101
|
Jiang H, English BP, Hazan RB, Wu P, Ovryn B. Tracking surface glycans on live cancer cells with single-molecule sensitivity. Angew Chem Int Ed Engl 2015; 54:1765-9. [PMID: 25515330 PMCID: PMC4465920 DOI: 10.1002/anie.201407976] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/09/2014] [Indexed: 12/20/2022]
Abstract
Using a combination of metabolically labeled glycans, a bioorthogonal copper(I)-catalyzed azide-alkyne cycloaddition, and the controlled bleaching of fluorescent probes conjugated to azide- or alkyne-tagged glycans, a sufficiently low spatial density of dye-labeled glycans was achieved, enabling dynamic single-molecule tracking and super-resolution imaging of N-linked sialic acids and O-linked N-acetyl galactosamine (GalNAc) on the membrane of live cells. Analysis of the trajectories of these dye-labeled glycans in mammary cancer cells revealed constrained diffusion of both N- and O-linked glycans, which was interpreted as reflecting the mobility of the glycan rather than to be caused by transient immobilization owing to spatial inhomogeneities on the plasma membrane. Stochastic optical reconstruction microscopy (STORM) imaging revealed the structure of dynamic membrane nanotubes.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Biochemistry Albert Einstein College of Medicine, Bronx, NY (USA)
| | | | - Rachel B. Hazan
- Department of Pathology Albert Einstein College of Medicine, Bronx, NY (USA)
| | - Peng Wu
- Department of Biochemistry Albert Einstein College of Medicine, Bronx, NY (USA)
| | - Ben Ovryn
- Department of Anatomy and Structural Biology Albert Einstein College of Medicine, Bronx, NY (USA)
| |
Collapse
|
102
|
Gonzalez SA. Novel biomarkers for hepatocellular carcinoma surveillance: has the future arrived? Hepatobiliary Surg Nutr 2015; 3:410-4. [PMID: 25568864 DOI: 10.3978/j.issn.2304-3881.2014.07.06] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 07/02/2014] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) remains a major cause of mortality in patients with chronic liver disease worldwide. Early detection of HCC is critical to providing effective treatment and can have a significant impact on survival. In addition, effective surveillance following hepatic resection or locoregional ablative therapy can identify early recurrence and optimize long-term outcomes. Currently available serum tumor markers, including alpha-fetoprotein (AFP), are characterized by low sensitivity in the detection of HCC. Advances in genomic, proteomic, metabolomic, and glycomic profiling may provide a means to identify unique molecular signatures and characterization of complex processes associated with HCC incidence and recurrence. The development of highly sensitive and specific serum biomarkers for HCC may greatly enhance early detection rates, risk assessment in treatment candidates, and identification of potential new targets for anticancer therapy.
Collapse
Affiliation(s)
- Stevan A Gonzalez
- Division of Hepatology, Annette C. and Harold C. Simmons Transplant Institute, Baylor All Saints Medical Center at Fort Worth and Baylor University Medical Center at Dallas, Fort Worth, TX, USA
| |
Collapse
|
103
|
Fisher S, Witkowska HE. Protein Biomarkers for Detecting Cancer. THE MOLECULAR BASIS OF CANCER 2015:331-346.e5. [DOI: 10.1016/b978-1-4557-4066-6.00022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
104
|
Wang SK, Cheng CM. Glycan-based diagnostic devices: current progress, challenges and perspectives. Chem Commun (Camb) 2015; 51:16750-62. [DOI: 10.1039/c5cc06876b] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The development of glycan-based diagnostic devices is illustrated with recent examples from both carbohydrate recognition and device design aspects.
Collapse
Affiliation(s)
- Sheng-Kai Wang
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 300
- Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering
- National Tsing Hua University
- Taiwan
| |
Collapse
|
105
|
Jiang H, English BP, Hazan RB, Wu P, Ovryn B. Tracking Surface Glycans on Live Cancer Cells with Single-Molecule Sensitivity. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201407976] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
106
|
Ruhaak LR, Lebrilla CB. Applications of Multiple Reaction Monitoring to Clinical Glycomics. Chromatographia 2014; 78:335-342. [PMID: 25892741 DOI: 10.1007/s10337-014-2783-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Multiple reaction monitoring or MRM is widely acknowledged for its accuracy of quantitation. The applications have mostly been in the analysis of small molecules and proteins, but its utility is expanding. Protein glycosylation was recently identified as a new paradigm in biomarker discovery for health and disease. A number of recent studies have now identified differential glycosylation patterns associated with health and disease states, including aging, pregnancy, rheumatoid arthritis and different types of cancer. While the use of MRM in clinical glycomics is still in its infancy, it can likely play a role in the quantitation of protein glycosylation in the clinical setting. Here, we aim to review the current advances in the nascent application of MRM in the field of glycomics.
