101
|
Selig EE, Lynn RJ, Zlatic CO, Mok YF, Ecroyd H, Gooley PR, Griffin MDW. The Monomeric α-Crystallin Domain of the Small Heat-shock Proteins αB-crystallin and Hsp27 Binds Amyloid Fibril Ends. J Mol Biol 2022; 434:167711. [PMID: 35777462 DOI: 10.1016/j.jmb.2022.167711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/05/2022] [Accepted: 06/25/2022] [Indexed: 11/25/2022]
Abstract
Small heat-shock proteins (sHSPs) are ubiquitously expressed molecular chaperones present in all kingdoms of life that inhibit protein misfolding and aggregation. Despite their importance in proteostasis, the structure-function relationships of sHSPs remain elusive. Human sHSPs are characterised by a central, highly conserved α-crystallin domain (ACD) and variable-length N- and C-terminal regions. The ACD forms antiparallel homodimers via an extended β-strand, creating a shared β-sheet at the dimer interface. The N- and C-terminal regions mediate formation of higher order oligomers that are thought to act as storage forms for chaperone-active dimers. We investigated the interactions of the ACD of two human sHSPs, αB-crystallin (αB-C) and Hsp27, with apolipoprotein C-II amyloid fibrils using analytical ultracentrifugation and nuclear magnetic resonance spectroscopy. The ACD was found to interact transiently with amyloid fibrils to inhibit fibril elongation and naturally occurring fibril end-to-end joining. This interaction was sensitive to the concentration of fibril ends indicating a 'fibril-capping' interaction. Furthermore, resonances arising from the ACD monomer were attenuated to a greater extent than those of the ACD dimer in the presence of fibrils, suggesting that the monomer may bind fibrils. This hypothesis was supported by mutagenesis studies in which disulfide cross-linked ACD dimers formed by both αB-C and Hsp27 were less effective at inhibiting amyloid fibril elongation and fibril end-to-end joining than ACD constructs lacking disulfide cross-linking. Our results indicate that sHSP monomers inhibit amyloid fibril elongation, highlighting the importance of the dynamic oligomeric nature of sHSPs for client binding.
Collapse
Affiliation(s)
- Emily E Selig
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Roberta J Lynn
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Courtney O Zlatic
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Yee-Foong Mok
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Heath Ecroyd
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
| | - Paul R Gooley
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Michael D W Griffin
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
102
|
Kumar A, Mathew V, Stirling PC. Nuclear protein quality control in yeast: the latest INQuiries. J Biol Chem 2022; 298:102199. [PMID: 35760103 PMCID: PMC9305344 DOI: 10.1016/j.jbc.2022.102199] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 06/07/2022] [Accepted: 06/19/2022] [Indexed: 11/29/2022] Open
Abstract
The nucleus is a highly organized organelle with an intricate substructure of chromatin, RNAs, and proteins. This environment represents a challenge for maintaining protein quality control, since non-native proteins may interact inappropriately with other macromolecules and thus interfere with their function. Maintaining a healthy nuclear proteome becomes imperative during times of stress, such as upon DNA damage, heat shock, or starvation, when the proteome must be remodeled to effect cell survival. This is accomplished with the help of nuclear-specific chaperones, degradation pathways, and specialized structures known as protein quality control (PQC) sites that sequester proteins to help rapidly remodel the nuclear proteome. In this review, we focus on the current knowledge of PQC sites in Saccharomyces cerevisiae, particularly on a specialized nuclear PQC site called the intranuclear quality control site, a poorly understood nuclear inclusion that coordinates dynamic proteome triage decisions in yeast.
Collapse
Affiliation(s)
- Arun Kumar
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, Canada; Dept. of Medical Genetics, University of British Columbia, Vancouver Canada
| | - Veena Mathew
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, Canada
| | - Peter C Stirling
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, Canada; Dept. of Medical Genetics, University of British Columbia, Vancouver Canada.
| |
Collapse
|
103
|
Li H, Yu Y, Ruan M, Jiao F, Chen H, Gao J, Weng Y, Bao Y. The mechanism for thermal-enhanced chaperone-like activity of α-crystallin against UV irradiation-induced aggregation of γD-crystallin. Biophys J 2022; 121:2233-2250. [PMID: 35619565 DOI: 10.1016/j.bpj.2022.05.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022] Open
Abstract
Exposure to solar UV irradiation damages γ-crystallin, leading to cataract formation via aggregation. α-Crystallin, as a small heat-shock protein (sHsps), efficiently suppresses this irreversible aggregation by selectively binding the denatured γ-crystallin monomer. In this study, liquid chromatography tandem mass spectrometry (LC-MS) was used to evaluate UV-325 nm irradiation-induced photodamage of human γD-crystallin in the presence of bovine α-crystallin, atomic force microscope (AFM) and dynamic light scattering (DLS) techniques were used to detect the quaternary structure changes of α-crystallin oligomer, and Fourier transform infrared (FTIR) spectroscopy and temperature-jump (T-jump) nanosecond time-resolved IR absorbance difference spectroscopy were used to probe the secondary structure changes of bovine α-crystallin. We find that the thermal-induced subunit dissociation of α-crystallin oligomer involves the breaking of hydrogen bonds at the dimeric interface, leading to three different spectral components at varied temperature regions as resolved from temperature-dependent IR spectra. Under UV-325 nm irradiation, unfolded γD-crystallin binds to the dissociated α-crystallin subunit to form αγ-complex, then follows the reassociation of αγ-complex to the partially dissociated α-crystallin oligomer. This prevents the aggregation of denatured γD-crystallin. The formation of the γD-bound α-crystallin oligomer is further confirmed by AFM and DLS analysis, which reveals an obvious size expansion in the reassociated αγ-oligomers. In addition, UV-325 nm irradiation causes a peptide bond cleavage of γD-crystallin at Ala158 in presence of α-crystallin. Our results suggest a very effective protection mechanism for subunits dissociated from α-crystallin oligomers against UV irradiation-induced aggregation of γD-crystallin, at an expense of a loss of a short C-terminal peptide in γD-crystallin.
Collapse
Affiliation(s)
- Hao Li
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China; College of Chemical Biology and Biotechnology, Beijing University Shenzhen Graduate School, Shenzhen, China; Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yingying Yu
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Meixia Ruan
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Fang Jiao
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Hailong Chen
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jiali Gao
- College of Chemical Biology and Biotechnology, Beijing University Shenzhen Graduate School, Shenzhen, China; Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yuxiang Weng
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Yongzhen Bao
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
104
|
Roy M, Bhakta K, Ghosh A. Minimal Yet Powerful: The Role of Archaeal Small Heat Shock Proteins in Maintaining Protein Homeostasis. Front Mol Biosci 2022; 9:832160. [PMID: 35647036 PMCID: PMC9133787 DOI: 10.3389/fmolb.2022.832160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/02/2022] [Indexed: 11/21/2022] Open
Abstract
Small heat shock proteins (sHsp) are a ubiquitous group of ATP-independent chaperones found in all three domains of life. Although sHsps in bacteria and eukaryotes have been studied extensively, little information was available on their archaeal homologs until recently. Interestingly, archaeal heat shock machinery is strikingly simplified, offering a minimal repertoire of heat shock proteins to mitigate heat stress. sHsps play a crucial role in preventing protein aggregation and holding unfolded protein substrates in a folding-competent form. Besides protein aggregation protection, archaeal sHsps have been shown recently to stabilize membranes and contribute to transferring captured substrate proteins to chaperonin for refolding. Furthermore, recent studies on archaeal sHsps have shown that environment-induced oligomeric plasticity plays a crucial role in maintaining their functional form. Despite being prokaryotes, the archaeal heat shock protein repository shares several features with its highly sophisticated eukaryotic counterpart. The minimal nature of the archaeal heat shock protein repository offers ample scope to explore the function and regulation of heat shock protein(s) to shed light on their evolution. Moreover, similar structural dynamics of archaeal and human sHsps have made the former an excellent system to study different chaperonopathies since archaeal sHsps are more stable under in vitro experiments.
Collapse
|
105
|
Kulkarni SS, Watson EE, Maxwell JWC, Niederacher G, Johansen‐Leete J, Huhmann S, Mukherjee S, Norman AR, Kriegesmann J, Becker CFW, Payne RJ. Expressed Protein Selenoester Ligation. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202200163. [PMID: 38505698 PMCID: PMC10947028 DOI: 10.1002/ange.202200163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 03/21/2024]
Abstract
Herein, we describe the development and application of a novel expressed protein selenoester ligation (EPSL) methodology for the one-pot semi-synthesis of modified proteins. EPSL harnesses the rapid kinetics of ligation reactions between modified synthetic selenopeptides and protein aryl selenoesters (generated from expressed intein fusion precursors) followed by in situ chemoselective deselenization to afford target proteins at concentrations that preclude the use of traditional ligation methods. The utility of the EPSL technology is showcased through the efficient semi-synthesis of ubiquitinated polypeptides, lipidated analogues of the membrane-associated GTPase YPT6, and site-specifically phosphorylated variants of the oligomeric chaperone protein Hsp27 at high dilution.
Collapse
Affiliation(s)
- Sameer S. Kulkarni
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Emma E. Watson
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Joshua W. C. Maxwell
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Gerhard Niederacher
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Jason Johansen‐Leete
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Susanne Huhmann
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Somnath Mukherjee
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Alexander R. Norman
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Julia Kriegesmann
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Christian F. W. Becker
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Richard J. Payne
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| |
Collapse
|
106
|
Kulkarni SS, Watson EE, Maxwell JWC, Niederacher G, Johansen‐Leete J, Huhmann S, Mukherjee S, Norman AR, Kriegesmann J, Becker CFW, Payne RJ. Expressed Protein Selenoester Ligation. Angew Chem Int Ed Engl 2022; 61:e202200163. [PMID: 35194928 PMCID: PMC9314092 DOI: 10.1002/anie.202200163] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 12/23/2022]
Abstract
Herein, we describe the development and application of a novel expressed protein selenoester ligation (EPSL) methodology for the one-pot semi-synthesis of modified proteins. EPSL harnesses the rapid kinetics of ligation reactions between modified synthetic selenopeptides and protein aryl selenoesters (generated from expressed intein fusion precursors) followed by in situ chemoselective deselenization to afford target proteins at concentrations that preclude the use of traditional ligation methods. The utility of the EPSL technology is showcased through the efficient semi-synthesis of ubiquitinated polypeptides, lipidated analogues of the membrane-associated GTPase YPT6, and site-specifically phosphorylated variants of the oligomeric chaperone protein Hsp27 at high dilution.
Collapse
Affiliation(s)
- Sameer S. Kulkarni
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Emma E. Watson
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Joshua W. C. Maxwell
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Gerhard Niederacher
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Jason Johansen‐Leete
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Susanne Huhmann
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Somnath Mukherjee
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Alexander R. Norman
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Julia Kriegesmann
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Christian F. W. Becker
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Richard J. Payne
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| |
Collapse
|
107
|
Abstract
The folding of proteins into their native structure is crucial for the functioning of all biological processes. Molecular chaperones are guardians of the proteome that assist in protein folding and prevent the accumulation of aberrant protein conformations that can lead to proteotoxicity. ATP-independent chaperones do not require ATP to regulate their functional cycle. Although these chaperones have been traditionally regarded as passive holdases that merely prevent aggregation, recent work has shown that they can directly affect the folding energy landscape by tuning their affinity to various folding states of the client. This review focuses on emerging paradigms in the mechanism of action of ATP-independent chaperones and on the various modes of regulating client binding and release.
