101
|
Huang S. On the intrinsic inevitability of cancer: from foetal to fatal attraction. Semin Cancer Biol 2011; 21:183-99. [PMID: 21640825 DOI: 10.1016/j.semcancer.2011.05.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 03/02/2011] [Accepted: 05/09/2011] [Indexed: 01/07/2023]
Abstract
The cracks in the paradigm of oncogenic mutations and somatic evolution as driving force of tumorigenesis, lucidly exposed by the dynamic heterogeneity of "cancer stem cells" or the diffuse results of cancer genome sequencing projects, indicate the need for a more encompassing theory of cancer that reaches beyond the current proximate explanations based on individual genetic pathways. One such integrative concept, derived from first principles of the dynamics of gene regulatory networks, is that cancerous cell states are attractor states, just like normal cell types are. Here we extend the concept of cancer attractors to illuminate a more profound property of cancer initiation: its inherent inevitability in the light of metazoan evolution. Using Waddington's Epigenetic Landscape as a conceptual aid, for which we present a mathematical and evolutionary foundation, we propose that cancer is intrinsically linked to ontogenesis and phylogenesis. This explanatory rather than enumerating review uses a formal argumentation structure that is atypical in modern experimental biology but may hopefully offer a new coherent perspective to reconcile many conflicts between new findings and the old thinking in the categories of linear oncogenic pathways.
Collapse
Affiliation(s)
- Sui Huang
- Institute for Biocomplexity and Informatics, University of Calgary, Alberta, Canada.
| |
Collapse
|
102
|
Abstract
Most human cancer types result from the accumulation of multiple genetic and epigenetic alterations in a single cell. Once the first change (or changes) have arisen, tumorigenesis is initiated and the subsequent emergence of additional alterations drives progression to more aggressive and ultimately invasive phenotypes. Elucidation of the dynamics of cancer initiation is of importance for an understanding of tumor evolution and cancer incidence data. In this paper, we develop a novel mathematical framework to study the processes of cancer initiation. Cells at risk of accumulating oncogenic mutations are organized into small compartments of cells and proliferate according to a stochastic process. During each cell division, an (epi)genetic alteration may arise which leads to a random fitness change, drawn from a probability distribution. Cancer is initiated when a cell gains a fitness sufficiently high to escape from the homeostatic mechanisms of the cell compartment. To investigate cancer initiation during a human lifetime, a 'race' between this fitness process and the aging process of the patient is considered; the latter is modeled as a second stochastic Markov process in an aging dimension. This model allows us to investigate the dynamics of cancer initiation and its dependence on the mutational fitness distribution. Our framework also provides a methodology to assess the effects of different life expectancy distributions on lifetime cancer incidence. We apply this methodology to colorectal tumorigenesis while considering life expectancy data of the US population to inform the dynamics of the aging process. We study how the probability of cancer initiation prior to death, the time until cancer initiation, and the mutational profile of the cancer-initiating cell depends on the shape of the mutational fitness distribution and life expectancy of the population.
Collapse
Affiliation(s)
- Jasmine Foo
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | |
Collapse
|
103
|
Rubin H. Fields and field cancerization: the preneoplastic origins of cancer: asymptomatic hyperplastic fields are precursors of neoplasia, and their progression to tumors can be tracked by saturation density in culture. Bioessays 2011; 33:224-31. [PMID: 21254148 DOI: 10.1002/bies.201000067] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Most basic research on cancer concerns genetic changes in benign and malignant tumors. Yet evidence indicates that the majority of the mutations in tumors occur in the preneoplastic field stage of their development. That early stage is represented by grossly invisible, broad regions of "field cancerization" which have not, heretofore, been operationally analyzed in cell culture. Conditions are described for quantitating preneoplasia by increased saturation density followed by progression to transformation. These parameters are driven by Darwinian selection of spontaneously occurring, cumulative mutations, in accordance with recent genomic analyses of human cancer, just as it is in the evolution of species. The cell culture model will allow correlation of the preneoplastic increases in saturation density with genetic changes, and development of methods for demarcating fields during surgery so that they can be excised along with the tumor, thereby reducing the possibility of recurrence at the site.
Collapse
Affiliation(s)
- Harry Rubin
- Department of Molecular and Cell Biology, Life Sciences Addition, University of California, Berkeley, USA.
| |
Collapse
|
104
|
Zhu T, Hu Y, Ma ZM, Zhang DX, Li T, Yang Z. Efficient simulation under a population genetics model of carcinogenesis. Bioinformatics 2011; 27:837-43. [PMID: 21247938 DOI: 10.1093/bioinformatics/btr025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
MOTIVATION Cancer is well known to be the end result of somatic mutations that disrupt normal cell division. The number of such mutations that have to be accumulated in a cell before cancer develops depends on the type of cancer. The waiting time T(m) until the appearance of m mutations in a cell is thus an important quantity in population genetics models of carcinogenesis. Such models are often difficult to analyze theoretically because of the complex interactions of mutation, drift and selection. They are also computationally expensive to simulate because of the large number of cells and the low mutation rate. RESULTS We develop an efficient algorithm for simulating the waiting time T(m) until m mutations under a population genetics model of cancer development. We use an exact algorithm to simulate evolution of small cell populations and coarse-grained τ-leaping approximation to handle large populations. We compared our hybrid simulation algorithm with the exact algorithm in small populations and with available asymptotic results for large populations. The comparison suggested that our algorithm is accurate and computationally efficient. We used the algorithm to study the waiting time for up to 20 mutations under a Moran model with variable population sizes. Our new algorithm may be useful for studying realistic models of carcinogenesis, which incorporates variable mutation rates and fitness effects.
Collapse
Affiliation(s)
- Tianqi Zhu
- School of Mathematical Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | |
Collapse
|
105
|
Naugler CT. Population genetics of cancer cell clones: possible implications of cancer stem cells. Theor Biol Med Model 2010; 7:42. [PMID: 21062473 PMCID: PMC2994797 DOI: 10.1186/1742-4682-7-42] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 11/09/2010] [Indexed: 11/13/2022] Open
Abstract
Background The population dynamics of the various clones of cancer cells existing within a tumour is complex and still poorly understood. Cancer cell clones can be conceptualized as sympatric asexual species, and as such, the application of theoretical population genetics as it pertains to asexual species may provide additional insights. Results The number of generations of tumour cells within a cancer has been estimated at a minimum of 40, but high cancer cell mortality rates suggest that the number of cell generations may actually be in the hundreds. Such a large number of generations would easily allow natural selection to drive clonal evolution assuming that selective advantages of individual clones are within the range reported for free-living animal species. Tumour cell clonal evolution could also be driven by variation in the intrinsic rates of increase of different clones or by genetic drift. In every scenario examined, the presence of cancer stem cells would require lower selection pressure or less variation in intrinsic rates of increase. Conclusions The presence of cancer stem cells may result in more rapid clonal evolution. Specific predictions from theoretical population genetics may lead to a greater understanding of this process.
Collapse
Affiliation(s)
- Christopher T Naugler
- Department of Pathology and Laboratory Medicine, University of Calgary and Calgary Laboratory Services, C414, Diagnostic and Scientific Centre, 9, 3535 Research Road NW, Calgary AB, T2L 2K8 Canada.
| |
Collapse
|
106
|
Beckman RA. Efficiency of carcinogenesis: is the mutator phenotype inevitable? Semin Cancer Biol 2010; 20:340-52. [PMID: 20934514 DOI: 10.1016/j.semcancer.2010.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 10/01/2010] [Indexed: 11/15/2022]
Abstract
Cancer development requires multiple oncogenic mutations. Pathogenic mechanisms which accelerate this process may be favored carcinogenic pathways. Mutator mutations are mutations in genetic stability genes, and increase the mutation rate, speeding up the accumulation of oncogenic mutations. The mutator hypothesis states that mutator mutations play a critical role in carcinogenesis. Alternatively, tumors might arise by mutations occurring at the normal rate followed by selection and expansion of various premalignant lineages on the path to cancer. This alternative pathway is a significant argument against the mutator hypothesis. Mutator mutations may also lead to accumulation of deleterious mutations, which could lead to extinction of premalignant lineages before they become cancerous, another argument against the mutator hypothesis. Finally, the need for acquisition of a mutator mutation imposes an additional step on the carcinogenic process. Accordingly, the mutator hypothesis has been a seminal but controversial idea for several decades despite considerable experimental and theoretical work. To resolve this debate, the concept of efficiency has been introduced as a metric for comparing carcinogenic mechanisms, and a new theoretical approach of focused quantitative modeling has been applied. The results demonstrate that, given what is already known, the predominance of mutator mechanisms is likely inevitable, as they overwhelm less efficient non-mutator pathways to cancer.
