101
|
Li L, Welser-Alves J, van der Flier A, Boroujerdi A, Hynes RO, Milner R. An angiogenic role for the α5β1 integrin in promoting endothelial cell proliferation during cerebral hypoxia. Exp Neurol 2012; 237:46-54. [PMID: 22721769 DOI: 10.1016/j.expneurol.2012.06.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 06/01/2012] [Accepted: 06/09/2012] [Indexed: 12/11/2022]
Abstract
Fibronectin is a critical regulator of vascular modelling, both in development and in the adult. In the hypoxic adult central nervous system (CNS), fibronectin is induced on angiogenic vessels, and endothelial cells show strong induction of the two fibronectin receptors α5β1 and αvβ3 integrins. In a previous study, we found that the αvβ3 integrin is dispensable for hypoxic-induced cerebral angiogenesis, but a role for the endothelial α5β1 integrin was suggested. To directly investigate the role of endothelial α5 integrin in cerebral angiogenesis, wild-type mice and mice lacking α5 integrin expression in endothelial cells (α5-EC-KO) were subject to hypoxia (8% O(2)) for 0, 2, 4, 7 or 14 days. Quantification of cerebral vessel density and endothelial-specific proteins claudin-5 and Glut-1 revealed that α5-EC-KO mice displayed an attenuated angiogenic response, which correlated with delayed endothelial proliferation. α5-EC-KO mice showed no defect in the ability to organize a cerebrovascular fibronectin matrix, and no compensatory increase in vascular αvβ3 integrin expression. Consistent with these findings, primary α5KO brain endothelial cells (BEC) in culture exhibited delayed growth and proliferation. Taken together, these studies demonstrate an important angiogenic role for the α5β1 integrin in promoting BEC proliferation in response to cerebral hypoxia.
Collapse
Affiliation(s)
- Longxuan Li
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
102
|
Sukmana I. Bioactive polymer scaffold for fabrication of vascularized engineering tissue. J Artif Organs 2012; 15:215-24. [PMID: 22527978 DOI: 10.1007/s10047-012-0644-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 04/02/2012] [Indexed: 01/01/2023]
Abstract
Tissue engineering seeks strategies to design polymeric scaffolds that allow high-cell-density cultures with signaling molecules and suitable vascular supply. One major obstacle in tissue engineering is the inability to create thick engineered-tissue constructs. A pre-vascularized tissue scaffold appears to be the most favorable approach to avoid nutrient and oxygen supply limitations as well as to allow waste removal, factors that are often hurdles in developing thick engineered tissues. Vascularization can be achieved using strategies in which cells are cultured in bioactive polymer scaffolds that can mimic extracellular matrix environments. This review addresses recent advances and future challenges in developing and using bioactive polymer scaffolds to promote tissue construct vascularization.
Collapse
Affiliation(s)
- Irza Sukmana
- Medical Devices and Implant Technology (Mediteg) Research Group, Department of Biomechanics and Biomedical Materials, Universiti Teknologi Malaysia, Block P23 UTM Skudai, 81310 Johor Bahru, Johore, Malaysia.
| |
Collapse
|
103
|
Yang HS, Shin J, Bhang SH, Shin JY, Park J, Im GI, Kim CS, Kim BS. Enhanced skin wound healing by a sustained release of growth factors contained in platelet-rich plasma. Exp Mol Med 2012; 43:622-9. [PMID: 21847007 DOI: 10.3858/emm.2011.43.11.070] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Platelet-rich plasma (PRP) contains growth factors that promote tissue regeneration. Previously, we showed that heparin-conjugated fibrin (HCF) exerts the sustained release of growth factors with affinity for heparin. Here, we hypothesize that treatment of skin wound with a mixture of PRP and HCF exerts sustained release of several growth factors contained in PRP and promotes skin wound healing. The release of fibroblast growth factor 2, platelet-derived growth factor-BB, and vascular endothelial growth factor contained in PRP from HCF was sustained for a longer period than those from PRP, calcium-activated PRP (C-PRP), or a mixture of fibrin and PRP (F-PRP). Treatment of full-thickness skin wounds in mice with HCF-PRP resulted in much faster wound closure as well as dermal and epidermal regeneration at day 12 compared to treatment with either C-PRP or F-PRP. Enhanced skin regeneration observed in HCF-PRP group may have been at least partially due to enhanced angiogenesis in the wound beds. Therefore, this method could be useful for skin wound treatment.
Collapse
Affiliation(s)
- Hee Seok Yang
- School of Chemical and Biological Engineering Seoul National University Seoul 151-744, Korea
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Prager GW, Poettler M, Unseld M, Zielinski CC. Angiogenesis in cancer: Anti-VEGF escape mechanisms. Transl Lung Cancer Res 2012; 1:14-25. [PMID: 25806151 PMCID: PMC4367591 DOI: 10.3978/j.issn.2218-6751.2011.11.02] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 11/29/2011] [Indexed: 12/21/2022]
Abstract
It is now widely accepted that tumor-angiogenesis plays a crucial role in tumor growth, tumor propagation and metastasis formation. Among several angiogenic activators, the vascular endothelial growth factor (VEGF) and its receptors represent one of the major inducers of tumor angiogenesis. Thus, this system has become the focus of therapeutic interventions, which led to the approval of the anti-VEGF blocking antibody bevacizumab and the VEGFR-2 pathway inhibitors pazopanib, sorafenib and sunitinib. However, not every cancer patient benefits from such treatment or finally becomes resistant to anti-VEGF approaches; others are suffering from adverse effects. Thus, there is an urgent need for a better understanding of VEGF-independent mechanisms leading to angiogenesis in cancer. This review focuses on anti-VEGF escape mechanisms of tumor cells and its microenvironment.
Collapse
Affiliation(s)
- Gerald W Prager
- Medical University of Vienna, Comprehensive Cancer Center Vienna, Department of Medicine I, Austria
| | - Marina Poettler
- Medical University of Vienna, Comprehensive Cancer Center Vienna, Department of Medicine I, Austria
| | - Matthias Unseld
- Medical University of Vienna, Comprehensive Cancer Center Vienna, Department of Medicine I, Austria
| | - Christoph C Zielinski
- Medical University of Vienna, Comprehensive Cancer Center Vienna, Department of Medicine I, Austria
| |
Collapse
|
105
|
Pietilä R, Nätynki M, Tammela T, Kangas J, Pulkki KH, Limaye N, Vikkula M, Koh GY, Saharinen P, Alitalo K, Eklund L. Ligand oligomerization state controls Tie2 receptor trafficking and angiopoietin-2-specific responses. J Cell Sci 2012; 125:2212-23. [PMID: 22357955 DOI: 10.1242/jcs.098020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Angiopoietin 1 (Ang1) is an activating ligand for the endothelial receptor tyrosine kinase Tie2, whereas Ang2 acts as a context-dependent agonist or antagonist that has a destabilizing effect on the vasculature. The molecular mechanisms responsible for the versatile functions of Ang2 are poorly understood. We show here that Ang2, but not Ang1, induces Tie2 translocation to the specific cell-matrix contact sites located at the distal end of focal adhesions. The Ang2-specific Tie2 translocation was associated with distinct Tie2 activation and downstream signals which differed from those of Ang1, and led to impaired cell motility and weak cell-matrix adhesion. We demonstrate that the different oligomeric or multimeric forms of the angiopoietins induce distinct patterns of Tie2 trafficking; the lower oligomerization state of native Ang2 was crucial for the Ang2-specific Tie2 redistribution, whereas multimeric structures of Ang1 and Ang2 induced similar responses. The Ang2-specific Tie2 trafficking to cell-matrix contacts was also dependent on the cell substratum, α2β1-integrin-containing cell-matrix adhesion sites and intact microtubules. Our data indicate that the different subcellular trafficking of Tie2-Ang2 and Tie2-Ang1 complexes generates ligand-specific responses in the angiopoietin-Tie signaling pathway, including modulation of cell-matrix interactions.
Collapse
Affiliation(s)
- Riikka Pietilä
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Department of Medical Biochemistry and Molecular Biology, University of Oulu, Oulu, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Abstract
Integrins play an important role in cell adhesion to the extracellular matrix and other cells. Upon ligand binding, signaling is initiated and several intracellular pathways are activated. This leads to a wide variety of effects, depending on cell type. Integrin activation has been linked to proliferation, secretion of matrix-degrading enzymes, cytokine production, migration, and invasion. Dysregulated integrin expression is often found in malignant disease. Tumors use integrins to evade apoptosis or metastasize, indicating that integrin signaling has to be tightly controlled. During the course of rheumatoid arthritis, the synovial tissue is infiltrated by immune cells that secrete large amounts of cytokines. This pro-inflammatory milieu leads to an upregulation of integrin receptors and their ligands in the synovial tissue. As a consequence, integrin signaling is enhanced, leading to enhanced production of matrix-degrading enzymes and cytokines. Furthermore, in analogy to invading tumors, synovial fibroblasts start invading and degrading cartilage, thereby generating extracellular matrix debris that can further activate integrins.
