101
|
Chatel-Chaix L, Germain MA, Götte M, Lamarre D. Direct-acting and host-targeting HCV inhibitors: current and future directions. Curr Opin Virol 2012; 2:588-98. [PMID: 22959589 DOI: 10.1016/j.coviro.2012.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 08/07/2012] [Indexed: 02/07/2023]
Abstract
The inclusion of NS3 protease inhibitors to the interferon-containing standard of care improved sustained viral response rates in hepatitis C virus (HCV) infected patients. However, there is still an unmet medical need as this drug regimen is poorly tolerated and lacks efficacy, especially in difficult-to-treat patients. Intense drug discovery and development efforts have focused on direct-acting antivirals (DAA) that target NS3 protease, NS5B polymerase and the NS5A protein. DAA combinations are currently assessed in clinical trials. Alternative antivirals have emerged that target host machineries co-opted by HCV. Finally, continuous and better understanding of HCV biology allows speculating on the value of novel classes of DAA required in future personalized all-oral interferon-free combination therapy and for supporting global disease eradication.
Collapse
Affiliation(s)
- Laurent Chatel-Chaix
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Montréal, Québec H3T 1J4, Canada
| | | | | | | |
Collapse
|
102
|
Preclinical Profile and Characterization of the Hepatitis C Virus NS3 Protease Inhibitor Asunaprevir (BMS-650032). Antimicrob Agents Chemother 2012; 56:5387-96. [PMID: 22869577 DOI: 10.1128/aac.01186-12] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Asunaprevir (ASV; BMS-650032) is a hepatitis C virus (HCV) NS3 protease inhibitor that has demonstrated efficacy in patients chronically infected with HCV genotype 1 when combined with alfa interferon and/or the NS5A replication complex inhibitor daclatasvir. ASV competitively binds to the NS3/4A protease complex, with K(i) values of 0.4 and 0.24 nM against recombinant enzymes representing genotypes 1a (H77) and 1b (J4L6S), respectively. Selectivity was demonstrated by the absence of any significant activity against the closely related GB virus-B NS3 protease and a panel of human serine or cysteine proteases. In cell culture, ASV inhibited replication of HCV replicons representing genotypes 1 and 4, with 50% effective concentrations (EC(50)s) ranging from 1 to 4 nM, and had weaker activity against genotypes 2 and 3 (EC(50), 67 to 1,162 nM). Selectivity was again demonstrated by the absence of activity (EC(50), >12 μM) against a panel of other RNA viruses. ASV exhibited additive or synergistic activity in combination studies with alfa interferon, ribavirin, and/or inhibitors specifically targeting NS5A or NS5B. Plasma and tissue exposures in vivo in several animal species indicated that ASV displayed a hepatotropic disposition (liver-to-plasma ratios ranging from 40- to 359-fold across species). Twenty-four hours postdose, liver exposures across all species tested were ≥110-fold above the inhibitor EC(50)s observed with HCV genotype-1 replicons. Based on these virologic and exposure properties, ASV holds promise for future utility in a combination with other anti-HCV agents in the treatment of HCV-infected patients.
Collapse
|
103
|
Lewis H, Cunningham M, Foster G. Second generation direct antivirals and the way to interferon-free regimens in chronic HCV. Best Pract Res Clin Gastroenterol 2012. [PMID: 23199506 DOI: 10.1016/j.bpg.2012.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Treatment for those infected with chronic hepatitis C virus [HCV] has until recently been hampered by the lack of therapies other than pegylated interferon and ribavirin, which have limited efficacy and a difficult side effect profile. To address this, multiple new direct acting antiviral drugs which specifically target the non-structural proteins involved in HCV replication are in phase II/III development. This review will discuss the HCV replication cycle, mechanisms of action of the new direct acting antiviral drugs, results from published trials into their efficacy and the potential for interferon free treatment regimens in the future.