Collapse
Affiliation(s)
- Robert A Beckman
- Department of Oncology Clinical Research, Daiichi Sankyo Pharmaceutical Development, Edison, NJ 08837, USA.
| |
Collapse
|
107
|
How Darwinian models inform therapeutic failure initiated by clonal heterogeneity in cancer medicine. Br J Cancer 2010; 103:1139-43. [PMID: 20877357 PMCID: PMC2967073 DOI: 10.1038/sj.bjc.6605912] [Citation(s) in RCA: 303] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Carcinogenesis is an evolutionary process that establishes the ‘hallmarks of cancer’ by natural selection of cell clones that have acquired advantageous heritable characteristics. Evolutionary adaptation has also been proposed as a mechanism that promotes drug resistance during systemic cancer therapy. This review summarises the evidence for the evolution of resistance to cytotoxic and targeted anti-cancer drugs according to Darwinian models and highlights the roles of genomic instability and high intra-tumour genetic heterogeneity as major accelerators of this evolutionary process. Clinical implications and strategies that may prevent the evolution of resistance or target the origins of genetic heterogeneity are discussed. New technologies to measure intra-tumour heterogeneity and translational research on serial biopsies of cancer lesions during and after therapeutic intervention are identified as key areas to further the understanding of determinants and mechanisms of the evolution of drug resistance.
Collapse
|
108
|
Samuelsson JK, Alonso S, Yamamoto F, Perucho M. DNA fingerprinting techniques for the analysis of genetic and epigenetic alterations in colorectal cancer. Mutat Res 2010; 693:61-76. [PMID: 20851135 DOI: 10.1016/j.mrfmmm.2010.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 08/07/2010] [Accepted: 08/24/2010] [Indexed: 01/03/2023]
Abstract
Genetic somatic alterations are fundamental hallmarks of cancer. In addition to point and other small mutations targeting cancer genes, solid tumors often exhibit aneuploidy as well as multiple chromosomal rearrangements of large fragments of the genome. Whether somatic chromosomal alterations and aneuploidy are a driving force or a mere consequence of tumorigenesis remains controversial. Recently it became apparent that not only genetic but also epigenetic alterations play a major role in carcinogenesis. Epigenetic regulation mechanisms underlie the maintenance of cell identity crucial for development and differentiation. These epigenetic regulatory mechanisms have been found substantially altered during cancer development and progression. In this review, we discuss approaches designed to analyze genetic and epigenetic alterations in colorectal cancer, especially DNA fingerprinting approaches to detect changes in DNA copy number and methylation. DNA fingerprinting techniques, despite their modest throughput, played a pivotal role in significant discoveries in the molecular basis of colorectal cancer. The aim of this review is to revisit the fingerprinting technologies employed and the oncogenic processes that they unveiled.
Collapse
Affiliation(s)
- Johanna K Samuelsson
- Sanford-Burnham Medical Research Institute (SBMRI), 10901N. Torrey Pines Rd, La Jolla, CA 92037, United States
| | | | | | | |
Collapse
|
109
|
Cancer: evolutionary, genetic and epigenetic aspects. Clin Epigenetics 2010; 1:85-100. [PMID: 22704202 PMCID: PMC3365664 DOI: 10.1007/s13148-010-0010-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 08/31/2010] [Indexed: 12/22/2022] Open
Abstract
There exist two paradigms about the nature of cancer. According to the generally accepted one, cancer is a by-product of design limitations of a multi-cellular organism (Greaves, Nat Rev Cancer 7:213–221, 2007). The essence of the second resides in the question “Does cancer kill the individual and save the species?” (Sommer, Hum Mutat 3:166–169, 1994). Recent data on genetic and epigenetic mechanisms of cell transformation summarized in this review support the latter point of view, namely that carcinogenesis is an evolutionary conserved phenomenon—a programmed death of an organism. It is assumed that cancer possesses an important function of altruistic nature: as a mediator of negative selection, it serves to preserve integrity of species gene pool and to mediate its evolutionary adjustment. Cancer fulfills its task due apparently to specific killer function, understanding mechanism of which may suggest new therapeutic strategy.
Collapse
|
110
|
Schöllnberger H, Beerenwinkel N, Hoogenveen R, Vineis P. Cell selection as driving force in lung and colon carcinogenesis. Cancer Res 2010; 70:6797-803. [PMID: 20656803 PMCID: PMC3085130 DOI: 10.1158/0008-5472.can-09-4392] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Carcinogenesis is the result of mutations and subsequent clonal expansions of mutated, selectively advantageous cells. To investigate the relative contributions of mutation versus cell selection in tumorigenesis, we compared two mathematical models of carcinogenesis in two different cancer types: lung and colon. One approach is based on a population genetics model, the Wright-Fisher process, whereas the other approach is the two-stage clonal expansion model. We compared the dynamics of tumorigenesis predicted by the two models in terms of the time period until the first malignant cell appears, which will subsequently form a tumor. The mean waiting time to cancer has been calculated approximately for the evolutionary colon cancer model. Here, we derive new analytic approximations to the median waiting time for the two-stage lung cancer model and for a multistage approximation to the Wright-Fisher process. Both equations show that the waiting time to cancer is dominated by the selective advantage per mutation and the net clonal expansion rate, respectively, whereas the mutation rate has less effect. Our comparisons support the idea that the main driving force in lung and colon carcinogenesis is Darwinian cell selection.
Collapse
Affiliation(s)
- Helmut Schöllnberger
- University of Salzburg, Department of Materials Engineering and Physics, Salzburg, Austria.
| | | | | | | |
Collapse
|
111
|
Abstract
Although now dogma, the idea that nonvertebrate organisms such as yeast, worms, and flies could inform, and in some cases even revolutionize, our understanding of oncogenesis in humans was not immediately obvious. Aided by the conservative nature of evolution and the persistence of a cohort of devoted researchers, the role of model organisms as a key tool in solving the cancer problem has, however, become widely accepted. In this review, we focus on the nematode Caenorhabditis elegans and its diverse and sometimes surprising contributions to our understanding of the tumorigenic process. Specifically, we discuss findings in the worm that address a well-defined set of processes known to be deregulated in cancer cells including cell cycle progression, growth factor signaling, terminal differentiation, apoptosis, the maintenance of genome stability, and developmental mechanisms relevant to invasion and metastasis.
Collapse
Affiliation(s)
- Natalia V. Kirienko
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| | - Kumaran Mani
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| | - David S. Fay
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| |
Collapse
|
112
|
Little MP. Cancer models, genomic instability and somatic cellular Darwinian evolution. Biol Direct 2010; 5:19; discussion 19. [PMID: 20406436 PMCID: PMC2873266 DOI: 10.1186/1745-6150-5-19] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 04/20/2010] [Indexed: 01/03/2023] Open
Abstract
The biology of cancer is critically reviewed and evidence adduced that its development can be modelled as a somatic cellular Darwinian evolutionary process. The evidence for involvement of genomic instability (GI) is also reviewed. A variety of quasi-mechanistic models of carcinogenesis are reviewed, all based on this somatic Darwinian evolutionary hypothesis; in particular, the multi-stage model of Armitage and Doll (Br. J. Cancer 1954:8;1-12), the two-mutation model of Moolgavkar, Venzon, and Knudson (MVK) (Math. Biosci. 1979:47;55-77), the generalized MVK model of Little (Biometrics 1995:51;1278-1291) and various generalizations of these incorporating effects of GI (Little and Wright Math. Biosci. 2003:183;111-134; Little et al. J. Theoret. Biol. 2008:254;229-238).