Collapse
Affiliation(s)
- Torsten Lowin
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital Regensburg, Franz-Josef Strauß Allee 11, 93053 Regensburg, Germany.
| | | |
Collapse
|
107
|
Sacharidou A, Stratman AN, Davis GE. Molecular mechanisms controlling vascular lumen formation in three-dimensional extracellular matrices. Cells Tissues Organs 2011; 195:122-43. [PMID: 21997121 DOI: 10.1159/000331410] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Considerable progress has been made toward a molecular understanding of how cells form lumen and tube structures in three-dimensional (3D) extracellular matrices (ECM). This progress has occurred through work performed with endothelial and epithelial cell models using both in vitro and in vivo approaches. Despite the apparent similarities between endothelial and epithelial cell lumen and tube formation mechanisms, there are clear distinctions that directly relate to their functional differences. This review will focus on endothelial cell (EC) lumen formation mechanisms which control blood vessel formation during development and postnatal life. Of great interest is that an EC lumen signaling complex has been identified which controls human EC lumen and tube formation in 3D matrices and which coordinates integrin-ECM contacts, cell surface proteolysis, cytoskeletal rearrangements, and cell polarity. This complex consists of the collagen-binding integrin α2β1, the collagen-degrading membrane-type 1 matrix metalloproteinase (MT1-MMP), junction adhesion molecule (Jam)C, JamB, polarity proteins Par3 and Par6b, and the Rho GTPase Cdc42-GTP. These interacting proteins are necessary to stimulate 3D matrix-specific signaling events (including activation of protein kinase cascades that regulate the actin and microtubule cytoskeletons) to control the formation of EC lumens and tube networks. Also, EC lumen formation is directly coupled to the generation of vascular guidance tunnels, enzymatically generated ECM conduits that facilitate EC tube remodeling and maturation. Mural cells such as pericytes are recruited along EC tubes within these tunnel spaces to control ECM remodeling events resulting in vascular basement membrane matrix assembly, a key step in tube maturation and stabilization.
Collapse
Affiliation(s)
- Anastasia Sacharidou
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Dalton Cardiovascular Research Center, Columbia, Mo. 65212, USA
| | | | | |
Collapse
|
108
|
Integrin-mediated cell-matrix interaction in physiological and pathological blood vessel formation. JOURNAL OF ONCOLOGY 2011; 2012:125278. [PMID: 21941547 PMCID: PMC3175391 DOI: 10.1155/2012/125278] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 07/15/2011] [Indexed: 02/07/2023]
Abstract
Physiological as well as pathological blood vessel formation are fundamentally dependent on cell-matrix interaction. Integrins, a family of major cell adhesion receptors, play a pivotal role in development, maintenance, and remodeling of the vasculature. Cell migration, invasion, and remodeling of the extracellular matrix (ECM) are integrin-regulated processes, and the expression of certain integrins also correlates with tumor progression. Recent advances in the understanding of how integrins are involved in the regulation of blood vessel formation and remodeling during tumor progression are highlighted. The increasing knowledge of integrin function at the molecular level, together with the growing repertoire of integrin inhibitors which allow their selective pharmacological manipulation, makes integrins suited as potential diagnostic markers and therapeutic targets.
Collapse
|
109
|
Prager GW, Poettler M. Angiogenesis in cancer. Basic mechanisms and therapeutic advances. Hamostaseologie 2011; 32:105-14. [PMID: 21837355 DOI: 10.5482/ha-1163] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 07/18/2011] [Indexed: 12/15/2022] Open
Abstract
Etiological concepts on cancer development, malignant growth and tumour propagation have undergone a revolutionary development during recent years: Among other aspects, the discovery of angiogenesis - the growth of new blood vessels from pre-existing vasculature - as a key element in the pathogenesis of malignancy has opened an abundance of biologic insights and subsequent therapeutic options, which have led to improved prognosis in many cancers including those originating from colon, lung, breast and kidney. Thereby, targeting the major pro-angiogenic stimulus vascular endothelial growth factor (VEGF) became the focus for therapeutic interventions. However, the use of VEGF-targeting drugs has been shown to be of limited efficacy, which might lie in the fact that tumor angiogenesis is mediated by a variety of different subcellular systems. This review focuses on the basic mechanisms involved in angiogenesis, which potentially represent novel targets for pharmacological agents in the treatment of malignancies.
Collapse
Affiliation(s)
- G W Prager
- Comprehensive Cancer Center Vienna, Department of Medicine I, Medical University of Vienna, Austria.
| | | |
Collapse
|
110
|
Abstract
Extracellular matrix (ECM) is essential for all stages of angiogenesis. In the adult, angiogenesis begins with endothelial cell (EC) activation, degradation of vascular basement membrane, and vascular sprouting within interstitial matrix. During this sprouting phase, ECM binding to integrins provides critical signaling support for EC proliferation, survival, and migration. ECM also signals the EC cytoskeleton to initiate blood vessel morphogenesis. Dynamic remodeling of ECM, particularly by membrane-type matrix metalloproteases (MT-MMPs), coordinates formation of vascular tubes with lumens and provides guidance tunnels for pericytes that assist ECs in the assembly of vascular basement membrane. ECM also provides a binding scaffold for a variety of cytokines that exert essential signaling functions during angiogenesis. In the embryo, ECM is equally critical for angiogenesis and vessel stabilization, although there are likely important distinctions from the adult because of differences in composition and abundance of specific ECM components.
Collapse
Affiliation(s)
- Donald R Senger
- Department of Pathology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
111
|
Goyal A, Pal N, Concannon M, Paul M, Doran M, Poluzzi C, Sekiguchi K, Whitelock JM, Neill T, Iozzo RV. Endorepellin, the angiostatic module of perlecan, interacts with both the α2β1 integrin and vascular endothelial growth factor receptor 2 (VEGFR2): a dual receptor antagonism. J Biol Chem 2011; 286:25947-62. [PMID: 21596751 PMCID: PMC3138248 DOI: 10.1074/jbc.m111.243626] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/04/2011] [Indexed: 12/21/2022] Open
Abstract
Endorepellin, the C-terminal module of perlecan, negatively regulates angiogenesis counter to its proangiogenic parental molecule. Endorepellin (the C-terminal domain V of perlecan) binds the α2β1 integrin on endothelial cells and triggers a signaling cascade that leads to disruption of the actin cytoskeleton. Here, we show that both perlecan and endorepellin bind directly and with high affinity to both VEGF receptors 1 and 2, in a region that differs from VEGFA-binding site. In both human and porcine endothelial cells, this interaction evokes a physical down-regulation of both the α2β1 integrin and VEGFR2, with concurrent activation of the tyrosine phosphatase SHP-1 and downstream attenuation of VEGFA transcription. We demonstrate that endorepellin requires both the α2β1 integrin and VEGFR2 for its angiostatic activity. Endothelial cells that express α2β1 integrin but lack VEGFR2, do not respond to endorepellin treatment. Thus, we provide a new paradigm for the activity of an antiangiogenic protein and mechanistically explain the specificity of endorepellin for endothelial cells, the only cells that simultaneously express both receptors. We hypothesize that a mechanism such as dual receptor antagonism could operate for other angiostatic fragments.
Collapse
Affiliation(s)
- Atul Goyal
- From the Department of Pathology, Anatomy, and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Nutan Pal
- From the Department of Pathology, Anatomy, and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Matthew Concannon
- From the Department of Pathology, Anatomy, and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Matthew Paul
- From the Department of Pathology, Anatomy, and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Mike Doran
- From the Department of Pathology, Anatomy, and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Chiara Poluzzi
- From the Department of Pathology, Anatomy, and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Kiyotoshi Sekiguchi
- the Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan, and
| | - John M. Whitelock
- the Graduate School of Biomedical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Thomas Neill
- From the Department of Pathology, Anatomy, and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Renato V. Iozzo
- From the Department of Pathology, Anatomy, and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| |
Collapse
|
112
|
Abstract
Integrin-mediated cell adhesion is involved in many essential normal cellular and pathological functions including cell survival, growth, differentiation, migration, inflammatory responses, platelet aggregation, tissue repair and tumor invasion. 24 different heterodimerized transmembrane integrin receptors are combined from 18 different α and 8 different β subunits. Each integrin subunit contains a large extracellular domain, a single transmembrane domain and a usually short cytoplasmic domain. Integrins bind extracellular matrix (ECM) proteins through their large extracellular domain, and engage the cytoskeleton via their short cytoplasmic tails. These integrin-mediated linkages on either side of the plasma membrane are dynamically linked. Thus, integrins communicate over the plasma membrane in both directions, i.e., outside-in and inside-out signaling. In outside-in signaling through integrins, conformational changes of integrin induced by ligand binding on the extracellular domain altered the cytoplasmic domain structures to elicit various intracellular signaling pathways. Inside-out signaling originates from non-integrin cell surface receptors or cytoplasmic molecules and it activates signaling pathways inside the cells, ultimately resulting in the activation/deactivation of integrins. Integrins are one of key family proteins for cell adhesion regulation through binding to a large number of ECM molecules and cell membrane proteins. Lack of expression of integrins may result in a wide variety of effects ranging from blockage in pre-implantation to embryonic or perinatal lethality and developmental defects. Based on both the key role they played in angiogenesis, leukocytes function and tumor development and easy accessibility as cell surface receptors interacting with extracellular ligands, the integrin superfamily represents the best opportunity of targeting both antibodies and small-molecule antagonists for both therapeutic and diagnostic utility in various key diseases so far.
