101
|
Grimley PM, Dong F, Rui H. Stat5a and Stat5b: fraternal twins of signal transduction and transcriptional activation. Cytokine Growth Factor Rev 1999; 10:131-57. [PMID: 10743504 DOI: 10.1016/s1359-6101(99)00011-8] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Stat5a and Stat5b are discretely encoded transcription factors that mediate signals for a broad spectrum of cytokines. Their activation is often an integral component of redundant cytokine signal cascades involving complex cross-talk and pleiotropic gene regulation by Stat5 has been implicated in cellular functions of proliferation, differentiation and apoptosis with relevance to processes of hematopoiesis and immunoregulation, reproduction, and lipid metabolism. Although Stat5a and Stat5b show peptide sequence similarities of > 90%, targeted gene disruptions in mice yield distinctive phenotypes. Prolactin-directed mammary gland maturation fails without functional Stat5a, while disruption of Stat5b in males mitigates growth hormone effects on hepatic function and body mass. The molecular basis for this biologic dichotomy is probably multifaceted. Limited structural dissimilarities between the Stat5a and Stat5b transactivation domains, or subtle differences in the DNA-binding affinities of Stat5 dimer pairs undoubtedly influence gene regulation, but cell-dependent asymmetries in availability of phosphorylated Stat5 can be an underlying factor. Differences in serine phosphorylation(s) of Stat5a and Stat5b, or Stat5 associations with adaptor proteins or co-transcription factors are other potential sources of functional disparity and the signal amplitude, frequency or duration also can be significant. In addition to Stat5 signal attenuation by phosphatase actions or classical feedback inhibition, truncated forms of Stat5 lacking in transactivation capacity may compete upstream for activation and diminish access of full length molecules to DNA binding sites.
Collapse
Affiliation(s)
- P M Grimley
- Department of Pathology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20854, USA
| | | | | |
Collapse
|
102
|
Tan SL, Nakao H, He Y, Vijaysri S, Neddermann P, Jacobs BL, Mayer BJ, Katze MG. NS5A, a nonstructural protein of hepatitis C virus, binds growth factor receptor-bound protein 2 adaptor protein in a Src homology 3 domain/ligand-dependent manner and perturbs mitogenic signaling. Proc Natl Acad Sci U S A 1999; 96:5533-8. [PMID: 10318918 PMCID: PMC21894 DOI: 10.1073/pnas.96.10.5533] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although hepatitis C virus (HCV) infection is an emerging global epidemic causing severe liver disorders, the molecular mechanisms of HCV pathogenesis remain elusive. The NS5A nonstructural protein of HCV contains several proline-rich sequences consistent with Src homology (SH) 3-binding sites found in cellular signaling molecules. Here, we demonstrate that NS5A specifically bound to growth factor receptor-bound protein 2 (Grb2) adaptor protein. Immunoblot analysis of anti-Grb2 immune complexes derived from HeLa S3 cells infected with a recombinant vaccinia virus (VV) expressing NS5A revealed an interaction between NS5A and Grb2 in vivo. An inactivating point mutation in the N-terminal SH3 domain, but not in the C-terminal SH3 domain, of Grb2 displayed significant diminished binding to NS5A. However, the same mutation in both SH3 regions completely abrogated Grb2 binding to NS5A, implying that the two SH3 domains bind in cooperative fashion to NS5A. Further, mutational analysis of NS5A assigned the SH3-binding region to a proline-rich motif that is highly conserved among HCV genotypes. Importantly, phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) was inhibited in HeLa S3 cells infected with NS5A-expressing recombinant VV but not recombinant VV control. Additionally, HeLa cells stably expressing NS5A were refractory to ERK1/2 phosphorylation induced by exogenous epidermal growth factor. Moreover, the coupling of NS5A to Grb2 in these cells was induced by epidermal growth factor stimulation. Therefore, NS5A may function to perturb Grb2-mediated signaling pathways by selectively targeting the adaptor. These findings highlight a viral interceptor of cellular signaling with potential implications for HCV pathogenesis.
Collapse
Affiliation(s)
- S L Tan
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Hackel PO, Zwick E, Prenzel N, Ullrich A. Epidermal growth factor receptors: critical mediators of multiple receptor pathways. Curr Opin Cell Biol 1999; 11:184-9. [PMID: 10209149 DOI: 10.1016/s0955-0674(99)80024-6] [Citation(s) in RCA: 444] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recently, the receptor for epidermal growth factor (EGF) was identified as a downstream element in different signaling pathways. This expanded its classical function as a receptor for EGF-like ligands to a role as mediator of diverse signaling systems and as a switch point of a cellular communication network. In addition, several downstream targets, (e.g. Smad proteins and STATs) into which signals from synergistic and antagonistic signaling pathways converge, were identified.