Collapse
Affiliation(s)
- Rishav Mitra
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, USA; .,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kevin Wu
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, USA; .,Department of Biophysics, University of Michigan, Ann Arbor, Michigan, USA
| | - Changhan Lee
- Department of Biological Sciences, Ajou University, Suwon, South Korea
| | - James C A Bardwell
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, USA; .,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
108
|
de la Fuente M, Novo M. Understanding Diversity, Evolution, and Structure of Small Heat Shock Proteins in Annelida Through in Silico Analyses. Front Physiol 2022; 13:817272. [PMID: 35530508 PMCID: PMC9075518 DOI: 10.3389/fphys.2022.817272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/22/2022] [Indexed: 12/04/2022] Open
Abstract
Small heat shock proteins (sHsps) are oligomeric stress proteins characterized by an α-crystallin domain (ACD). These proteins are localized in different subcellular compartments and play critical roles in the stress physiology of tissues, organs, and whole multicellular eukaryotes. They are ubiquitous proteins found in all living organisms, from bacteria to mammals, but they have never been studied in annelids. Here, a data set of 23 species spanning the annelid tree of life, including mostly transcriptomes but also two genomes, was interrogated and 228 novel putative sHsps were identified and manually curated. The analysis revealed very high protein diversity and showed that a significant number of sHsps have a particular dimeric architecture consisting of two tandemly repeated ACDs. The phylogenetic analysis distinguished three main clusters, two of them containing both monomeric sHsps, and ACDs located downstream in the dimeric sHsps, and the other one comprising the upstream ACDs from those dimeric forms. Our results support an evolutionary history of these proteins based on duplication events prior to the Spiralia split. Monomeric sHsps 76) were further divided into five subclusters. Physicochemical properties, subcellular location predictions, and sequence conservation analyses provided insights into the differentiating elements of these putative functional groups. Strikingly, three of those subclusters included sHsps with features typical of metazoans, while the other two presented characteristics resembling non-metazoan proteins. This study provides a solid background for further research on the diversity, evolution, and function in the family of the sHsps. The characterized annelid sHsps are disclosed as essential for improving our understanding of this important family of proteins and their pleotropic functions. The features and the great diversity of annelid sHsps position them as potential powerful molecular biomarkers of environmental stress for acting as prognostic tool in a diverse range of environments.
Collapse
Affiliation(s)
- Mercedes de la Fuente
- Departamento de Ciencias y Técnicas Fisicoquímicas, Universidad Nacional de Educación a Distancia (UNED), Las Rozas, Spain
- *Correspondence: Mercedes de la Fuente,
| | - Marta Novo
- Faculty of Biology, Biodiversity, Ecology and Evolution Department, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
109
|
Cater JH, Mañucat-Tan NB, Georgiou DK, Zhao G, Buhimschi IA, Wyatt AR, Ranson M. A Novel Role for Plasminogen Activator Inhibitor Type-2 as a Hypochlorite-Resistant Serine Protease Inhibitor and Holdase Chaperone. Cells 2022; 11:cells11071152. [PMID: 35406715 PMCID: PMC8997907 DOI: 10.3390/cells11071152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 12/15/2022] Open
Abstract
Plasminogen activator inhibitor type-2 (PAI-2), a member of the serpin family, is dramatically upregulated during pregnancy and in response to inflammation. Although PAI-2 exists in glycosylated and non-glycosylated forms in vivo, the majority of in vitro studies of PAI-2 have exclusively involved the intracellular non-glycosylated form. This study shows that exposure to inflammation-associated hypochlorite induces the oligomerisation of PAI-2 via a mechanism involving dityrosine formation. Compared to plasminogen activator inhibitor type-1 (PAI-1), both forms of PAI-2 are more resistant to hypochlorite-induced inactivation of its protease inhibitory activity. Holdase-type extracellular chaperone activity plays a putative non-canonical role for PAI-2. Our data demonstrate that glycosylated PAI-2 more efficiently inhibits the aggregation of Alzheimer’s disease and preeclampsia-associated amyloid beta peptide (Aβ), compared to non-glycosylated PAI-2 in vitro. However, hypochlorite-induced modification of non-glycosylated PAI-2 dramatically enhances its holdase activity by promoting the formation of very high-molecular-mass chaperone-active PAI-2 oligomers. Both PAI-2 forms protect against Aβ-induced cytotoxicity in the SH-SY5Y neuroblastoma cell line in vitro. In the villous placenta, PAI-2 is localised primarily to syncytiotrophoblast with wide interpersonal variation in women with preeclampsia and in gestational-age-matched controls. Although intracellular PAI-2 and Aβ staining localised to different placental cell types, some PAI-2 co-localised with Aβ in the extracellular plaque-like aggregated deposits abundant in preeclamptic placenta. Thus, PAI-2 potentially contributes to controlling aberrant fibrinolysis and the accumulation of misfolded proteins in states characterised by oxidative and proteostasis stress, such as in Alzheimer’s disease and preeclampsia.
Collapse
Affiliation(s)
- Jordan H. Cater
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2522, Australia;
- School of Chemistry and Biomolecular Science, University of Wollongong, Wollongong 2522, Australia
| | - Noralyn B. Mañucat-Tan
- Flinders Health and Medical Research Institute and College of Medicine and Public Health, Flinders University, Bedford Park 5042, Australia; (N.B.M.-T.); (D.K.G.)
| | - Demi K. Georgiou
- Flinders Health and Medical Research Institute and College of Medicine and Public Health, Flinders University, Bedford Park 5042, Australia; (N.B.M.-T.); (D.K.G.)
| | - Guomao Zhao
- Department of Obstetrics and Gynaecology, University of Illinois at Chicago College of Medicine, Chicago, IL 60611, USA; (G.Z.); (I.A.B.)
| | - Irina A. Buhimschi
- Department of Obstetrics and Gynaecology, University of Illinois at Chicago College of Medicine, Chicago, IL 60611, USA; (G.Z.); (I.A.B.)
| | - Amy R. Wyatt
- Flinders Health and Medical Research Institute and College of Medicine and Public Health, Flinders University, Bedford Park 5042, Australia; (N.B.M.-T.); (D.K.G.)
- Correspondence: (A.R.W.); (M.R.)
| | - Marie Ranson
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2522, Australia;
- School of Chemistry and Biomolecular Science, University of Wollongong, Wollongong 2522, Australia
- Correspondence: (A.R.W.); (M.R.)
| |
Collapse
|
110
|
Affiliation(s)
- Roy Quinlan
- Biomedical Sciences, Department of Biosciences, The University of Durham, Upper Mountjoy Science Site, Durham, DH1 3LE, UK.
| | - Frank Giblin
- Biomedical Sciences Emeritus, Eye Research Institute, Oakland University, Rochester, MI, 48309, USA.
| |
Collapse
|
111
|
Genomic and Transcriptomic Landscape and Evolutionary Dynamics of Heat Shock Proteins in Spotted Sea Bass ( Lateolabrax maculatus) under Salinity Change and Alkalinity Stress. BIOLOGY 2022; 11:biology11030353. [PMID: 35336727 PMCID: PMC8945262 DOI: 10.3390/biology11030353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022]
Abstract
Simple Summary Heat shock proteins (Hsps) are ubiquitous and conserved in almost all living organisms and are involved in a wide spectrum of cellular responses against diverse environmental stresses. However, our knowledge about the coordinated Hsp co-chaperon interaction is still limited, especially in aquatic animals facing dynamic water environments. In this study, we provided the systematic analysis of 95 Hsp genes (LmHsps) in spotted sea bass (Lateolabrax maculatus), an important aquaculture species in China, under salinity change and alkalinity stress through in silico analysis. The coordinated expression of LmHsps in response to salinity change and alkalinity stress in the gills was determined. Our results confirmed the diverse regulated expression of Hsps in L. maculatus, and that the responses to alkalinity stress may have arisen through the adaptive recruitment of LmHsp40-70-90 co-chaperons. Our results provide vital insights into the function and adaptation of aquatic animal Hsps in response to salinity-alkalinity stress. Abstract The heat shock protein (Hsp) superfamily has received accumulated attention because it is ubiquitous and conserved in almost all living organisms and is involved in a wide spectrum of cellular responses against diverse environmental stresses. However, our knowledge about the Hsp co-chaperon network is still limited in non-model organisms. In this study, we provided the systematic analysis of 95 Hsp genes (LmHsps) in the genome of spotted sea bass (Lateolabrax maculatus), an important aquaculture species in China that can widely adapt to diverse salinities from fresh to sea water, and moderately adapt to high alkaline water. Through in silico analysis using transcriptome and genome database, we determined the expression profiles of LmHsps in response to salinity change and alkalinity stress in L. maculatus gills. The results revealed that LmHsps were sensitive in response to alkalinity stress, and the LmHsp40-70-90 members were more actively regulated than other LmHsps and may also be coordinately interacted as co-chaperons. This was in accordance with the fact that members of LmHsp40, LmHsp70, and LmHsp90 evolved more rapidly in L. maculatus than other teleost lineages with positively selected sites detected in their functional domains. Our results revealed the diverse and cooperated regulation of LmHsps under alkaline stress, which may have arisen through the functional divergence and adaptive recruitment of the Hsp40-70-90 co-chaperons and will provide vital insights for the development of L. maculatus cultivation in alkaline water.
