 determined in this study each contained at least two copies of the sequence TGACTC, shown to bind GCN4 protein. The beta-galactosidase activities expressed from CPA1- and CPA2-lacZ fusions integrated into the nuclear DNA of gcn4 mutant strains were five to six times less than in the wild type, when both strains were grown under depressed conditions. The gcn4 mutation reduced basal expression of both CPA1 and CPA2. The addition of arginine to strains containing the CPA1-lacZ fusion further reduced beta-galactosidase activity of the gcn4 mutant, indicating independent regulation of the CPA1 gene by the general amino acid control and by arginine-specific repression. In strains overproducing GCN4 protein, the translational control completely overrode transcriptional activation of CPA1 by general amino acid control.
Collapse
|
136
|
Hinnebusch AG. Transcriptional and translational regulation of gene expression in the general control of amino-acid biosynthesis in Saccharomyces cerevisiae. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1990; 38:195-240. [PMID: 2183294 DOI: 10.1016/s0079-6603(08)60712-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- A G Hinnebusch
- Unit on Molecular Genetics of Lower Eukaryotes, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
137
|
Bender A, Pringle JR. Multicopy suppression of the cdc24 budding defect in yeast by CDC42 and three newly identified genes including the ras-related gene RSR1. Proc Natl Acad Sci U S A 1989; 86:9976-80. [PMID: 2690082 PMCID: PMC298625 DOI: 10.1073/pnas.86.24.9976] [Citation(s) in RCA: 327] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Genes CDC24, CDC42, and CDC43 are required for the establishment of cell polarity and the localization of secretion in Saccharomyces cerevisiae; mutants defective in these genes fail to form buds and display isotropic expansion of the cell surface. To identify other genes that may be involved in these processes, we screened yeast genomic DNA libraries for heterologous genes that, when overexpressed from a plasmid, can suppress a temperature-sensitive cdc24 mutation. We identified four such genes. One of these proved to be CDC42, which has previously been shown to be a member of the rho (ras-homologous) family of genes, and a second is a newly identified ras-related gene that we named RSR1. RSR1 maps between CDC62 and ADE3 on the right arm of chromosome VII; its predicted product is approximately 50% identical to other proteins in the ras family. Deletion of RSR1 is nonlethal but disrupts the normal pattern of bud site selection. Although both CDC42 and RSR1 can suppress cdc24 and both appear to encode GTP-binding proteins, these genes do not themselves appear to be functionally interchangeable. However, one of the other genes that was isolated by virtue of its ability to suppress cdc24 can also suppress cdc42. This gene, named MSB1, maps between ADE9 and HIS3 on the right arm of chromosome XV.
Collapse
Affiliation(s)
- A Bender
- Department of Biology, University of Michigan, Ann Arbor 48109
| | | |
Collapse
|
138
|
rRNA transcription initiation is decreased by inhibitors of the yeast cell cycle control step “start”. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)47145-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
139
|
Kinney DM, Lusty CJ. Arginine restriction induced by delta-N-(phosphonacetyl)-L-ornithine signals increased expression of HIS3, TRP5, CPA1, and CPA2 in Saccharomyces cerevisiae. Mol Cell Biol 1989; 9:4882-8. [PMID: 2689869 PMCID: PMC363638 DOI: 10.1128/mcb.9.11.4882-4888.1989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
