101
|
Parlesak A, Haller D, Brinz S, Baeuerlein A, Bode C. Modulation of Cytokine Release by Differentiated CACO-2 Cells in a Compartmentalized Coculture Model with Mononuclear Leucocytes and Nonpathogenic Bacteria. Scand J Immunol 2004; 60:477-85. [PMID: 15541040 DOI: 10.1111/j.0300-9475.2004.01495.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
To further investigate the interaction between human mononuclear leucocytes [peripheral blood mononuclear cells (PBMC)] and enterocytes, the effect of a confluent layer of differentiated CACO-2 cells on cytokine kinetics during challenge with bacteria in a compartmentalized coculture model was investigated. Nonpathogenic Escherichia coli were added either to the apical or the basolateral compartment of this transwell cell culture system, the latter of which contained human leucocytes. The synthesis of tumour necrosis factor (TNF-alpha) and interleukin (IL)-12 was significantly suppressed by CACO-2 cells when leucocytes were stimulated directly with bacteria. This suppression was not paralleled by changes in the production of IL-10, IL-6 and transforming growth factor (TGF)-beta. When the bacteria were applied apically to the CACO-2 cell layer, the production of TNF-alpha, IL-12, IL-1beta, IL-8, IL-6, IL-10, TGF-beta and interferon-gamma was pronouncedly lower as compared to the bacterial stimulation of leucocytes beneath the CACO-2 cells. In the latter experiments, IL-6, IL-8 and TNF-alpha were the cytokines being mostly induced by apical addition of E. coli. Quantitative mRNA expression analysis revealed that IL-8 gene expression was equally induced in both CACO-2 and PBMC after apical stimulation with bacteria. Of note, bacteria-stimulated CACO-2 cells produced little or no cytokines in the absence of leucocytes, supporting the concept of leucocyte-epithelial cell cross-talk in modulating cytokine responses in the gut mucosa.
Collapse
Affiliation(s)
- A Parlesak
- Department of Physiology of Nutrition, Institute for Biological Chemistry and Nutrition, Hohenheim University (140e), Stuttgart, Germany.
| | | | | | | | | |
Collapse
|
102
|
Le Y, Iribarren P, Gong W, Cui Y, Zhang X, Wang JM. TGF-beta1 disrupts endotoxin signaling in microglial cells through Smad3 and MAPK pathways. THE JOURNAL OF IMMUNOLOGY 2004; 173:962-8. [PMID: 15240683 DOI: 10.4049/jimmunol.173.2.962] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Human formyl peptide receptor-like 1 and its mouse homologue formyl peptide receptor 2 (FPR2) are G protein-coupled receptors used by a number of exogenous and host-derived chemotactic peptides, including the 42 aa form of beta amyloid peptide, a causative factor of Alzheimer's disease. Functional FPR2 was induced by bacterial LPS in murine microglial cells, the resident phagocytic cells that play a pivotal role in inflammatory and immunological diseases in the CNS. To identify agents that may suppress microglial cell activation under proinflammatory conditions, we investigated the effect of TGF-beta1 on the expression of functional FPR2 by microglial cells activated by LPS. TGF-beta1 dose-dependently inhibited the mRNA expression and function of FPR2 in LPS-activated microglial cells. The inhibitory effect of TGF-beta1 was mediated by Smad3, a key signaling molecule coupled to the TGF-beta receptor, and the transcription coactivator, p300. Also, TGF-beta1 activates MAPKs in microglial cells that became refractory to further stimulation by LPS. These effects of TGF-beta1 culminate in the inhibition of LPS-induced activation of NF-kappaB and the up-regulation of FPR2 in microglial cells. Thus, TGF-beta1 may exert a protective role in CNS diseases characterized by microglial cell activation by proinflammatory stimulants.