Collapse
|
112
|
Montepietra D, Cecconi C, Brancolini G. Combining enhanced sampling and deep learning dimensionality reduction for the study of the heat shock protein B8 and its pathological mutant K141E. RSC Adv 2022; 12:31996-32011. [PMID: 36380940 PMCID: PMC9641792 DOI: 10.1039/d2ra04913a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022] Open
Abstract
The biological functions of proteins closely depend on their conformational dynamics. This aspect is especially relevant for intrinsically disordered proteins (IDP) for which structural ensembles often offer more useful representations than individual conformations. Here we employ extensive enhanced sampling temperature replica-exchange atomistic simulations (TREMD) and deep learning dimensionality reduction to study the conformational ensembles of the human heat shock protein B8 and its pathological mutant K141E, for which no experimental 3D structures are available. First, we combined homology modelling with TREMD to generate high-dimensional data sets of 3D structures. Then, we employed a recently developed machine learning based post-processing algorithm, EncoderMap, to project the large conformational data sets into meaningful two-dimensional maps that helped us interpret the data and extract the most significant conformations adopted by both proteins during TREMD. These studies provide the first 3D structural characterization of HSPB8 and reveal the effects of the pathogenic K141E mutation on its conformational ensembles. In particular, this missense mutation appears to increase the compactness of the protein and its structural variability, at the same time rearranging the hydrophobic patches exposed on the protein surface. These results offer the possibility of rationalizing the pathogenic effects of the K141E mutation in terms of conformational changes. The study provides the first 3D structural characterization of HSPB8 and its K141E mutant: extensive TREMD are combined with a deep learning algorithm to rationalize the disordered ensemble of structures adopted by each variant.![]()
Collapse
Affiliation(s)
- Daniele Montepietra
- Department of Physics, Computer Science and Mathematics, University of Modena and Reggio Emilia, Via Campi 213/A, 41100 Modena, Italy
- Istituto Nanoscienze – CNR-NANO, Center S3, Via G. Campi 213/A, 41100 Modena, Italy
| | - Ciro Cecconi
- Department of Physics, Computer Science and Mathematics, University of Modena and Reggio Emilia, Via Campi 213/A, 41100 Modena, Italy
- Istituto Nanoscienze – CNR-NANO, Center S3, Via G. Campi 213/A, 41100 Modena, Italy
| | - Giorgia Brancolini
- Istituto Nanoscienze – CNR-NANO, Center S3, Via G. Campi 213/A, 41100 Modena, Italy
| |
Collapse
|
113
|
2D antimonene-integrated composite nanomedicine for augmented low-temperature photonic tumor hyperthermia by reversing cell thermoresistance. Bioact Mater 2021; 10:295-305. [PMID: 34901547 PMCID: PMC8636770 DOI: 10.1016/j.bioactmat.2021.08.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/02/2021] [Accepted: 08/15/2021] [Indexed: 12/25/2022] Open
Abstract
The overexpression of heat shock proteins (HSPs) in tumor cells can activate inherent defense mechanisms during hyperthermia-based treatments, inducing thermoresistance and thus diminishing the treatment efficacy. Here, we report a distinct "non-inhibitor involvement" strategy to address this issue through engineering a calcium-based nanocatalyst (G/A@CaCO3-PEG). The constructed nanocatalyst consists of calcium carbonate (CaCO3)-supported glucose oxidase (GOD) and 2D antimonene quantum dots (AQDs), with further surface modification by lipid bilayers and polyethylene glycol (PEG). The engineered G/A@CaCO3-PEG nanocatalyst features prolonged blood circulation, which is stable at neutral pH but rapidly degrades under mildly acidic tumor microenvironment, resulting in rapid release of drug cargo in the tumor microenvironment. The integrated GOD effectively catalyzes the depletion of glucose for reducing the supplies of adenosine triphosphate (ATP) and subsequent down-regulation of HSP expression. This effect then augments the therapeutic efficacy of photothermal hyperthermia induced by 2D AQDs upon irradiation with near-infrared light as assisted by reversing the cancer cells' thermoresistance. Consequently, synergistic antineoplastic effects can be achieved via low-temperature photothermal therapy. Systematic in vitro and in vivo evaluations have demonstrated that G/A@CaCO3-PEG nanocatalysts feature potent antitumor activity with a high tumor-inhibition rate (83.92%). This work thus paves an effective way for augmenting the hyperthermia-based tumor treatments via restriction of the ATP supply.
Collapse
|
114
|
Van den Broek B, Wuyts C, Irobi J. Extracellular vesicle-associated small heat shock proteins as therapeutic agents in neurodegenerative diseases and beyond. Adv Drug Deliv Rev 2021; 179:114009. [PMID: 34673130 DOI: 10.1016/j.addr.2021.114009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/11/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Increasing evidence points towards using extracellular vesicles (EVs) as a therapeutic strategy in neurodegenerative diseases such as multiple sclerosis, Parkinson's, and Alzheimer's disease. EVs are nanosized carriers that play an essential role in intercellular communication and cellular homeostasis by transporting an active molecular cargo, including a large variety of proteins. Recent publications demonstrate that small heat shock proteins (HSPBs) exhibit a beneficial role in neurodegenerative diseases. Moreover, it is defined that HSPBs target the autophagy and the apoptosis pathway, playing a prominent role in chaperone activity and cell survival. This review elaborates on the therapeutic potential of EVs and HSPBs, in particular HSPB1 and HSPB8, in neurodegenerative diseases. We conclude that EVs and HSPBs positively influence neuroinflammation, central nervous system (CNS) repair, and protein aggregation in CNS disorders. Moreover, we propose the use of HSPB-loaded EVs as advanced nanocarriers for the future development of neurodegenerative disease therapies.
Collapse
Affiliation(s)
- Bram Van den Broek
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Charlotte Wuyts
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Joy Irobi
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|
115
|
Mühlhofer M, Peters C, Kriehuber T, Kreuzeder M, Kazman P, Rodina N, Reif B, Haslbeck M, Weinkauf S, Buchner J. Phosphorylation activates the yeast small heat shock protein Hsp26 by weakening domain contacts in the oligomer ensemble. Nat Commun 2021; 12:6697. [PMID: 34795272 PMCID: PMC8602628 DOI: 10.1038/s41467-021-27036-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 11/01/2021] [Indexed: 11/18/2022] Open
Abstract
Hsp26 is a small heat shock protein (sHsp) from S. cerevisiae. Its chaperone activity is activated by oligomer dissociation at heat shock temperatures. Hsp26 contains 9 phosphorylation sites in different structural elements. Our analysis of phospho-mimetic mutations shows that phosphorylation activates Hsp26 at permissive temperatures. The cryo-EM structure of the Hsp26 40mer revealed contacts between the conserved core domain of Hsp26 and the so-called thermosensor domain in the N-terminal part of the protein, which are targeted by phosphorylation. Furthermore, several phosphorylation sites in the C-terminal extension, which link subunits within the oligomer, are sensitive to the introduction of negative charges. In all cases, the intrinsic inhibition of chaperone activity is relieved and the N-terminal domain becomes accessible for substrate protein binding. The weakening of domain interactions within and between subunits by phosphorylation to activate the chaperone activity in response to proteotoxic stresses independent of heat stress could be a general regulation principle of sHsps.
Collapse
Affiliation(s)
- Moritz Mühlhofer
- grid.6936.a0000000123222966Center for Protein Assemblies, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 8, 85747 Garching, Germany
| | - Carsten Peters
- grid.6936.a0000000123222966Center for Protein Assemblies, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 8, 85747 Garching, Germany
| | - Thomas Kriehuber
- grid.6936.a0000000123222966Center for Protein Assemblies, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 8, 85747 Garching, Germany ,grid.420061.10000 0001 2171 7500Present Address: Boehringer Ingelheim, Birkendorfer Str. 65, 88397 Biberach an der Riß, Germany
| | - Marina Kreuzeder
- grid.6936.a0000000123222966Center for Protein Assemblies, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 8, 85747 Garching, Germany ,grid.5252.00000 0004 1936 973XPresent Address: Ludwig-Maximilians-Universität München, Biozentrum Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Pamina Kazman
- grid.6936.a0000000123222966Center for Protein Assemblies, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 8, 85747 Garching, Germany ,grid.424277.0Present Address: Roche Diagnostics, Nonnenwald 2, 82377 Penzberg, Germany
| | - Natalia Rodina
- grid.6936.a0000000123222966BNMRZ, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 2, 85747 Garching, Germany ,Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Bernd Reif
- grid.6936.a0000000123222966BNMRZ, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 2, 85747 Garching, Germany ,Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Martin Haslbeck
- grid.6936.a0000000123222966Center for Protein Assemblies, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 8, 85747 Garching, Germany
| | - Sevil Weinkauf
- grid.6936.a0000000123222966Center for Protein Assemblies, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 8, 85747 Garching, Germany
| | - Johannes Buchner
- Center for Protein Assemblies, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 8, 85747, Garching, Germany.
| |
Collapse
|
116
|
Multiple nanocages of a cyanophage small heat shock protein with icosahedral and octahedral symmetries. Sci Rep 2021; 11:21023. [PMID: 34697325 PMCID: PMC8546028 DOI: 10.1038/s41598-021-00172-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/28/2021] [Indexed: 11/08/2022] Open
Abstract
The structures of a cyanophage small heat shock protein (sHSP) were determined as octahedrons of 24-mers and 48-mers and as icosahedrons of 60-mers. An N-terminal deletion construct of an 18 kDa sHSP of Synechococcus sp. phage S-ShM2 crystallized as a 24-mer and its structure was determined at a resolution of 7 Å. The negative stain electron microscopy (EM) images showed that the full-length protein is a mixture of a major population of larger and a minor population of smaller cage-like particles. Their structures have been determined by electron cryomicroscopy 3D image reconstruction at a resolution of 8 Å. The larger particles are 60-mers with icosahedral symmetry and the smaller ones are 48-mers with octahedral symmetry. These structures are the first of the viral/phage origin and the 60-mer is the largest and the first icosahedral assembly to be reported for sHSPs.
Collapse
|
117
|
Fassler JS, Skuodas S, Weeks DL, Phillips BT. Protein Aggregation and Disaggregation in Cells and Development. J Mol Biol 2021; 433:167215. [PMID: 34450138 PMCID: PMC8530975 DOI: 10.1016/j.jmb.2021.167215] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/01/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022]
Abstract
Protein aggregation is a feature of numerous neurodegenerative diseases. However, regulated, often reversible, formation of protein aggregates, also known as condensates, helps control a wide range of cellular activities including stress response, gene expression, memory, cell development and differentiation. This review presents examples of aggregates found in biological systems, how they are used, and cellular strategies that control aggregation and disaggregation. We include features of the aggregating proteins themselves, environmental factors, co-aggregates, post-translational modifications and well-known aggregation-directed activities that influence their formation, material state, stability and dissolution. We highlight the emerging roles of biomolecular condensates in early animal development, and disaggregation processing proteins that have recently been shown to play key roles in gametogenesis and embryogenesis.
Collapse
Affiliation(s)
- Jan S Fassler
- Department of Biology, University of Iowa, Iowa City, IA 52242, United States.
| | - Sydney Skuodas
- Department of Biology, University of Iowa, Iowa City, IA 52242, United States. https://twitter.com/@sskuodas
| | - Daniel L Weeks
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, United States
| | - Bryan T Phillips
- Department of Biology, University of Iowa, Iowa City, IA 52242, United States. https://twitter.com/@bt4phillips
| |
Collapse
|
118
|
Roy M, Bhakta K, Bhowmick A, Gupta S, Ghosh A, Ghosh A. Archaeal Hsp14 drives substrate shuttling between small heat shock proteins and thermosome: insights into a novel substrate transfer pathway. FEBS J 2021; 289:1080-1104. [PMID: 34637594 DOI: 10.1111/febs.16226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/26/2021] [Accepted: 10/11/2021] [Indexed: 12/25/2022]
Abstract
Heat shock proteins maintain protein homeostasis and facilitate the survival of an organism under stress. Archaeal heat shock machinery usually consists of only sHsps, Hsp70, and Hsp60. Moreover, Hsp70 is absent in thermophilic and hyperthermophilic archaea. In the absence of Hsp70, how aggregating protein substrates are transferred to Hsp60 for refolding remains elusive. Here, we investigated the crosstalk in the heat shock response pathway of thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. In the present study, we biophysically and biochemically characterized one of the small heat shock proteins, Hsp14, of S. acidocaldarius. Moreover, we investigated its ability to interact with Hsp20 and Hsp60 to facilitate the substrate proteins' folding under stress conditions. Like Hsp20, we demonstrated that the dimer is the active form of Hsp14, and it forms an oligomeric storage form at a higher temperature. More importantly, the dynamics of the Hsp14 oligomer are maintained by rapid subunit exchange between the dimeric states, and the rate of subunit exchange increases with increasing temperature. We also tested the ability of Hsp14 to form hetero-oligomers via subunit exchange with Hsp20. We observed hetero-oligomer formation only at higher temperatures (50 °C-70 °C). Furthermore, experiments were performed to investigate the interaction between small heat shock proteins and Hsp60. We demonstrated an enthalpy-driven direct physical interaction between Hsp14 and Hsp60. Our results revealed that Hsp14 could transfer sHsp-captured substrate proteins to Hsp60, which then refolds them back to their active form.