delta-N-(Phosphonacetyl)-L-ornithine (PALO), a transition state analog inhibitor of ornithine transcarbamylase, induced arginine limitation in vivo in Saccharomyces cerevisiae. Arginine restriction caused increased expression of HIS3 and TRP5, measured by the beta-galactosidase activity in strains carrying chromosomally integrated fusions of the promoter regions of each gene with the lacZ gene of Escherichia coli. The increase in beta-galactosidase activity induced by PALO was reversed by the addition of arginine and was dependent on GCN4 protein. These results indicate that PALO, like 3-amino-1,2,4-triazole DL-5-methyltryptophan, can be used to study the effect of limitation of a single amino acid, arginine, on the expression of genes under the general amino acid control regulatory system. Arginine deprivation imposed by PALO also caused increased expression of CPA1 and CPA2, coding respectively for the small and large subunits of arginine-specific carbamyl-phosphate synthetase. The observed increase was GCN4 dependent and was genetically separable from arginine-specific repression of CPA1 mRNA translation. The 5'-flanking regions of CPA1 (reported previously) and CPA2 determined in this study each contained at least two copies of the sequence TGACTC, shown to bind GCN4 protein. The beta-galactosidase activities expressed from CPA1- and CPA2-lacZ fusions integrated into the nuclear DNA of gcn4 mutant strains were five to six times less than in the wild type, when both strains were grown under depressed conditions. The gcn4 mutation reduced basal expression of both CPA1 and CPA2. The addition of arginine to strains containing the CPA1-lacZ fusion further reduced beta-galactosidase activity of the gcn4 mutant, indicating independent regulation of the CPA1 gene by the general amino acid control and by arginine-specific repression. In strains overproducing GCN4 protein, the translational control completely overrode transcriptional activation of CPA1 by general amino acid control.
Collapse
Affiliation(s)
- D M Kinney
- Department of Molecular Genetics, Public Health Research Institute, New York, New York 10016
| | | |
Collapse
|
140
|
Mortimer RK, Schild D, Contopoulou CR, Kans JA. Genetic map of Saccharomyces cerevisiae, edition 10. Yeast 1989; 5:321-403. [PMID: 2678811 DOI: 10.1002/yea.320050503] [Citation(s) in RCA: 250] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- R K Mortimer
- Department of Molecular and Cellular Biology, University of California, Berkeley 94720
| | | | | | | |
Collapse
|
141
|
Paddon CJ, Hinnebusch AG. gcd12 mutations are gcn3-dependent alleles of GCD2, a negative regulator of GCN4 in the general amino acid control of Saccharomyces cerevisiae. Genetics 1989; 122:543-50. [PMID: 2668116 PMCID: PMC1203728 DOI: 10.1093/genetics/122.3.543] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
GCD12 encodes a translational repressor of the GCN4 protein, a transcriptional activator of amino acid biosynthetic genes in the yeast Saccharomyces cerevisiae. gcd12 mutations override the requirement for the GCN2 and GCN3 gene products for derepression of GCN4 expression, suggesting that GCN2 and GCN3 function indirectly as positive regulators by negative regulation of GCD12. In addition to their regulatory phenotype, gcd12 mutants are temperature-sensitive for growth (Tsm-) and, as shown here, deletion of the GCD12 gene is unconditionally lethal. Both the regulatory and the Tsm- phenotypes associated with gcd12 point mutations are completely overcome by wild-type GCN3, implying that GCN3 can promote or partially substitute for the functions of GCD12 in normal growth conditions even though it antagonizes GCD12 regulatory function in starvation conditions. The GCD12 gene has been cloned and mapped to the right arm of chromosome VII, very close to the map position reported for GCD2. We demonstrate that GCD12 and GCD2 are the same genes; however, unlike gcd12 mutations, the growth defect and constitutive derepression phenotypes associated with the gcd2-1 mutation are expressed in the presence of the wild-type GCN3 gene. These findings can be explained by either of two alternative hypotheses: (1) gcd12 mutations affect a domain of the GCD2 protein that directly interacts with GCN3, and complex formation stabilizes mutant gcd12 (but not gcd2-1) gene products; (2) gcd12 mutations selectively impair one function of GCD2 that is replaceable by GCN3, whereas gcd2-1 inactivates a different GCD2 function for which GCN3 cannot substitute. Both models imply a close interaction between these two positive and negative regulators in general amino acid control.