Collapse
Affiliation(s)
- Mark P Little
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College Faculty of Medicine, London, UK.
| |
Collapse
|
113
|
Abstract
Colon cancer closely follows the paradigm of a single "gatekeeper gene." Mutations inactivating the APC (adenomatous polyposis coli) gene are found in approximately 80% of all human colon tumors and heterozygosity for such mutations produces an autosomal dominant colon cancer predisposition in humans and in murine models. However, this tight association between a single genotype and phenotype belies a complex association of genetic and epigenetic factors that together generate the broad phenotypic spectrum ofboth familial and sporadic colon cancers. In this Chapter, we give a general overview of the structure, function and outstanding issues concerning the role of Apc in human and experimental colon cancer. The availability of increasingly close models for human colon cancer in genetically tractable animal species enables the discovery and eventual molecular identification of genetic modifiers of the Apc-mutant phenotypes, connecting the central role of Apc in colon carcinogenesis to the myriad factors that ultimately determine the course of the disease.
Collapse
|
114
|
Poulogiannis G, Frayling IM, Arends MJ. DNA mismatch repair deficiency in sporadic colorectal cancer and Lynch syndrome. Histopathology 2010; 56:167-179. [PMID: 20102395 DOI: 10.1111/j.1365-2559.2009.03392.x] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DNA mismatch repair (MMR) deficiency is one of the best understood forms of genetic instability in colorectal cancer (CRC), and is characterized by the loss of function of the MMR pathway. Failure to repair replication-associated errors due to a defective MMR system allows persistence of mismatch mutations all over the genome, but especially in regions of repetitive DNA known as microsatellites, giving rise to the phenomenon of microsatellite instability (MSI). A high frequency of instability at microsatellites (MSI-H) is the hallmark of the most common form of hereditary susceptibility to CRC, known as Lynch syndrome (LS) (previously known as hereditary non-polyposis colorectal cancer syndrome), but is also observed in approximately 15-20% of sporadic colonic cancers (and rarely in rectal cancers). Tumour analysis by both MMR protein immunohistochemistry and DNA testing for MSI is necessary to provide a comprehensive picture of molecular abnormality, for use in conjunction with family history data and other clinicopathological features, in order to distinguish LS from sporadic MMR-deficient CRC. Identification of the gene targets that become mutated in MMR-deficient tumours may explain, at least in part, some of the clinical, pathological and biological features of MSI-H CRCs and holds promise for developing novel therapeutics.
Collapse
|
115
|
Abstract
Cancer recapitulates Darwinian evolution. Mutations acquired during life that provide cells with a growth or survival advantage will preferentially multiply to form a tumor. As a result of The Cancer Genome Atlas Project, we have gathered detailed information on the nucleotide sequence changes in a number of human cancers. The sources of mutations in cancer are diverse, and the complexity of those found to be clonally present in tumors has increasingly made it difficult to identify key rate-limiting genes for tumor growth that could serve as potential targets for directed therapies. The impact of DNA sequencing on future cancer research and personalized therapy is likely to be profound and merits critical evaluation.
Collapse
Affiliation(s)
- Jesse J Salk
- Joseph Gottstein Memorial Cancer Research Laboratory, Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
116
|
Lankelma JM, Voorend DM, Barwari T, Koetsveld J, Van der Spek AH, De Porto APNA, Van Rooijen G, Van Noorden CJF. Cathepsin L, target in cancer treatment? Life Sci 2009; 86:225-33. [PMID: 19958782 DOI: 10.1016/j.lfs.2009.11.016] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 11/11/2009] [Accepted: 11/24/2009] [Indexed: 12/12/2022]
Abstract
Cathepsin L, a cysteine protease, is considered to be a potential therapeutic target in cancer treatment. Proteases are involved in the development and progression of cancer. Inhibition of activity of specific proteases may slow down cancer progression. In this review, we evaluate recent studies on the inhibition of cathepsin L in cancer. The effects of cathepsin L inhibition as a monotherapy on apoptosis and angiogenesis in cancer are ambiguous. Cathepsin L inhibition seems to reduce invasion and metastasis, but there is concern that selective cathepsin L inhibition induces compensatory activity by other cathepsins. The combination of cathepsin L inhibition with conventional chemotherapy seems to be more promising and has yielded more consistent results. Future research should be focused on the mechanisms and effects of this combination therapy.
Collapse
Affiliation(s)
- Jacqueline M Lankelma
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Gevertz J, Torquato S. Growing heterogeneous tumors in silico. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:051910. [PMID: 20365009 DOI: 10.1103/physreve.80.051910] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Revised: 09/02/2009] [Indexed: 05/29/2023]
Abstract
An in silico tool that can be utilized in the clinic to predict neoplastic progression and propose individualized treatment strategies is the holy grail of computational tumor modeling. Building such a tool requires the development and successful integration of a number of biophysical and mathematical models. In this paper, we work toward this long-term goal by formulating a cellular automaton model of tumor growth that accounts for several different inter-tumor processes and host-tumor interactions. In particular, the algorithm couples the remodeling of the microvasculature with the evolution of the tumor mass and considers the impact that organ-imposed physical confinement and environmental heterogeneity have on tumor size and shape. Furthermore, the algorithm is able to account for cell-level heterogeneity, allowing us to explore the likelihood that different advantageous and deleterious mutations survive in the tumor cell population. This computational tool we have built has a number of applications in its current form in both predicting tumor growth and predicting response to treatment. Moreover, the latent power of our algorithm is that it also suggests other tumor-related processes that need to be accounted for and calls for the conduction of new experiments to validate the model's predictions.
Collapse
Affiliation(s)
- Jana Gevertz
- Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA.
| | | |
Collapse
|
118
|
Tanić N, Tanić N, Milasin J, Vukadinović M, Dimitrijević B. Genomic instability and tumor-specific DNA alterations in oral leukoplakias. Eur J Oral Sci 2009; 117:231-7. [PMID: 19583749 DOI: 10.1111/j.1600-0722.2009.00624.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Leukoplakias, clinically identifiable premalignant lesions, often precede oral squamous cell carcinoma (OSCC). Identification of leukoplakias that have the potential for transformation to malignancy is a key clinical problem. The aim of this study was to assess genomic instability, and to detect tumor-specific genomic alterations, in leukoplakias. Genomic instability was analyzed by comparing the DNA fingerprints of 32 leukoplakias with those of paired normal tissue. In addition, the mutational status of the p53 gene was analyzed using polymerase chain reaction-single-stranded conformational polymorphism (PCR-SSCP) and polymerase chain reaction-heteroduplex DNA (PCR-HET), and the mutations were subsequently confirmed by DNA sequencing. Moderate-to-significant genomic instability was detected in all leukoplakias analysed. Nine unique amplicons, present in leukoplakias but not in normal tissue, were retrieved and successfully characterized. The p53 gene was mutated in 40.6% of patients. Four patients with moderate instability and mutated p53 developed OSCC. The data obtained in this study support and concretize the thesis that premalignant lesions possess many of the alterations found in cancer before the development of a malignant phenotype. Inactivation or mutation of the p53 tumor-suppressor might be an early event contributing to genomic instability and increasing the risk of malignant transformation.
Collapse
Affiliation(s)
- Nasta Tanić
- Department of Radiobiology and Molecular Genetics, Institute of Nuclear Sciences 'Vinca', Belgrade, Serbia.
| | | | | | | | | |
Collapse
|
119
|
Abstract
As Theodosius Dobzhansky famously noted in 1973, "Nothing in biology makes sense except in the light of evolution," and cancer is no exception to this rule. Our understanding of cancer initiation, progression, treatment, and resistance has advanced considerably by regarding cancer as the product of evolutionary processes. Here we review the literature of mathematical models of cancer evolution and provide a synthesis and discussion of the field.