Collapse
Affiliation(s)
- Mousam Roy
- Department of Biochemistry, Bose Institute, Kolkata, India
| | - Koustav Bhakta
- Department of Biochemistry, Bose Institute, Kolkata, India
| | | | | | - Anupama Ghosh
- Division of Plant Biology, Bose Institute, Kolkata, India
| | | |
Collapse
|
119
|
The Pathophysiological Role of Heat Shock Response in Autoimmunity: A Literature Review. Cells 2021; 10:cells10102626. [PMID: 34685607 PMCID: PMC8533860 DOI: 10.3390/cells10102626] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Within the last two decades, there has been increasing evidence that heat-shock proteins can have a differential influence on the immune system. They can either provoke or ameliorate immune responses. This review focuses on outlining the stimulatory as well as the inhibitory effects of heat-shock proteins 27, 40, 70, 65, 60, and 90 in experimental and clinical autoimmune settings.
Collapse
|
120
|
The relationship between small heat shock proteins and redox homeostasis during acute heat stress in chickens. J Therm Biol 2021; 100:103040. [PMID: 34503787 DOI: 10.1016/j.jtherbio.2021.103040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/01/2021] [Accepted: 06/25/2021] [Indexed: 12/25/2022]
Abstract
As heat stress is a major emerging issue in poultry farming, investigations on the molecular mechanisms of the heat-triggered cellular response in chickens are of special importance. In the present study, 32-day-old Ross 308 broiler chickens were subjected to 37 °C environmental temperature combined with 50% relative humidity for 4 or 8 h respectively. Following sampling, redox parameters such as malondialdehyde (MDA), reduced glutathione (GSH), protein carbonyl levels as well as glutathione peroxidase activity were assessed in liver, spleen, and kidney homogenates. The concentrations of small heat shock proteins (sHSP-s) HSP27, αA- and αB-crystallins were also investigated. Among these organs, the liver was found the most susceptible to heat-provoked oxidative stress, indicated by enhanced lipid peroxidation and rapid activation of protective pathways, including the definite increase of glutathione peroxidase activity and the excessive utilization of αA- and αB-crystallin proteins. Heat-associated decline of protein carbonylation and GSH content was observed in the liver in correlation with the increased involvement of αA- and αB-crystallins in cellular defense, resulting supposedly in an overcompensation mechanism. These data highlight the hepatic sensitivity to acute heat shock, potential adaptation mechanisms, and the specific role of sHSP-s in the restoration of physiologic cell function.
Collapse
|
121
|
Boczek EE, Fürsch J, Niedermeier ML, Jawerth L, Jahnel M, Ruer-Gruß M, Kammer KM, Heid P, Mediani L, Wang J, Yan X, Pozniakovski A, Poser I, Mateju D, Hubatsch L, Carra S, Alberti S, Hyman AA, Stengel F. HspB8 prevents aberrant phase transitions of FUS by chaperoning its folded RNA-binding domain. eLife 2021; 10:69377. [PMID: 34487489 PMCID: PMC8510580 DOI: 10.7554/elife.69377] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Aberrant liquid-to-solid phase transitions of biomolecular condensates have been linked to various neurodegenerative diseases. However, the underlying molecular interactions that drive aging remain enigmatic. Here, we develop quantitative time-resolved crosslinking mass spectrometry to monitor protein interactions and dynamics inside condensates formed by the protein fused in sarcoma (FUS). We identify misfolding of the RNA recognition motif of FUS as a key driver of condensate aging. We demonstrate that the small heat shock protein HspB8 partitions into FUS condensates via its intrinsically disordered domain and prevents condensate hardening via condensate-specific interactions that are mediated by its α-crystallin domain (αCD). These αCD-mediated interactions are altered in a disease-associated mutant of HspB8, which abrogates the ability of HspB8 to prevent condensate hardening. We propose that stabilizing aggregation-prone folded RNA-binding domains inside condensates by molecular chaperones may be a general mechanism to prevent aberrant phase transitions.
Collapse
Affiliation(s)
- Edgar E Boczek
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Dewpoint Therapeutics GmbH, Dresden, Germany
| | - Julius Fürsch
- University of Konstanz, Department of Biology, Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Marie Laura Niedermeier
- University of Konstanz, Department of Biology, Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Louise Jawerth
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Marcus Jahnel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Martine Ruer-Gruß
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Kai-Michael Kammer
- University of Konstanz, Department of Biology, Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Peter Heid
- University of Konstanz, Department of Biology, Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Laura Mediani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Jie Wang
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Xiao Yan
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andrej Pozniakovski
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Dewpoint Therapeutics GmbH, Dresden, Germany
| | - Daniel Mateju
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Lars Hubatsch
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Center for Systems Biology Dresden (CSBD), Dresden, Germany
| | - Florian Stengel
- University of Konstanz, Department of Biology, Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
122
|
Rice LJ, Ecroyd H, van Oijen AM. Illuminating amyloid fibrils: Fluorescence-based single-molecule approaches. Comput Struct Biotechnol J 2021; 19:4711-4724. [PMID: 34504664 PMCID: PMC8405898 DOI: 10.1016/j.csbj.2021.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022] Open
Abstract
The aggregation of proteins into insoluble filamentous amyloid fibrils is a pathological hallmark of neurodegenerative diseases that include Parkinson's disease and Alzheimer's disease. Since the identification of amyloid fibrils and their association with disease, there has been much work to describe the process by which fibrils form and interact with other proteins. However, due to the dynamic nature of fibril formation and the transient and heterogeneous nature of the intermediates produced, it can be challenging to examine these processes using techniques that rely on traditional ensemble-based measurements. Single-molecule approaches overcome these limitations as rare and short-lived species within a population can be individually studied. Fluorescence-based single-molecule methods have proven to be particularly useful for the study of amyloid fibril formation. In this review, we discuss the use of different experimental single-molecule fluorescence microscopy approaches to study amyloid fibrils and their interaction with other proteins, in particular molecular chaperones. We highlight the mechanistic insights these single-molecule techniques have already provided in our understanding of how fibrils form, and comment on their potential future use in studying amyloid fibrils and their intermediates.
Collapse
Affiliation(s)
- Lauren J. Rice
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Heath Ecroyd
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Antoine M. van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| |
Collapse
|
123
|
Leask M, Lovegrove M, Walker A, Duncan E, Dearden P. Evolution and genomic organization of the insect sHSP gene cluster and coordinate regulation in phenotypic plasticity. BMC Ecol Evol 2021; 21:154. [PMID: 34348652 PMCID: PMC8336396 DOI: 10.1186/s12862-021-01885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 07/28/2021] [Indexed: 11/10/2022] Open
Abstract
Background Conserved syntenic gene complexes are rare in Arthropods and likely only retained due to functional constraint. Numerous sHSPs have been identified in the genomes of insects, some of which are located clustered in close proximity. Previous phylogenetic analyses of these clustered sHSP have been limited to a small number of holometabolous insect species and have not determined the pattern of evolution of the clustered sHSP genes (sHSP-C) in insect or Arthropod lineages. Results Using eight genomes from representative insect orders and three non-insect arthropod genomes we have identified that a syntenic cluster of sHSPs (sHSP-C) is a hallmark of most Arthropod genomes. Using 11 genomes from Hymenopteran species our phylogenetic analyses have refined the evolution of the sHSP-C in Hymenoptera and found that the sHSP-C is order-specific with evidence of birth-and-death evolution in the hymenopteran lineage. Finally we have shown that the honeybee sHSP-C is co-ordinately expressed and is marked by genomic features, including H3K27me3 histone marks consistent with coordinate regulation, during honeybee ovary activation. Conclusions The syntenic sHSP-C is present in most insect genomes, and its conserved coordinate expression and regulation implies that it is an integral genomic component of environmental response in arthropods. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01885-8.
Collapse
Affiliation(s)
- Megan Leask
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.
| | - Mackenzie Lovegrove
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.,Genomics Aotearoa and Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Abigail Walker
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Elizabeth Duncan
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Peter Dearden
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.,Genomics Aotearoa and Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
124
|
Reinle K, Mogk A, Bukau B. The Diverse Functions of Small Heat Shock Proteins in the Proteostasis Network. J Mol Biol 2021; 434:167157. [PMID: 34271010 DOI: 10.1016/j.jmb.2021.167157] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 01/21/2023]
Abstract
The protein quality control (PQC) system maintains protein homeostasis by counteracting the accumulation of misfolded protein conformers. Substrate degradation and refolding activities executed by ATP-dependent proteases and chaperones constitute major strategies of the proteostasis network. Small heat shock proteins represent ATP-independent chaperones that bind to misfolded proteins, preventing their uncontrolled aggregation. sHsps share the conserved α-crystallin domain (ACD) and gain functional specificity through variable and largely disordered N- and C-terminal extensions (NTE, CTE). They form large, polydisperse oligomers through multiple, weak interactions between NTE/CTEs and ACD dimers. Sequence variations of sHsps and the large variability of sHsp oligomers enable sHsps to fulfill diverse tasks in the PQC network. sHsp oligomers represent inactive yet dynamic resting states that are rapidly deoligomerized and activated upon stress conditions, releasing substrate binding sites in NTEs and ACDs Bound substrates are usually isolated in large sHsp/substrate complexes. This sequestration activity of sHsps represents a third strategy of the proteostasis network. Substrate sequestration reduces the burden for other PQC components during immediate and persistent stress conditions. Sequestered substrates can be released and directed towards refolding pathways by ATP-dependent Hsp70/Hsp100 chaperones or sorted for degradation by autophagic pathways. sHsps can also maintain the dynamic state of phase-separated stress granules (SGs), which store mRNA and translation factors, by reducing the accumulation of misfolded proteins inside SGs and preventing unfolding of SG components. This ensures SG disassembly and regain of translational capacity during recovery periods.
Collapse
Affiliation(s)
- Kevin Reinle
- Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany; Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Axel Mogk
- Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany; Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Bernd Bukau
- Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany; Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
125
|
Macošek J, Mas G, Hiller S. Redefining Molecular Chaperones as Chaotropes. Front Mol Biosci 2021; 8:683132. [PMID: 34195228 PMCID: PMC8237284 DOI: 10.3389/fmolb.2021.683132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/20/2021] [Indexed: 01/27/2023] Open
Abstract
Molecular chaperones are the key instruments of bacterial protein homeostasis. Chaperones not only facilitate folding of client proteins, but also transport them, prevent their aggregation, dissolve aggregates and resolve misfolded states. Despite this seemingly large variety, single chaperones can perform several of these functions even on multiple different clients, thus suggesting a single biophysical mechanism underlying. Numerous recently elucidated structures of bacterial chaperone–client complexes show that dynamic interactions between chaperones and their client proteins stabilize conformationally flexible non-native client states, which results in client protein denaturation. Based on these findings, we propose chaotropicity as a suitable biophysical concept to rationalize the generic activity of chaperones. We discuss the consequences of applying this concept in the context of ATP-dependent and -independent chaperones and their functional regulation.