Collapse
Affiliation(s)
- Yingying Le
- Laboratory of Molecular Immunoregulation, Center for Cancer Research, and Basic Research Program, Science Applications International Corporation-Frederick, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | | | | | | | | | | |
Collapse
|
103
|
Bambou JC, Giraud A, Menard S, Begue B, Rakotobe S, Heyman M, Taddei F, Cerf-Bensussan N, Gaboriau-Routhiau V. In vitro and ex vivo activation of the TLR5 signaling pathway in intestinal epithelial cells by a commensal Escherichia coli strain. J Biol Chem 2004; 279:42984-92. [PMID: 15302888 DOI: 10.1074/jbc.m405410200] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The capacity of non-pathogenic enteric bacteria to induce a pro-inflammatory response is under debate in terms of its effect on the symbiosis between the mammalian host and its commensal gut microflora. Activation of NF-kappaB and induction of interleukin-8 (IL-8) and CCL-20 by the commensal Escherichia coli strain MG1655 were first studied in vitro in the human intestinal epithelial cell (IECs) lines HT29-19A and Caco-2, transfected or not with plasmids encoding dominant negative Toll-like receptor (TLR) 5 and myeloid differentiation factor-88 (MyD88) adaptor protein. The response of enterocytes in situ was then assessed using murine ileal biopsies mounted in Ussing chambers. Commensal E. coli induced NF-kappaB DNA binding, NF-kappaB transcriptional activity, CCL-20 expression, and IL-8 secretion in the human IEC lines. E. coli MG1655 flagellin was necessary and sufficient to trigger this pro-inflammatory pathway via its interaction with TLR5 and the subsequent recruitment of the adaptor protein MyD88. Following epithelial cell polarization, signaling could be induced by live E. coli and flagellin on the apical side of HT29-19A. The in vivo relevance of our findings was confirmed, because immunohistochemical staining of murine ileum demonstrated expression of TLR5 in the apical part of enterocytes in situ. Furthermore, flagellin added on the mucosal side of murine ileal biopsies mounted in Ussing chambers induced a basolateral production of KC, a functional murine homolog of human IL-8. These findings provide strong evidence that flagellin released by flagellated commensal bacteria in the intestinal lumen can induce a pro-inflammatory response in enterocytes in vivo.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antigens, Differentiation/metabolism
- Biopsy
- Caco-2 Cells
- Cell Line
- Cell Nucleus/metabolism
- Cells, Cultured
- Chemokine CCL20
- Chemokines, CC/metabolism
- Culture Media, Conditioned/pharmacology
- Cytokines/metabolism
- Enterocytes/metabolism
- Enzyme-Linked Immunosorbent Assay
- Epithelial Cells/cytology
- Escherichia coli/metabolism
- Flagellin/chemistry
- Flagellin/metabolism
- Humans
- Ileum/pathology
- Inflammation
- Interleukin-8/metabolism
- Intestinal Mucosa/metabolism
- Lipopolysaccharides/metabolism
- Macrophage Inflammatory Proteins/metabolism
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred C3H
- Mutation
- Myeloid Differentiation Factor 88
- NF-kappa B/metabolism
- Phenotype
- Plasmids/metabolism
- RNA, Messenger/metabolism
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/metabolism
- Receptors, Immunologic/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Time Factors
- Toll-Like Receptor 5
- Toll-Like Receptors
- Transcription, Genetic
- Transfection
Collapse
|
104
|
Hoentjen F, Sartor RB, Ozaki M, Jobin C. STAT3 regulates NF-kappaB recruitment to the IL-12p40 promoter in dendritic cells. Blood 2004; 105:689-96. [PMID: 15251981 DOI: 10.1182/blood-2004-04-1309] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Interleukin-10-deficient (IL-10(-/-)) mice develop an IL-12-mediated intestinal inflammation in the absence of endogenous IL-10. The molecular mechanisms of the dysregulated IL-12 responses in IL-10(-/-) mice are poorly understood. In this study, we investigated the role of nuclear factor-kappa B (NF-kappaB) and signal transducers and activators of transcription 3 (STAT3) in lipopolysaccharide (LPS)-induced IL-12p40 gene expression in bone marrow derived-dendritic cells (BMDCs) isolated from wild-type (WT) and IL-10(-/-) mice. We report higher IL-12p40 mRNA accumulation and protein secretion in LPS-stimulated BMDCs isolated from IL-10(-/-) compared with WT mice. LPS-induced NF-kappaB signaling is similar in IL-10(-/-) and WT BMDCs as measured by IkappaBalpha phosphorylation and degradation, RelA phosphorylation and nuclear translocation, and NF-kappaB transcriptional activity, with no down-regulatory effects of exogenous IL-10. Chromatin immunoprecipitation demonstrated enhanced NF-kappaB (cRel, RelA) binding to the IL-12p40 promoter in IL-10(-/-) but not WT BMDCs. Interestingly, LPS induced STAT3 phosphorylation in WT but not IL-10(-/-) BMDCs, a process blocked by IL-10 receptor blocking antibody. Adenoviral gene delivery of a constitutively active STAT3 but not control green fluorescence protein (GFP) virus blocked LPS-induced IL-12p40 gene expression and cRel recruitment to the IL-12p40 promoter. In conclusion, dysregulated LPS-induced IL-12p40 gene expression in IL-10(-/-) mice is due to enhanced NF-kappaB recruitment to the IL-12p40 promoter in the absence of activated STAT3.