Collapse
|
120
|
Halberg RB, Waggoner J, Rasmussen K, White A, Clipson L, Prunuske AJ, Bacher JW, Sullivan R, Washington MK, Pitot HC, Petrini JHJ, Albertson DG, Dove WF. Long-lived Min mice develop advanced intestinal cancers through a genetically conservative pathway. Cancer Res 2009; 69:5768-75. [PMID: 19584276 DOI: 10.1158/0008-5472.can-09-0446] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
C57BL/6J mice carrying the Min allele of Adenomatous polyposis coli (Apc) develop numerous adenomas along the entire length of the intestine and consequently die at an early age. This short lifespan would prevent the accumulation of somatic genetic mutations or epigenetic alterations necessary for tumor progression. To overcome this limitation, we generated F(1) Apc(Min/+) hybrids by crossing C57BR/cdcJ and SWR/J females to C57BL/6J Apc(Min/+) males. These hybrids developed few intestinal tumors and often lived longer than 1 year. Many of the tumors (24-87%) were invasive adenocarcinomas, in which neoplastic tissue penetrated through the muscle wall into the mesentery. In a few cases (3%), lesions metastasized by extension to regional lymph nodes. The development of these familial cancers does not require chromosomal gains or losses, a high level of microsatellite instability, or the presence of Helicobacter. To test whether genetic instability might accelerate tumor progression, we generated Apc(Min/+) mice homozygous for the hypomorphic allele of the Nijmegen breakage syndrome gene (Nbs1(DeltaB)) and also treated Apc(Min/+) mice with a strong somatic mutagen. These imposed genetic instabilities did not reduce the time required for cancers to form nor increase the percentage of cancers nor drive progression to the point of distant metastasis. In summary, we have found that the Apc(Min/+) mouse model for familial intestinal cancer can develop frequent invasive cancers in the absence of overt genomic instability. Possible factors that promote invasion include age-dependent epigenetic changes, conservative somatic recombination, or direct effects of alleles in the F(1) hybrid genetic background.
Collapse
Affiliation(s)
- Richard B Halberg
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Mutual helper effect in copulsing of dendritic cells with 2 antigens: a novel approach for improvement of dendritic-based vaccine efficacy against tumors and infectious diseases simultaneously. J Immunother 2009; 32:325-32. [PMID: 19342973 DOI: 10.1097/cji.0b013e31819aa31e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To develop an efficient dendritic cell (DC)-based immunotherapy protocol, we examined whether simultaneous pulsing of DCs with a given antigen and a third-party antigen could enhance their antigen presentation capacity. Purified splenic DCs of Balb/c mice were pulsed separately with immunoglobulin G, ovalbumin, conalbumin, P15 peptide of Mycobacterium tuberculosis, and prostate-specific antigen or double combinations of the aforementioned antigens. In some settings, DCs pulsed with 1 antigen were mixed equally with those pulsed with another antigen. Antigen-pulsed DCs were injected into the footpad of syngeneic mice and proliferation of whole, CD4 and CD8 depleted lymph node cells was measured after restimulation with cognate antigen. Antigen-specific production of interferon-gamma (IFNgamma) was tested in culture supernatants. Frequency of responding lymph node cells was determined by IFNgamma enzyme-linked immunosorbent spot assay. Our results showed that copulsing of DCs with 2 unrelated antigens increased the capacity of DCs to induce antigen-specific T-cell proliferation against both antigens up to 16-fold. Injection of 2 populations of DCs each pulsed with a different antigen, increased proliferation of primed T cells significantly as well. Both CD4 and CD8 depleted populations showed vigorous proliferative response in copulsing system. In addition, copulsing of DCs with 2 antigens resulted in higher frequency of antigen-specific responding cells and significantly more IFNgamma production. Our results clearly showed that unrelated peptides and proteins could be used to enhance efficacy of DC-based vaccines and in this system, each antigen served to help the other one, a condition that we termed as "mutual helper effect."
Collapse
|
122
|
Beckman RA. Mutator mutations enhance tumorigenic efficiency across fitness landscapes. PLoS One 2009; 4:e5860. [PMID: 19517009 PMCID: PMC2690659 DOI: 10.1371/journal.pone.0005860] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2008] [Accepted: 05/09/2009] [Indexed: 12/04/2022] Open
Abstract
Background Tumorigenesis requires multiple genetic changes. Mutator mutations are mutations that increase genomic instability, and according to the mutator hypothesis, accelerate tumorigenesis by facilitating oncogenic mutations. Alternatively, repeated lineage selection and expansion without increased mutation frequency may explain observed cancer incidence. Mutator lineages also risk increased deleterious mutations, leading to extinction, thus providing another counterargument to the mutator hypothesis. Both selection and extinction involve changes in lineage fitness, which may be represented as “trajectories” through a “fitness landscape” defined by genetics and environment. Methodology/Principal Findings Here I systematically analyze the relative efficiency of tumorigenesis with and without mutator mutations by evaluating archetypal fitness trajectories using deterministic and stochastic mathematical models. I hypothesize that tumorigenic mechanisms occur clinically in proportion to their relative efficiency. This work quantifies the relative importance of mutator pathways as a function of experimentally measurable parameters, demonstrating that mutator pathways generally enhance efficiency of tumorigenesis. An optimal mutation rate for tumor evolution is derived, and shown to differ from that for species evolution. Conclusions/Significance The models address the major counterarguments to the mutator hypothesis, confirming that mutator mechanisms are generally more efficient routes to tumorigenesis than non-mutator mechanisms. Mutator mutations are more likely to occur early, and to occur when more oncogenic mutations are required to create a tumor. Mutator mutations likely occur in a minority of premalignant lesions, but these mutator premalignant lesions are disproportionately likely to develop into malignant tumors. Tumor heterogeneity due to mutator mutations may contribute to therapeutic resistance, and the degree of heterogeneity of tumors may need to be considered when therapeutic strategies are devised. The model explains and predicts important biological observations in bacterial and mouse systems, as well as clinical observations.
Collapse
Affiliation(s)
- Robert A Beckman
- Simons Center for Systems Biology, Institute for Advanced Study, Princeton, NJ, USA.
| |
Collapse
|
123
|
Bagby GC, Meyers G. Myelodysplasia and acute leukemia as late complications of marrow failure: future prospects for leukemia prevention. Hematol Oncol Clin North Am 2009; 23:361-76. [PMID: 19327589 DOI: 10.1016/j.hoc.2009.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Patients who have acquired and inherited bone marrow failure syndromes are at risk for the development of clonal neoplasms including acute myeloid leukemia, myelodysplastic syndrome, and paroxysmal nocturnal hemoglobinuria. This article reviews the evidence supporting a model of clonal selection, a paradigm that provides a reasonable expectation that these often fatal complications might be prevented in the future.
Collapse
Affiliation(s)
- Grover C Bagby
- Department of Molecular and Medical Genetics, Oregon Health and Sciences University, Portland, OR, USA.
| | | |
Collapse
|
124
|
|
125
|
Pazhanisamy S, Jyothi V. Genome organization, instabilities, stem cells, and cancer. J Stem Cells Regen Med 2009; 5:11-22. [PMID: 24693037 PMCID: PMC3908152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
It is now widely recognized that advances in exploring genome organization provide remarkable insights on the induction and progression of chromosome abnormalities. Much of what we know about how mutations evolve and consequently transform into genome instabilities has been characterized in the spatial organization context of chromatin. Nevertheless, many underlying concepts of impact of the chromatin organization on perpetuation of multiple mutations and on propagation of chromosomal aberrations remain to be investigated in detail. Genesis of genome instabilities from accumulation of multiple mutations that drive tumorigenesis is increasingly becoming a focal theme in cancer studies. This review focuses on structural alterations evolve to raise a variety of genome instabilities that are manifested at the nucleotide, gene or sub-chromosomal, and whole chromosome level of genome. Here we explore an underlying connection between genome instability and cancer in the light of genome architecture. This review is limited to studies directed towards spatial organizational aspects of origin and propagation of aberrations into genetically unstable tumors.