Collapse
|
126
|
Structural basis of substrate recognition and thermal protection by a small heat shock protein. Nat Commun 2021; 12:3007. [PMID: 34021140 PMCID: PMC8140096 DOI: 10.1038/s41467-021-23338-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Small heat shock proteins (sHsps) bind unfolding proteins, thereby playing a pivotal role in the maintenance of proteostasis in virtually all living organisms. Structural elucidation of sHsp-substrate complexes has been hampered by the transient and heterogeneous nature of their interactions, and the precise mechanisms underlying substrate recognition, promiscuity, and chaperone activity of sHsps remain unclear. Here we show the formation of a stable complex between Arabidopsis thaliana plastid sHsp, Hsp21, and its natural substrate 1-deoxy-D-xylulose 5-phosphate synthase (DXPS) under heat stress, and report cryo-electron microscopy structures of Hsp21, DXPS and Hsp21-DXPS complex at near-atomic resolution. Monomeric Hsp21 binds across the dimer interface of DXPS and engages in multivalent interactions by recognizing highly dynamic structural elements in DXPS. Hsp21 partly unfolds its central α-crystallin domain to facilitate binding of DXPS, which preserves a native-like structure. This mode of interaction suggests a mechanism of sHsps anti-aggregation activity towards a broad range of substrates.
Collapse
|
127
|
Piróg A, Cantini F, Nierzwicki Ł, Obuchowski I, Tomiczek B, Czub J, Liberek K. Two Bacterial Small Heat Shock Proteins, IbpA and IbpB, Form a Functional Heterodimer. J Mol Biol 2021; 433:167054. [PMID: 34022209 DOI: 10.1016/j.jmb.2021.167054] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 01/29/2023]
Abstract
Small heat shock proteins (sHsps) are a conserved class of ATP-independent chaperones which in stress conditions bind to unfolded protein substrates and prevent their irreversible aggregation. Substrates trapped in sHsps-containing aggregates are efficiently refolded into native structures by ATP-dependent Hsp70 and Hsp100 chaperones. Most γ-proteobacteria possess a single sHsp (IbpA), while in a subset of Enterobacterales, as a consequence of ibpA gene duplication event, a two-protein sHsp (IbpA and IbpB) system has evolved. IbpA and IbpB are functionally divergent. Purified IbpA, but not IbpB, stably interacts with aggregated substrates, yet both sHsps are required to be present at the substrate denaturation step for subsequent efficient Hsp70-Hsp100-dependent substrate refolding. IbpA and IbpB interact with each other, influence each other's expression levels and degradation rates. However, the crucial information on how these two sHsps interact and what is the basic building block required for proper sHsps functioning was missing. Here, based on NMR, mass spectrometry and crosslinking studies, we show that IbpA-IbpB heterodimer is a dominating functional unit of the two sHsp system in Enterobacterales. The principle of heterodimer formation is similar to one described for homodimers of single bacterial sHsps. β-hairpins formed by strands β5 and β7 of IbpA or IbpB crystallin domains associate with the other one's β-sandwich in the heterodimer structure. Relying on crosslinking and molecular dynamics studies, we also propose the orientation of two IbpA-IbpB heterodimers in a higher order tetrameric structure.
Collapse
Affiliation(s)
- Artur Piróg
- Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Francesca Cantini
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Łukasz Nierzwicki
- Department of Physical Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Igor Obuchowski
- Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Bartłomiej Tomiczek
- Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Jacek Czub
- Department of Physical Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland.
| | - Krzysztof Liberek
- Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| |
Collapse
|
128
|
Obuchowski I, Karaś P, Liberek K. The Small Ones Matter-sHsps in the Bacterial Chaperone Network. Front Mol Biosci 2021; 8:666893. [PMID: 34055885 PMCID: PMC8155344 DOI: 10.3389/fmolb.2021.666893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/28/2021] [Indexed: 11/22/2022] Open
Abstract
Small heat shock proteins (sHsps) are an evolutionarily conserved class of ATP-independent chaperones that form the first line of defence during proteotoxic stress. sHsps are defined not only by their relatively low molecular weight, but also by the presence of a conserved α-crystallin domain, which is flanked by less conserved, mostly unstructured, N- and C-terminal domains. sHsps form oligomers of different sizes which deoligomerize upon stress conditions into smaller active forms. Activated sHsps bind to aggregation-prone protein substrates to form assemblies that keep substrates from irreversible aggregation. Formation of these assemblies facilitates subsequent Hsp70 and Hsp100 chaperone-dependent disaggregation and substrate refolding into native species. This mini review discusses what is known about the role and place of bacterial sHsps in the chaperone network.
Collapse
Affiliation(s)
- Igor Obuchowski
- Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdansk, Gdansk, Poland
| | | | - Krzysztof Liberek
- Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdansk, Gdansk, Poland
| |
Collapse
|
129
|
Tiago T, Hummel B, Morelli FF, Basile V, Vinet J, Galli V, Mediani L, Antoniani F, Pomella S, Cassandri M, Garone MG, Silvestri B, Cimino M, Cenacchi G, Costa R, Mouly V, Poser I, Yeger-Lotem E, Rosa A, Alberti S, Rota R, Ben-Zvi A, Sawarkar R, Carra S. Small heat-shock protein HSPB3 promotes myogenesis by regulating the lamin B receptor. Cell Death Dis 2021; 12:452. [PMID: 33958580 PMCID: PMC8102500 DOI: 10.1038/s41419-021-03737-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/03/2023]
Abstract
One of the critical events that regulates muscle cell differentiation is the replacement of the lamin B receptor (LBR)-tether with the lamin A/C (LMNA)-tether to remodel transcription and induce differentiation-specific genes. Here, we report that localization and activity of the LBR-tether are crucially dependent on the muscle-specific chaperone HSPB3 and that depletion of HSPB3 prevents muscle cell differentiation. We further show that HSPB3 binds to LBR in the nucleoplasm and maintains it in a dynamic state, thus promoting the transcription of myogenic genes, including the genes to remodel the extracellular matrix. Remarkably, HSPB3 overexpression alone is sufficient to induce the differentiation of two human muscle cell lines, LHCNM2 cells, and rhabdomyosarcoma cells. We also show that mutant R116P-HSPB3 from a myopathy patient with chromatin alterations and muscle fiber disorganization, forms nuclear aggregates that immobilize LBR. We find that R116P-HSPB3 is unable to induce myoblast differentiation and instead activates the unfolded protein response. We propose that HSPB3 is a specialized chaperone engaged in muscle cell differentiation and that dysfunctional HSPB3 causes neuromuscular disease by deregulating LBR.
Collapse
Affiliation(s)
- Tatiana Tiago
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Barbara Hummel
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Federica F Morelli
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Valentina Basile
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Jonathan Vinet
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Veronica Galli
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Laura Mediani
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Francesco Antoniani
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Silvia Pomella
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Matteo Cassandri
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Maria Giovanna Garone
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185, Rome, Italy
| | - Beatrice Silvestri
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161, Rome, Italy
| | - Marco Cimino
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Giovanna Cenacchi
- Department of Biomedical and Neuromotor Sciences DIBINEM, University of Bologna, Bologna, Italy; Centre for Applied Biomedical Research - CRBA, University of Bologna, IRCCS St. Orsola Hospital, Bologna, Italy
| | - Roberta Costa
- Department of Biomedical and Neuromotor Sciences DIBINEM, University of Bologna, Bologna, Italy; Centre for Applied Biomedical Research - CRBA, University of Bologna, IRCCS St. Orsola Hospital, Bologna, Italy
| | - Vincent Mouly
- Centre de Recherche en Myologie, Sorbonne Université, Inserm, Institut de Myologie, F-75013, Paris, France
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
- Dewpoint Therapeutics GmbH, Tatzberg 47, 01307, Dresden, Germany
| | - Esti Yeger-Lotem
- Department of Clinical Biochemistry and Pharmacology and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Alessandro Rosa
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161, Rome, Italy
| | - Simon Alberti
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany
| | - Rossella Rota
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Anat Ben-Zvi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Ritwick Sawarkar
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Medical Research Council (MRC), University of Cambridge, Cambridge, CB2 1QR, UK
| | - Serena Carra
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy.
| |
Collapse
|
130
|
Troussicot L, Burmann BM, Molin M. Structural determinants of multimerization and dissociation in 2-Cys peroxiredoxin chaperone function. Structure 2021; 29:640-654. [PMID: 33945778 DOI: 10.1016/j.str.2021.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/31/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022]
Abstract
Peroxiredoxins (PRDXs) are abundant peroxidases present in all kingdoms of life. Recently, they have been shown to also carry out additional roles as molecular chaperones. To address this emerging supplementary function, this review focuses on structural studies of 2-Cys PRDX systems exhibiting chaperone activity. We provide a detailed understanding of the current knowledge of structural determinants underlying the chaperone function of PRDXs. Specifically, we describe the mechanisms which may modulate their quaternary structure to facilitate interactions with client proteins and how they are coordinated with the functions of other molecular chaperones. Following an overview of PRDX molecular architecture, we outline structural details of the presently best-characterized peroxiredoxins exhibiting chaperone function and highlight common denominators. Finally, we discuss the remarkable structural similarities between 2-Cys PRDXs, small HSPs, and J-domain-independent Hsp40 holdases in terms of their functions and dynamic equilibria between low- and high-molecular-weight oligomers.
Collapse
Affiliation(s)
- Laura Troussicot
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Göteborg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Göteborg, Sweden
| | - Björn M Burmann
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Göteborg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Göteborg, Sweden.
| | - Mikael Molin
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Göteborg, Sweden; Department of Biology and Biological Engineering, Chalmers University of Technology, 405 30 Göteborg, Sweden.
| |
Collapse
|
131
|
Restrepo-Pineda S, Pérez NO, Valdez-Cruz NA, Trujillo-Roldán MA. Thermoinducible expression system for producing recombinant proteins in Escherichia coli: advances and insights. FEMS Microbiol Rev 2021; 45:6223457. [PMID: 33844837 DOI: 10.1093/femsre/fuab023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
Recombinant protein (RP) production from Escherichia coli has been extensively studied to find strategies for increasing product yields. The thermoinducible expression system is commonly employed at the industrial level to produce various RPs which avoids the addition of chemical inducers, thus minimizing contamination risks. Multiple aspects of the molecular origin and biotechnological uses of its regulatory elements (pL/pR promoters and cI857 thermolabile repressor) derived from bacteriophage λ provide knowledge to improve the bioprocesses using this system. Here, we discuss the main aspects of the potential use of the λpL/pR-cI857 thermoinducible system for RP production in E. coli, focusing on the approaches of investigations that have contributed to the advancement of this expression system. Metabolic and physiological changes that occur in the host cells caused by heat stress and by RP overproduction are also described. Therefore, the current scenario and the future applications of systems that use heat to induce RP production is discussed to understand the relationship between the activation of the bacterial heat shock response, RP accumulation, and its possible aggregation to form inclusion bodies.
Collapse
Affiliation(s)
- Sara Restrepo-Pineda
- Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Néstor O Pérez
- Probiomed S.A. de C.V. Planta Tenancingo, Cruce de Carreteras Acatzingo-Zumpahuacan SN, 52400 Tenancingo, Estado de México, México
| | - Norma A Valdez-Cruz
- Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Mauricio A Trujillo-Roldán
- Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| |
Collapse
|
132
|
Miwa T, Taguchi H. Novel self-regulation strategy of a small heat shock protein for prodigious and rapid expression on demand. Curr Genet 2021; 67:723-727. [PMID: 33839884 DOI: 10.1007/s00294-021-01185-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 11/25/2022]
Abstract
In this mini-review, we summarize the known and novel regulation mechanisms of small heat shock proteins (sHsps). sHsps belong to a well-conserved family of ATP-independent oligomeric chaperones that protect denatured proteins from forming irreversible aggregates by co-aggregation. The functions of sHsps as a first line of defense against acute stresses require the high abundance of sHsps on demand. The heat stress-induced expression of IbpA, one of the sHsps in Escherichia coli, is regulated by σ32, an RNA polymerase subunit, and the thermoresponsive mRNA structures in the 5' untranslated region, called RNA thermometers. In addition to the known mechanisms, a recent study has revealed unexpected processes by which the oligomeric IbpA self-represses the ibpA translation via the direct binding of IbpA to its own mRNA, and mediates the mRNA degradation. In summary, the role of IbpA as an aggregation-sensor, combined with other mechanisms, tightly regulates the expression level of IbpA, thus enabling the sHsp to function as a "sequestrase" upon acute aggregation stress, and provides new insights into the mechanisms of other sHsps in both bacteria and eukaryotes.