Collapse
Affiliation(s)
- Frank Hoentjen
- Center for Gastrointestinal Biology and Diseases, University of North Carolina at Chapel Hill, USA
| | | | | | | |
Collapse
|
105
|
Haller D, Holt L, Parlesak A, Zanga J, Bäuerlein A, Sartor RB, Jobin C. Differential effect of immune cells on non-pathogenic Gram-negative bacteria-induced nuclear factor-kappaB activation and pro-inflammatory gene expression in intestinal epithelial cells. Immunology 2004; 112:310-20. [PMID: 15147574 PMCID: PMC1782483 DOI: 10.1111/j.1365-2567.2004.01874.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We have previously shown that non-pathogenic Gram negative bacteria induce RelA phosphorylation, nuclear factor (NF)-kappaB transcriptional activity and pro-inflammatory gene expression in intestinal epithelial cells (IEC) in vivo and in vitro. In this study, we investigated the molecular mechanism of immune-epithelial cell cross-talk on Gram-negative enteric bacteria-induced NF-kappaB signalling and pro-inflammatory gene expression in IEC using HT-29/MTX as well as CaCO-2 transwell cultures Interestingly, while differentiated HT-29/MTX cells are unresponsive to non-pathogenic Gram negative bacterial stimulation, interleukin-8 (IL-8) mRNA accumulation is strongly induced in Escherichia coli- but not Bacteroides vulgatus-stimulated IEC cocultured with peripheral blood (PBMC) and lamina propria mononuclear cells (LPMC). The presence of PBMC triggered both E. coli- and B. vulgatus-induced mRNA expression of the Toll-like receptor-4 accessory protein MD-2 as well as endogenous IkappaBalpha phosphorylation, demonstrating similar capabilities of these bacteria to induce proximal NF-kappaB signalling. However, B. vulgatus failed to trigger IkappaBalpha degradation and NF-kappaB transcriptional activity in the presence of PBMC. Interestingly, B. vulgatus- and E. coli-derived lipopolysaccharide-induced similar IL-8 mRNA expression in epithelial cells after basolateral stimulation of HT-29/PBMC cocultures. Although luminal enteric bacteria have adjuvant and antigenic properties in chronic intestinal inflammation, PBMC from patients with active ulcerative colitis and Crohn's disease differentially trigger epithelial cell activation in response to E. coli and E. coli-derived LPS. In conclusion, this study provides evidence for a differential regulation of non-pathogenic Gram-negative bacteria-induced NF-kappaB signalling and IL-8 gene expression in IEC cocultured with immune cells and suggests the presence of mechanisms that assure hyporesponsiveness of the intestinal epithelium to certain commensally enteric bacteria.
Collapse
Affiliation(s)
- D Haller
- Department of Medicine and the Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, USA.