Collapse
Affiliation(s)
- Heather Lewis
- Blizzard Institute of Cell and Molecular Science, Queen Mary University of London, 4 Newark Street, London, E1 2AD, United Kingdom.
| | | | | |
Collapse
|
104
|
Busacca CA, Wei X, Haddad N, Kapadia S, Lorenz JC, Saha AK, Varsolona RJ, Berkenbusch T, Campbell SC, Farina V, Feng X, Gonnella NC, Grinberg N, Jones PJ, Lee H, Li Z, Niemeier O, Samstag W, Sarvestani M, Schroeder J, Smoliga J, Spinelli EM, Vitous J, Senanayake CH. Practical Large-Scale Synthesis of the Hepatitis C Virus Protease Inhibitor BI 201335. ASIAN J ORG CHEM 2012. [DOI: 10.1002/ajoc.201200014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
105
|
Abstract
Superfamily 2 helicases are involved in all aspects of RNA metabolism, and many steps in DNA metabolism. This review focuses on the basic mechanistic, structural and biological properties of each of the families of helicases within superfamily 2. There are ten separate families of helicases within superfamily 2, each playing specific roles in nucleic acid metabolism. The mechanisms of action are diverse, as well as the effect on the nucleic acid. Some families translocate on single-stranded nucleic acid and unwind duplexes, some unwind double-stranded nucleic acids without translocation, and some translocate on double-stranded or single-stranded nucleic acids without unwinding.
Collapse
Affiliation(s)
- Alicia K Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | |
Collapse
|
106
|
Salam KA, Furuta A, Noda N, Tsuneda S, Sekiguchi Y, Yamashita A, Moriishi K, Nakakoshi M, Tsubuki M, Tani H, Tanaka J, Akimitsu N. Inhibition of hepatitis C virus NS3 helicase by manoalide. JOURNAL OF NATURAL PRODUCTS 2012; 75:650-654. [PMID: 22394195 DOI: 10.1021/np200883s] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The hepatitis C virus (HCV) causes one of the most prevalent chronic infectious diseases in the world, hepatitis C, which ultimately develops into liver cancer through cirrhosis. The NS3 protein of HCV possesses nucleoside triphosphatase (NTPase) and RNA helicase activities. As both activities are essential for viral replication, NS3 is proposed as an ideal target for antiviral drug development. In this study, we identified manoalide (1) from marine sponge extracts as an RNA helicase inhibitor using a high-throughput screening photoinduced electron transfer (PET) system that we previously developed. Compound 1 inhibits the RNA helicase and ATPase activities of NS3 in a dose-dependent manner, with IC(50) values of 15 and 70 μM, respectively. Biochemical kinetic analysis demonstrated that 1 does not affect the apparent K(m) value (0.31 mM) of NS3 ATPase activity, suggesting that 1 acts as a noncompetitive inhibitor. The binding of NS3 to single-stranded RNA was inhibited by 1. Manoalide (1) also has the ability to inhibit the ATPase activity of human DHX36/RHAU, a putative RNA helicase. Taken together, we conclude that 1 inhibits the ATPase, RNA binding, and helicase activities of NS3 by targeting the helicase core domain conserved in both HCV NS3 and DHX36/RHAU.
Collapse
Affiliation(s)
- Kazi Abdus Salam
- Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Tokyo 113-0032, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Vallet S, Viron F, Henquell C, Le Guillou-Guillemette H, Lagathu G, Abravanel F, Trimoulet P, Soussan P, Schvoerer E, Rosenberg A, Gouriou S, Colson P, Izopet J, Payan C. NS3 protease polymorphism and natural resistance to protease inhibitors in French patients infected with HCV genotypes 1-5. Antivir Ther 2012; 16:1093-102. [PMID: 22024525 DOI: 10.3851/imp1900] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Resistant HCV populations may pre-exist in patients before NS3 protease inhibitor therapy and would likely be selected under specific antiviral pressure. The higher prevalence and lower rate of response to treatment associated with HCV genotype 1 infections has led to drug discovery efforts being focused primarily on enzymes produced by this genotype. Protease inhibitors may also be useful for non-genotype-1-infected patients, notably for non-responders. METHODS We investigated the prevalence of dominant resistance mutations and polymorphism in 298 HCV protease-inhibitor-naive patients infected with HCV genotypes 1, 2, 3, 4 or 5. Genotype-specific NS3 primers were designed to amplify and sequence the NS3 protease gene. RESULTS None of the 233 analysed sequences contained major telaprevir (TVR) or boceprevir (BOC) resistance mutations (R155K/T/M, A156S/V/T and V170A). Some substitutions (V36L, T54S, Q80K/R, D168Q and V170T) linked to low or moderate decreases in HCV sensitivity to protease inhibitors were prevalent according to genotype (between 2% and 100%). Other than genotype signature mutations at positions 36, 80 and 168, the most frequent substitution was T54S (4 genotype 1 and 2 genotype 4 sequences). All genotype 2-5 sequences had the non-genotype-1 signature V36L mutation known to confer low-level resistance to both TVR and BOC. CONCLUSIONS We have developed an HCV protease NS3 inhibitor resistance genotyping tool suitable for use with HCV genotypes 1-5. Polymorphism data is valuable for interpreting genotypic resistance profiles in cases of failure of anti-HCV NS3 protease treatment.