Collapse
Affiliation(s)
- Tsukumi Miwa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, S2-19, Nagatsuta 4259, Midori-ku, Yokohama, 226-8503, Japan
| | - Hideki Taguchi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, S2-19, Nagatsuta 4259, Midori-ku, Yokohama, 226-8503, Japan.
| |
Collapse
|
133
|
Changes in Presynaptic Gene Expression during Homeostatic Compensation at a Central Synapse. J Neurosci 2021; 41:3054-3067. [PMID: 33608385 PMCID: PMC8026347 DOI: 10.1523/jneurosci.2979-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/02/2022] Open
Abstract
Homeostatic matching of pre- and postsynaptic function has been observed in many species and neural structures, but whether transcriptional changes contribute to this form of trans-synaptic coordination remains unknown. To identify genes whose expression is altered in presynaptic neurons as a result of perturbing postsynaptic excitability, we applied a transcriptomics-friendly, temperature-inducible Kir2.1-based activity clamp at the first synaptic relay of the Drosophila olfactory system, a central synapse known to exhibit trans-synaptic homeostatic matching. Twelve hours after adult-onset suppression of activity in postsynaptic antennal lobe projection neurons of males and females, we detected changes in the expression of many genes in the third antennal segment, which houses the somata of presynaptic olfactory receptor neurons. These changes affected genes with roles in synaptic vesicle release and synaptic remodeling, including several implicated in homeostatic plasticity at the neuromuscular junction. At 48 h and beyond, the transcriptional landscape tilted toward protein synthesis, folding, and degradation; energy metabolism; and cellular stress defenses, indicating that the system had been pushed to its homeostatic limits. Our analysis suggests that similar homeostatic machinery operates at peripheral and central synapses and identifies many of its components. The presynaptic transcriptional response to genetically targeted postsynaptic perturbations could be exploited for the construction of novel connectivity tracing tools. SIGNIFICANCE STATEMENT Homeostatic feedback mechanisms adjust intrinsic and synaptic properties of neurons to keep their average activity levels constant. We show that, at a central synapse in the fruit fly brain, these mechanisms include changes in presynaptic gene expression that are instructed by an abrupt loss of postsynaptic excitability. The trans-synaptically regulated genes have roles in synaptic vesicle release and synapse remodeling; protein synthesis, folding, and degradation; and energy metabolism. Our study establishes a role for transcriptional changes in homeostatic synaptic plasticity, points to mechanistic commonalities between peripheral and central synapses, and potentially opens new opportunities for the development of connectivity-based gene expression systems.
Collapse
|
134
|
Radzinski M, Oppenheim T, Metanis N, Reichmann D. The Cys Sense: Thiol Redox Switches Mediate Life Cycles of Cellular Proteins. Biomolecules 2021; 11:469. [PMID: 33809923 PMCID: PMC8004198 DOI: 10.3390/biom11030469] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
Protein homeostasis is an essential component of proper cellular function; however, sustaining protein health is a challenging task, especially during the aerobic lifestyle. Natural cellular oxidants may be involved in cell signaling and antibacterial defense; however, imbalanced levels can lead to protein misfolding, cell damage, and death. This merges together the processes of protein homeostasis and redox regulation. At the heart of this process are redox-regulated proteins or thiol-based switches, which carefully mediate various steps of protein homeostasis across folding, localization, quality control, and degradation pathways. In this review, we discuss the "redox code" of the proteostasis network, which shapes protein health during cell growth and aging. We describe the sources and types of thiol modifications and elaborate on diverse strategies of evolving antioxidant proteins in proteostasis networks during oxidative stress conditions. We also highlight the involvement of cysteines in protein degradation across varying levels, showcasing the importance of cysteine thiols in proteostasis at large. The individual examples and mechanisms raised open the door for extensive future research exploring the interplay between the redox and protein homeostasis systems. Understanding this interplay will enable us to re-write the redox code of cells and use it for biotechnological and therapeutic purposes.
Collapse
Affiliation(s)
- Meytal Radzinski
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (M.R.); (T.O.)
| | - Tal Oppenheim
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (M.R.); (T.O.)
| | - Norman Metanis
- Institute of Chemistry, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Dana Reichmann
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (M.R.); (T.O.)
| |
Collapse
|
135
|
Balana AT, Levine PM, Craven TW, Mukherjee S, Pedowitz NJ, Moon SP, Takahashi TT, Becker CFW, Baker D, Pratt MR. O-GlcNAc modification of small heat shock proteins enhances their anti-amyloid chaperone activity. Nat Chem 2021; 13:441-450. [PMID: 33723378 PMCID: PMC8102337 DOI: 10.1038/s41557-021-00648-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 01/27/2021] [Indexed: 11/09/2022]
Abstract
A major role for the intracellular post-translational modification O-GlcNAc appears to be the inhibition of protein aggregation. Most of the previous studies in this area focused on O-GlcNAc modification of the amyloid-forming proteins themselves. Here we used synthetic protein chemistry to discover that O-GlcNAc also activates the anti-amyloid activity of certain small heat shock proteins (sHSPs), a potentially more important modification event that can act broadly and substoichiometrically. More specifically, we found that O-GlcNAc increases the ability of sHSPs to block the amyloid formation of both α-synuclein and Aβ(1-42). Mechanistically, we show that O-GlcNAc near the sHSP IXI-domain prevents its ability to intramolecularly compete with substrate binding. Finally, we found that, although O-GlcNAc levels are globally reduced in Alzheimer's disease brains, the modification of relevant sHSPs is either maintained or increased, which suggests a mechanism to maintain these potentially protective O-GlcNAc modifications. Our results have important implications for neurodegenerative diseases associated with amyloid formation and potentially other areas of sHSP biology.
Collapse
Affiliation(s)
- Aaron T Balana
- Departments of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Paul M Levine
- Departments of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Timothy W Craven
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Somnath Mukherjee
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Nichole J Pedowitz
- Departments of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Stuart P Moon
- Departments of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Terry T Takahashi
- Departments of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Christian F W Becker
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - David Baker
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Matthew R Pratt
- Departments of Chemistry, University of Southern California, Los Angeles, CA, USA. .,Biological Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
136
|
Beijer D, Baets J. The expanding genetic landscape of hereditary motor neuropathies. Brain 2021; 143:3540-3563. [PMID: 33210134 DOI: 10.1093/brain/awaa311] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Hereditary motor neuropathies are clinically and genetically diverse disorders characterized by length-dependent axonal degeneration of lower motor neurons. Although currently as many as 26 causal genes are known, there is considerable missing heritability compared to other inherited neuropathies such as Charcot-Marie-Tooth disease. Intriguingly, this genetic landscape spans a discrete number of key biological processes within the peripheral nerve. Also, in terms of underlying pathophysiology, hereditary motor neuropathies show striking overlap with several other neuromuscular and neurological disorders. In this review, we provide a current overview of the genetic spectrum of hereditary motor neuropathies highlighting recent reports of novel genes and mutations or recent discoveries in the underlying disease mechanisms. In addition, we link hereditary motor neuropathies with various related disorders by addressing the main affected pathways of disease divided into five major processes: axonal transport, tRNA aminoacylation, RNA metabolism and DNA integrity, ion channels and transporters and endoplasmic reticulum.
Collapse
Affiliation(s)
- Danique Beijer
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Belgium
| | - Jonathan Baets
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Belgium.,Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Belgium
| |
Collapse
|
137
|
Mitra R, Gadkari VV, Meinen BA, van Mierlo CPM, Ruotolo BT, Bardwell JCA. Mechanism of the small ATP-independent chaperone Spy is substrate specific. Nat Commun 2021; 12:851. [PMID: 33558474 PMCID: PMC7870927 DOI: 10.1038/s41467-021-21120-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/08/2021] [Indexed: 11/17/2022] Open
Abstract
ATP-independent chaperones are usually considered to be holdases that rapidly bind to non-native states of substrate proteins and prevent their aggregation. These chaperones are thought to release their substrate proteins prior to their folding. Spy is an ATP-independent chaperone that acts as an aggregation inhibiting holdase but does so by allowing its substrate proteins to fold while they remain continuously chaperone bound, thus acting as a foldase as well. The attributes that allow such dual chaperoning behavior are unclear. Here, we used the topologically complex protein apoflavodoxin to show that the outcome of Spy's action is substrate specific and depends on its relative affinity for different folding states. Tighter binding of Spy to partially unfolded states of apoflavodoxin limits the possibility of folding while bound, converting Spy to a holdase chaperone. Our results highlight the central role of the substrate in determining the mechanism of chaperone action.
Collapse
Affiliation(s)
- Rishav Mitra
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Varun V Gadkari
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Ben A Meinen
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | | | | | - James C A Bardwell
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
138
|
Heat Shock Proteins as the Druggable Targets in Leishmaniasis: Promises and Perils. Infect Immun 2021; 89:IAI.00559-20. [PMID: 33139381 DOI: 10.1128/iai.00559-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Leishmania, the causative agent of leishmaniasis, is an intracellular pathogen that thrives in the insect gut and mammalian macrophages to complete its life cycle. Apart from temperature difference (26 to 37°C), it encounters several harsh conditions, including oxidative stress, inflammatory reactions, and low pH. Heat shock proteins (HSPs) play essential roles in cell survival by strategically reprogramming cellular processes and signaling pathways. HSPs assist cells in multiple functions, including differentiation, adaptation, virulence, and persistence in the host cell. Due to cyclical epidemiological patterns, limited chemotherapeutic options, drug resistance, and the absence of a vaccine, control of leishmaniasis remains a far-fetched dream. The essential roles of HSPs in parasitic differentiation and virulence and increased expression in drug-resistant strains highlight their importance in combating the disease. In this review, we highlighted the diverse physiological importance of HSPs present in Leishmania, emphasizing their significance in disease pathogenesis. Subsequently, we assessed the potential of HSPs as a chemotherapeutic target and underlined the challenges associated with it. Furthermore, we have summarized a few ongoing drug discovery initiatives that need to be explored further to develop clinically successful chemotherapeutic agents in the future.
Collapse
|
139
|
Jiang L, Xie E, Guo H, Sun Q, Liuli H, Wang Y, Li Q, Xia Q. Heat shock protein 19.9 (Hsp19.9) from Bombyx mori is involved in host protection against viral infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103790. [PMID: 32784012 DOI: 10.1016/j.dci.2020.103790] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Adverse environmental conditions cause serious economic losses in sericulture; Bombyx mori nucleopolyhedrovirus (BmNPV) is the primary biotic stress and high temperature is the major abiotic stress in this industry. B. mori heat shock protein 19.9 (Bmhsp19.9) overexpression was previously demonstrated to protect transgenic silkworm H19.9 against extreme temperature. This study analyzed the role of Bmhsp19.9 in H19.9A and H19.9B silkworm lines and BmE cells infected with BmNPV at regular and high temperatures. qPCR results showed that Bmhsp19.9 expression was upregulated in BmE cells and silkworm after BmNPV challenge. Bmhsp19.9 overexpression significantly inhibited BmNPV proliferation in BmE cells. The viral DNA content was significantly decreased in transgenic H19.9 silkworm compared to the control. These results suggested that Bmhsp19.9 was involved in antiviral immunity against BmNPV. Furthermore, Bmhsp19.9 overexpression protected BmE cells against BmNPV under high temperature shock. This indicates that Bmhsp19.9 is a promising candidate for improving silkworm resistance to biotic and abiotic stresses, thereby reducing sericulture losses.