Collapse
|
113
|
Ivaska J, Heino J. Cooperation between integrins and growth factor receptors in signaling and endocytosis. Annu Rev Cell Dev Biol 2011; 27:291-320. [PMID: 21663443 DOI: 10.1146/annurev-cellbio-092910-154017] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
All multicellular animals express receptors for growth factors (GFs) and extracellular matrix (ECM) molecules. Integrin-type ECM receptors anchor cells to their surroundings and concomitantly activate intracellular signal transduction pathways. The same signaling mechanisms are regulated by GF receptors (GFRs). Recently, intensive research efforts have revealed novel mechanisms describing how the two receptor systems collaborate at many different levels. Integrins can directly bind to GFs and promote their activation. Adhesion receptors also organize signaling platforms and assist GFRs or even activate them via ligand-independent mechanisms. Furthermore, integrins can orchestrate endocytosis and recycling of GFRs. Here, we review the present knowledge about the interplay between integrins and GFRs and discuss recent ideas of how this collaboration may explain some previous controversies in integrin research.
Collapse
Affiliation(s)
- Johanna Ivaska
- Medical Biotechnology, VTT Technical Research Center of Finland, Turku FI-20520, Finland.
| | | |
Collapse
|
114
|
Iozzo RV, Sanderson RD. Proteoglycans in cancer biology, tumour microenvironment and angiogenesis. J Cell Mol Med 2011; 15:1013-31. [PMID: 21155971 PMCID: PMC3633488 DOI: 10.1111/j.1582-4934.2010.01236.x] [Citation(s) in RCA: 434] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 12/08/2010] [Indexed: 12/12/2022] Open
Abstract
Proteoglycans, key molecular effectors of cell surface and pericellular microenvironments, perform multiple functions in cancer and angiogenesis by virtue of their polyhedric nature and their ability to interact with both ligands and receptors that regulate neoplastic growth and neovascularization. Some proteoglycans such as perlecan, have pro- and anti-angiogenic activities, whereas other proteoglycans, such as syndecans and glypicans, can also directly affect cancer growth by modulating key signalling pathways. The bioactivity of these proteoglycans is further modulated by several classes of enzymes within the tumour microenvironment: (i) sheddases that cleave transmembrane or cell-associated syndecans and glypicans, (ii) various proteinases that cleave the protein core of pericellular proteoglycans and (iii) heparanases and endosulfatases which modify the structure and bioactivity of various heparan sulphate proteoglycans and their bound growth factors. In contrast, some of the small leucine-rich proteoglycans, such as decorin and lumican, act as tumour repressors by physically antagonizing receptor tyrosine kinases including the epidermal growth factor and the Met receptors or integrin receptors thereby evoking anti-survival and pro-apoptotic pathways. In this review we will critically assess the expanding repertoire of molecular interactions attributed to various proteoglycans and will discuss novel proteoglycan functions modulating cancer progression, invasion and metastasis and how these factors regulate the tumour microenvironment.
Collapse
Affiliation(s)
- Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson UniversityPhiladelphia, PA, USA
| | - Ralph D Sanderson
- Department of Pathology, and the Comprehensive Cancer Center, University of Alabama at BirminghamBirmingham, AL, USA
| |
Collapse
|
115
|
Burnier JV, Wang N, Michel RP, Hassanain M, Li S, Lu Y, Metrakos P, Antecka E, Burnier MN, Ponton A, Gallinger S, Brodt P. Type IV collagen-initiated signals provide survival and growth cues required for liver metastasis. Oncogene 2011; 30:3766-83. [PMID: 21478904 DOI: 10.1038/onc.2011.89] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The liver is a major site of metastasis for human malignancies, yet the factors that regulate tumor cell survival and growth in this organ remain elusive. Previously, we reported that M-27(IGF-IR) murine lung carcinoma cells with ectopic insulin-like growth factor-1 (IGF-I) receptor overexpression acquired a site-specific, liver-metastasizing potential. Gene expression profiling and subsequent RNA and protein analyses revealed that this was associated with major changes to the expression of extracellular matrix (ECM) protein-encoding genes including type III, IV and XVIII collagen genes, and these changes were also observed in the respective tumors in vivo. Because type IV collagen was the most prominently altered ECM protein in this model, we further analyzed its functional relevance to liver metastasis. M-27 cells stably overexpressing type IV collagen α1 and α2 chains were generated and their growth and metastatic properties investigated. We found that these cells acquired a site-selective growth advantage in the liver and this was associated with cell rescue from anoikis in a collagen IV/α2 integrin/FAK-dependent manner and increased responsiveness to IGF-I. Conversely, collagen IV or focal adhesion kinase (FAK) silencing by small-interfering RNA in highly metastatic tumor cells enhanced anoikis and decreased liver metastases formation. Moreover, analysis of human surgical specimens revealed uniformly high collagen IV expression in 65/65 hepatic metastases analyzed, regardless of tissue of origin, whereas it was variable and generally low in 50/50 primary colorectal carcinoma specimens examined. The results suggest that collagen IV-conveyed signals are essential cues for liver metastasis in diverse tumor types and identify mediators of collagen IV signaling as potential therapeutic targets in the management of hepatic metastases.
Collapse
Affiliation(s)
- J V Burnier
- Department of Medicine, McGill University and the McGill University Health Center-Royal Victoria Hospital, Montreal Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Park H, Choi HJ, Kim J, Kim M, Rho SS, Hwang D, Kim YM, Kwon YG. Homeobox D1 regulates angiogenic functions of endothelial cells via integrin β1 expression. Biochem Biophys Res Commun 2011; 408:186-92. [PMID: 21501586 DOI: 10.1016/j.bbrc.2011.04.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 04/03/2011] [Indexed: 10/18/2022]
Abstract
Homeobox (HOX) family genes, major transcription factors for embryonic development, have been also implicated in vascular development and angiogenesis, particularly with regulation of genes involved in cell-cell or cell-extracellular matrix (ECM) interactions. However, the cellular and molecular functions of HOXD1 in endothelial cells (ECs) are yet to be explored. We here report that HOXD1 is prominently expressed in human ECs and regulates angiogenic activities. Knockdown of HOXD1 in ECs resulted in significant inhibition of migration and adhesion as well as tube like structure formation. These effects were correlated with the reduced expression of integrin β1 (ITGB1), an important signaling component of angiogenesis. Consistently, ITGB1 promoter activity was decreased by HOXD1 knockdown in ECs. Furthermore, we identified the putative HOXD1-binding sites in the promoter region of ITGB1. Together, these findings suggest that HOXD1 plays a significant role in EC functions by regulating the expression of ITGB1.
Collapse
Affiliation(s)
- Hyojin Park
- College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Bayless KJ, Johnson GA. Role of the cytoskeleton in formation and maintenance of angiogenic sprouts. J Vasc Res 2011; 48:369-85. [PMID: 21464572 DOI: 10.1159/000324751] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 01/10/2011] [Indexed: 12/19/2022] Open
Abstract
Angiogenesis is the formation of new blood vessels from pre-existing structures, and is a key step in tissue and organ development, wound healing and pathological events. Changes in cell shape orchestrated by the cytoskeleton are integral to accomplishing the various steps of angiogenesis, and an intact cytoskeleton is also critical for maintaining newly formed structures. This review focuses on how the 3 main cytoskeletal elements--microfilaments, microtubules, and intermediate filaments--regulate the formation and maintenance of angiogenic sprouts. Multiple classes of compounds target microtubules and microfilaments, revealing much about the role of actin and tubulin and their associated molecules in angiogenic sprout formation and maintenance. In contrast, intermediate filaments are much less studied, yet intriguing evidence suggests a vital, but unresolved, role in angiogenic sprouting. This review discusses evidence for regulatory molecules and pharmacological compounds that affect actin, microtubule and intermediate filament dynamics to alter various steps of angiogenesis, including endothelial sprout formation and maintenance.