Collapse
Affiliation(s)
- Sophie Vallet
- Université de Brest, UFR Médecine et des Sciences de la Santé, LUBEM, EA3882, Brest, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Resistance analysis of the hepatitis C virus NS3 protease inhibitor asunaprevir. Antimicrob Agents Chemother 2012; 56:3670-81. [PMID: 22508297 DOI: 10.1128/aac.00308-12] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Asunaprevir (BMS-650032) is a potent hepatitis C virus (HCV) NS3 protease inhibitor demonstrating efficacy in alfa interferon-sparing, direct-acting antiviral dual-combination regimens (together with the NS5A replication complex inhibitor daclatasvir) in patients chronically infected with HCV genotype 1b. Here, we describe a comprehensive in vitro genotypic and phenotypic analysis of asunaprevir-associated resistance against genotypes 1a and 1b using HCV replicons and patient samples obtained from clinical studies of short-term asunaprevir monotherapy. During genotype 1a resistance selection using HCV replicons, the primary NS3 protease substitutions identified were R155K, D168G, and I170T, which conferred low- to moderate-level asunaprevir resistance (5- to 21-fold) in transient-transfection susceptibility assays. For genotype 1b, a higher level of asunaprevir-associated resistance was observed at the same selection pressures, ranging from 170- to 400-fold relative to the wild-type control. The primary NS3 protease substitutions identified occurred predominantly at amino acid residue D168 (D168A/G/H/V/Y) and were associated with high-level asunaprevir resistance (16- to 280-fold) and impaired replication capacity. In asunaprevir single-ascending-dose and 3-day multiple-ascending-dose studies in HCV genotype 1a- or 1b-infected patients, the predominant pre-existing NS3 baseline polymorphism was NS3-Q80K. This substitution impacted initial virologic response rates in a single-ascending-dose study, but its effects after multiple doses were more ambiguous. Interestingly, for patient NS3 protease sequences containing Q80 and those containing K80, susceptibilities to asunaprevir were comparable when tested in an enzyme assay. No resistance-associated variants emerged in these clinical studies that significantly impacted susceptibility to asunaprevir. Importantly, asunaprevir-resistant replicons remained susceptible to an NS5A replication complex inhibitor, consistent with a role for asunaprevir in combination therapies.
Collapse
|
109
|
Welsch C, Schweizer S, Shimakami T, Domingues FS, Kim S, Lemon SM, Antes I. Ketoamide resistance and hepatitis C virus fitness in val55 variants of the NS3 serine protease. Antimicrob Agents Chemother 2012; 56:1907-15. [PMID: 22252823 PMCID: PMC3318394 DOI: 10.1128/aac.05184-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 12/22/2011] [Indexed: 12/30/2022] Open
Abstract
Drug-resistant viral variants are a major issue in the use of direct-acting antiviral agents in chronic hepatitis C. Ketoamides are potent inhibitors of the NS3 protease, with V55A identified as mutation associated with resistance to boceprevir. Underlying molecular mechanisms are only partially understood. We applied a comprehensive sequence analysis to characterize the natural variability at Val55 within dominant worldwide patient strains. A residue-interaction network and molecular dynamics simulation were applied to identify mechanisms for ketoamide resistance and viral fitness in Val55 variants. An infectious H77S.3 cell culture system was used for variant phenotype characterization. We measured antiviral 50% effective concentration (EC₅₀) and fold changes, as well as RNA replication and infectious virus yields from viral RNAs containing variants. Val55 was found highly conserved throughout all hepatitis C virus (HCV) genotypes. The conservative V55A and V55I variants were identified from HCV genotype 1a strains with no variants in genotype 1b. Topology measures from a residue-interaction network of the protease structure suggest a potential Val55 key role for modulation of molecular changes in the protease ligand-binding site. Molecular dynamics showed variants with constricted binding pockets and a loss of H-bonded interactions upon boceprevir binding to the variant proteases. These effects might explain low-level boceprevir resistance in the V55A variant, as well as the Val55 variant, reduced RNA replication capacity. Higher structural flexibility was found in the wild-type protease, whereas variants showed lower flexibility. Reduced structural flexibility could impact the Val55 variant's ability to adapt for NS3 domain-domain interaction and might explain the virus yield drop observed in variant strains.