Collapse
Affiliation(s)
- P O Hackel
- Department of Molecular Biology, Max Planck Institut für Biochemie, AmKlopferspitz 18A, 82152 Martinsried, Germany
| | | | | | | |
Collapse
|
104
|
Wong L, Deb TB, Thompson SA, Wells A, Johnson GR. A differential requirement for the COOH-terminal region of the epidermal growth factor (EGF) receptor in amphiregulin and EGF mitogenic signaling. J Biol Chem 1999; 274:8900-9. [PMID: 10085134 DOI: 10.1074/jbc.274.13.8900] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) mediates the actions of a family of bioactive peptides that include epidermal growth factor (EGF) and amphiregulin (AR). Here we have studied AR and EGF mitogenic signaling in EGFR-devoid NR6 fibroblasts that ectopically express either wild type EGFR (WT) or a truncated EGFR that lacks the three major sites of autophosphorylation (c'1000). COOH-terminal truncation of the EGFR significantly impairs the ability of AR to (i) stimulate DNA synthesis, (ii) elicit Elk-1 transactivation, and (iii) generate sustained enzymatic activation of mitogen-activated protein kinase. EGFR truncation had no significant effect on AR binding to receptor but did result in defective GRB2 adaptor function. In contrast, EGFR truncation did not impair EGF mitogenic signaling, and in c'1000 cells EGF was able to stimulate the association of ErbB2 with GRB2 and SHC. Elk-1 transactivation was monitored when either ErbB2 or a truncated dominant-negative ErbB2 mutant (ErbB2-(1-813)) was overexpressed in cells. Overexpression of full-length ErbB2 resulted in a strong constitutive transactivation of Elk-1 in c'1000 but only slightly stimulated Elk-1 in WT or parental NR6 cells. Conversely, overexpression of ErbB2-(1-813) inhibited EGF-stimulated Elk-1 transactivation in c'1000 but not in WT cells. Thus, the cytoplasmic tail of the EGFR plays a critical role in AR mitogenic signaling but is dispensable for EGF, since EGF-activated truncated EGFRs can signal through ErbB2.
Collapse
Affiliation(s)
- L Wong
- Division of Cytokine Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
105
|
Kiuchi N, Nakajima K, Ichiba M, Fukada T, Narimatsu M, Mizuno K, Hibi M, Hirano T. STAT3 is required for the gp130-mediated full activation of the c-myc gene. J Exp Med 1999; 189:63-73. [PMID: 9874564 PMCID: PMC1887683 DOI: 10.1084/jem.189.1.63] [Citation(s) in RCA: 332] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The signal transducers and activators of transcription (STAT) family members have been implicated in regulating the growth, differentiation, and death of normal and transformed cells in response to either extracellular stimuli, including cytokines and growth factors, or intracellular tyrosine kinases. c-myc expression is coordinately regulated by multiple signals in these diverse cellular responses. We show that STAT3 mostly mediates the rapid activation of the c-myc gene upon stimulation of the interleukin (IL)-6 receptor or gp130, a signal transducing subunit of the receptor complexes for the IL-6 cytokine family. STAT3 does so most likely by binding to cis-regulatory region(s) of the c-myc gene. We show that STAT3 binds to a region overlapping with the E2F site in the c-myc promoter and this site is critical for the c-myc gene promoter- driven transcriptional activation by IL-6 or gp130 signals. This is the first identification of the linkage between a member of the STAT family and the c-myc gene activation, and also explains how the IL-6 family of cytokines is capable of inducing the expression of the c-myc gene.
Collapse
Affiliation(s)
- N Kiuchi
- Division of Molecular Oncology, Biomedical Research Center, Osaka University Medical School, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Heim MH. The Jak-STAT pathway: cytokine signalling from the receptor to the nucleus. J Recept Signal Transduct Res 1999; 19:75-120. [PMID: 10071751 DOI: 10.3109/10799899909036638] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The Jak-STAT pathway was originally discovered through the study of interferon induced intracellular signal transduction. Meanwhile, a large number of cytokines, hormones and growth factors have been found to activate Jaks and STATs. Jaks (Janus Kinases) are a unique class of tyrosine kinases that associate with cytokine receptors. Upon ligand binding, they activate members of the Signal Transducers and Activators of Transcription (STAT) family through phosphorylation on a single tyrosine. Activated STATs form dimers, translocate to the nucleus, bind to specific response elements in promotors of target genes, and transcriptionally activate these genes. Both positive and negative regulations of the Jak-STAT pathway have been identified. In a positive feedback loop, interferons transcriptionally activate the genes for components of the interferon stimulated gene factor 3 (ISGF3). A number of cytokines that activate the Jak-STAT pathway, e.g. IL-6, IL-4, LIF, G-CSF, have been shown to upregulate the expression of SOCS-JABs-SSIs, a recently discovered class of STAT inhibitors. Targeted disruption of genes for a number of Jaks and STATs in mice have revealed specific biological functions for many of them. Although most of the STATs are activated in cell culture by many different ligands, STAT knockout mice mostly show defects in a single or a few cytokine dependent processes. STAT1 knockout mice have an impaired interferon signalling, STAT4 knockouts impaired IL-12 signalling, STAT5a knockouts impaired prolactin signalling, STAT5b knockouts impaired growth hormone signalling, and STAT6 knockout impaired IL-4 and IL-13 signalling. Defects in the Jak-STAT pathway have already been identified in a number of human diseases. Prominent amongst them are leukaemias, lymphomas and inherited immunodeficiency syndromes. It can be expected that additional Jak-STAT related diseases will be identified over the next years. To date, specific STAT inhibitory drugs are not known, but a number of specific protein-protein interactions in the Jak-STAT pathway are potential targets for pharmaceutical interventions.