Collapse
Affiliation(s)
- C J Paddon
- Unit on Molecular Genetics of Lower Eukaryotes, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | | |
Collapse
|
142
|
Paddon CJ, Hannig EM, Hinnebusch AG. Amino acid sequence similarity between GCN3 and GCD2, positive and negative translational regulators of GCN4: evidence for antagonism by competition. Genetics 1989; 122:551-9. [PMID: 2668117 PMCID: PMC1203729 DOI: 10.1093/genetics/122.3.551] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The GCD2 gene product is required in conditions of amino acid sufficiency to repress the synthesis of GCN4, a transcriptional activator of amino acid biosynthetic genes in Saccharomyces cerevisiae. GCD2 is also required unconditionally for cell viability. The constitutive derepression of GCN4 expression and temperature sensitivity for growth associated with GCD2 alleles, known as gcd12 mutations, are completely masked by wild-type GCN3, a positive regulator of GCN4 expression. This observation suggests that GCN3 can promote or at least partially substitute for GCD2 function in normal growth conditions, while acting as an antagonist of GCD2 in amino acid starvation conditions. We report here that the predicted amino acid sequence of GCN3 shows extensive similarity with the carboxyl-terminal portion of GCD2. Based on this finding, it seems likely that gcd12 mutations specifically affect the domain of GCD2 that is similar in sequence to GCN3. We propose that GCN3 can substitute for this domain in a gcd12 mutant grown in normal growth conditions, and that modification of GCN3 in starvation conditions causes it to interfere with, rather than substitute for GCD2 function. A gcd2 deletion and gcd2-1 are each expected to inactivate a second domain for which GCN3 cannot substitute, accounting for the inability of GCN3 to mask the phenotypes associated with these mutations.
Collapse
Affiliation(s)
- C J Paddon
- Unit of Molecular Genetics of Lower Eukaryotes, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | | | | |
Collapse
|
143
|
Wek RC, Jackson BM, Hinnebusch AG. Juxtaposition of domains homologous to protein kinases and histidyl-tRNA synthetases in GCN2 protein suggests a mechanism for coupling GCN4 expression to amino acid availability. Proc Natl Acad Sci U S A 1989; 86:4579-83. [PMID: 2660141 PMCID: PMC287314 DOI: 10.1073/pnas.86.12.4579] [Citation(s) in RCA: 218] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The GCN2 protein of Saccharomyces cerevisiae stimulates the expression of amino acid biosynthetic genes under conditions of amino acid starvation by derepressing GCN4, a transcriptional activator of these genes. GCN2 contains sequences homologous to the catalytic domain of protein kinases. We show here that substitution of a highly conserved lysine in the presumed ATP-binding site of this domain impairs the derepression of histidine biosynthetic genes under GCN4 control. This result supports the idea that protein kinase activity is required for GCN2 positive regulatory function. Determination of the nucleotide sequence of the entire GCN2 complementation unit, and measurement of the molecular weight of GCN2 protein expressed in vivo, indicate that GCN2 is a Mr approximately 180,000 protein and contains a Mr approximately 60,000 segment homologous to histidyl-tRNA synthetases (HisRSs) juxtaposed to the protein kinase domain. Several two-codon insertion mutations in the HisRS-related coding sequences inactivate GCN2 regulatory function. Based on these results, we propose that the GCN2 HisRS domain responds to the presence of uncharged tRNA by activating the adjacent protein kinase moiety, thus providing a means of coupling GCN2-mediated derepression of GCN4 expression to the availability of amino acids.