| | | | | | | | | | | | | |
Collapse
|
106
|
Ruiz PA, Kim SC, Sartor RB, Haller D. 15-deoxy-delta12,14-prostaglandin J2-mediated ERK signaling inhibits gram-negative bacteria-induced RelA phosphorylation and interleukin-6 gene expression in intestinal epithelial cells through modulation of protein phosphatase 2A activity. J Biol Chem 2004; 279:36103-11. [PMID: 15199053 DOI: 10.1074/jbc.m405032200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously shown that non-pathogenic Gram-negative Bacteroides vulgatus induces transient RelA phosphorylation (Ser-536), NF-kappaB activity, and pro-inflammatory gene expression in native and intestinal epithelial cell (IEC) lines. We now demonstrate that 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) but not prostaglandin E(2) inhibits lipopolysaccharide (LPS) (B. vulgatus)/LPS (Escherichia coli)-induced RelA phosphorylation and interleukin-6 gene expression in the colonic epithelial cell line CMT-93. This inhibitory effect of 15d-PGJ(2) was mediated independently of LPS-induced IkappaBalpha phosphorylation/degradation and RelA nuclear translocation as well as RelA DNA binding activity. Interestingly, although B. vulgatus induced nuclear expression of peroxisome proliferator-activated receptor gamma (PPARgamma) in native epithelium of monoassociated Fisher rats, PPARgamma-specific knock-down in CMT-93 cells using small interference RNA failed to reverse the inhibitory effects of PPARgamma agonist 15d-PGJ(2), suggesting PPARgamma-independent mechanisms. In addition, 15d-PGJ(2) but not the synthetic high affinity PPARgamma ligand rosiglitazone triggered ERK1/2 phosphorylation in IEC, and most importantly, MEK1 inhibitor PD98059 reversed the inhibitory effect of 15dPGJ(2) on LPS-induced RelA phosphorylation and interleukin-6 gene expression. Calyculin A, a specific phosphoserine/phospho-threonine phosphatase inhibitor increased the basal phosphorylation of RelA and reversed the inhibitory effect of 15d-PGJ(2) on LPS-induced RelA phosphorylation. We further demonstrated in co-immunoprecipitation experiments that 15d-PGJ(2) triggered protein phosphatase 2A activity, which directly dephosphorylated RelA in LPS-stimulated CMT-93 cells. We concluded that 15d-PGJ(2) may help to control NF-kappaB signaling and normal intestinal homeostasis to the enteric microflora by modulating RelA phosphorylation in IEC through altered protein phosphatase 2A activity.
Collapse
Affiliation(s)
- Pedro A Ruiz
- Centre for Nutrition and Food Research, Immunobiology of Nutrition, Technical University of Munich, 85350 Freising-Weihenstephan, Germany
| | | | | | | |
Collapse
|
107
|
Mühlbauer M, Allard B, Bosserhoff AK, Kiessling S, Herfarth H, Rogler G, Schölmerich J, Jobin C, Hellerbrand C. Differential effects of deoxycholic acid and taurodeoxycholic acid on NF-kappa B signal transduction and IL-8 gene expression in colonic epithelial cells. Am J Physiol Gastrointest Liver Physiol 2004; 286:G1000-8. [PMID: 14726307 DOI: 10.1152/ajpgi.00338.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Several effects of bile acids (BAs) on colonic epithelial cells (CECs) have been described, including induction of proliferation and apoptosis. Some of these effects are mediated through activation of the NF-kappa B transcriptional system. In this study, we investigated the molecular mechanisms underlying the BA-induced gene expression in CECs. The human CEC line HT-29 and primary human CECs were treated with dilutions of salts of deoxycholic acid (DCA) and taurodeoxycholic acid (TDCA). NF-kappa B binding activity was analyzed with EMSA, RelA translocation with immunofluorescence, and I kappa B alpha- and RelA-phosphorylation with Western blot analysis. IL-8 mRNA and protein expression were assessed by quantitative PCR and ELISA. Functional impact of NF-kappa B activation was determined by blocking the proteasome activity with MG132 or by preventing IKK activity with a dominant-negative IKK beta delivered by adenoviral dominant-negative (dn) IKK beta (Ad5dnIKK beta). DCA and TDCA induced IL-8 expression in a dose- and time-dependent manner. It is interesting that DCA but not TDCA induced I kappa B alpha-phosphorylation, RelA translocation, and NF-kappa B binding activity. Accordingly, the proteasome inhibitor MG132 blocked DCA- but not TDCA-induced IL-8 gene expression. In contrast, TDCA-induced IL-8 gene expression correlated with enhanced RelA phosphorylation, which was blocked by Ad5dnIKK beta. Our data suggest that DCA-induced signal transduction mainly utilized the I kappa B degradation and RelA nuclear translocation pathway, whereas TDCA primarily induced IL-8 gene expression through RelA phosphorylation. These differences may have implications for the understanding of the pathophysiology of inflammation and carcinogenesis in the gut.