Collapse
Affiliation(s)
- M H Heim
- Department of Research, University Hospital Basel, Switzerland
| |
Collapse
|
107
|
Simon AR, Rai U, Fanburg BL, Cochran BH. Activation of the JAK-STAT pathway by reactive oxygen species. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C1640-52. [PMID: 9843726 DOI: 10.1152/ajpcell.1998.275.6.c1640] [Citation(s) in RCA: 454] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Reactive oxygen species (ROS) play an important role in the pathogenesis of many human diseases, including the acute respiratory distress syndrome, Parkinson's disease, pulmonary fibrosis, and Alzheimer's disease. In mammalian cells, several genes known to be induced during the immediate early response to growth factors, including the protooncogenes c-fos and c-myc, have also been shown to be induced by ROS. We show that members of the STAT family of transcription factors, including STAT1 and STAT3, are activated in fibroblasts and A-431 carcinoma cells in response to H2O2. This activation occurs within 5 min, can be inhibited by antioxidants, and does not require protein synthesis. STAT activation in these cell lines is oxidant specific and does not occur in response to superoxide- or nitric oxide-generating stimuli. Buthionine sulfoximine, which depletes intracellular glutathione, also activates the STAT pathway. Moreover, H2O2 stimulates the activity of the known STAT kinases JAK2 and TYK2. Activation of STATs by platelet-derived growth factor (PDGF) is significantly inhibited by N-acetyl-L-cysteine and diphenylene iodonium, indicating that ROS production contributes to STAT activation in response to PDGF. These findings indicate that the JAK-STAT pathway responds to intracellular ROS and that PDGF uses ROS as a second messenger to regulate STAT activation.
Collapse
Affiliation(s)
- A R Simon
- Pulmonary and Critical Care Division, Tupper Research Institute, New England Medical Center, Boston 02111, Massachusetts, USA
| | | | | | | |
Collapse
|
108
|
Abstract
Cell motility is induced by many growth factors acting through cognate receptors with intrinsic tyrosine kinase activity (RPTK). However, most of the links between receptor activation and the biophysical processes of cell motility remain undeciphered. We have focused on the mechanisms by which the EGF receptor (EGFR) actuates fibroblast cell motility in an attempt to define this integrated process in one system. Our working model is that divergent, but interconnected pathways lead to the biophysical processes necessary for cell motility: cytoskeleton reorganization, membrane extension, formation of new adhesions to substratum, cell contraction, and release of adhesions at the rear. We postulate that for any given growth factor some of the pathways/processes will be actively signaled and rate-limiting, while others will be permissive due to background low-level activation. Certain couplings have been defined, such as PLCgamma and actin modifying proteins being involved in cytoskeletal reorganization and lamellipod extension and MEK being implicated in detachment from substratum. Others are suggested by complementary investigations in integrin-mediated motility, including rac in membrane protrusion, rho in new adhesions, myosin II motors in contraction, and calpain in detachment, but have yet to be placed in growth factor-induced motility. Our model postulates that many biochemical pathways will be shared between chemokinetic and haptokinetic motility but that select pathways will be activated only during RPTK-enhanced motility.
Collapse
Affiliation(s)
- A Wells
- Department of Pathology, University of Alabama at Birmingham, and Birmingham VA Medical Center, 35294-0007, USA.