Collapse
Affiliation(s)
- R C Wek
- Unit on Molecular Genetics of Lower Eukaryotes, National Institute of Child Health and Human Development, Bethesda, MD 20892
| | | | | |
Collapse
|
144
|
The first and fourth upstream open reading frames in GCN4 mRNA have similar initiation efficiencies but respond differently in translational control to change in length and sequence. Mol Cell Biol 1989. [PMID: 3072481 DOI: 10.1128/mcb.8.12.5439] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The third and fourth AUG codons in GCN4 mRNA efficiently repress translation of the GCN4-coding sequences under normal growth conditions. The first AUG codon is approximately 30-fold less inhibitory and is required under amino acid starvation conditions to override the repressing effects of AUG codons 3 and 4. lacZ fusions constructed to functional, elongated versions of the first and fourth upstream open reading frames (URFs) were used to show that AUG codons 1 and 4 function similarly as efficient translational start sites in vivo, raising the possibility that steps following initiation distinguish the regulatory properties of URFs 1 and 4. In accord with this idea, we observed different consequences of changing the length and termination site of URF1 versus changing those of URFs 3 and 4. The latter were lengthened considerably, with little or no effect on regulation. In fact, the function of URFs 3 and 4 was partially reconstituted with a completely heterologous URF. By contrast, certain mutations that lengthen URF1 impaired its positive regulatory function nearly as much as removing its AUG codon did. The same mutations also made URF1 a much more inhibitory element when it was present alone in the mRNA leader. These results strongly suggest that URFs 1 and 4 both function in regulation as translated coding sequences. To account for the phenotypes of the URF1 mutations, we suggest the most ribosomes normally translate URF1 and that the mutations reduce the number of ribosomes that are able to complete URF1 translation and resume scanning downstream. This effect would impair URF1 positive regulatory function if ribosomes must first translate URF1 in order to overcome the strong translational block at the 3'-proximal URFs. Because URF1-lacZ fusions were translated at the same rate under repressing and derepressing conditions, it appears that modulating initiation at URF1 is not the means that is used to restrict the regulatory consequences of URF1 translation to starvation conditions.
Collapse
|
145
|
Abstract
The mouse H19 gene was identified by virtue of its coordinate regulation with the mouse alpha-fetoprotein gene. Both genes are expressed in the fetal liver, gut, and visceral endoderm of the yolk sac and are repressed shortly after birth in the liver and gut. They are both under the control of two trans-acting loci: raf, which affects the adult basal levels of the two mRNAs, and Rif, which affects their inducibility during liver regeneration. One crucial difference between the two genes is the activation of the H19 gene in mesoderm derivatives, skeletal and cardiac muscle. As a strategy for explaining both the similarities and differences in their modes of expression, the regulatory domains responsible for the expression of the H19 gene in liver were identified by transiently introducing the gene into a human hepatoma cell line. Two regions necessary for high-level expression of the gene could be identified, a promoter-proximal domain immediately preceding the start of transcription and an enhancer domain which lies between 5 and 6.5 kilobases 3' of the polyadenylation site. The 3' domain consists of two separable enhancer elements, each of which exhibits the properties of tissue-specific enhancers. Nucleotide sequence comparisons between the two H19 and three alpha-fetoprotein enhancers revealed limited similarities which are candidates for binding of common regulatory factors. Sequences which lie 3' of the gene are also required for the expression of the H19 gene following differentiation of teratocarcinoma cells into visceral endoderm.