Collapse
Affiliation(s)
- Liang Jiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China.
| | - Enyu Xie
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Huizhen Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Qiang Sun
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Haoyu Liuli
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Yumei Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Qing Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
140
|
de Graff AMR, Mosedale DE, Sharp T, Dill KA, Grainger DJ. Proteostasis is adaptive: Balancing chaperone holdases against foldases. PLoS Comput Biol 2020; 16:e1008460. [PMID: 33315891 PMCID: PMC7769611 DOI: 10.1371/journal.pcbi.1008460] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/28/2020] [Accepted: 10/20/2020] [Indexed: 11/23/2022] Open
Abstract
Because a cell must adapt to different stresses and growth rates, its proteostasis system must too. How do cells detect and adjust proteome folding to different conditions? Here, we explore a biophysical cost-benefit principle, namely that the cell should keep its proteome as folded as possible at the minimum possible energy cost. This can be achieved by differential expression of chaperones–balancing foldases (which accelerate folding) against holdases (which act as parking spots). The model captures changes in the foldase-holdase ratio observed both within organisms during aging and across organisms of varying metabolic rates. This work describes a simple biophysical mechanism by which cellular proteostasis adapts to meet the needs of a changing growth environment. Cells must maintain low levels of protein unfolding to avoid deleterious outcomes such as protein aggregation, oxidative damage, or premature degradation. The proteins responsible for this, called chaperones, come in two main varieties: ATP-consuming “foldases” that help clients fold and ATP-independent “holdases” that hold unfolded proteins until a foldase arrives. While foldases are necessary for folding, they are expensive to have in high quantities. Given that chaperones are abundant and costly, cells are under strong selective pressure to find economical combinations of foldases and holdases for maintaining low levels of unfolded protein. Yet, it is presently unclear what the ideal combination is and how it varies with growth conditions. By examining a toy model of chaperone function and minimizing the total cost of folding at different rates of protein synthesis, we find that while foldases are necessary at fast growth, holdases become increasingly effective at slow growth. Unexpectedly, total chaperone requirements were predicted to increase as synthesis slows, consistent with observations across age in worms, as well as across species with varying metabolic rates. This work thus provides a general framework for understanding the chaperone requirements of a proteome in terms of an energy minimization principle.
Collapse
Affiliation(s)
| | | | - Tilly Sharp
- Methuselah Health UK Ltd, Cambridge, United Kingdom
| | - Ken A. Dill
- Laufer Center for Physical & Quantitative Biology, Stony Brook University, Stony Brook, New York, United States of America
| | | |
Collapse
|
141
|
Yamamoto N, Takeda S, Hatsusaka N, Hiramatsu N, Nagai N, Deguchi S, Nakazawa Y, Takata T, Kodera S, Hirata A, Kubo E, Sasaki H. Effect of a Lens Protein in Low-Temperature Culture of Novel Immortalized Human Lens Epithelial Cells (iHLEC-NY2). Cells 2020; 9:cells9122670. [PMID: 33322631 PMCID: PMC7764252 DOI: 10.3390/cells9122670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/27/2020] [Accepted: 12/11/2020] [Indexed: 11/24/2022] Open
Abstract
The prevalence of nuclear cataracts was observed to be significantly higher among residents of tropical and subtropical regions compared to those of temperate and subarctic regions. We hypothesized that elevated environmental temperatures may pose a risk of nuclear cataract development. The results of our in silico simulation revealed that in temperate and tropical regions, the human lens temperature ranges from 35.0 °C to 37.5 °C depending on the environmental temperature. The medium temperature changes during the replacement regularly in the cell culture experiment were carefully monitored using a sensor connected to a thermometer and showed a decrease of 1.9 °C, 3.0 °C, 1.7 °C, and 0.1 °C, after 5 min when setting the temperature of the heat plate device at 35.0 °C, 37.5 °C, 40.0 °C, and 42.5 °C, respectively. In the newly created immortalized human lens epithelial cell line clone NY2 (iHLEC-NY2), the amounts of RNA synthesis of αA crystallin, protein expression, and amyloid β (Aβ)1-40 secreted into the medium were increased at the culture temperature of 37.5 °C compared to 35.0 °C. In short-term culture experiments, the secretion of Aβ1-40 observed in cataracts was increased at 37.5 °C compared to 35.0 °C, suggesting that the long-term exposure to a high-temperature environment may increase the risk of cataracts.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa 920-0293, Japan; (N.Y.); (S.T.); (N.H.); (E.K.)
- Research Promotion and Support Headquarters, Fujita Health University, Aichi 470-1192, Japan;
| | - Shun Takeda
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa 920-0293, Japan; (N.Y.); (S.T.); (N.H.); (E.K.)
| | - Natsuko Hatsusaka
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa 920-0293, Japan; (N.Y.); (S.T.); (N.H.); (E.K.)
| | - Noriko Hiramatsu
- Research Promotion and Support Headquarters, Fujita Health University, Aichi 470-1192, Japan;
| | - Noriaki Nagai
- Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan; (N.N.); (S.D.)
| | - Saori Deguchi
- Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan; (N.N.); (S.D.)
| | - Yosuke Nakazawa
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan;
| | - Takumi Takata
- Radiation Biochemistry, Division of Radiation Life Science, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka 590-0494, Japan;
| | - Sachiko Kodera
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Aichi 466-8555, Japan; (S.K.); (A.H.)
| | - Akimasa Hirata
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Aichi 466-8555, Japan; (S.K.); (A.H.)
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Aichi 466-8555, Japan
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa 920-0293, Japan; (N.Y.); (S.T.); (N.H.); (E.K.)
| | - Hiroshi Sasaki
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa 920-0293, Japan; (N.Y.); (S.T.); (N.H.); (E.K.)
- Correspondence: ; Tel.: +81-762-286-2211
| |
Collapse
|
142
|
Johnston CL, Marzano NR, Paudel BP, Wright G, Benesch JLP, van Oijen AM, Ecroyd H. Single-molecule fluorescence-based approach reveals novel mechanistic insights into human small heat shock protein chaperone function. J Biol Chem 2020; 296:100161. [PMID: 33288678 PMCID: PMC7921601 DOI: 10.1074/jbc.ra120.015419] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 12/31/2022] Open
Abstract
Small heat shock proteins (sHsps) are a family of ubiquitous intracellular molecular chaperones; some sHsp family members are upregulated under stress conditions and play a vital role in protein homeostasis (proteostasis). It is commonly accepted that these chaperones work by trapping misfolded proteins to prevent their aggregation; however, fundamental questions regarding the molecular mechanism by which sHsps interact with misfolded proteins remain unanswered. The dynamic and polydisperse nature of sHsp oligomers has made studying them challenging using traditional biochemical approaches. Therefore, we have utilized a single-molecule fluorescence-based approach to observe the chaperone action of human alphaB-crystallin (αBc, HSPB5). Using this approach we have, for the first time, determined the stoichiometries of complexes formed between αBc and a model client protein, chloride intracellular channel 1. By examining the dispersity and stoichiometries of these complexes over time, and in response to different concentrations of αBc, we have uncovered unique and important insights into a two-step mechanism by which αBc interacts with misfolded client proteins to prevent their aggregation.
Collapse
Affiliation(s)
- Caitlin L Johnston
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia; Illawarra Health & Medical Research Institute, Wollongong, New South Wales, Australia
| | - Nicholas R Marzano
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia; Illawarra Health & Medical Research Institute, Wollongong, New South Wales, Australia
| | - Bishnu P Paudel
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia; Illawarra Health & Medical Research Institute, Wollongong, New South Wales, Australia
| | - George Wright
- Department of Chemistry, Physical and Theoretical Chemistry, University of Oxford, Oxford, UK
| | - Justin L P Benesch
- Department of Chemistry, Physical and Theoretical Chemistry, University of Oxford, Oxford, UK
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia; Illawarra Health & Medical Research Institute, Wollongong, New South Wales, Australia.
| | - Heath Ecroyd
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia; Illawarra Health & Medical Research Institute, Wollongong, New South Wales, Australia.
| |
Collapse
|
143
|
Durán D, Albareda M, García C, Marina AI, Ruiz-Argüeso T, Palacios JM. Proteome Analysis Reveals a Significant Host-Specific Response in Rhizobium leguminosarum bv. viciae Endosymbiotic Cells. Mol Cell Proteomics 2020; 20:100009. [PMID: 33214187 PMCID: PMC7950203 DOI: 10.1074/mcp.ra120.002276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/15/2020] [Accepted: 11/19/2020] [Indexed: 11/06/2022] Open
Abstract
The Rhizobium-legume symbiosis is a beneficial interaction in which the bacterium converts atmospheric nitrogen into ammonia and delivers it to the plant in exchange for carbon compounds. This symbiosis implies the adaptation of bacteria to live inside host plant cells. In this work, we apply RP-LC-MS/MS and isobaric tags as relative and absolute quantitation techniques to study the proteomic profile of endosymbiotic cells (bacteroids) induced by Rhizobium leguminosarum bv viciae strain UPM791 in legume nodules. Nitrogenase subunits, tricarboxylic acid cycle enzymes, and stress-response proteins are among the most abundant from over 1000 rhizobial proteins identified in pea (Pisum sativum) bacteroids. Comparative analysis of bacteroids induced in pea and in lentil (Lens culinaris) nodules revealed the existence of a significant host-specific differential response affecting dozens of bacterial proteins, including stress-related proteins, transcriptional regulators, and proteins involved in the carbon and nitrogen metabolisms. A mutant affected in one of these proteins, homologous to a GntR-like transcriptional regulator, showed a symbiotic performance significantly impaired in symbiosis with pea but not with lentil plants. Analysis of the proteomes of bacteroids isolated from both hosts also revealed the presence of different sets of plant-derived nodule-specific cysteine-rich peptides, indicating that the endosymbiotic bacteria find a host-specific cocktail of chemical stressors inside the nodule. By studying variations of the bacterial response to different plant cell environments, we will be able to identify specific limitations imposed by the host that might give us clues for the improvement of rhizobial performance.