| | | | | | | | | | | |
Collapse
|
109
|
Potts JD, Kornacker S, Beebe DC. Activation of the Jak-STAT-signaling pathway in embryonic lens cells. Dev Biol 1998; 204:277-92. [PMID: 9851859 DOI: 10.1006/dbio.1998.9077] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Previous studies showed that lens epithelial cells proliferate rapidly in the embryo and that a lens mitogen, most likely derived from the blood, is present in the anterior chamber of the embryonic eye (Hyatt, G. A., and Beebe, D. C., Development 117, 701-709, 1993). Messenger RNAs for several growth factor receptors have been identified in embryonic lens epithelial cells. We tested several growth factors that are ligands for these receptors for their ability to maintain lens cell proliferation. Embryo serum, PDGF, GM-CSF, and G-CSF maintained lens cell proliferation, but NGF, VEGF, and HGF did not. This and a previous study (Potts, J. D., Harocopos, G. J., and Beebe, D. C., Curr. Eye Res. 12, 759-763, 1993) detected members of the Janus kinase family (Jaks) in the developing lens. Because Jaks are central players in the Jak-STAT-signaling pathway, we identified STAT proteins in the lens and tested whether they were phosphorylated in response to mitogens. STAT1 and STAT3, but not STAT 5 were detected in chicken embryo lens epithelial cells. Only STAT3 was found in terminally differentiated lens fiber cells. STAT1 and STAT3 were phosphorylated in lens cells analyzed immediately after removal from the embryo and when lens epithelial explants were treated with embryo serum, PDGF, or GM-CSF, but not with NGF. Chicken embryo vitreous humor or IGF-1, factors that stimulate lens cell differentiation, but not proliferation, did not cause STAT phosphorylation. When lens epithelial cells were cultured for 4 h in unsupplemented medium, STAT1 and STAT3 declined to nearly undetectable levels. Treatment with PDGF or embryo serum for an additional 15 min restored STAT1 and -3 levels. This recovery was blocked by cycloheximide, but not actinomycin D, suggesting that STAT levels are regulated at the level of translation. STAT levels were maintained in epithelial explants by lens mitogens, but not by factors that stimulated lens fiber differentiation. Both factors that stimulated lens cell proliferation and those that caused fiber differentiation protected cultured lens epithelial cells from apoptosis. These data suggest that the factor(s) responsible for lens cell proliferation in vivo activates the Jak-STAT-signaling pathway. They also indicate that growth factors maintain STAT protein levels in lens epithelial cells by promoting the translation of STAT mRNA, an aspect of STAT regulation that has not been described previously. Signaling by most of the growth factors and cytokines known to activate the Jak-STAT pathway has been disrupted in mice by mutation or targeted deletion. Consideration of the phenotypes of these mice suggests that the factor responsible for lens cell proliferation in vivo may be a growth factor or cytokine that has not yet been described.
Collapse
Affiliation(s)
- J D Potts
- Department of Developmental Biology and Anatomy, School of Medicine, Columbia, South Carolina
| | | | | |
Collapse
|
110
|
Stephens JM, Lumpkin SJ, Fishman JB. Activation of signal transducers and activators of transcription 1 and 3 by leukemia inhibitory factor, oncostatin-M, and interferon-gamma in adipocytes. J Biol Chem 1998; 273:31408-16. [PMID: 9813052 DOI: 10.1074/jbc.273.47.31408] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently demonstrated that signal transducers and activators of transcription (STATs) 1, 3, 5A, 5B, and 6 are expressed in both cultured and native adipocytes. Our current studies have focused on the activation of STATs 1 and 3 by leukemia inhibitory factor (LIF), oncostatin-M (OSM), and interferon-gamma (IFNgamma) in 3T3-L1 adipocytes. IFNgamma is shown to be a potent activator of STAT 1 as indicated by both tyrosine phosphorylation and nuclear translocation. However, LIF and OSM, which are potent inducers of STAT 3, are less potent activators of STAT 1 as measured by both tyrosine phosphorylation and nuclear translocation. Both STATs 1 and 3 were translocated to the nucleus in a time-dependent fashion following LIF treatment. In addition, IFNgamma resulted in a time- and dose-dependent effect on STATs 1 and 3 nuclear translocation. Growth hormone, a potent activator of STATs 5A and 5B, had a minimal effect on STAT 1 and STAT 3 tyrosine phosphorylation. Preincubation with either insulin or growth hormone had no detectable effects on the tyrosine phosphorylation or nuclear translocation of STATs 1 and 3 induced by LIF, OSM, or IFNgamma. The effects of LIF and IFNgamma on STAT 1 and 3 tyrosine phosphorylation and nuclear translocation were confirmed in native rat adipocytes. In 3T3-L1 adipocytes, a low level of serine phosphorylation of STAT 3 on residue 727 was observed and was markedly enhanced by insulin, LIF, or OSM. This increase in STAT 3 Ser727 phosphorylation was dependent upon the activation of MAPK, since the MAPK kinase inhibitor (PD98059) reduced STAT 3 Ser727 phosphorylation to basal levels. The inhibition of MAPK had no effect on the ability of STATs 1 and 3 to be tyrosine-phosphorylated or translocate to the nucleus. These studies demonstrate the highly specific and quantitative activation of STATs 1 and 3 by LIF, OSM, and IFNgamma in adipocytes and indicate that STAT 3 is a substrate for MAPK in adipocytes.