Collapse
Affiliation(s)
- Christoph Welsch
- University of North Carolina at Chapel Hill, Division of Infectious Diseases, Department of Medicine and the Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, USA
- J. W. Goethe-University Hospital, Department of Internal Medicine I, Frankfurt am Main, Germany
- Max Planck Institute for Informatics, Computational Biology & Applied Algorithmics, Saarbrücken, Germany
| | - Sabine Schweizer
- Technical University Munich, Center for Integrated Protein Science (CIPS), Department of Life Sciences, Freising, Germany
| | - Tetsuro Shimakami
- University of North Carolina at Chapel Hill, Division of Infectious Diseases, Department of Medicine and the Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, USA
- First Department of Internal Medicine, School of Medicine, Kanazawa University, Takara-Machi, Kanazawa, Japan
| | | | - Seungtaek Kim
- University of North Carolina at Chapel Hill, Division of Infectious Diseases, Department of Medicine and the Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, USA
| | - Stanley M. Lemon
- University of North Carolina at Chapel Hill, Division of Infectious Diseases, Department of Medicine and the Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, USA
| | - Iris Antes
- Technical University Munich, Center for Integrated Protein Science (CIPS), Department of Life Sciences, Freising, Germany
| |
Collapse
|
110
|
Affiliation(s)
- Francesco Colizzi
- SISSA − Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, 34136 Trieste, Italy
| | - Giovanni Bussi
- SISSA − Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
111
|
Welsch C, Shimakami T, Hartmann C, Yang Y, Domingues FS, Lengauer T, Zeuzem S, Lemon SM. Peptidomimetic escape mechanisms arise via genetic diversity in the ligand-binding site of the hepatitis C virus NS3/4A serine protease. Gastroenterology 2012; 142:654-63. [PMID: 22155364 PMCID: PMC3288278 DOI: 10.1053/j.gastro.2011.11.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 11/25/2011] [Accepted: 11/29/2011] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS It is a challenge to develop direct-acting antiviral agents that target the nonstructural protein 3/4A protease of hepatitis C virus because resistant variants develop. Ketoamide compounds, designed to mimic the natural protease substrate, have been developed as inhibitors. However, clinical trials have revealed rapid selection of resistant mutants, most of which are considered to be pre-existing variants. METHODS We identified residues near the ketoamide-binding site in x-ray structures of the genotype 1a protease, co-crystallized with boceprevir or a telaprevir-like ligand, and then identified variants at these positions in 219 genotype-1 sequences from a public database. We used side-chain modeling to assess the potential effects of these variants on the interaction between ketoamide and the protease, and compared these results with the phenotypic effects on ketoamide resistance, RNA replication capacity, and infectious virus yields in a cell culture model of infection. RESULTS Thirteen natural binding-site variants with potential for ketoamide resistance were identified at 10 residues in the protease, near the ketoamide binding site. Rotamer analysis of amino acid side-chain conformations indicated that 2 variants (R155K and D168G) could affect binding of telaprevir more than boceprevir. Measurements of antiviral susceptibility in cell-culture studies were consistent with this observation. Four variants (ie, Q41H, I132V, R155K, and D168G) caused low-to-moderate levels of ketoamide resistance; 3 of these were highly fit (Q41H, I132V, and R155K). CONCLUSIONS Using a comprehensive sequence and structure-based analysis, we showed how natural variation in the hepatitis C virus protease nonstructural protein 3/4A sequences might affect susceptibility to first-generation direct-acting antiviral agents. These findings increase our understanding of the molecular basis of ketoamide resistance among naturally existing viral variants.
Collapse
Affiliation(s)
- Christoph Welsch
- Division of Infectious Diseases, Department of Medicine, Inflammatory Diseases Institute, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599--7292, USA.