Collapse
Affiliation(s)
- Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, USA.
| | | |
Collapse
|
118
|
Scartozzi M, Loretelli C, Bearzi I, Mandolesi A, Galizia E, Onofri A, Pistelli M, Bittoni A, Berardi R, Cascinu S. Allele polymorphisms of tumor integrins correlate with peritoneal carcinosis capability of gastric cancer cells in radically resected patients. Ann Oncol 2011; 22:897-902. [PMID: 20926544 DOI: 10.1093/annonc/mdq542] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Preclinical studies suggested that integrins are relevant for gastric cancer diffusion. We investigated integrins polymorphisms role in determining peritoneal carcinosis or hematogenous metastases in radically resected gastric cancer. PATIENTS AND METHODS Integrins genotyping was carried out on pT3 radically resected gastric tumors recurring with either peritoneal-only carcinosis or hematogenous metastases. RESULTS The following factors resulted independently associated with peritoneal carcinosis or hematogenous metastases: the A genotype of rs2269772 (ITGA3) [odds ratio (OR) for peritoneal carcinosis: 22.2, 95% confidence interval 1.2-40, P=0.03], the G genotype of rs2269772 (ITGA3) (OR for hematogenous metastases: 5.5, 95% confidence interval 2.2-14.15, P=0.0003), the C genotype of rs11902171 (ITGV) (OR for peritoneal carcinosis: 6.8, 95% confidence interval 1.3-33.4, P=0.01), the G genotype of rs11902171 (ITGV) (OR for hematogenous metastases: 2.5, 95% confidence interval 1.1-5.7, P = 0.02), diffuse histology (OR for peritoneal carcinosis: 4.7, 95% confidence interval 1.9-11.3, P=0.0005) and intestinal histology (OR for hematogenous metastases: 4.2, 95% confidence interval 1.9-9.9, P=0.0008). CONCLUSIONS Tumor histology represents a crucial issue conditioning tumoral behavior; genotyping of rs2269772 (ITGA3) and rs11902171 (ITGV) may be a further asset in the definition of high-risk patients for peritoneal carcinosis among those relapsing after curative resection. The selection tool deriving from this analysis may allow an optimal use of innovative treatment strategies.
Collapse
Affiliation(s)
| | | | - I Bearzi
- Department of Pathology, United Hospitals, Polytechnic Marche University, Ancona
| | - A Mandolesi
- Department of Pathology, United Hospitals, Polytechnic Marche University, Ancona
| | - E Galizia
- Department of Medical Oncology, Profili Hospital, Fabriano
| | - A Onofri
- Postgraduate School in Medical Oncology, United Hospitals, Polytechnic Marche University, Ancona, Italy
| | - M Pistelli
- Postgraduate School in Medical Oncology, United Hospitals, Polytechnic Marche University, Ancona, Italy
| | - A Bittoni
- Postgraduate School in Medical Oncology, United Hospitals, Polytechnic Marche University, Ancona, Italy
| | | | | |
Collapse
|
119
|
Genomic and proteomic analysis of the impact of mitotic quiescence on the engraftment of human CD34+ cells. PLoS One 2011; 6:e17498. [PMID: 21408179 PMCID: PMC3049784 DOI: 10.1371/journal.pone.0017498] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 02/07/2011] [Indexed: 12/25/2022] Open
Abstract
It is well established that in adults, long-term repopulating hematopoietic stem cells (HSC) are mitotically quiescent cells that reside in specialized bone marrow (BM) niches that maintain the dormancy of HSC. Our laboratory demonstrated that the engraftment potential of human HSC (CD34+ cells) from BM and mobilized peripheral blood (MPB) is restricted to cells in the G0 phase of cell cycle but that in the case of umbilical cord blood (UCB) -derived CD34+ cells, cell cycle status is not a determining factor in the ability of these cells to engraft and sustain hematopoiesis. We used this distinct in vivo behavior of CD34+ cells from these tissues to identify genes associated with the engraftment potential of human HSC. CD34+ cells from BM, MPB, and UCB were fractionated into G0 and G1 phases of cell cycle and subjected in parallel to microarray and proteomic analyses. A total of 484 target genes were identified to be associated with engraftment potential of HSC. System biology modeling indicated that the top four signaling pathways associated with these genes are Integrin signaling, p53 signaling, cytotoxic T lymphocyte-mediated apoptosis, and Myc mediated apoptosis signaling. Our data suggest that a continuum of functions of hematopoietic cells directly associated with cell cycle progression may play a major role in governing the engraftment potential of stem cells. While proteomic analysis identified a total of 646 proteins in analyzed samples, a very limited overlap between genomic and proteomic data was observed. These data provide a new insight into the genetic control of engraftment of human HSC from distinct tissues and suggest that mitotic quiescence may not be the requisite characteristic of engrafting stem cells, but instead may be the physiologic status conducive to the expression of genetic elements favoring engraftment.
Collapse
|
120
|
Abstract
Angiogenesis, the formation of new blood vessel, plays an important role for the growth and metastasis of malignant tumors. The recent identification of specific growth factors for lymphatic vessels and of new lymphatic-specific markers provided evidence for an active role of the lymphatic system during the tumor growth and metastasis processes. Tumor lymphangiogenesis has been shown to play a role in promoting tumor growth and metastasis of tumor cells to distant sites. Integrins play keys roles in the regulation of angiogenesis and lymphangiogenesis during normal development and several diseases. Indeed, integrins control vascular and lymphatic endothelial cell adhesion, migration, and survival. Importantly, integrin inhibitors can block angiogenesis and lymphangiogenesis. In this chapter, we will highlight the role of integrins during angiogenesis and lymphangiogenesis as well as the function of individual integrins during vascular development, postnatal angiogenesis, and lymphangiogenesis. We discuss the role of integrins as potential therapeutic targets for the control of tumor angiogenesis, lymphangiogenesis, and metastatic spread in the treatment of cancer. We also describe methods to analyze expression and function of integrins during angiogenesis and lymphangiogenesis.
Collapse
Affiliation(s)
- Philippe Foubert
- Moores UCSD Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | | |
Collapse
|
121
|
Davis GE, Stratman AN, Sacharidou A. Molecular Control of Vascular Tube Morphogenesis and Stabilization: Regulation by Extracellular Matrix, Matrix Metalloproteinases, and Endothelial Cell–Pericyte Interactions. BIOPHYSICAL REGULATION OF VASCULAR DIFFERENTIATION AND ASSEMBLY 2011. [DOI: 10.1007/978-1-4419-7835-6_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
122
|
Feitosa NM, Richardson R, Bloch W, Hammerschmidt M. Basement membrane diseases in zebrafish. Methods Cell Biol 2011; 105:191-222. [PMID: 21951531 DOI: 10.1016/b978-0-12-381320-6.00008-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Basement membranes (BMs) are a complex, sheet-like network of specialized extracellular matrix that underlies epithelial cells and surrounds muscle cells. They provide adherence between neighboring tissues, permit some flexibility of these adherent structures, and can act as a store for growth factors and as a guide for cell migration. The BM is not just a static structure; its deposition and remodeling are important for many processes including embryonic development, immune response, and wound healing. To date, dysfunction in BM deposition or remodeling has been linked to many human congenital disorders and diseases, affecting many different tissues in the body, including malformations, dystrophies, and cancer. However, many questions remain to be answered on the role BM proteins, and their mutations, play in the pathogenesis of human disease. In recent years, the zebrafish (Danio rerio) has emerged as a powerful animal model for human development and disease. In the first part of this chapter, we provide an overview of described defects caused by BM dysfunction in zebrafish, including development and function of notochord, muscle, central nervous system, skin, cardiovascular system, and kidney. In the second part, we will describe details of methods used to visualize and assess the structure of the BM in zebrafish, and to functionally analyze its different components.