Collapse
Affiliation(s)
- J M Stephens
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| | | | | |
Collapse
|
111
|
Mowen K, David M. Role of the STAT1-SH2 domain and STAT2 in the activation and nuclear translocation of STAT1. J Biol Chem 1998; 273:30073-6. [PMID: 9804758 DOI: 10.1074/jbc.273.46.30073] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Interferon (IFN) induction of immediate-early response genes is mediated through the signal transducers and activators of transcription (STATs). Activation of STAT1 by IFNalpha or IFNgamma through its tyrosine phosphorylation involves members of the Jak tyrosine kinases. In addition, STAT2 is activated by IFNalpha, and, together with STAT1 and p48/ISGF3gamma, forms the transcription factor complex ISGF3. Previous findings suggested that the STAT1-SH2 domain, which is required for the homo- or heterodimerization of STAT1, also participates in the recruitment of STAT1 to the IFN-receptors, because mutations in the SH2-domain abolished STAT1 activation by IFNgamma. Furthermore, STAT2 was reported to be required for the activation of STAT1 by IFNalpha. We were able to induce STAT1 tyrosine phosphorylation by IFNalpha/beta in the absence of STAT2 or a functional STAT1-SH2 domain. In contrast, IFNgamma was unable to cause tyrosine phosphorylation of STAT1-(SH2:Arg --> Gln). Interestingly, although STAT1 was found in the nucleus in STAT2-deficient cells, the nuclear accumulation of the tyrosine phosphorylated SH2-mutant STAT1 was impaired. In summary, our results indicate that the SH2 domain of STAT1 is not required for its ligand-dependent activation by IFNalpha/beta. Moreover, tyrosine phosphorylation is not sufficient to target STAT1 to the nucleus; rather, dimerization appears to play a critical role in the subcellular distribution of STAT1.
Collapse
Affiliation(s)
- K Mowen
- Department of Biology and UCSD Cancer Center, University of California San Diego, La Jolla, California 92093-0322, USA
| | | |
Collapse
|
112
|
Smith PD, Crompton MR. Expression of v-src in mammary epithelial cells induces transcription via STAT3. Biochem J 1998; 331 ( Pt 2):381-5. [PMID: 9531474 PMCID: PMC1219365 DOI: 10.1042/bj3310381] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transgenic mouse models of mammary tumorigenesis and analyses of human breast tumour samples have indicated a role for Src proteins in the tumorigenic process. The downstream effectors of Src function in mammary epithelial cells are less well understood. STAT proteins constitute a family of transcription factors whose activation by cytokine and non-cytokine receptors leads to tyrosine phosphorylation, dimerization and translocation from the cytoplasm to the nucleus. In the nucleus they activate the transcription of specific genes by binding to consensus DNA elements. STATs 1 and 3 can be activated by both cytokine and non-cytokine receptors, and bind as homodimers or heterodimers to viral simian sarcoma virus (sis)-inducible elements such as that found in the c-fos promoter. Here we report that one of the downstream effectors of Src function in mammary epithelial cells is STAT3. We demonstrate that v-src expression in mammary epithelial cells induces Tyr-705 phosphorylation, nuclear translocation and DNA binding of STAT3. Furthermore, we demonstrate that v-src can induce STAT3-dependent transcription. These observations are the first direct evidence that v-src can regulate transcription through the activation of STAT proteins, and add a further level of complexity to the understanding of the mode of action of v-src.
Collapse
Affiliation(s)
- P D Smith
- Cell Biology and Experimental Pathology, Haddow Laboratories, Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, U.K.
| | | |
Collapse
|
113
|
The Bmx Tyrosine Kinase Induces Activation of the Stat Signaling Pathway, Which Is Specifically Inhibited by Protein Kinase Cδ. Blood 1997. [DOI: 10.1182/blood.v90.11.4341.4341_4341_4353] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the hematopoietically expressed Tec tyrosine kinase family have an important role in hematopoietic signal transduction, as exemplified by the crucial role of Btk for B-cell differentiation and activation. Although a variety of cell surface receptors have been found to activate Tec tyrosine kinases, the specific signaling pathways and substrate molecules used by Tec kinases are still largely unknown. In this study a Tec family kinase, Bmx, was found to induce activation of the Stat signaling pathway. Bmx induced the tyrosine phosphorylation and DNA binding activity of all the Stat factors tested, including Stat1, Stat3, and Stat5, both in mammalian and insect cells. Bmx also induced transcriptional activation of Stat1- and Stat5-dependent reporter genes. Other cytoplasmic tyrosine kinases, Syk, Fyn, and c-Src, showed no or only weak ability to activate Stat proteins. Expression of Bmx in mammalian cells was found to induce activation of endogenous Stat proteins without activation of endogenous Jak kinases. We further analyzed the Bmx-mediated activation of Stat1, which was found to be regulated by protein kinase C δ (PKCδ) isoform, but not β 1, ε, or ζ isoforms, leading to inhibition of Stat1 tyrosine phosphorylation. In conclusion, these studies show that Bmx, a Tec family kinase, can function as an activator of the Stat signaling pathway and identify a role for PKCδ in the regulation of Bmx signaling.