| | - Tetsuro Shimakami
- The University of North Carolina at Chapel Hill, Division of Infectious Diseases, Department of Medicine, and the Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599-7292, USA
| | - Christoph Hartmann
- Max Planck Institute for Informatics, Computational Biology & Applied Algorithmics, Stuhlsatzenhausweg 81, Campus E1 4, 66123 Saarbrücken, Germany
| | - Yan Yang
- The University of North Carolina at Chapel Hill, Division of Infectious Diseases, Department of Medicine, and the Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599-7292, USA
| | | | - Thomas Lengauer
- Max Planck Institute for Informatics, Computational Biology & Applied Algorithmics, Stuhlsatzenhausweg 81, Campus E1 4, 66123 Saarbrücken, Germany
| | - Stefan Zeuzem
- J. W. Goethe-University Hospital, Department of Internal Medicine I, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Stanley M. Lemon
- The University of North Carolina at Chapel Hill, Division of Infectious Diseases, Department of Medicine, and the Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599-7292, USA
| |
Collapse
|
112
|
Abstract
Until recently, chronic hepatitis C caused by persistent infection with the hepatitis C virus (HCV) has been treated with a combination of pegylated interferon-alpha (PEG-IFNα) and ribavirin (RBV). This situation has changed with the development of two drugs targeting the NS3/4A protease, approved for combination therapy with PEG-IFNα/RBV for patients infected with genotype 1 viruses. Moreover, two additional viral proteins, the RNA-dependent RNA polymerase (residing in NS5B) and the NS5A protein have emerged as promising drug targets and a large number of antivirals targeting these proteins are at different stages of clinical development. Although this progress is very promising, it is not clear whether these new compounds will suffice to eradicate the virus in an infected individual, ideally by using a PEG-IFNα/RBV-free regimen, or whether additional compounds targeting other factors that promote HCV replication are required. In this respect, host cell factors have emerged as a promising alternative. They reduce the risk of development of antiviral resistance and they increase the chance for broad-spectrum activity, ideally covering all HCV genotypes. Work in the last few years has identified several host cell factors used by HCV for productive replication. These include, amongst others, cyclophilins, especially cyclophilinA (cypA), microRNA-122 (miR-122) or phosphatidylinositol-4-kinase III alpha. For instance, cypA inhibitors have shown to be effective in combination therapy with PEG-IFN/RBV in increasing the sustained viral response (SVR) rate significantly compared to PEG-IFN/RBV. This review briefly summarizes recent advances in the development of novel antivirals against HCV.
Collapse
Affiliation(s)
- Sandra Bühler
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | | |
Collapse
|
113
|
George SL, Varmaz D, Tavis JE, Chowdhury A. The GB virus C (GBV-C) NS3 serine protease inhibits HIV-1 replication in a CD4+ T lymphocyte cell line without decreasing HIV receptor expression. PLoS One 2012; 7:e30653. [PMID: 22292009 PMCID: PMC3264616 DOI: 10.1371/journal.pone.0030653] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 12/26/2011] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Persistent infection with GBV-C (GB Virus C), a non-pathogenic virus related to hepatitis C virus (HCV), prolongs survival in HIV infection. Two GBV-C proteins, NS5A and E2, have been shown previously to inhibit HIV replication in vitro. We investigated whether the GBV-C NS3 serine protease affects HIV replication. RESULTS GBV-C NS3 protease expressed in a human CD4+ T lymphocyte cell line significantly inhibited HIV replication. Addition of NS4A or NS4A/4B coding sequence to GBV-C NS3 increased the effect on HIV replication. Inhibition of HIV replication was dose-dependent and was not mediated by increased cell toxicity. Mutation of the NS3 catalytic serine to alanine resulted in loss of both HIV inhibition and protease activity. GBV-C NS3 expression did not measurably decrease CD4 or CXCR4 expression. CONCLUSION GBV-C NS3 serine protease significantly inhibited HIV replication without decreasing HIV receptor expression. The requirement for an intact catalytic serine at the active site indicates that inhibition was mediated by proteolytic cleavage of an unidentified target(s).
Collapse
Affiliation(s)
- Sarah L George
- Division of Infectious Diseases, Department of Internal Medicine, St. Louis University, St. Louis, Missouri, United States of America.
| | | | | | | |
Collapse
|
114
|
Abstract
Historically, research on RNA helicase and translocation enzymes has seemed like a footnote to the extraordinary progress in studies on DNA-remodeling enzymes. However, during the past decade, the rising wave of activity in RNA science has engendered intense interest in the behaviors of specialized motor enzymes that remodel RNA molecules. Functional, mechanistic, and structural investigations of these RNA enzymes have begun to reveal the molecular basis for their key roles in RNA metabolism and signaling. In this chapter, we highlight the structural and mechanistic similarities among monomeric RNA translocase enzymes, while emphasizing the many divergent characteristics that have caused this enzyme family to become one of the most important in metabolism and gene expression.