Collapse
Affiliation(s)
- David Durán
- Centro de Biotecnología y Genómica de Plantas (C.B.G.P.) UPM-INIA, Campus de Montegancedo, Universidad Politécnica de Madrid, Madrid, Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Marta Albareda
- Centro de Biotecnología y Genómica de Plantas (C.B.G.P.) UPM-INIA, Campus de Montegancedo, Universidad Politécnica de Madrid, Madrid, Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Carlos García
- Servicio de Proteómica, Centro de Biología Molecular Severo Ochoa (CBMSO), CSIC Campus Cantoblanco, Madrid, Spain
| | - Ana-Isabel Marina
- Servicio de Proteómica, Centro de Biología Molecular Severo Ochoa (CBMSO), CSIC Campus Cantoblanco, Madrid, Spain
| | - Tomás Ruiz-Argüeso
- Centro de Biotecnología y Genómica de Plantas (C.B.G.P.) UPM-INIA, Campus de Montegancedo, Universidad Politécnica de Madrid, Madrid, Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Jose-Manuel Palacios
- Centro de Biotecnología y Genómica de Plantas (C.B.G.P.) UPM-INIA, Campus de Montegancedo, Universidad Politécnica de Madrid, Madrid, Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain.
| |
Collapse
|
144
|
Feng P, Liu W, Huang C, Tang Z. Classifying the superfamily of small heat shock proteins by using g-gap dipeptide compositions. Int J Biol Macromol 2020; 167:1575-1578. [PMID: 33212104 DOI: 10.1016/j.ijbiomac.2020.11.111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/02/2020] [Accepted: 11/13/2020] [Indexed: 01/16/2023]
Abstract
Small heat shock protein (sHSP) is a superfamily of molecular chaperone and is found from archaea to human. Recent researches have demonstrated that sHSPs participate in a series of biological processes and are even closely associated with serious diseases. Since sHSP is a very large superfamily and members from different superfamilies exhibit distinct functions, accurate classification of the subfamily of sHSP will be helpful for unrevealing its functions. In the present work, a support vector machine-based method was proposed to classify the subfamily of sHSPs. In the 10-fold cross validation test, an overall accuracy of 93.25% was obtained for classifying the subfamily of sHSPs. The superiority of the proposed method was also demonstrated by comparing it with the other methods. It is anticipated that the proposed method will become a useful tool for classifying the subfamily of sHSPs.
Collapse
Affiliation(s)
- Pengmian Feng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611730, China.
| | - Weiwei Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611730, China
| | - Cong Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611730, China
| | - Zhaohui Tang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611730, China
| |
Collapse
|
145
|
Longo A, Russo P, Capozzi V, Spano G, Fiocco D. Knock out of sHSP genes determines some modifications in the probiotic attitude of Lactiplantibacillus plantarum. Biotechnol Lett 2020; 43:645-654. [PMID: 33156458 PMCID: PMC7872990 DOI: 10.1007/s10529-020-03041-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/27/2020] [Indexed: 01/18/2023]
Abstract
OBJECTIVE We investigated whether the knock out of small heat shock protein (sHSP) genes (hsp1, hsp2 and hsp3) impact on probiotic features of Lactiplantibacillus plantarum WCFS1, aiming to find specific microbial effectors involved in microbe-host interplay. RESULTS The probiotic properties of L. plantarum WCFS1 wild type, hsp1, hsp2 and hsp3 mutant clones were evaluated and compared through in vitro trials. Oro-gastro-intestinal assays pointed to significantly lower survival for hsp1 and hsp2 mutants under stomach-like conditions, and for hsp3 mutant under intestinal stress. Adhesion to human enterocyte-like cells was similar for all clones, though the hsp2 mutant exhibited higher adhesiveness. L. plantarum cells attenuated the transcriptional induction of pro-inflammatory cytokines on lipopolysaccharide-treated human macrophages, with some exception for the hsp1 mutant. Intriguingly, this clone also induced a higher IL10/IL12 ratio, which is assumed to indicate the anti-inflammatory potential of probiotics. CONCLUSIONS sHSP genes deletion determined some differences in gut stress resistance, cellular adhesion and immuno-modulation, also implying effects on in vivo interaction with the host. HSP1 might contribute to immunomodulatory mechanisms, though additional experiments are necessary to test this feature.
Collapse
Affiliation(s)
- Angela Longo
- SAFE Department, University of Foggia, Via Napoli 25, 71122, Foggia, Italy
| | - Pasquale Russo
- SAFE Department, University of Foggia, Via Napoli 25, 71122, Foggia, Italy
| | - Vittorio Capozzi
- Institute of Sciences of Food Production, National Research Council (CNR) of Italy, c/o CS-DAT, Via Michele Protano, 71121, Foggia, Italy
| | - Giuseppe Spano
- SAFE Department, University of Foggia, Via Napoli 25, 71122, Foggia, Italy
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, Universiy of Foggia, Viale Pinto 1, 71122, Foggia, Italy.
| |
Collapse
|
146
|
Parcerisa IL, Rosano GL, Ceccarelli EA. Biochemical characterization of ClpB3, a chloroplastic disaggregase from Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2020; 104:451-465. [PMID: 32803477 DOI: 10.1007/s11103-020-01050-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
The first biochemical characterization of a chloroplastic disaggregase is reported (Arabidopsis thaliana ClpB3). ClpB3 oligomerizes into active hexamers that resolubilize aggregated substrates using ATP and without the aid of partners. Disaggregases from the Hsp100/Clp family are a type of molecular chaperones involved in disassembling protein aggregates. Plant cells are uniquely endowed with ClpB proteins in the cytosol, mitochondria and chloroplasts. Chloroplastic ClpB proteins have been implicated in key processes like the unfolded protein response; however, they have not been studied in detail. In this study, we explored the biochemical properties of a chloroplastic ClpB disaggregase, in particular, ClpB3 from A. thaliana. ClpB3 was produced recombinantly in Escherichia coli and affinity-purified to near homogeneity. ClpB3 forms a hexameric complex in the presence of MgATP and displays intrinsic ATPase activity. We demonstrate that ClpB3 has ATPase activity in a wide range of pH and temperature values and is particularly resistant to heat. ClpB3 specifically targets unstructured polypeptides and mediates the reactivation of heat-denatured model substrates without the aid of the Hsp70 system. Overall, this work represents the first in-depth biochemical description of a ClpB protein from plants and strongly supports its role as the putative disaggregase chaperone in chloroplasts.
Collapse
Affiliation(s)
- Ivana L Parcerisa
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000, Rosario, Argentina
| | - Germán L Rosano
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000, Rosario, Argentina.
| | - Eduardo A Ceccarelli
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000, Rosario, Argentina
| |
Collapse
|
147
|
Gbotsyo YA, Rowarth NM, Weir LK, MacRae TH. Short-term cold stress and heat shock proteins in the crustacean Artemia franciscana. Cell Stress Chaperones 2020; 25:1083-1097. [PMID: 32794096 PMCID: PMC7591681 DOI: 10.1007/s12192-020-01147-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/02/2020] [Accepted: 07/28/2020] [Indexed: 01/09/2023] Open
Abstract
In their role as molecular chaperones, heat shock proteins (Hsps) mediate protein folding thereby mitigating cellular damage caused by physiological and environmental stress. Nauplii of the crustacean Artemia franciscana respond to heat shock by producing Hsps; however, the effects of cold shock on Hsp levels in A. franciscana have not been investigated previously. The effect of cold shock at 1 °C followed by recovery at 27 °C on the amounts of ArHsp90, Hsp70, ArHsp40, and ArHsp40-2 mRNA and their respective proteins in A. franciscana nauplii was examined by quantitative PCR (qPCR) and immunoprobing of western blots. The same Hsp mRNAs and proteins were also quantified during incubation of nauplii at their optimal growth temperature of 27 °C. qPCR analyses indicated that the abundance of ArHsp90, Hsp70, and ArHsp40 mRNA remained relatively constant during both cold shock and recovery and was not significantly different compared with levels at optimal temperature. Western blotting revealed that ArHsp90, ArHsp40, and ArHsp40-2 were generally below baseline, but at detectable levels during the 6 h of cold shock, and persisted in early recovery stages before declining. Hsp70 was the only protein that remained constant in quantity throughout cold shock and recovery. By contrast, all Hsps declined rapidly during 6 h when nauplii were incubated continuously at 27 °C optimal temperature. Generally, the amounts of ArHsp90, ArHsp40, and ArHsp40-2 were higher during cold shock/recovery than those during continuous incubation at 27 °C. Our data support the conclusion that low temperature preserves Hsp levels, making them available to assist in protein repair and recovery after cold shock.
Collapse
Affiliation(s)
- Yayra A Gbotsyo
- Department of Biology, Dalhousie University, Halifax, N. S., B3H 4R2, Canada
| | - Nathan M Rowarth
- Department of Biology, Dalhousie University, Halifax, N. S., B3H 4R2, Canada
| | - Laura K Weir
- Biology Department, Saint Mary's University Halifax, Halifax, N. S., B3H 3C3, Canada.
| | - Thomas H MacRae
- Department of Biology, Dalhousie University, Halifax, N. S., B3H 4R2, Canada
| |
Collapse
|
148
|
Hibshman JD, Clegg JS, Goldstein B. Mechanisms of Desiccation Tolerance: Themes and Variations in Brine Shrimp, Roundworms, and Tardigrades. Front Physiol 2020; 11:592016. [PMID: 33192606 PMCID: PMC7649794 DOI: 10.3389/fphys.2020.592016] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/25/2020] [Indexed: 01/05/2023] Open
Abstract
Water is critical for the survival of most cells and organisms. Remarkably, a small number of multicellular animals are able to survive nearly complete drying. The phenomenon of anhydrobiosis, or life without water, has been of interest to researchers for over 300 years. In this review we discuss advances in our understanding of protectants and mechanisms of desiccation tolerance that have emerged from research in three anhydrobiotic invertebrates: brine shrimp (Artemia), roundworms (nematodes), and tardigrades (water bears). Discovery of molecular protectants that allow each of these three animals to survive drying diversifies our understanding of desiccation tolerance, and convergent themes suggest mechanisms that may offer a general model for engineering desiccation tolerance in other contexts.
Collapse
Affiliation(s)
- Jonathan D. Hibshman
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - James S. Clegg
- Bodega Marine Laboratory, University of California, Davis, Davis, CA, United States
| | - Bob Goldstein
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
149
|
Miwa T, Chadani Y, Taguchi H. Escherichia coli small heat shock protein IbpA is an aggregation-sensor that self-regulates its own expression at posttranscriptional levels. Mol Microbiol 2020; 115:142-156. [PMID: 32959419 DOI: 10.1111/mmi.14606] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 11/28/2022]
Abstract
Aggregation is an inherent characteristic of proteins. Risk management strategies to reduce aggregation are critical for cells to survive upon stresses that induce aggregation. Cells cope with protein aggregation by utilizing a variety of chaperones, as exemplified by heat-shock proteins (Hsps). The heat stress-induced expression of IbpA and IbpB, small Hsps in Escherichia coli, is regulated by the σ32 heat-shock transcriptional regulator and the temperature-dependent translational regulation via mRNA heat fluctuation. We found that, even without heat stress, either the expression of aggregation-prone proteins or the ibpA gene deletion profoundly increases the expression of IbpA. Combined with other evidence, we propose novel mechanisms for the regulation of the small Hsps expression. Oligomeric IbpA self-represses the ibpA/ibpB translation, and mediates its own mRNA degradation, but the self-repression is relieved by sequestration of IbpA into the protein aggregates. Thus, the function of IbpA as a chaperone to form co-aggregates is harnessed as an aggregation sensor to tightly regulate the IbpA level. Since the excessive preemptive supply of IbpA in advance of stress is harmful, the prodigious and rapid expression of IbpA/IbpB on demand is necessary for IbpA to function as a first line of defense against acute protein aggregation.
Collapse
Affiliation(s)
- Tsukumi Miwa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Yuhei Chadani
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Hideki Taguchi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.,Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
150
|
Ahn YJ, Im E. Heterologous expression of heat shock proteins confers stress tolerance in Escherichia coli, an industrial cell factory: A short review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|