Collapse
|
114
|
The Bmx Tyrosine Kinase Induces Activation of the Stat Signaling Pathway, Which Is Specifically Inhibited by Protein Kinase Cδ. Blood 1997. [DOI: 10.1182/blood.v90.11.4341] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractMembers of the hematopoietically expressed Tec tyrosine kinase family have an important role in hematopoietic signal transduction, as exemplified by the crucial role of Btk for B-cell differentiation and activation. Although a variety of cell surface receptors have been found to activate Tec tyrosine kinases, the specific signaling pathways and substrate molecules used by Tec kinases are still largely unknown. In this study a Tec family kinase, Bmx, was found to induce activation of the Stat signaling pathway. Bmx induced the tyrosine phosphorylation and DNA binding activity of all the Stat factors tested, including Stat1, Stat3, and Stat5, both in mammalian and insect cells. Bmx also induced transcriptional activation of Stat1- and Stat5-dependent reporter genes. Other cytoplasmic tyrosine kinases, Syk, Fyn, and c-Src, showed no or only weak ability to activate Stat proteins. Expression of Bmx in mammalian cells was found to induce activation of endogenous Stat proteins without activation of endogenous Jak kinases. We further analyzed the Bmx-mediated activation of Stat1, which was found to be regulated by protein kinase C δ (PKCδ) isoform, but not β 1, ε, or ζ isoforms, leading to inhibition of Stat1 tyrosine phosphorylation. In conclusion, these studies show that Bmx, a Tec family kinase, can function as an activator of the Stat signaling pathway and identify a role for PKCδ in the regulation of Bmx signaling.
Collapse
|
115
|
Suzuki Y, Ozawa Y, Murakami K, Miyazaki H. Lysophosphatidic acid inhibits epidermal-growth-factor-induced Stat1 signaling in human epidermoid carcinoma A431 cells. Biochem Biophys Res Commun 1997; 240:856-61. [PMID: 9398658 DOI: 10.1006/bbrc.1997.7758] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lysophosphatidic acid (LPA) is a lipid mediator which acts on its putative G protein-coupled receptor (GPCR). Recently, activation of signal transducers and activators of transcription (STATs) mediated by GPCR has been reported. In this study, we examined the effect of LPA on STAT activation using the electrophoretic mobility shift assays and the heterologous promoter analysis in human epidermoid carcinoma A431 cells. We found that LPA inhibited epidermal growth factor (EGF)-induced Stat1 activation in a concentration-dependent manner. Other phospholipase C (PLC)-coupled GPCR agonists, bradykinin and ATP, also inhibited Stat1 activation. This inhibitory effect of LPA was completely mimicked by an activator of protein kinase C (PKC), a PLC-downstream effector. These findings suggest that the inhibitory effect on EGF-induced Stat1 activation may be a general characteristic of PLC-coupled GPCRs and PKC pathway may be mainly associated with this inhibitory effect. This is the first evidence showing that GPCR agonists inhibit the Janus kinase-independent Stat1 activation induced by receptor tyrosine kinase.
Collapse
Affiliation(s)
- Y Suzuki
- Institute of Applied Biochemistry, University of Tsukuba, Ibaraki, Japan
| | | | | | | |
Collapse
|
116
|
Linnekin D, Mou S, Deberry CS, Weiler SR, Keller JR, Ruscetti FW, Longo DL. Stem cell factor, the JAK-STAT pathway and signal transduction. Leuk Lymphoma 1997; 27:439-44. [PMID: 9477125 DOI: 10.3109/10428199709058310] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent work has demonstrated the importance of Janus family kinases (JAKs) and signal transducers and activators of transcription (STATs) in the stimulus-response coupling of receptors lacking intrinsic tyrosine kinase activity. In particular, the JAK-STAT pathway appears critical in signal transduction by interferon as well as numerous hematopoietic growth factors interacting with members of the hemapoietin receptor superfamily. Although ligands that interact with receptor tyrosine kinases (RTK), such as epidermal growth factor (EGF), platelet-derived growth factor (PDGF) and colony stimulating factor-1 (CSF-1), have been shown to induce increases in phosphorylation of both JAKs and STATs, little is known about activation of this pathway by stem cell factor (SCF). This review will summarize what is known about the JAK/STAT pathway in relation to SCF signal transduction.
Collapse
Affiliation(s)
- D Linnekin
- Division of Basic Sciences, National Cancer Institute-Frederick Cancer Research and Development Center, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
117
|
Deberry C, Mou S, Linnekin D. Stat1 associates with c-kit and is activated in response to stem cell factor. Biochem J 1997; 327 ( Pt 1):73-80. [PMID: 9355737 PMCID: PMC1218765 DOI: 10.1042/bj3270073] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Interaction of stem cell factor (SCF), a haematopoietic growth factor, with the receptor tyrosine kinase c-kit leads to autophosphorylation of c-kit as well as tyrosine phosphorylation of various substrates. Little is known about the role of the JAK/STAT pathway in signal transduction via receptor tyrosine kinases, although this pathway has been well characterized in cytokine receptor signal transduction. We recently found that the Janus kinase Jak2 associates with c-kit and that SCF induces rapid and transient phosphorylation of Jak2. Here we present evidence that SCF activates the transcription factor Stat1. Phosphorylated c-kit co-immunoprecipitates with Stat1 within 1 min of SCF stimulation of the human cell line MO7e. Co-precipitation experiments using glutathione S-transferase fusion proteins indicate that association with c-kit is mediated by the Stat1 SH2 domain. Stat1 is rapidly tyrosine-phosphorylated in response to SCF in MO7e cells, the murine cell line FDCP-1 and normal progenitor cells. SCF-induced phosphorylation of Jak2 and Stat1 was also observed in murine 3T3 fibroblasts stably transfected with full-length human c-kit receptor. Furthermore c-kit directly phosphorylates Stat1 fusion proteins in in vitro kinase assays. Electrophoretic mobility-shift assays with nuclear extracts from SCF-stimulated cell lines and normal progenitor cells indicate that activated Stat1 binds the m67 oligonucleotide, a high-affinity SIE promoter sequence. These results demonstrate that Stat1 is activated in response to SCF, and suggest that Stat1 is a component of the SCF signal-transduction pathway.