Collapse
Affiliation(s)
- Steve C. Ding
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA,Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
115
|
Hanson AM, Hernandez JJ, Shadrick WR, Frick DN. Identification and analysis of inhibitors targeting the hepatitis C virus NS3 helicase. Methods Enzymol 2012; 511:463-83. [PMID: 22713333 DOI: 10.1016/b978-0-12-396546-2.00021-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This chapter describes two types of FRET-based fluorescence assays that can be used to identify and analyze compounds that inhibit the helicase encoded by the hepatitis C virus (HCV). Both assays use a fluorescently labeled DNA or RNA oligonucleotide to monitor helicase-catalyzed strand separation, and they differ from other real-time helicase assays in that they do not require the presence of other nucleic acids to trap the reaction products. The first assay is a molecular beacon-based helicase assay (MBHA) that monitors helicase-catalyzed displacement of a hairpin-forming oligonucleotide with a fluorescent moiety on one end and a quencher on the other. DNA-based MBHAs have been used extensively for high-throughput screening (HTS), but RNA-based MBHAs are typically less useful because of poor signal to background ratios. In the second assay discussed, the fluorophore and quencher are split between two hairpin-forming oligonucleotides annealed in tandem to a third oligonucleotide. This split beacon helicase assay can be used for HTS with either DNA or RNA oligonucleotides. These assays should be useful to the many labs searching for HCV helicase inhibitors in order to develop new HCV therapies that are still desperately needed.
Collapse
Affiliation(s)
- Alicia M Hanson
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | | | | | | |
Collapse
|
116
|
Fairman-Williams ME, Jankowsky E. Unwinding initiation by the viral RNA helicase NPH-II. J Mol Biol 2011; 415:819-32. [PMID: 22155080 DOI: 10.1016/j.jmb.2011.11.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 11/26/2011] [Accepted: 11/29/2011] [Indexed: 12/27/2022]
Abstract
Viral RNA helicases of the NS3/NPH-II group unwind RNA duplexes by processive, directional translocation on one of the duplex strands. The translocation is preceded by a poorly understood unwinding initiation phase. For NPH-II from vaccinia virus, unwinding initiation is rate limiting for the overall unwinding reaction. To develop a mechanistic understanding of the unwinding initiation, we studied kinetic and thermodynamic aspects of this reaction phase for NPH-II in vitro, using biochemical and single molecule fluorescence approaches. Our data show that NPH-II functions as a monomer and that different stages of the ATP hydrolysis cycle dictate distinct binding preferences of NPH-II for duplex versus single-stranded RNA. We further find that the NPH-II-RNA complex does not adopt a single conformation but rather at least two distinct conformations in each of the analyzed stages of ATP hydrolysis. These conformations interconvert with rate constants that depend on the stage of the ATP hydrolysis cycle. Our data establish a basic mechanistic framework for unwinding initiation by NPH-II and suggest that the various stages of the ATP hydrolysis cycle do not induce single, stage-specific conformations in the NPH-II-RNA complex but primarily control transitions between multiple states.
Collapse
Affiliation(s)
- Margaret E Fairman-Williams
- Center for RNA Molecular Biology and Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
117
|
MacPherson JI, Sidders B, Wieland S, Zhong J, Targett-Adams P, Lohmann V, Backes P, Delpuech-Adams O, Chisari F, Lewis M, Parkinson T, Robertson DL. An integrated transcriptomic and meta-analysis of hepatoma cells reveals factors that influence susceptibility to HCV infection. PLoS One 2011; 6:e25584. [PMID: 22046242 PMCID: PMC3201949 DOI: 10.1371/journal.pone.0025584] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 09/06/2011] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a global problem. To better understand HCV infection researchers employ in vitro HCV cell-culture (HCVcc) systems that use Huh-7 derived hepatoma cells that are particularly permissive to HCV infection. A variety of hyper-permissive cells have been subcloned for this purpose. In addition, subclones of Huh-7 which have evolved resistance to HCV are available. However, the mechanisms of susceptibility or resistance to infection among these cells have not been fully determined. In order to elucidate mechanisms by which hepatoma cells are susceptible or resistant to HCV infection we performed genome-wide expression analyses of six Huh-7 derived cell cultures that have different levels of permissiveness to infection. A great number of genes, representing a wide spectrum of functions are differentially expressed between cells. To focus our investigation, we identify host proteins from HCV replicase complexes, perform gene expression analysis of three HCV infected cells and conduct a detailed analysis of differentially expressed host factors by integrating a variety of data sources. Our results demonstrate that changes relating to susceptibility to HCV infection in hepatoma cells are linked to the innate immune response, secreted signal peptides and host factors that have a role in virus entry and replication. This work identifies both known and novel host factors that may influence HCV infection. Our findings build upon current knowledge of the complex interplay between HCV and the host cell, which could aid development of new antiviral strategies.