Collapse
Affiliation(s)
- S Pazhanisamy
- Pathology and Laboratory Medicine, School of Medicine, Medical University of South Carolina , Charleston, SC 29425, USA
| | - V Jyothi
- Pathology and Laboratory Medicine, School of Medicine, Medical University of South Carolina , Charleston, SC 29425, USA . ; Pediatrics Hematology/Oncology, School of Medicine, Medical University of South Carolina , Charleston, SC 29425, USA
| |
Collapse
|
126
|
Graham TA, Wright NA. Investigating the fixation and spread of mutations in the gastrointestinal epithelium. Future Oncol 2009; 4:825-39. [PMID: 19086849 DOI: 10.2217/14796694.4.6.825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tissue-specific stem cells are responsible for the maintenance of the epithelium throughout the gastrointestinal tract. The accumulation of mutations in these stem cells is the likely cause of most gastrointestinal cancers. Clonal analysis of these stem cell populations has revealed how normal homeostatic processes work and how neoplastic growth occurs. In this review, we consider the clonal dynamics of stem cells in the gastrointestinal tract. We focus on mechanisms of clonal expansion, and discuss the novel methods that have been developed to study these processes in humans. Particular consideration is given to the role of clonal analysis in understanding dysplasia and neoplasia. We consider how improvements in sequencing technology may shape future research and clinical practice.
Collapse
Affiliation(s)
- Trevor A Graham
- Histopathology Unit, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK.
| | | |
Collapse
|
127
|
Johnson IT. Mechanisms and anticarcinogenic effects of diet-related apoptosis in the intestinal mucosa. Nutr Res Rev 2009; 14:229-56. [DOI: 10.1079/nrr200128] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
128
|
Panigrahi AK, Pati D. Road to the crossroads of life and death: linking sister chromatid cohesion and separation to aneuploidy, apoptosis and cancer. Crit Rev Oncol Hematol 2009; 72:181-93. [PMID: 19162508 DOI: 10.1016/j.critrevonc.2008.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 12/02/2008] [Accepted: 12/11/2008] [Indexed: 01/22/2023] Open
Abstract
Genomic instability, aberrant cell proliferation and defects in apoptotic cell death are critical issues in cancer. The two most prominent hallmarks of cancer cells are multiple mutations in key genes encoding proteins that regulate important cell-survival pathways, and marked restructuring or redistribution of the chromosomes (aneuploidy) indicative of genomic instability. Both these aspects have been suggested to cause cancer, though a causal role for chromosomal restructuring in tumorigenesis has not been experimentally fully substantiated. This review is aimed at understanding the mechanisms of cell cycle (proliferation) and programmed cell death (apoptosis) and chromosomal instability governed by cohesin and other aneuploidy promoters, which will provide new insights into the process of carcinogenesis and new avenues for targeted treatment.
Collapse
Affiliation(s)
- Anil K Panigrahi
- Department of Pediatric Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, 6621 Fannin St., MC3-3320, Houston, TX 77030, USA
| | | |
Collapse
|
129
|
Maitland NJ, Collins AT. Inflammation as the primary aetiological agent of human prostate cancer: a stem cell connection? J Cell Biochem 2009; 105:931-9. [PMID: 18655194 DOI: 10.1002/jcb.21843] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Inflammation has been implicated for some time as a potential aetiological agent in human prostate cancer. Viral and bacterial infections or even chemical carcinogens such as those found in cooked meat have been proposed as the inflammatory stimuli, but the mechanism of cancer induction is unknown. Recent information about gene expression patterns in normal and malignant epithelial stem cells from human prostate provides a new hypothesis for inflammation-induced carcinogenesis. The hypothesis states that in the stem cells located in the basal cell compartment of the prostate, activated prostate epithelial stem cells acquire a survival advantage, by expressing one of more of the same cytokines such as IL6. The establishment of one or more autocrine signalling loops results in an expansion of these cells in the absence of inflammation, as a potential first stage in the development of the tumour.
Collapse
Affiliation(s)
- Norman J Maitland
- YCR Cancer Research Unit, Deparment of Biology, University of York, York YO10 5YW, United Kingdom.
| | | |
Collapse
|
130
|
Abdel-Rahman WM. Genomic instability and carcinogenesis: an update. Curr Genomics 2008; 9:535-541. [PMID: 19516960 PMCID: PMC2694557 DOI: 10.2174/138920208786847926] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 08/12/2008] [Accepted: 08/14/2008] [Indexed: 12/15/2022] Open
Abstract
Cancers arise as a result of stepwise accumulation of mutations which may occur at the nucleotide level and/or the gross chromosomal level. Many cancers particularly those of the colon display a form of genomic instability which may facilitate and speed up tumor initiation and development. In few instances, a "mutator mutation" has been clearly implicated in driving the accumulation of other carcinogenic mutations. For example, the post-replicative DNA mismatch repair deficiency results in dramatic increase in insertion/deletion mutations giving rise to the microsatellite instability (MSI) phenotype and may predispose to a spectrum of tumours when it occurs in the germline. Although many sporadic cancers show multiple mutations suggesting unstable genome, the role of this instability in carcinogenesis, as opposed to the power of natural selection, has been a matter of controversy. This review gives an update of the latest data on these issues particularly recent data from genome-wide, high throughput techniques as well as mathematical modelling. Throughout this review, reference will be made to the relevance of genomic instability to the pathogenesis of colorectal carcinoma particularly its hereditary and familial subsets.
Collapse
Affiliation(s)
- Wael M Abdel-Rahman
- Department of Medical Laboratory Technology, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
131
|
Chen Z, Feng J, Buzin CH, Sommer SS. Epidemiology of doublet/multiplet mutations in lung cancers: evidence that a subset arises by chronocoordinate events. PLoS One 2008; 3:e3714. [PMID: 19005564 PMCID: PMC2579325 DOI: 10.1371/journal.pone.0003714] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 10/10/2008] [Indexed: 01/01/2023] Open
Abstract
Background Evidence strongly suggests that spontaneous doublet mutations in normal mouse tissues generally arise from chronocoordinate events. These chronocoordinate mutations sometimes reflect “mutation showers”, which are multiple chronocoordinate mutations spanning many kilobases. However, little is known about mutagenesis of doublet and multiplet mutations (domuplets) in human cancer. Lung cancer accounts for about 25% of all cancer deaths. Herein, we analyze the epidemiology of domuplets in the EGFR and TP53 genes in lung cancer. The EGFR gene is an oncogene in which doublets are generally driver plus driver mutations, while the TP53 gene is a tumor suppressor gene with a more typical situation in which doublets derive from a driver and passenger mutation. Methodology/Principal Findings EGFR mutations identified by sequencing were collected from 66 published papers and our updated EGFR mutation database (www.egfr.org). TP53 mutations were collected from IARC version 12 (www-p53.iarc.fr). For EGFR and TP53 doublets, no clearly significant differences in race, ethnicity, gender and smoking status were observed. Doublets in the EGFR and TP53 genes in human lung cancer are elevated about eight- and three-fold, respectively, relative to spontaneous doublets in mouse (6% and 2.3% versus 0.7%). Conclusions/Significance Although no one characteristic is definitive, the aggregate properties of doublet and multiplet mutations in lung cancer are consistent with a subset derived from chronocoordinate events in the EGFR gene: i) the eight frameshift doublets (present in 0.5% of all patients with EGFR mutations) are clustered and produce a net in-frame change; ii) about 32% of doublets are very closely spaced (≤30 nt); and iii) multiplets contain two or more closely spaced mutations. TP53 mutations in lung cancer are very closely spaced (≤30 nt) in 33% of doublets, and multiplets generally contain two or more very closely spaced mutations. Work in model systems is necessary to confirm the significance of chronocoordinate events in lung and other cancers.