Collapse
Affiliation(s)
- C Deberry
- Laboratory of Leukocyte Biology, Division of Basic Sciences, National Cancer Institute, USA
| | | | | |
Collapse
|
118
|
Stancato LF, Sakatsume M, David M, Dent P, Dong F, Petricoin EF, Krolewski JJ, Silvennoinen O, Saharinen P, Pierce J, Marshall CJ, Sturgill T, Finbloom DS, Larner AC. Beta interferon and oncostatin M activate Raf-1 and mitogen-activated protein kinase through a JAK1-dependent pathway. Mol Cell Biol 1997; 17:3833-40. [PMID: 9199317 PMCID: PMC232235 DOI: 10.1128/mcb.17.7.3833] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Activation of early response genes by interferons (IFNs) and other cytokines requires tyrosine phosphorylation of a family of transcription factors termed signal transducers and activators of transcription (Stats). The Janus family of tyrosine kinases (Jak1, Jak2, Jak3, and Tyk2) is required for cytokine-induced tyrosine phosphorylation and dimerization of the Stat proteins. In order for IFNs to stimulate maximal expression of Stat1alpha-regulated genes, phosphorylation of a serine residue in the carboxy terminus by mitogen-activated protein kinase (MAPK) is also required. In HeLa cells, both IFN-beta and oncostatin M (OSM) stimulated MAPK and Raf-1 enzyme activity, in addition to Stat1 and Stat3 tyrosine phosphorylation. OSM stimulation of Raf-1 correlated with GTP loading of Ras, whereas IFN-beta activation of Raf-1 was Ras independent. IFN-beta- and OSM-induced Raf-1 activity could be coimmunoprecipitated with either Jak1 or Tyk2. Furthermore, HeLa cells lacking Jak1 displayed no activation of STAT1alpha, STAT3, and Raf-1 by IFN-beta or OSM and also demonstrated no increase in the relative level of GTP-bound p21ras in response to OSM. The requirement for Jak1 for IFN-beta- and OSM-induced activation of Raf-1 was also seen in Jak1-deficient U4A fibrosarcoma cells. Interestingly, basal MAPK, but not Raf-1, activity was constitutively enhanced in Jak1-deficient HeLa cells. Transient expression of Jak1 in both Jak-deficient HeLa cells and U4A cells reconstituted the ability of IFN-beta and OSM to activate Raf-1 and decreased the basal activity of MAPK, while expression of a kinase-inactive form of the protein showed no effect. Moreover, U4A cells selected for stable expression of Jak1, or COS cells transiently expressing Jak1 or Tyk2 but not Jak3, exhibited enhanced Raf-1 activity. Therefore, it appears that Jak1 is required for Raf-1 activation by both IFN-beta and OSM. These results provide evidence for a link between the Jaks and the Raf/MAPK signaling pathways.