Collapse
Affiliation(s)
- Jamie I. MacPherson
- Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Ben Sidders
- Pfizer Global Research and Development, Sandwich, United Kingdom
| | - Stefan Wieland
- The Scripps Research Institute, La Jolla, California, United States ofAmerica
| | - Jin Zhong
- The Scripps Research Institute, La Jolla, California, United States ofAmerica
| | | | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Perdita Backes
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | | | - Francis Chisari
- The Scripps Research Institute, La Jolla, California, United States ofAmerica
| | - Marilyn Lewis
- Pfizer Global Research and Development, Sandwich, United Kingdom
| | - Tanya Parkinson
- Pfizer Global Research and Development, Sandwich, United Kingdom
| | - David L. Robertson
- Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
118
|
Cheng W, Arunajadai SG, Moffitt JR, Tinoco I, Bustamante C. Single-base pair unwinding and asynchronous RNA release by the hepatitis C virus NS3 helicase. Science 2011; 333:1746-9. [PMID: 21940894 DOI: 10.1126/science.1206023] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nonhexameric helicases use adenosine triphosphate (ATP) to unzip base pairs in double-stranded nucleic acids (dsNAs). Studies have suggested that these helicases unzip dsNAs in single-base pair increments, consuming one ATP molecule per base pair, but direct evidence for this mechanism is lacking. We used optical tweezers to follow the unwinding of double-stranded RNA by the hepatitis C virus NS3 helicase. Single-base pair steps by NS3 were observed, along with nascent nucleotide release that was asynchronous with base pair opening. Asynchronous release of nascent nucleotides rationalizes various observations of its dsNA unwinding and may be used to coordinate the translocation speed of NS3 along the RNA during viral replication.
Collapse
Affiliation(s)
- Wei Cheng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | |
Collapse
|
119
|
Martin MM, Condotta SA, Fenn J, Olmstead AD, Jean F. In-cell selectivity profiling of membrane-anchored and replicase-associated hepatitis C virus NS3-4A protease reveals a common, stringent substrate recognition profile. Biol Chem 2011; 392:927-35. [PMID: 21749281 DOI: 10.1515/bc.2011.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The need to identify anti-Flaviviridae agents has resulted in intensive biochemical study of recombinant nonstructural (NS) viral proteases; however, experimentation on viral protease-associated replication complexes in host cells is extremely challenging and therefore limited. It remains to be determined if membrane anchoring and/or association to replicase-membrane complexes of proteases, such as hepatitis C virus (HCV) NS3-4A, plays a regulatory role in the substrate selectivity of the protease. In this study, we examined trans-endoproteolytic cleavage activities of membrane-anchored and replicase-associated NS3-4A using an internally consistent set of membrane-anchored protein substrates mimicking all known HCV NS3-4A polyprotein cleavage sequences. Interestingly, we detected cleavage of substrates encoding for the NS4B/NS5A and NS5A/NS5B junctions, but not for the NS3/NS4A and NS4A/NS4B substrates. This stringent substrate recognition profile was also observed for the replicase-associated NS3-4A and is not genotype-specific. Our study also reveals that ER-anchoring of the substrate is critical for its cleavage by NS3-4A. Importantly, we demonstrate that in HCV-infected cells, the NS4B/NS5A substrate was cleaved efficiently. The unique ability of our membrane-anchored substrates to detect NS3-4A activity alone, in replication complexes, or within the course of infection, shows them to be powerful tools for drug discovery and for the study of HCV biology.
Collapse
Affiliation(s)
- Morgan M Martin
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | | | | | | | | |
Collapse
|
120
|
Morikawa K, Lange CM, Gouttenoire J, Meylan E, Brass V, Penin F, Moradpour D. Nonstructural protein 3-4A: the Swiss army knife of hepatitis C virus. J Viral Hepat 2011; 18:305-15. [PMID: 21470343 DOI: 10.1111/j.1365-2893.2011.01451.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatitis C virus (HCV) nonstructural protein 3-4A (NS3-4A) is a complex composed of NS3 and its cofactor NS4A. It harbours serine protease as well as NTPase/RNA helicase activities and is essential for viral polyprotein processing, RNA replication and virion formation. Specific inhibitors of the NS3-4A protease significantly improve sustained virological response rates in patients with chronic hepatitis C when combined with pegylated interferon-α and ribavirin. The NS3-4A protease can also target selected cellular proteins, thereby blocking innate immune pathways and modulating growth factor signalling. Hence, NS3-4A is not only an essential component of the viral replication complex and prime target for antiviral intervention but also a key player in the persistence and pathogenesis of HCV. This review provides a concise update on the biochemical and structural aspects of NS3-4A, its role in the pathogenesis of chronic hepatitis C and the clinical development of NS3-4A protease inhibitors.