Collapse
|
146
|
Molecular analysis of GCN3, a translational activator of GCN4: evidence for posttranslational control of GCN3 regulatory function. Mol Cell Biol 1989. [PMID: 3062370 DOI: 10.1128/mcb.8.11.4808] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GCN4 encodes a transcriptional activator of amino acid biosynthetic genes in Saccharomyces cerevisiae. The GCN3 product is a positive regulator required for increased synthesis of GCN4 protein in amino acid-starved cells. GCN3 appears to act indirectly by antagonizing GCD-encoded negative regulators of GCN4 expression under starvation conditions; however, GCN3 can also suppress the effects of gcd12 mutations under nonstarvation conditions. These results imply that the GCN3 product can promote either repression or activation of GCN4 expression depending on amino acid availability. We present a complete physical description of the GCN3 gene and its transcript, plus measurements of GCN3 expression at the transcriptional and translational levels under different growth conditions. GCN3 encodes a 305-amino-acid polypeptide with no significant homology to any other known protein sequence. GCN3 mRNA contains no leader AUG codons, and no potential GCN4 binding sites were found in GCN3 5' noncoding DNA. In accord with the absence of these regulatory sequences found at other genes in the general control system, GCN3 mRNA and a GCN3-lacZ fusion enzyme are present at similar levels under both starvation and nonstarvation conditions. These data suggest that modulation of GCN3 regulatory function in response to amino acid availability occurs posttranslationally. A gcn3 deletion leads to unconditional lethality in a gcd1-101 mutant, supporting the idea that GCN3 is expressed under normal growth conditions and cooperates with the GCD1 product under these circumstances to carry out an essential cellular function. We describe a point mutation that adds three amino acids to the carboxyl terminus of GCN3, which inactivates its positive regulatory function required under starvation conditions without impairing its ability to promote functions carried out by GCD12 under nonstarvation conditions.
Collapse
|
147
|
Langdon WY, Hartley JW, Klinken SP, Ruscetti SK, Morse HC. v-cbl, an oncogene from a dual-recombinant murine retrovirus that induces early B-lineage lymphomas. Proc Natl Acad Sci U S A 1989; 86:1168-72. [PMID: 2784003 PMCID: PMC286647 DOI: 10.1073/pnas.86.4.1168] [Citation(s) in RCA: 255] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cas NS-1 is an acutely transforming murine retrovirus that induces pre-B and pro-B cell lymphomas. Molecular cloning showed it was generated from the ecotropic Cas-Br-M virus by sequential recombinations with endogenous retroviral sequences and a cellular oncogene. The oncogene sequence shows no homology with known oncogenes but some similarity to the yeast transcriptional activator GCN4. A 100-kDa gag-cbl fusion protein, with no detectable kinase activity, is responsible for the cellular transformation. The cellular homologue of v-cbl, present in mouse and human DNA, is expressed in a range of hemopoietic lineages.
Collapse
Affiliation(s)
- W Y Langdon
- Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
148
|
Mueller PP, Jackson BM, Miller PF, Hinnebusch AG. The first and fourth upstream open reading frames in GCN4 mRNA have similar initiation efficiencies but respond differently in translational control to change in length and sequence. Mol Cell Biol 1988; 8:5439-47. [PMID: 3072481 PMCID: PMC365647 DOI: 10.1128/mcb.8.12.5439-5447.1988] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The third and fourth AUG codons in GCN4 mRNA efficiently repress translation of the GCN4-coding sequences under normal growth conditions. The first AUG codon is approximately 30-fold less inhibitory and is required under amino acid starvation conditions to override the repressing effects of AUG codons 3 and 4. lacZ fusions constructed to functional, elongated versions of the first and fourth upstream open reading frames (URFs) were used to show that AUG codons 1 and 4 function similarly as efficient translational start sites in vivo, raising the possibility that steps following initiation distinguish the regulatory properties of URFs 1 and 4. In accord with this idea, we observed different consequences of changing the length and termination site of URF1 versus changing those of URFs 3 and 4. The latter were lengthened considerably, with little or no effect on regulation. In fact, the function of URFs 3 and 4 was partially reconstituted with a completely heterologous URF. By contrast, certain mutations that lengthen URF1 impaired its positive regulatory function nearly as much as removing its AUG codon did. The same mutations also made URF1 a much more inhibitory element when it was present alone in the mRNA leader. These results strongly suggest that URFs 1 and 4 both function in regulation as translated coding sequences. To account for the phenotypes of the URF1 mutations, we suggest the most ribosomes normally translate URF1 and that the mutations reduce the number of ribosomes that are able to complete URF1 translation and resume scanning downstream. This effect would impair URF1 positive regulatory function if ribosomes must first translate URF1 in order to overcome the strong translational block at the 3'-proximal URFs. Because URF1-lacZ fusions were translated at the same rate under repressing and derepressing conditions, it appears that modulating initiation at URF1 is not the means that is used to restrict the regulatory consequences of URF1 translation to starvation conditions.