Collapse
Affiliation(s)
- Zhenbin Chen
- Department of Molecular Genetics, City of Hope National Medical Center, Duarte, California, United States of America
| | - Jinong Feng
- Department of Molecular Genetics, City of Hope National Medical Center, Duarte, California, United States of America
| | - Carolyn H. Buzin
- Department of Molecular Genetics, City of Hope National Medical Center, Duarte, California, United States of America
| | - Steve S. Sommer
- Department of Molecular Genetics, City of Hope National Medical Center, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
132
|
Ashkenazi R, Gentry SN, Jackson TL. Pathways to tumorigenesis--modeling mutation acquisition in stem cells and their progeny. Neoplasia 2008; 10:1170-82. [PMID: 18953426 PMCID: PMC2570593 DOI: 10.1593/neo.08572] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 08/13/2008] [Accepted: 08/14/2008] [Indexed: 01/06/2023]
Abstract
Most adult tissues consist of stem cells, progenitors, and mature cells, and this hierarchical architecture may play an important role in the multistep process of carcinogenesis. Here, we develop and discuss the important predictions of a simple mathematical model of cancer initiation and early progression within a hierarchically structured tissue. This work presents a model that incorporates both the sequential acquisition of phenotype altering mutations and tissue hierarchy. The model simulates the progressive effect of accumulating mutations that lead to an increase in fitness or the induction of genetic instability. A novel aspect of the model is that symmetric self-renewal, asymmetric division, and differentiation are all incorporated, and this enables the quantitative study of the effect of mutations that deregulate the normal, homeostatic stem cell division pattern. The model is also capable of predicting changes in both tissue composition and in the progression of cells along their lineage at any given time and for various sequences of mutations. Simulations predict that the specific order in which mutations are acquired is crucial for determining the pace of cancer development. Interestingly, we find that the importance of genetic stability differs significantly depending on the physiological expression of mutations related to symmetric self-renewal and differentiation of stem and progenitor cells. In particular, mutations that lead to the alteration of the stem cell division pattern or the acquisition of some degree of immortality in committed progenitors lead to an early onset of cancer and diminish the impact of genetic instability.
Collapse
Affiliation(s)
- Rina Ashkenazi
- Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
133
|
Bodmer W, Bielas JH, Beckman RA. Genetic instability is not a requirement for tumor development. Cancer Res 2008; 68:3558-60; discussion 3560-1. [PMID: 18483234 DOI: 10.1158/0008-5472.can-07-6544] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Walter Bodmer
- Cancer and Immunogenetics Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, United Kingdom
| | | | | |
Collapse
|
134
|
Solé RV, Rodríguez-Caso C, Deisboeck TS, Saldaña J. Cancer stem cells as the engine of unstable tumor progression. J Theor Biol 2008; 253:629-37. [PMID: 18534628 DOI: 10.1016/j.jtbi.2008.03.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 03/11/2008] [Accepted: 03/31/2008] [Indexed: 11/24/2022]
Abstract
Genomic instability is considered by many authors the key engine of tumorigenesis. However, mounting evidence indicates that a small population of drug resistant cancer cells can also be a key component of tumor progression. Such cancer stem cells would define a compartment effectively acting as the source of most tumor cells. Here we study the interplay between these two conflicting components of cancer dynamics using two types of tissue architecture. Both mean field and multicompartment models are studied. It is shown that tissue architecture affects the pattern of cancer dynamics and that unstable cancers spontaneously organize into a heterogeneous population of highly unstable cells. This dominant population is in fact separated from the low-mutation compartment by an instability gap, where almost no cancer cells are observed. The possible implications of this prediction are discussed.
Collapse
Affiliation(s)
- Ricard V Solé
- Complex Systems Lab (ICREA-UPF), Barcelona Biomedical Research Park (PRBB-GRIB), Dr. Aiguader 88, 08003 Barcelona, Spain.
| | | | | | | |
Collapse
|
135
|
Abstract
A large number of somatic mutations accumulate during the process of tumorigenesis. A subset of these mutations contribute to tumor progression (known as "driver" mutations) whereas the majority of these mutations are effectively neutral (known as "passenger" mutations). The ability to differentiate between drivers and passengers will be critical to the success of upcoming large-scale cancer DNA resequencing projects. Here we show a method capable of discriminating between drivers and passengers in the most frequently cancer-associated protein family, protein kinases. We apply this method to multiple cancer data sets, validating its accuracy by showing that it is capable of identifying known drivers, has excellent agreement with previous statistical estimates of the frequency of drivers, and provides strong evidence that predicted drivers are under positive selection by various sequence and structural analyses. Furthermore, we identify particular positions in protein kinases that seem to play a role in oncogenesis. Finally, we provide a ranked list of candidate driver mutations.
Collapse
Affiliation(s)
- Ali Torkamani
- Graduate Program in Biomedical Sciences, Center for Human Genetics and Genomics, University of California, San Diego, CA, USA
| | | |
Collapse
|
136
|
Markovic J, Stojsic J, Zunic S, Ruzdijic S, Tanic N. Genomic instability in patients with non-small cell lung cancer assessed by the arbitrarily primed polymerase chain reaction. Cancer Invest 2008; 26:262-8. [PMID: 18317967 DOI: 10.1080/07357900701708385] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In the present study, we used DNA profiling to measure genomic instability in 22 patients with non-small cell lung cancer (NSCLC). Genomic instability was correlated with gender, the age of the patients at the time of diagnosis, the NSCLC subtype, histological grade and stage of the tumor, necrosis presence in the tumor and lymph node invasion. Genomic instability was significantly higher in patients older than 50 and those with adenocarcinoma compared to squamous-cell carcinoma. Most importantly, genomic instability significantly decreased as the tumor grade increased. Extensive genomic instability in the early carcinogenesis could be the prerequisite for NSCLC progression.
Collapse
Affiliation(s)
- Jasna Markovic
- Department of Neurobiology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | | | | | | | | |
Collapse
|
137
|
Marusyk A, DeGregori J. Declining cellular fitness with age promotes cancer initiation by selecting for adaptive oncogenic mutations. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1785:1-11. [PMID: 17980163 PMCID: PMC2234267 DOI: 10.1016/j.bbcan.2007.09.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 09/26/2007] [Accepted: 09/28/2007] [Indexed: 02/08/2023]
Abstract
Age is the single most important prognostic factor in the development of many cancers. The major reason for this age-dependence is thought to be the progressive accumulation of oncogenic mutations and epigenetic changes. Similarly, mutagens are thought to be carcinogenic primarily by engendering oncogenic mutations. Yet while the accumulation of heritable somatic changes is expected to augment the incidence of oncogenic mutations, a major effect of increased mutation load is reduced fitness. We propose that the fitness of progenitor cell compartments substantially impacts on the selective advantage conferred by particular mutations. We hypothesize that reduced cellular fitness within aged stem cell pools can select for adaptive oncogenic events and thereby promote the initiation of cancer. Thus, certain oncogenic mutations may be adaptive within aged but not young stem cell pools. We further argue that accumulating genetic alterations with age or mutagen exposure might promote cancer not only by causing oncogenic hits within cells but also by leading to eventual reduction in stem cell fitness, which then selects for oncogenic events. Therefore, initial stages of cancer development may not be limited by the incidence of initiating oncogenic changes, but instead by contexts of reduced cellular fitness that select for these changes.
Collapse
Affiliation(s)
- Andriy Marusyk
- Department of Biochemistry and Molecular Genetics, Program in Molecular Biology, Integrated Department of Immunology, University of Colorado at Denver Health Sciences Center, Aurora, CO 80045
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, Program in Molecular Biology, Integrated Department of Immunology, University of Colorado at Denver Health Sciences Center, Aurora, CO 80045
| |
Collapse
|
138
|
Differences between familial and sporadic forms of colorectal cancer with DNA microsatellite instability. Surg Oncol 2007; 16 Suppl 1:S37-42. [PMID: 18023569 DOI: 10.1016/j.suronc.2007.10.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Microsatellite instability (MSI) is observed in approximately 13% of colorectal cancers. Genes containing a mononucleotide microsatellite in the coding sequence are particularly prone to inactivation in MSI tumourigenesis, and much work has been conducted to identify genes with high repetitive tract mutation rates in these tumours. MSI caused by deficient DNA mismatch-repair functions is a hallmark of cancers associated with the hereditary non-polyposis colorectal cancer syndrome but is also found in about 15% of all sporadic tumours.