Collapse
|
123
|
Hoang MV, Nagy JA, Senger DR. Cdc42-mediated inhibition of GSK-3β improves angio-architecture and lumen formation during VEGF-driven pathological angiogenesis. Microvasc Res 2011; 81:34-43. [PMID: 20849862 PMCID: PMC3021179 DOI: 10.1016/j.mvr.2010.09.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 08/19/2010] [Accepted: 09/03/2010] [Indexed: 01/10/2023]
Abstract
Vascular endothelial growth factor-A (VEGF) typically induces abnormal angiogenesis in the adult, thereby aggravating disease pathology and limiting utility of VEGF for therapeutic angiogenesis. To identify strategies for rectifying defects in pathological VEGF neovessels, we investigated consequences of modulating the Rho GTPase Cdc42. In a mouse skin model of VEGF-driven pathological angiogenesis, transduction with active Cdc42 (L28Cdc42) markedly improved VEGF neovessels, as measured by increased lumen formation, enlarged vessel diameter, and enhanced perfusion of macromolecular tracers. Conversely, transduction with dominant negative Cdc42 (N17Cdc42) impaired endothelial cell (EC) assembly into lumenized blood vessels and reduced neovessel diameter and tracer perfusion. In vitro, active Cdc42 improved coordination between actin filaments and microtubules and enhanced formation of vascular cords, suggesting that active Cdc42 rectifies defects in angiogenesis by improving cytoskeletal dynamics and capillary morphogenesis. Analyses of Cdc42 signaling in microvascular ECs indicated that active Cdc42 also inhibits glycogen synthase kinase-3β (GSK-3β), a multi-functional serine/threonine protein kinase. Pharmacological inhibition of GSK-3β improved vascular cord formation in vitro and promoted proper neovessel formation in vivo comparably to active Cdc42, thus linking GSK-3β inhibition to the mechanism by which active Cdc42 rectifies pathological neovascularization. These studies identify activation of Cdc42 and inhibition of GSK-3β as novel strategies for correcting abnormalities associated with VEGF-driven angiogenesis, and they suggest new approaches for achieving improved therapeutic neovascularization with VEGF.
Collapse
Affiliation(s)
- Mien V. Hoang
- Department of Pathology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston MA 02215
| | - Janice A. Nagy
- Department of Pathology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston MA 02215
| | - Donald R. Senger
- Department of Pathology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston MA 02215
| |
Collapse
|
124
|
Schneider JG, Amend SH, Weilbaecher KN. Integrins and bone metastasis: integrating tumor cell and stromal cell interactions. Bone 2011; 48:54-65. [PMID: 20850578 PMCID: PMC3010439 DOI: 10.1016/j.bone.2010.09.016] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 09/04/2010] [Indexed: 01/24/2023]
Abstract
Integrins on both tumor cells and the supporting host stromal cells in bone (osteoclasts, new blood vessels, inflammatory cells, platelets and bone marrow stromal cells) play key roles in enhancing bone metastasis. Tumor cells localize to specific tissues through integrin-mediated contacts with extracellular matrix and stromal cells. Integrin expression and signaling are perturbed in cancer cells, allowing them to "escape" from cell-cell and cell-matrix tethers, invade, migrate and colonize within new tissues and matrices. Integrin signaling through αvβ3 and VLA-4 on tumor cells can promote tumor metastasis to and proliferation in the bone microenvironment. Osteoclast (OC) mediated bone resorption is a critical component of bone metastasis and can promote tumor growth in bone and αvβ3 integrins are critical to OC function and development. Tumors in the bone microenvironment can recruit new blood vessel formation, platelets, pro-tumor immune cells and bone marrow stromal cells that promote tumor growth and invasion in bone. Integrins and their ligands play critical roles in platelet aggregation (αvβ3 and αIIbβ3), hematopoietic cell mobilization (VLA-4 and osteopontin), neoangiogenesis (αvβ3, αvβ5, α6β4, and β1 integrin) and stromal function (osteopontin and VLA-4). Integrins are involved in the pathogenesis of bone metastasis at many levels and further study to define integrin dysregulation by cancer will yield new therapeutic targets for the prevention and treatment of bone metastasis.
Collapse
Affiliation(s)
- Jochen G. Schneider
- Institute for Clinical Biochemistry and Pathobiochemistry, University of Wuerzburg, Germany, and Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg
| | - Sarah H. Amend
- Department of Medicine and Division of Oncology, Washington University, School of Medicine, St. Louis, MO, USA
| | - Katherine N. Weilbaecher
- Department of Medicine and Division of Oncology, Washington University, School of Medicine, St. Louis, MO, USA
| |
Collapse
|
125
|
Davis GE, Stratman AN, Sacharidou A, Koh W. Molecular basis for endothelial lumen formation and tubulogenesis during vasculogenesis and angiogenic sprouting. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 288:101-65. [PMID: 21482411 DOI: 10.1016/b978-0-12-386041-5.00003-0] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many studies reveal a fundamental role for extracellular matrix-mediated signaling through integrins and Rho GTPases as well as matrix metalloproteinases (MMPs) in the molecular control of vascular tube morphogenesis in three-dimensional (3D) tissue environments. Recent work has defined an endothelial cell (EC) lumen signaling complex of proteins that controls these vascular morphogenic events. These findings reveal a signaling interdependence between Cdc42 and MT1-MMP to control the 3D matrix-specific process of EC tubulogenesis. The EC tube formation process results in the creation of a network of proteolytically generated vascular guidance tunnels in 3D matrices that are utilized to remodel EC-lined tubes through EC motility and could facilitate processes such as flow-induced remodeling and arteriovenous EC sorting and differentiation. Within vascular guidance tunnels, key dynamic interactions occur between ECs and pericytes to affect vessel remodeling, diameter, and vascular basement membrane matrix assembly, a fundamental process necessary for endothelial tube maturation and stabilization. Thus, the EC lumen and tube formation mechanism coordinates the concomitant establishment of a network of vascular tubes within tunnel spaces to allow for flow responsiveness, EC-mural cell interactions, and vascular extracellular matrix assembly to control the development of the functional microcirculation.
Collapse
Affiliation(s)
- George E Davis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | | | | | | |
Collapse
|
126
|
Active Rac1 improves pathologic VEGF neovessel architecture and reduces vascular leak: mechanistic similarities with angiopoietin-1. Blood 2010; 117:1751-60. [PMID: 21030561 DOI: 10.1182/blood-2010-05-286831] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Architecturally defective, leaky blood vessels typify pathologic angiogenesis induced by vascular endothelial growth factor-A (VEGF-A). Such neovascular defects aggravate disease pathology and seriously compromise the therapeutic utility of VEGF. Endothelial cell (EC) transduction with active L61Rac1 strongly improved VEGF-driven angiogenesis in vivo as measured by increased neovascular density, enhanced lumen formation, and reduced vessel leakiness. Conversely, transduction with dominant-negative N17Rac1 strongly inhibited neovascularization. In vitro, active L61Rac1 promoted organization of cortical actin filaments and vascular cords and improved EC-EC junctions, indicating that improved cytoskeletal dynamics are important to the mechanism by which active L61Rac1 rectifies VEGF-driven angiogenesis. SEW2871, a sphingosine 1-phosphate receptor-1 agonist that activates Rac1 in ECs, improved cord formation and EC-EC junctions in vitro similarly to active L61Rac. Moreover, SEW2871 administration in vivo markedly improved VEGF neovessel architecture and reduced neovascular leak. Angiopoietin-1, a cytokine that "normalizes" VEGF neovessels in vivo, activated Rac1 and improved cord formation and EC-EC junctions in vitro comparably to active L61Rac1, and a specific Rac1 inhibitor blocked these effects. These studies distinguish augmentation of Rac1 activity as a means to rectify the pathologic angioarchitecture and dysfunctionality of VEGF neovessels, and they identify a rational pharmacologic strategy for improving VEGF angiogenesis.
Collapse
|
127
|
Hoang MV, Nagy JA, Fox JEB, Senger DR. Moderation of calpain activity promotes neovascular integration and lumen formation during VEGF-induced pathological angiogenesis. PLoS One 2010; 5:e13612. [PMID: 21049044 PMCID: PMC2963609 DOI: 10.1371/journal.pone.0013612] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Accepted: 09/24/2010] [Indexed: 12/16/2022] Open
Abstract
Background Successful neovascularization requires that sprouting endothelial cells (ECs) integrate to form new vascular networks. However, architecturally defective, poorly integrated vessels with blind ends are typical of pathological angiogenesis induced by vascular endothelial growth factor-A (VEGF), thereby limiting the utility of VEGF for therapeutic angiogenesis and aggravating ischemia-related pathologies. Here we investigated the possibility that over-exuberant calpain activity is responsible for aberrant VEGF neovessel architecture and integration. Calpains are a family of intracellular calcium-dependent, non-lysosomal cysteine proteases that regulate cellular functions through proteolysis of numerous substrates. Methodology/Principal Findings In a mouse skin model of VEGF-driven angiogenesis, retroviral transduction with dominant-negative (DN) calpain-I promoted neovessel integration and lumen formation, reduced blind ends, and improved vascular perfusion. Moderate doses of calpain inhibitor-I improved VEGF-driven angiogenesis similarly to DN calpain-I. Conversely, retroviral transduction with wild-type (WT) calpain-I abolished neovessel integration and lumen formation. In vitro, moderate suppression of calpain activity with DN calpain-I or calpain inhibitor-I increased the microtubule-stabilizing protein tau in endothelial cells (ECs), increased the average length of microtubules, increased actin cable length, and increased the interconnectivity of vascular cords. Conversely, WT calpain-I diminished tau, collapsed microtubules, disrupted actin cables, and inhibited integration of cord networks. Consistent with the critical importance of microtubules for vascular network integration, the microtubule-stabilizing agent taxol supported vascular cord integration whereas microtubule dissolution with nocodazole collapsed cord networks. Conclusions/Significance These findings implicate VEGF-induction of calpain activity and impairment of cytoskeletal dynamics in the failure of VEGF-induced neovessels to form and integrate properly. Accordingly, calpain represents an important target for rectifying key vascular defects associated with pathological angiogenesis and for improving therapeutic angiogenesis with VEGF.