Collapse
Affiliation(s)
- L F Stancato
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Kirken RA, Malabarba MG, Xu J, DaSilva L, Erwin RA, Liu X, Hennighausen L, Rui H, Farrar WL. Two discrete regions of interleukin-2 (IL2) receptor beta independently mediate IL2 activation of a PD98059/rapamycin/wortmannin-insensitive Stat5a/b serine kinase. J Biol Chem 1997; 272:15459-65. [PMID: 9182578 DOI: 10.1074/jbc.272.24.15459] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Many cytokines, hormones, and growth factors activate Janus kinases to tyrosine phosphorylate select members of the Stat transcription factors. For full transcriptional activation, Stat1 and Stat3 also require phosphorylation of a conserved serine residue within a mitogen-activated protein kinase phosphorylation consensus site. On the other hand, two recently identified and highly homologous Stat5a and Stat5b proteins lack this putative mitogen-activated protein kinase phosphorylation site. The present study set out to establish whether Stat5a and Stat5b are under the control of an interleukin-2 (IL2)-activated Stat5 serine kinase. We now report that IL2 stimulated marked phosphorylation of serine and tyrosine residues of both Stat5a and Stat5b in human T lymphocytes and in several IL2-responsive lymphocytic cell lines. No Stat5a/b phosphothreonine was detected. Phosphoamino acid analysis also revealed that Stat5a/b phosphotyrosine levels were maximized within 1-5 min of IL2 stimulation, whereas serine phosphorylation kinetics were slower. Interestingly, IL2-induced serine phosphorylation of Stat5a differed quantitatively and temporally from that of Stat5b with Stat5a serine phosphorylation leveling off after 10 min and the more pronounced Stat5b response continuing to rise for at least 60 min of IL2 stimulation. Furthermore, we identified two discrete domains of IL2 receptor beta (IL2Rbeta) that could independently restore the ability of a truncated IL2Rbeta mutant to mediate Stat5a/b phosphorylation and DNA binding to the gamma-activated site of the beta-casein gene promoter. These observations demonstrated that there is no strict requirement for one particular IL2Rbeta region for Stat5 phosphorylation. Finally, we established that the IL2-activated Stat5a/b serine kinase is insensitive to several selective inhibitors of known IL2-stimulated kinases including MEK1/MEK2 (PD98059), mTOR (rapamycin), and phosphatidylinositol 3-kinase (wortmannin) as determined by phosphoamino acid and DNA binding analysis, thus suggesting that a yet-to-be-identified serine kinase mediates Stat5a/b activation.
Collapse
Affiliation(s)
- R A Kirken
- Intramural Research Support Program, Science Applications International Corporation Frederick, Frederick, Maryland, 21702-1201,
| | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Aftab DT, Kwan J, Martin GS. Ras-independent transformation by v-Src. Proc Natl Acad Sci U S A 1997; 94:3028-33. [PMID: 9096340 PMCID: PMC20316 DOI: 10.1073/pnas.94.7.3028] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/1996] [Accepted: 01/13/1997] [Indexed: 02/04/2023] Open
Abstract
Signaling by a variety of receptor and nonreceptor tyrosine kinases is mediated by Ras, a membrane-associated GTPase. Expression of v-Src, a transforming nonreceptor tyrosine kinase, results in Ras activation, and inhibition of Ras function in NIH 3T3 cells suppresses transformation by v-Src, indicating that in these cells Ras-dependent signaling pathways are required for v-Src to exert its biological effects. However, we show here that Ras was not activated in Rat-2 fibroblasts transformed by wild-type v-Src, or in chicken embryo fibroblasts transformed by SRX5, a v-Src mutant with a linker insertion at the major site of autophosphorylation. Expression of a dominant-negative mutant of Ras completely inhibited the ability of v-Src to activate the mitogen-activated protein kinase ERK2, which is downstream of Ras. However, dominant-negative Ras did not suppress transformation by v-Src as judged by a variety of criteria. Thus, v-Src can transform at least some cell types in the absence of Ras activation or Ras-stimulated ERK2 activity, and in these cells activation of Ras-independent signaling pathways must therefore be sufficient for transformation.
Collapse
Affiliation(s)
- D T Aftab
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3204, USA
| | | | | |
Collapse
|
121
|
Bae YS, Kang SW, Seo MS, Baines IC, Tekle E, Chock PB, Rhee SG. Epidermal Growth Factor (EGF)-induced Generation of Hydrogen Peroxide. J Biol Chem 1997. [DOI: 10.1074/jbc.272.1.217] [Citation(s) in RCA: 863] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
122
|
Park OK, Schaefer TS, Nathans D. In vitro activation of Stat3 by epidermal growth factor receptor kinase. Proc Natl Acad Sci U S A 1996; 93:13704-8. [PMID: 8942998 PMCID: PMC19397 DOI: 10.1073/pnas.93.24.13704] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Stat proteins are SH2 domain-containing transcription factors that are activated in cells by various cytokines and growth factors. In the case of cytokines whose receptors lack protein kinase activity, phosphorylation-activation is mediated by members of the JAK family of tyrosine protein kinases. In the case of growth factors whose receptors have intrinsic tyrosine protein kinase activity, it is thought that Stat proteins can be activated either directly by the receptor or indirectly through JAK proteins. To test the possibility of direct activation, we have used purified Stat3 alpha, Stat3 beta, and epidermal growth factor receptor kinase produced in recombinant baculovirus-infected Sf9 insect cells. The Stat proteins formed a stable complex with the receptor kinase, and they were phosphorylated on tyrosine by the receptor kinase and activated for binding to DNA, properties shared with Stat proteins purified from Sf9 cells coexpressing JAK1 or JAK2. Both JAK-phosphorylated Stat3 beta and Stat3 beta phosphorylated in vitro by the receptor kinase were 20-50 times more active on a molar basis for DNA binding than phosphorylated Stat3 alpha. We conclude that Stat3 isoforms can be directly phosphorylated and thereby activated in vitro by the epidermal growth factor receptor kinase.
Collapse
Affiliation(s)
- O K Park
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|