Collapse
|
139
|
Abstract
p53 is a critical mediator of cellular responses to a variety of stresses. Given the frequency of p53 mutations in human malignancies and that disruption of p53 has been implicated in chemoresistance, understanding the factors that select for p53 disruption is important both for understanding tumor evolution and for designing cancer therapies. While it is widely believed that genotoxic stress selects for p53 mutations, the effects of DNA damaging agents on long-term proliferative potential are usually not affected by p53 status. Previous reports have demonstrated that despite being activated, p53 loss does not prevent cell cycle arrest and senescence in response to high levels of acute replicational stress. In contrast, we recently reported that chronic exposure of non-transformed cells to low, clinically relevant levels of replicational stress induces p53-dependent senescence-like arrest. Disruption of p53 or its target gene p21(CIP1) antagonizes this arrest, leading to a long-term proliferative advantage. However, when replicational stress is associated with substantial DNA strand breaks, the ability of p53 disruption to up-regulate RAD51 dependent homologous recombination becomes important. Replicational stress is induced by many chemotherapeutic treatments and perhaps by some dietary deficiencies, and may be an important factor that selects for p53 mutations during cancer initiation and progression.
Collapse
Affiliation(s)
- Andriy Marusyk
- Department of Biochemistry and Molecular Genetics, Program in Molecular Biology, Integrated Department of Immunology, University of Colorado at Denver Health Sciences Center, Aurora, CO 80045
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, Program in Molecular Biology, Integrated Department of Immunology, University of Colorado at Denver Health Sciences Center, Aurora, CO 80045
- Corresponding author: James DeGregori; phone: 303−724−3230; fax: 303−724−3215 E-mail:
| |
Collapse
|
140
|
Enderling H, Chaplain MAJ, Anderson ARA, Vaidya JS. A mathematical model of breast cancer development, local treatment and recurrence. J Theor Biol 2007; 246:245-59. [PMID: 17289081 DOI: 10.1016/j.jtbi.2006.12.010] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Revised: 12/07/2006] [Accepted: 12/07/2006] [Indexed: 11/29/2022]
Abstract
Cancer development is a stepwise process through which normal somatic cells acquire mutations which enable them to escape their normal function in the tissue and become self-sufficient in survival. The number of mutations depends on the patient's age, genetic susceptibility and on the exposure of the patient to carcinogens throughout their life. It is believed that in every malignancy 4-6 crucial similar mutations have to occur on cancer-related genes. These genes are classified as oncogenes and tumour suppressor genes (TSGs) which gain or lose their function respectively, after they have received one mutative hit or both of their alleles have been knocked out. With the acquisition of each of the necessary mutations the transformed cell gains a selective advantage over normal cells, and the mutation will spread throughout the tissue via clonal expansion. We present a simplified model of this mutation and expansion process, in which we assume that the loss of two TSGs is sufficient to give rise to a cancer. Our mathematical model of the stepwise development of breast cancer verifies the idea that the normal mutation rate in genes is only sufficient to give rise to a tumour within a clinically observable time if a high number of breast stem cells and TSGs exist or genetic instability is involved as a driving force of the mutation pathway. Furthermore, our model shows that if a mutation occurred in stem cells pre-puberty, and formed a field of cells with this mutation through clonal formation of the breast, it is most likely that a tumour will arise from within this area. We then apply different treatment strategies, namely surgery and adjuvant external beam radiotherapy and targeted intraoperative radiotherapy (TARGIT) and use the model to identify different sources of local recurrence and analyse their prevention.
Collapse
Affiliation(s)
- Heiko Enderling
- Division of Mathematics, University of Dundee, Dundee DD1 4HN, Scotland, UK.
| | | | | | | |
Collapse
|
141
|
Bielas JH, Venkatesan RN, Loeb LA. LOH-proficient embryonic stem cells: a model of cancer progenitor cells? Trends Genet 2007; 23:154-7. [PMID: 17328987 DOI: 10.1016/j.tig.2007.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2006] [Revised: 12/07/2006] [Accepted: 02/13/2007] [Indexed: 11/15/2022]
Abstract
Cancers are thought to originate in stem cells through the accumulation of multiple mutations. Some of these mutations result in a loss of heterozygosity (LOH). A recent report demonstrates that exposure of mouse embryonic stem cells to nontoxic amounts of mutagens triggers a marked increase in the frequency of LOH. Thus, mutagen induction of LOH in embryonic stem cells suggests a new pathway to account for the multiple homozygous mutations in human tumors. This induction could mimic early mutagenic events that generate cancers in human tissue stem cells.
Collapse
Affiliation(s)
- Jason H Bielas
- Gottstein Memorial Cancer Research Laboratory, Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195-7705, USA
| | | | | |
Collapse
|
142
|
Bagby GC, Meyers G. Bone marrow failure as a risk factor for clonal evolution: prospects for leukemia prevention. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2007; 2007:40-46. [PMID: 18024607 DOI: 10.1182/asheducation-2007.1.40] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Patients with bone marrow failure syndromes are at risk for the development of clonal neoplasms, including paroxysmal nocturnal hemoglobinuria (PNH), myelodysplasia (MDS), and acute myelogenous leukemia (AML). Approximately 10% to 20% of those who survive acquired aplastic anemia will develop a clonal disease within the decade following their diagnosis. The relative risk of clonal neoplasms is very significantly increased in children and adults with inherited bone marrow failure syndromes as well. Until recently, the mechanisms underlying clonal evolution have been opaque, but a sufficient amount of evidence has now accumulated to support a model in which cells resistant to extracellular apoptotic cues are selected from the stem cell pool. Indeed, in the past two years this paradigm has been validated in preclinical models that are robust enough to reconsider new therapeutic objectives in aplastic states and to support the planning and development of rationally designed leukemia prevention trials.
Collapse
Affiliation(s)
- Grover C Bagby
- OHSU Cancer Institute, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, CR-145, Portland, OR 97239, USA.
| | | |
Collapse
|
143
|
Metastatic Phenotype of Disseminated Nodal Tumor Cells in Esophageal Cancer. POLISH JOURNAL OF SURGERY 2007. [DOI: 10.2478/v10035-007-0027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
144
|
Gabdoulkhakova A, Henriksson G, Avkhacheva N, Sofin A, Bredberg A. High rate of mutation reporter gene inactivation during human T cell proliferation. Immunogenetics 2006; 59:135-43. [PMID: 17180623 DOI: 10.1007/s00251-006-0180-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Accepted: 11/05/2006] [Indexed: 10/23/2022]
Abstract
Caspase activation and degradation of deoxyribonucleic acid (DNA) damage response factors occur during in vitro T-cell proliferation, and an increased frequency of hypoxanthine-guanine phosphoribosyltransferase (HPRT)-negative variants have been reported in conditions associated with in vivo T-cell proliferation. We have applied two human somatic cell mutation reporter assays, for the HPRT and phosphatidylinositol glycan class A (PIG-A) genes, to human T cells activated in vitro with anti-CD3 and anti-CD28. We demonstrate proliferation throughout 6 weeks of cultivation, and find that the frequency of variant cells phenotypically negative for HPRT and PIG-A, respectively, increases from 10(-5) up to 10(-3) -10(-2). We also report preliminary evidence for low-density CpG methylation in the HPRT promoter suggesting that epigenetic modification may contribute to this markedly heightened rate of gene inactivation.