Collapse
Affiliation(s)
- Mien V Hoang
- Department of Pathology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | | | | | | |
Collapse
|
128
|
Abstract
Endogenous inhibitors of angiogenesis are proteins or fragments of proteins that are formed in the body, which can inhibit the angiogenic process. These molecules can be found both in the circulation and sequestered in the extracellular matrix (ECM) surrounding cells. Many matrix-derived inhibitors of angiogenesis, such as endostatin, tumstatin, canstatin and arresten, are bioactive fragments of larger ECM molecules. These substances become released upon proteolysis of the ECM and the vascular basement membrane (VBM) by enzymes of the tumor microenvironment. Although the role of matrix-derived angiogenesis inhibitors is well studied in animal models of cancer, their role in human cancers is less established. In this review we discuss the current knowledge about these molecules and their potential use as cancer therapeutics and biomarkers.
Collapse
|
129
|
Avramidis G, Krüger-Krasagakis S, Krasagakis K, Fragiadaki I, Kokolakis G, Tosca A. The role of endothelial cell apoptosis in the effect of etanercept in psoriasis. Br J Dermatol 2010; 163:928-34. [DOI: 10.1111/j.1365-2133.2010.09935.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
130
|
Wang C, Cao J, Qu J, Li Y, Peng B, Gu Y, He Z. Recombinant vascular basement membrane derived multifunctional peptide blocks endothelial cell angiogenesis and neovascularization. J Cell Biochem 2010; 111:453-60. [DOI: 10.1002/jcb.22735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
131
|
Su L, Xu X, Zhao H, Gu Q, Zou H. In vitro and in vivo antiangiogenic activity of a novel deca-peptide derived from human tissue-type plasminogen activator kringle 2. Biochem Biophys Res Commun 2010; 396:1012-7. [PMID: 20471363 DOI: 10.1016/j.bbrc.2010.05.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 05/10/2010] [Indexed: 10/19/2022]
Abstract
A synthetic deca-peptide corresponding to the amino acid sequence Arg(54)-Trp(63) of human tissue-type plasminogen activator (t-PA) kringle 2 domain, named TKII-10, is produced and tested for its ability to inhibit endothelial cell proliferation, migration, tube formation in vitro, and angiogenesis in vivo. At the same time, another peptide TKII-10S composed of the same 10 amino acids as TKII-10, but in a different sequence, is also produced and tested. The results show that TKII-10 potently inhibits VEGF-stimulated endothelial cell migration and tube formation in a dose-dependent, as well as sequence-dependent, manner in vitro while it is inactive in inhibiting endothelial cell proliferation. Furthermore, TKII-10 potently inhibits angiogenesis in chick chorioallantoic membrane and mouse cornea. The middle four amino acids DGDA in their sequence play an important role in TKII-10 angiogenesis inhibition(.) These results suggest that TKII-10 is a novel angiogenesis inhibitor that may serve as a prototype for antiangiogenic drug development.
Collapse
Affiliation(s)
- Li Su
- Department of Ophthalmology, Shanghai First People's Hospital, Affiliate of Shanghai Jiaotong University, No. 100 Haining Road, Shanghai 200080, PR China
| | | | | | | | | |
Collapse
|
132
|
Abstract
Angiogenesis, or the formation of new blood vessels from the preexisting vasculature, is a key component in numerous physiologic and pathologic responses and has broad impact in many medical and surgical specialties. In this review, we discuss the key cellular steps that lead to the neovascularization of tissues and highlight the main molecular mechanisms and mediators in this process. We include discussions on proteolytic enzymes, cell-matrix interactions, and pertinent cell signaling pathways and end with a survey of the mechanisms that lead to the stabilization and maturation of neovasculatures.
Collapse
|
133
|
Tumor angiogenesis: insights and innovations. JOURNAL OF ONCOLOGY 2010; 2010:132641. [PMID: 20445741 PMCID: PMC2860112 DOI: 10.1155/2010/132641] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 02/12/2010] [Accepted: 02/12/2010] [Indexed: 12/21/2022]
Abstract
Angiogenesis is a vital process resulting in the formation of new blood vessels. It is normally a highly regulated process that occurs during human development, reproduction, and wound repair. However, angiogenesis can also become a fundamental pathogenic process found in cancer and several other diseases. To date, the inhibition of angiogenesis has been researched at both the bench and the bedside. While several studies have found moderate improvements when treating with angiogenesis inhibitors, greater success is being seen when the inhibition of angiogenesis is combined with other traditional forms of available therapy. This review summarizes several important angiogenic factors, examines new research and ongoing clinical trials for such factors, and attempts to explain how this new knowledge may be applied in the fight against cancer and other angiogenic-related diseases.
Collapse
|
134
|
Endothelial lumen signaling complexes control 3D matrix-specific tubulogenesis through interdependent Cdc42- and MT1-MMP-mediated events. Blood 2010; 115:5259-69. [PMID: 20215637 DOI: 10.1182/blood-2009-11-252692] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Here, we define an endothelial cell (EC) lumen signaling complex involving Cdc42, Par6b, Par3, junction adhesion molecule (Jam)-B and Jam-C, membrane type 1-matrix metalloproteinase (MT1-MMP), and integrin alpha(2)beta(1), which coassociate to control human EC tubulogenesis in 3D collagen matrices. Blockade of both Jam-B and Jam-C using antibodies, siRNA, or dominant-negative mutants completely interferes with lumen and tube formation resulting from a lack of Cdc42 activation, inhibition of Cdc42-GTP-dependent signal transduction, and blockade of MT1-MMP-dependent proteolysis. This process requires interdependent Cdc42 and MT1-MMP signaling, which involves Par3 binding to the Jam-B and Jam-C cytoplasmic tails, an interaction that is necessary to physically couple the components of the lumen signaling complex. MT1-MMP proteolytic activity is necessary for Cdc42 activation during EC tube formation in 3D collagen matrices but not on 2D collagen surfaces, whereas Cdc42 activation is necessary for MT1-MMP to create vascular guidance tunnels and tube networks in 3D matrices through proteolytic events. This work reveals a novel interdependent role for Cdc42-dependent signaling and MT1-MMP-dependent proteolysis, a process that occurs selectively in 3D collagen matrices and that requires EC lumen signaling complexes, to control human EC tubulogenesis during vascular morphogenesis.
Collapse
|
135
|
Betulinic acid inhibits the expression of hypoxia-inducible factor 1α and vascular endothelial growth factor in human endometrial adenocarcinoma cells. Mol Cell Biochem 2010; 340:15-20. [DOI: 10.1007/s11010-010-0395-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 02/03/2010] [Indexed: 11/26/2022]
|
136
|
Kim HK, Joe YA. DGDA, a local sequence of the kringle 2 domain, is a functional motif of the tissue-type plasminogen activator’s antiangiogenic kringle domain. Biochem Biophys Res Commun 2010; 391:166-9. [DOI: 10.1016/j.bbrc.2009.11.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 11/05/2009] [Indexed: 10/20/2022]
|
137
|
Abstract
Cells, including endothelial cells, continuously sense their surrounding environment and rapidly adapt to changes in order to assure tissues and organs homeostasis. The extracellular matrix (ECM) provides a physical scaffold for cell positioning and represents an instructive interface allowing cells to communicate over short distances. Cell surface receptors of the integrin family emerged through evolution as essential mediators and integrators of ECM-dependent communication. In preclinical studies, pharmacological inhibition of vascular integrins suppressed angiogenesis and inhibited tumor progression. alpha(V)beta(3) and alpha(V)beta(5) were the first integrins targeted to suppress tumor angiogenesis. Subsequently, additional integrins, in particular alpha(1)beta(1), alpha(2)beta(1), alpha(5)beta(1), and alpha(6)beta(4), emerged as potential therapeutic targets. Integrin inhibitors are currently tested in clinical trials for their safety and antiangiogenic/antitumor activity. In this chapter, we review the role of integrins in angiogenesis and present recent advances in the use of integrin antagonists as potential therapeutics in cancer and discuss future perspectives.