Collapse
Affiliation(s)
- K Morikawa
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
121
|
Bustamante C, Cheng W, Mejia YX, Meija YX. Revisiting the central dogma one molecule at a time. Cell 2011; 144:480-97. [PMID: 21335233 PMCID: PMC3063003 DOI: 10.1016/j.cell.2011.01.033] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 01/21/2011] [Accepted: 01/26/2011] [Indexed: 12/24/2022]
Abstract
The faithful relay and timely expression of genetic information depend on specialized molecular machines, many of which function as nucleic acid translocases. The emergence over the last decade of single-molecule fluorescence detection and manipulation techniques with nm and Å resolution and their application to the study of nucleic acid translocases are painting an increasingly sharp picture of the inner workings of these machines, the dynamics and coordination of their moving parts, their thermodynamic efficiency, and the nature of their transient intermediates. Here we present an overview of the main results arrived at by the application of single-molecule methods to the study of the main machines of the central dogma.
Collapse
Affiliation(s)
- Carlos Bustamante
- Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, 94720, USA.
| | | | | | | |
Collapse
|
122
|
Unmasking the active helicase conformation of nonstructural protein 3 from hepatitis C virus. J Virol 2011; 85:4343-53. [PMID: 21325413 DOI: 10.1128/jvi.02130-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The nonstructural protein 3 (NS3) helicase/protease is an important component of the hepatitis C virus (HCV) replication complex. We hypothesized that a specific β-strand tethers the C terminus of the helicase domain to the protease domain, thereby maintaining HCV NS3 in a compact conformation that differs from the extended conformations observed for other Flaviviridae NS3 enzymes. To test this hypothesis, we removed the β-strand and explored the structural and functional attributes of the truncated NS3 protein (NS3ΔC7). Limited proteolysis, hydrodynamic, and kinetic measurements indicate that NS3ΔC7 adopts an extended conformation that contrasts with the compact form of the wild-type (WT) protein. The extended conformation of NS3ΔC7 allows the protein to quickly form functional complexes with RNA unwinding substrates. We also show that the unwinding activity of NS3ΔC7 is independent of the substrate 3'-overhang length, implying that a monomeric form of the protein promotes efficient unwinding. Our findings indicate that an open, extended conformation of NS3 is required for helicase activity and represents the biologically relevant conformation of the protein during viral replication.
Collapse
|
123
|
Coupling translocation with nucleic acid unwinding by NS3 helicase. J Mol Biol 2010; 404:439-55. [PMID: 20887735 DOI: 10.1016/j.jmb.2010.09.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/27/2010] [Accepted: 09/20/2010] [Indexed: 11/20/2022]
Abstract
We present a semiquantitative model for translocation and unwinding activities of monomeric nonstructural protein 3 (NS3) helicase. The model is based on structural, biochemical, and single-molecule measurements. The model predicts that the NS3 helicase actively unwinds duplex by reducing more than 50% the free energy that stabilizes base pairing/stacking. The unwinding activity slows the movement of the helicase in a sequence-dependent manner, lowering the average unwinding efficiency to less than 1 bp per ATP cycle. When bound with ATP, the NS3 helicase can display significant translocational diffusion. This increases displacement fluctuations of the helicase, decreases the average unwinding efficiency, and enhances the sequence dependence. Also, interactions between the helicase and the duplex stabilize the helicase at the junction, facilitating the helicase's unwinding activity while preventing it from dissociating. In the presence of translocational diffusion during active unwinding, the dissociation rate of the helicase also exhibits sequence dependence. Based on unwinding velocity fluctuations measured from single-molecule experiments, we estimate the diffusion rate to be on the order of 10 s(-1). The generic features of coupling single-stranded nucleic acid translocation with duplex unwinding presented in this work may apply generally to a class of helicases.
Collapse
|
124
|
Samuel CE. Thematic minireview series: elucidating hepatitis C virus-host interactions at the biochemical level. J Biol Chem 2010; 285:22723-4. [PMID: 20457611 PMCID: PMC2906260 DOI: 10.1074/jbc.r110.142240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Charles E Samuel
- Department of Molecular, Cellular and Developmental Biology and the Biomolecular Sciences and Engineering Program, University of California, Santa Barbara, California 93106, USA.
| |
Collapse
|