Collapse
Affiliation(s)
- P P Mueller
- Unit on Molecular Genetics of Lower Eukaryotes, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
149
|
Hannig EM, Hinnebusch AG. Molecular analysis of GCN3, a translational activator of GCN4: evidence for posttranslational control of GCN3 regulatory function. Mol Cell Biol 1988; 8:4808-20. [PMID: 3062370 PMCID: PMC365574 DOI: 10.1128/mcb.8.11.4808-4820.1988] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
GCN4 encodes a transcriptional activator of amino acid biosynthetic genes in Saccharomyces cerevisiae. The GCN3 product is a positive regulator required for increased synthesis of GCN4 protein in amino acid-starved cells. GCN3 appears to act indirectly by antagonizing GCD-encoded negative regulators of GCN4 expression under starvation conditions; however, GCN3 can also suppress the effects of gcd12 mutations under nonstarvation conditions. These results imply that the GCN3 product can promote either repression or activation of GCN4 expression depending on amino acid availability. We present a complete physical description of the GCN3 gene and its transcript, plus measurements of GCN3 expression at the transcriptional and translational levels under different growth conditions. GCN3 encodes a 305-amino-acid polypeptide with no significant homology to any other known protein sequence. GCN3 mRNA contains no leader AUG codons, and no potential GCN4 binding sites were found in GCN3 5' noncoding DNA. In accord with the absence of these regulatory sequences found at other genes in the general control system, GCN3 mRNA and a GCN3-lacZ fusion enzyme are present at similar levels under both starvation and nonstarvation conditions. These data suggest that modulation of GCN3 regulatory function in response to amino acid availability occurs posttranslationally. A gcn3 deletion leads to unconditional lethality in a gcd1-101 mutant, supporting the idea that GCN3 is expressed under normal growth conditions and cooperates with the GCD1 product under these circumstances to carry out an essential cellular function. We describe a point mutation that adds three amino acids to the carboxyl terminus of GCN3, which inactivates its positive regulatory function required under starvation conditions without impairing its ability to promote functions carried out by GCD12 under nonstarvation conditions.
Collapse
Affiliation(s)
- E M Hannig
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | | |
Collapse
|
150
|
Abstract
The mouse H19 gene was identified by virtue of its coordinate regulation with the mouse alpha-fetoprotein gene. Both genes are expressed in the fetal liver, gut, and visceral endoderm of the yolk sac and are repressed shortly after birth in the liver and gut. They are both under the control of two trans-acting loci: raf, which affects the adult basal levels of the two mRNAs, and Rif, which affects their inducibility during liver regeneration. One crucial difference between the two genes is the activation of the H19 gene in mesoderm derivatives, skeletal and cardiac muscle. As a strategy for explaining both the similarities and differences in their modes of expression, the regulatory domains responsible for the expression of the H19 gene in liver were identified by transiently introducing the gene into a human hepatoma cell line. Two regions necessary for high-level expression of the gene could be identified, a promoter-proximal domain immediately preceding the start of transcription and an enhancer domain which lies between 5 and 6.5 kilobases 3' of the polyadenylation site. The 3' domain consists of two separable enhancer elements, each of which exhibits the properties of tissue-specific enhancers. Nucleotide sequence comparisons between the two H19 and three alpha-fetoprotein enhancers revealed limited similarities which are candidates for binding of common regulatory factors. Sequences which lie 3' of the gene are also required for the expression of the H19 gene following differentiation of teratocarcinoma cells into visceral endoderm.
Collapse
Affiliation(s)
- H Yoo-Warren
- Department of Molecular Biology, Princeton University, New Jersey 08544
| | | | | | | |
Collapse
|