Collapse
|
138
|
Hussey AJ, Winardi M, Han XL, Thomas GP, Penington AJ, Morrison WA, Knight KR, Feeney SJ. Seeding of Pancreatic Islets into Prevascularized Tissue Engineering Chambers. Tissue Eng Part A 2009; 15:3823-33. [DOI: 10.1089/ten.tea.2008.0682] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Alan J. Hussey
- Bernard O'Brien Institute of Microsurgery, Fitzroy, Australia
- Department of Plastic Surgery, Galway University Hospitals, Galway, Ireland
| | - Meilina Winardi
- Bernard O'Brien Institute of Microsurgery, Fitzroy, Australia
| | - Xiao-Lian Han
- Bernard O'Brien Institute of Microsurgery, Fitzroy, Australia
| | - Greg P.L. Thomas
- Bernard O'Brien Institute of Microsurgery, Fitzroy, Australia
- Plastic and Maxillofacial Surgery, Odstock Centre for Burns, Salisbury District Hospital, Salisbury, United Kingdom
| | - Anthony J. Penington
- Bernard O'Brien Institute of Microsurgery, Fitzroy, Australia
- University of Melbourne Department of Surgery, St. Vincent's Hospital, Fitzroy, Australia
| | - Wayne A. Morrison
- Bernard O'Brien Institute of Microsurgery, Fitzroy, Australia
- University of Melbourne Department of Surgery, St. Vincent's Hospital, Fitzroy, Australia
| | | | | |
Collapse
|
139
|
Makrilia N, Kollias A, Manolopoulos L, Syrigos K. Cell adhesion molecules: role and clinical significance in cancer. Cancer Invest 2009; 27:1023-37. [PMID: 19909018 DOI: 10.3109/07357900902769749] [Citation(s) in RCA: 242] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There is a growing body of evidence suggesting that alterations in the adhesion properties of neoplastic cells endow them with an invasive and migratory phenotype. Indeed, changes in the expression or function of cell adhesion molecules have been implicated in all steps of tumor progression, including detachment of tumor cells from the primary site, intravasation into the blood stream, extravasation into distant target organs, and formation of the secondary lesions. This review presents recent data regarding the role of cell adhesion molecules in tumor development and progress with concern to their clinical exploitation as potential biomarkers in neoplastic diseases.
Collapse
Affiliation(s)
- Nektaria Makrilia
- Oncology Unit, 3rd Department of Medicine, Sotiria General Hospital, Athens School of Medicine, Greece
| | | | | | | |
Collapse
|
140
|
Grimm D, Infanger M, Westphal K, Ulbrich C, Pietsch J, Kossmehl P, Vadrucci S, Baatout S, Flick B, Paul M, Bauer J. A delayed type of three-dimensional growth of human endothelial cells under simulated weightlessness. Tissue Eng Part A 2009; 15:2267-75. [PMID: 19226201 DOI: 10.1089/ten.tea.2008.0576] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Endothelial cells (ECs) form three-dimensional (3D) aggregates without any scaffold when they are exposed to microgravity simulated by a random positioning machine (RPM) but not under static conditions at gravity. Here we describe a delayed type of formation of 3D structures of ECs that was initiated when ECs cultured on a desktop RPM remained adherent for the first 5 days but spread over neighboring adherent cells, forming little colonies. After 2 weeks, tube-like structures (TSs) became visible in these cultures. They included a lumen, and they elongated during another 2 weeks of culturing. The walls of these TSs consisted mainly of single-layered ECs, which had produced significantly more beta(1)-integrin, laminin, fibronectin, and alpha-tubulin than ECs simultaneously grown adhering to the culture dishes under microgravity or normal gravity. The amount of actin protein was similar in ECs incorporated in TSs and in ECs growing at gravity. The ratio of tissue inhibitor of metalloproteinases-1 to matrix metalloproteinase-2 found in the supernatants was lower at the seventh than at the 28th day of culturing. These results suggest that culturing ECs under conditions of modeled gravitational unloading represents a new technique for studying the formation of tubes that resemble vascular intimas.
Collapse
Affiliation(s)
- Daniela Grimm
- Institute of Clinical Pharmacology and Toxicology, CBF/CCM, Charité-Universitätsmedizin , Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Piterina AV, Cloonan AJ, Meaney CL, Davis LM, Callanan A, Walsh MT, McGloughlin TM. ECM-based materials in cardiovascular applications: Inherent healing potential and augmentation of native regenerative processes. Int J Mol Sci 2009; 10:4375-4417. [PMID: 20057951 PMCID: PMC2790114 DOI: 10.3390/ijms10104375] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 09/07/2009] [Accepted: 09/30/2009] [Indexed: 01/21/2023] Open
Abstract
The in vivo healing process of vascular grafts involves the interaction of many contributing factors. The ability of vascular grafts to provide an environment which allows successful accomplishment of this process is extremely difficult. Poor endothelisation, inflammation, infection, occlusion, thrombosis, hyperplasia and pseudoaneurysms are common issues with synthetic grafts in vivo. Advanced materials composed of decellularised extracellular matrices (ECM) have been shown to promote the healing process via modulation of the host immune response, resistance to bacterial infections, allowing re-innervation and reestablishing homeostasis in the healing region. The physiological balance within the newly developed vascular tissue is maintained via the recreation of correct biorheology and mechanotransduction factors including host immune response, infection control, homing and the attraction of progenitor cells and infiltration by host tissue. Here, we review the progress in this tissue engineering approach, the enhancement potential of ECM materials and future prospects to reach the clinical environment.
Collapse
Affiliation(s)
- Anna V. Piterina
- Centre for Applied Biomedical Engineering Research (CABER), Department of Mechanical & Aeronautical Engineering, and Materials and Surface Science Institute (MSSI), University of Limerick, Limerick, Ireland; E-Mails:
(A.V.P.);
(A.J.C.);
(C.L.M.);
(L.M.D.);
(A.C.);
(M.T.W.)
| | - Aidan J. Cloonan
- Centre for Applied Biomedical Engineering Research (CABER), Department of Mechanical & Aeronautical Engineering, and Materials and Surface Science Institute (MSSI), University of Limerick, Limerick, Ireland; E-Mails:
(A.V.P.);
(A.J.C.);
(C.L.M.);
(L.M.D.);
(A.C.);
(M.T.W.)
| | - Claire L. Meaney
- Centre for Applied Biomedical Engineering Research (CABER), Department of Mechanical & Aeronautical Engineering, and Materials and Surface Science Institute (MSSI), University of Limerick, Limerick, Ireland; E-Mails:
(A.V.P.);
(A.J.C.);
(C.L.M.);
(L.M.D.);
(A.C.);
(M.T.W.)
| | - Laura M. Davis
- Centre for Applied Biomedical Engineering Research (CABER), Department of Mechanical & Aeronautical Engineering, and Materials and Surface Science Institute (MSSI), University of Limerick, Limerick, Ireland; E-Mails:
(A.V.P.);
(A.J.C.);
(C.L.M.);
(L.M.D.);
(A.C.);
(M.T.W.)
| | - Anthony Callanan
- Centre for Applied Biomedical Engineering Research (CABER), Department of Mechanical & Aeronautical Engineering, and Materials and Surface Science Institute (MSSI), University of Limerick, Limerick, Ireland; E-Mails:
(A.V.P.);
(A.J.C.);
(C.L.M.);
(L.M.D.);
(A.C.);
(M.T.W.)
| | - Michael T. Walsh
- Centre for Applied Biomedical Engineering Research (CABER), Department of Mechanical & Aeronautical Engineering, and Materials and Surface Science Institute (MSSI), University of Limerick, Limerick, Ireland; E-Mails:
(A.V.P.);
(A.J.C.);
(C.L.M.);
(L.M.D.);
(A.C.);
(M.T.W.)
| | - Tim M. McGloughlin
- Centre for Applied Biomedical Engineering Research (CABER), Department of Mechanical & Aeronautical Engineering, and Materials and Surface Science Institute (MSSI), University of Limerick, Limerick, Ireland; E-Mails:
(A.V.P.);
(A.J.C.);
(C.L.M.);
(L.M.D.);
(A.C.);
(M.T.W.)
| |
Collapse
|
142
|
Contois L, Akalu A, Brooks PC. Integrins as "functional hubs" in the regulation of pathological angiogenesis. Semin Cancer Biol 2009; 19:318-28. [PMID: 19482089 PMCID: PMC2806796 DOI: 10.1016/j.semcancer.2009.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 05/20/2009] [Indexed: 02/07/2023]
Abstract
It is well accepted that complex biological processes such as angiogenesis are not controlled by a single family of molecules or individually isolated signaling pathways. In this regard, new insight into the interconnected mechanisms that regulate angiogenesis might be gained by examining this process from a more global network perspective. The coordination of signaling cues from both outside and inside many different cell types is required for the successful completion of angiogenesis. Evidence is accumulating that the multifunctional integrin family of cell adhesion receptors represent an important group of molecules that play active roles in sensing, integrating, and distributing a diverse set of signals that regulate many cellular events required for angiogenesis. Given the ability of integrins to bind numerous extracellular ligands and transmit signals in a bi-directional fashion, we will discuss the multiple ways by which integrins may serve as a functional hub during pathological angiogenesis. In addition, we will highlight potential imaging and therapeutic strategies based on the expanding new insight into integrin function.