Collapse
Affiliation(s)
- M Mühlbauer
- Department of Internal Medicine I, University of Regensburg, D-93042 Regensburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Russo MP, Schwabe RF, Sartor RB, Jobin C. NF-kappaB-inducing kinase restores defective IkappaB kinase activity and NF-kappaB signaling in intestinal epithelial cells. Cell Signal 2004; 16:741-50. [PMID: 15093615 DOI: 10.1016/j.cellsig.2003.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Revised: 11/27/2003] [Accepted: 11/27/2003] [Indexed: 11/25/2022]
Abstract
Cytokine-stimulated IkappaBalpha degradation is impaired in HT-29 and primary intestinal epithelial cells. To gain more insight into the mechanism of this defect, we dissected cytokine-induced NF-kappaB signaling pathway in HT-29 cells. IL-1beta and TNF, alone or in combination with IFNgamma, failed to induce IkappaBalpha or IkappaBbeta degradation in HT-29 cells. Despite similar 125I-IL-1beta binding, HT-29 cells displayed no IRAK degradation, a 75% reduction of IKK activity, and decreased IkappaBalpha phosphorylation, NF-kappaB DNA binding activity and IL-8 mRNA accumulation in response to IL-1beta compared to Caco-2 cells. Selective activation of NF-kappaB pathway by adenoviral delivery of NF-kappaB-inducing kinase (Ad5NIK) or IKKbeta (Ad5IKKbeta) strongly activated IKK activity (>20 fold) in HT-29 cells with concomitant endogenous IkappaBalpha serine 32 phosphorylation and total IkappaBalpha degradation. In addition, NF-kappaB DNA binding activity and IL-8 secretion is higher in Ad5NIK-infected than in IL-1beta-stimulated HT-29 cells. These data show that altered NF-kappaB signaling is associated with impaired stimulation of an upstream IKK activator.
Collapse
Affiliation(s)
- Maria Pia Russo
- Department of Medicine, Division of Gastroenterology and Hepatology, CB #7032, Medical Biomolecular Research Building, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7080, USA
| | | | | | | |
Collapse
|
109
|
Walters JRF. Cell and molecular biology of the small intestine: new insights into differentiation, growth and repair. Curr Opin Gastroenterol 2004; 20:70-6. [PMID: 15703624 DOI: 10.1097/00001574-200403000-00004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW This paper will discuss recent research that has provided new insights into the molecular and cell biology of the small intestine. RECENT FINDINGS Differentiation of the epithelial cell lineages, including the enterocytes, enteroendocrine, Goblet and Paneth cells, from the stem cells is better understood. Important interactions have been demonstrated between these cells, luminal bacteria, and underlying mesenchymal tissue. Intestine-specific gene expression is regulated by transcription factors that are becoming well characterized, including CDX1, CDX2 and HNF1. The actions of growth factors such as GLP-2 and EGF are now known to be complex, demonstrating multiple effects in this tissue at a number of levels. SUMMARY Progress in the cellular and molecular biology of the small intestine is producing many intriguing new findings.
Collapse
Affiliation(s)
- Julian R F Walters
- Gastroenterology Section, Department of Medicine, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK.
| |
Collapse
|
110
|
Haller D, Jobin C. Interaction between resident luminal bacteria and the host: can a healthy relationship turn sour? J Pediatr Gastroenterol Nutr 2004; 38:123-36. [PMID: 14734871 DOI: 10.1097/00005176-200402000-00004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Dirk Haller
- Center for Nutrition and Food Research, Immunobiolgy of Nutrition, Technical University of Munich, Germany
| | | |
Collapse
|
111
|
Kelly D, Campbell JI, King TP, Grant G, Jansson EA, Coutts AGP, Pettersson S, Conway S. Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-gamma and RelA. Nat Immunol 2003; 5:104-12. [PMID: 14691478 DOI: 10.1038/ni1018] [Citation(s) in RCA: 746] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2003] [Accepted: 10/29/2003] [Indexed: 12/11/2022]
Abstract
The human gut microflora is important in regulating host inflammatory responses and in maintaining immune homeostasis. The cellular and molecular bases of these actions are unknown. Here we describe a unique anti-inflammatory mechanism, activated by nonpathogenic bacteria, that selectively antagonizes transcription factor NF-kappaB. Bacteroides thetaiotaomicron targets transcriptionally active NF-kappaB subunit RelA, enhancing its nuclear export through a mechanism independent of nuclear export receptor Crm-1. Peroxisome proliferator activated receptor-gamma (PPAR-gamma), in complex with nuclear RelA, also undergoes nucleocytoplasmic redistribution in response to B. thetaiotaomicron. A decrease in PPAR-gamma abolishes both the nuclear export of RelA and the anti-inflammatory activity of B. thetaiotaomicron. This PPAR-gamma-dependent anti-inflammatory mechanism defines new cellular targets for therapeutic drug design and interventions for the treatment of chronic inflammation.
Collapse
Affiliation(s)
- Denise Kelly
- Gut Immunology Group, Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, Scotland, UK.
| | | | | | | | | | | | | | | |
Collapse
|