Collapse
Affiliation(s)
- Aida Gabdoulkhakova
- Department of Laboratory Medicine, Section of Medical Microbiology, Lund University, Malmo University Hospital, S-205 02, Malmo, Sweden
| | | | | | | | | |
Collapse
|
145
|
Spencer SL, Gerety RA, Pienta KJ, Forrest S. Modeling somatic evolution in tumorigenesis. PLoS Comput Biol 2006; 2:e108. [PMID: 16933983 PMCID: PMC1550273 DOI: 10.1371/journal.pcbi.0020108] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Accepted: 07/10/2006] [Indexed: 11/29/2022] Open
Abstract
Tumorigenesis in humans is thought to be a multistep process where certain mutations confer a selective advantage, allowing lineages derived from the mutated cell to outcompete other cells. Although molecular cell biology has substantially advanced cancer research, our understanding of the evolutionary dynamics that govern tumorigenesis is limited. This paper analyzes the computational implications of cancer progression presented by Hanahan and Weinberg in The Hallmarks of Cancer. We model the complexities of tumor progression as a small set of underlying rules that govern the transformation of normal cells to tumor cells. The rules are implemented in a stochastic multistep model. The model predicts that (i) early-onset cancers proceed through a different sequence of mutation acquisition than late-onset cancers; (ii) tumor heterogeneity varies with acquisition of genetic instability, mutation pathway, and selective pressures during tumorigenesis; (iii) there exists an optimal initial telomere length which lowers cancer incidence and raises time of cancer onset; and (iv) the ability to initiate angiogenesis is an important stage-setting mutation, which is often exploited by other cells. The model offers insight into how the sequence of acquired mutations affects the timing and cellular makeup of the resulting tumor and how the cellular-level population dynamics drive neoplastic evolution. Cancer can be viewed as an ecological system in which cells with different mutations compete for survival. In this work, the authors present a three-dimensional stochastic model of these complex interactions. Each cell is represented as an autonomous agent that follows simple rules governing its behavior, where behaviors change as cells gain cancerous mutations. The paper explores the timing of cancer onset, the order in which mutations are acquired, the diversity of tumors, and the competition and cooperation between cells in the tumor microenvironment. One key finding is that early-onset and late-onset tumors take different mutational paths to cancer. The paper provides insight into the early dynamics of tumorigenesis currently inaccessible to experimental investigation.
Collapse
Affiliation(s)
- Sabrina L Spencer
- Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| | | | | | | |
Collapse
|
146
|
Wodarz D. Effect of stem cell turnover rates on protection against cancer and aging. J Theor Biol 2006; 245:449-58. [PMID: 17178130 DOI: 10.1016/j.jtbi.2006.10.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Revised: 10/05/2006] [Accepted: 10/16/2006] [Indexed: 12/12/2022]
Abstract
Tissue stem cells are responsible for replenishing and maintaining a population of cells which make up a functioning organ. They divide by asymmetric cell division where one daughter remains a stem cell while the other daughter becomes a transit cell, which divides a defined number of times and differentiates. A fully differentiated cell has a finite life-span. A tissue can be maintained by various strategies. Stem cells can divide often and differentiated cells die often (fast turnover). Alternatively, stem cells can divide infrequently, and the differentiated cells are long lived (slow turnover). Genetic alterations and mutations can interfere with tissue homoeostasis. Mutations can induce senescence and apoptosis, and this can result in a reduction of the number of functioning tissue cells which could correlate with tissue aging. Alternatively, mutations can result in the carcinogenic transformation of cells and the formation of a tumour. Using mathematical models, I find that the cellular turnover rate affects the ability of genetic alterations to induce aging and the development of cancer. If mutations occur as a result of errors during cell division, the model suggests that a low cellular turnover rate protects both against aging and the development of cancer. On the other hand, if mutations occur independent from cell division (e.g. if DNA is hit by damaging agents), I find that a high cellular turnover rate protects against aging, while it promotes the development of cancer. Implications for optimal tissue design are discussed.
Collapse
Affiliation(s)
- Dominik Wodarz
- Department of Ecology and Evolution, 321 Steinhaus Hall, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
147
|
|
148
|
Beckman RA, Loeb LA. Efficiency of carcinogenesis with and without a mutator mutation. Proc Natl Acad Sci U S A 2006; 103:14140-5. [PMID: 16966602 PMCID: PMC1599925 DOI: 10.1073/pnas.0606271103] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Carcinogenesis involves the acquisition of multiple genetic changes altering various cellular phenotypes. These changes occur within the fixed time period of a human lifespan, and mechanisms that accelerate this process are more likely to result in clinical cancers. Mutator mutations decrease genome stability and, hence, accelerate the accumulation of random mutations, including those in oncogenes and tumor suppressor genes. However, if the mutator mutation is not in itself oncogenic, acquiring that mutation would add an extra, potentially time-consuming step in carcinogenesis. We present a deterministic mathematical model that allows quantitative prediction of the efficiency of carcinogenesis with and without a mutator mutation occurring at any time point in the process. By focusing on the ratio of probabilities of pathways with and without mutator mutations within cell lineages, we can define the frequency or importance of mutator mutations in populations independently of absolute rates and circumvent the question of whether mutator mutations are "necessary" for cancers to evolve within a human lifetime. We analyze key parameters that predict the relative contribution of mutator mutants in carcinogenesis. Mechanisms of carcinogenesis involving mutator mutations are more likely if they occur early. Involvement of mutator mutations in carcinogenesis is favored by an increased initial mutation rate, by greater fold-increase in mutation rate due to the mutator mutation, by increased required steps in carcinogenesis, and by increased number of cell generations to the development of cancer.
Collapse
Affiliation(s)
- Robert A. Beckman
- *Department of Clinical Research and Development, Hematology/Oncology, Centocor, Inc., Malvern, PA 19355-1307; and
- To whom correspondence should be addressed. E-mail:
| | - Lawrence A. Loeb
- Department of Pathology, University of Washington School of Medicine, Mail Stop SM-30, Seattle, WA 98195-7470
| |
Collapse
|
149
|
Jefford CE, Irminger-Finger I. Mechanisms of chromosome instability in cancers. Crit Rev Oncol Hematol 2006; 59:1-14. [PMID: 16600619 DOI: 10.1016/j.critrevonc.2006.02.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 02/22/2006] [Accepted: 02/22/2006] [Indexed: 12/31/2022] Open
Abstract
Most tumours arise through clonal selection and waves of expansion of a somatic cell that has acquired genetic alterations in essential genes either controlling cell death or cell proliferation. Furthermore, stability of the genome in cancer cells becomes precarious and compromised because several cancer-predisposing mutations affect genes that are responsible for maintaining the integrity and number of chromosomes during cell division. Consequently, the archetypical transformation in tumour cells results in aneuploidy. Indeed, almost all tumour cells display a host of karyotype alterations, showing translocations, gains or losses of entire or large parts of chromosomes. Cancers do not necessarily have a higher mutation rate than normal tissue at the nucleotide level, unless they have gained a mutator phenotype through exposure to environmental stress, but rather exhibit gross chromosomal changes. Therefore, it appears that the main mechanism of tumour progression stems from chromosome instability. Chromosomal instability prevailing in tumour cells arises through several different pathways and is probably controlled by hundreds of genes. Therefore, this review describes the main factors that control chromosome stability through telomere maintenance, mechanisms of cell division, and the mitotic checkpoints that govern centrosome duplication and correct chromosome segregation.
Collapse
Affiliation(s)
- Charles Edward Jefford
- Biology of Aging Laboratory, Department of Geriatrics, University Hospitals Geneva HUG, Switzerland.
| | | |
Collapse
|
150
|
van Leeuwen IMM, Byrne HM, Jensen OE, King JR. Crypt dynamics and colorectal cancer: advances in mathematical modelling. Cell Prolif 2006; 39:157-81. [PMID: 16671995 PMCID: PMC6495865 DOI: 10.1111/j.1365-2184.2006.00378.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mathematical modelling forms a key component of systems biology, offering insights that complement and stimulate experimental studies. In this review, we illustrate the role of theoretical models in elucidating the mechanisms involved in normal intestinal crypt dynamics and colorectal cancer. We discuss a range of modelling approaches, including models that describe cell proliferation, migration, differentiation, crypt fission, genetic instability, APC inactivation and tumour heterogeneity. We focus on the model assumptions, limitations and applications, rather than on the technical details. We also present a new stochastic model for stem-cell dynamics, which predicts that, on average, APC inactivation occurs more quickly in the stem-cell pool in the absence of symmetric cell division. This suggests that natural niche succession may protect stem cells against malignant transformation in the gut. Finally, we explain how we aim to gain further understanding of the crypt system and of colorectal carcinogenesis with the aid of multiscale models that cover all levels of organization from the molecular to the whole organ.
Collapse
Affiliation(s)
- I M M van Leeuwen
- Centre for Mathematical Medicine, Division of Applied Mathematics, School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK.
| | | | | | | |
Collapse
|