Collapse
Affiliation(s)
- Liangru Contois
- Maine Medical Center Research Institute, Center for Molecular Medicine, 81 Research Drive, Scarborough Maine 04074
| | - Abebe Akalu
- Maine Medical Center Research Institute, Center for Molecular Medicine, 81 Research Drive, Scarborough Maine 04074
| | - Peter C. Brooks
- Maine Medical Center Research Institute, Center for Molecular Medicine, 81 Research Drive, Scarborough Maine 04074
| |
Collapse
|
143
|
San Antonio JD, Zoeller JJ, Habursky K, Turner K, Pimtong W, Burrows M, Choi S, Basra S, Bennett JS, DeGrado WF, Iozzo RV. A key role for the integrin alpha2beta1 in experimental and developmental angiogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:1338-47. [PMID: 19700757 DOI: 10.2353/ajpath.2009.090234] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The alpha2beta1 integrin receptor plays a key role in angiogenesis. Here we investigated the effects of small molecule inhibitors (SMIs) designed to disrupt integrin alpha2 I or beta1 I-like domain function on angiogenesis. In unchallenged endothelial cells, fibrillar collagen induced robust capillary morphogenesis. In contrast, tube formation was significantly reduced by SMI496, a beta1 I-like domain inhibitor and by function-blocking anti-alpha2beta1 but not -alpha1beta1 antibodies. Endothelial cells bound fluorescein-labeled collagen I fibrils, an interaction specifically inhibited by SMI496. Moreover, SMI496 caused cell retraction and cytoskeletal collapse of endothelial cells as well as delayed endothelial cell wound healing. SMI activities were examined in vivo by supplementing the growth medium of zebrafish embryos expressing green fluorescent protein under the control of the vascular endothelial growth factor receptor-2 promoter. SMI496, but not a control compound, interfered with angiogenesis in vivo by reversibly inhibiting sprouting from the axial vessels. We further characterized zebrafish alpha2 integrin and discovered that this integrin is highly conserved, especially the I domain. Notably, a similar vascular phenotype was induced by morpholino-mediated knockdown of the integrin alpha2 subunit. By live videomicroscopy, we confirmed that the vessels were largely nonfunctional in the absence of alpha2beta1 integrin. Collectively, our results provide strong biochemical and genetic evidence of a central role for alpha2beta1 integrin in experimental and developmental angiogenesis.
Collapse
Affiliation(s)
- James D San Antonio
- Department of Pathology, Anatomy and Cell Biology, 1020 Locust Street, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Schultz GS, Wysocki A. Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen 2009; 17:153-62. [PMID: 19320882 DOI: 10.1111/j.1524-475x.2009.00466.x] [Citation(s) in RCA: 746] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dynamic interactions between growth factors and extracellular matrix (ECM) are integral to wound healing. These interactions take several forms that may be categorized as direct or indirect. The ECM can directly bind to and release certain growth factors (e.g., heparan sulfate binding to fibroblast growth factor-2), which may serve to sequester and protect growth factors from degradation, and/or enhance their activity. Indirect interactions include binding of cells to ECM via integrins, which enables cells to respond to growth factors (e.g., integrin binding is necessary for vascular endothelial growth factor-induced angiogenesis) and can induce growth factor expression (adherence of monocytes to ECM stimulates synthesis of platelet-derived growth factor). Additionally, matrikines, or subcomponents of ECM molecules, can bind to cell surface receptors in the cytokine, chemokine, or growth factor families and stimulate cellular activities (e.g., tenascin-C and laminin bind to epidermal growth factor receptors, which enhances fibroblast migration). Growth factors such as transforming growth factor-beta also regulate the ECM by increasing the production of ECM components or enhancing synthesis of matrix degrading enzymes. Thus, the interactions between growth factors and ECM are bidirectional. This review explores these interactions, discusses how they are altered in difficult to heal or chronic wounds, and briefly considers treatment implications.
Collapse
Affiliation(s)
- Gregory S Schultz
- Department of Obstetrics and Gynecology, University of Florida, Gainesville, 32610-0294, USA.
| | | |
Collapse
|
145
|
Alghisi GC, Rüegg C. Vascular Integrins in Tumor Angiogenesis: Mediators and Therapeutic Targets. ACTA ACUST UNITED AC 2009; 13:113-35. [PMID: 16728329 DOI: 10.1080/10623320600698037] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The notion that tumor angiogenesis may have therapeutic implications in the control of tumor growth was introduced by Dr. Judah Folkman in 1971. The approval of Avastin in 2004 as the first antiangiogenic systemic drug to treat cancer patients came as a validation of this visionary concept and opened new perspectives to the treatment of cancer. In addition, this success boosted the field to the quest for new therapeutic targets and antiangiogenic drugs. Preclinical and clinical evidence indicate that vascular integrins may be valid therapeutic targets. In preclinical studies, pharmacological inhibition of integrin function efficiently suppressed angiogenesis and inhibited tumor progression. alphaVbeta3 and alphaVbeta5 were the first vascular integrins targeted to suppress tumor angiogenesis. Subsequent experiments revealed that at least four additional integrins (i.e., alpha1beta1, alpha2beta1, alpha5beta1, and alpha6beta4) might be potential therapeutic targets. In clinical studies low-molecular-weight integrin inhibitors and anti-integrin function-blocking antibodies demonstrated low toxicity and good tolerability and are now being tested in combination with radiotherapy and chemotherapy for anticancer activity in patients. In this article the authors review the role of integrins in angiogenesis, present recent development in the use of alphaVbeta3 and alpha5beta1 integrin antagonists as potential therapeutics in cancer, and discuss future perspectives.
Collapse
Affiliation(s)
- Gian Carlo Alghisi
- Centre Pluridisciplinaire d'Oncologie (CePO), Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | | |
Collapse
|
146
|
Imai H, Honda S, Kondo N, Ishibashi K, Tsukahara Y, Negi A. The Upregulation of Angiogenic Gene Expression in Cultured Retinal Pigment Epithelial Cells Grown on Type I Collagen. Curr Eye Res 2009; 32:903-10. [DOI: 10.1080/02713680701604749] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
147
|
Wong MLH, Prawira A, Kaye AH, Hovens CM. Tumour angiogenesis: its mechanism and therapeutic implications in malignant gliomas. J Clin Neurosci 2009; 16:1119-30. [PMID: 19556134 DOI: 10.1016/j.jocn.2009.02.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 01/31/2009] [Accepted: 02/03/2009] [Indexed: 12/15/2022]
Abstract
Angiogenesis is a key event in the progression of malignant gliomas. The presence of microvascular proliferation leads to the histological diagnosis of glioblastoma multiforme. Tumour angiogenesis involves multiple cellular processes including endothelial cell proliferation, migration, reorganisation of extracellular matrix and tube formation. These processes are regulated by numerous pro-angiogenic and anti-angiogenic growth factors. Angiogenesis inhibitors have been developed to interrupt the angiogenic process at the growth factor, receptor tyrosine kinase and intracellular kinase levels. Other anti-angiogenic therapies alter the immune response and endogeneous angiogenesis inhibitor levels. Most anti-angiogenic therapies for malignant gliomas are in Phase I/II trials and only modest efficacies are reported for monotherapies. The greatest potential for angiogenesis inhibitors may lie in their ability to combine safely with chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Michael L H Wong
- Department of Surgery, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | |
Collapse
|
148
|
Iovino F, Ferraraccio F, Orditura M, Antoniol G, Morgillo F, Cascone T, Diadema MR, Aurilio G, Santabarbara G, Ruggiero R, Belli C, Irlandese E, Fasano M, Ciardiello F, Procaccini E, Lo Schiavo F, Catalano G, De Vita F. Serum Vascular Endothelial Growth Factor (VEGF) Levels Correlate with Tumor VEGF and p53 Overexpression in Endocrine Positive Primary Breast Cancer. Cancer Invest 2009; 26:250-5. [DOI: 10.1080/07357900701560612] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
149
|
Expression of integrins on human choroidal neovascular membranes. J Ocul Biol Dis Infor 2009; 2:12-9. [PMID: 20072642 PMCID: PMC2802503 DOI: 10.1007/s12177-009-9015-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 01/28/2009] [Indexed: 11/24/2022] Open
|
150
|
Iruela-Arispe ML, Davis GE. Cellular and Molecular Mechanisms of Vascular Lumen Formation. Dev Cell 2009; 16:222-31. [PMID: 19217424 DOI: 10.1016/j.devcel.2009.01.013] [Citation(s) in RCA: 256] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 01/22/2009] [Accepted: 01/24/2009] [Indexed: 01/01/2023]
|