Collapse
Affiliation(s)
- L Renee Ruhaak
- Department of Chemistry, University of California Davis. One Shields Avenue, Davis, CA, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California Davis. One Shields Avenue, Davis, CA, USA
| |
Collapse
|
107
|
Schwedler C, Kaup M, Weiz S, Hoppe M, Braicu EI, Sehouli J, Hoppe B, Tauber R, Berger M, Blanchard V. Identification of 34 N-glycan isomers in human serum by capillary electrophoresis coupled with laser-induced fluorescence allows improving glycan biomarker discovery. Anal Bioanal Chem 2014; 406:7185-93. [PMID: 25234305 DOI: 10.1007/s00216-014-8168-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/03/2014] [Accepted: 09/05/2014] [Indexed: 02/06/2023]
Abstract
Alterations in glycosylation have been observed in many human diseases and specific changes in glycosylation have been proposed as relevant diagnostic information. Capillary electrophoresis coupled with laser-induced fluorescence (CE-LIF) is a robust method to quantify desialylated N-glycans that are labeled with 8-aminopyrene-1,3,6-trisulfonic acid prior to analysis. To date, only a maximum of 12 glycan structures, the most abundant ones, have been identified by CE-LIF to characterize glycome modulations of total serum in the course of the diseases. In most forms of cancer, findings using CE-LIF were limited to the increase of triantennary structures carrying a Lewis(x) epitope. In this work, we identified 32 linkage and positional glycan isomers in healthy human serum using exoglycosidase digestions as well as standard glycoproteins, for which we report the assignment of novel structures. It was possible to identify and quantify 34 glycan isomers in the serum of primary epithelial ovarian cancer patients (EOC). Reduced levels of diantennary structures and of high-mannose 5 were statistically significant in the EOC samples, and also, elevated branching as well as increased antennary fucosylation were observed. For the first time, we could demonstrate that not only antennary fucosylation was of relevance in tetraantennary structures but also core-fucosylated tetraantennary N-glycans were statistically increased in EOC patients. The results of the current study provide an improved dataset to be used in glycan biomarker discovery.
Collapse
Affiliation(s)
- Christian Schwedler
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité Medical University, Augustenburger Platz 1, 13353, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Kronewitter SR, Marginean I, Cox JT, Zhao R, Hagler CD, Shukla AK, Carlson TS, Adkins JN, Camp DG, Moore RJ, Rodland KD, Smith RD. Polysialylated N-glycans identified in human serum through combined developments in sample preparation, separations, and electrospray ionization-mass spectrometry. Anal Chem 2014; 86:8700-10. [PMID: 25118826 PMCID: PMC4151788 DOI: 10.1021/ac501839b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The N-glycan diversity of human serum glycoproteins, i.e., the human blood serum N-glycome, is both complex and constrained by the range of glycan structures potentially synthesizable by human glycosylation enzymes. The known glycome, however, has been further limited by methods of sample preparation, available analytical platforms, e.g., based upon electrospray ionization-mass spectrometry (ESI-MS), and software tools for data analysis. In this report several improvements have been implemented in sample preparation and analysis to extend ESI-MS glycan characterization and to include polysialylated N-glycans. Sample preparation improvements included acidified, microwave-accelerated, PNGase F N-glycan release to promote lactonization, and sodium borohydride reduction, that were both optimized to improve quantitative yields and conserve the number of glycoforms detected. Two-stage desalting (during solid phase extraction and on the analytical column) increased sensitivity by reducing analyte signal division between multiple reducing-end-forms or cation adducts. Online separations were improved by using extended length graphitized carbon columns and adding TFA as an acid modifier to a formic acid/reversed phase gradient, providing additional resolving power and significantly improved desorption of both large and heavily sialylated glycans. To improve MS sensitivity and provide gentler ionization conditions at the source-MS interface, subambient pressure ionization with nanoelectrospray (SPIN) was utilized. When these improved methods are combined together with the Glycomics Quintavariate Informed Quantification (GlyQ-IQ) recently described (Kronewitter et al. Anal. Chem. 2014, 86, 6268-6276), we are able to significantly extend glycan detection sensitivity and provide expanded glycan coverage. We demonstrated the application of these advances in the context of the human serum glycome, and for which our initial observations included the detection of a new class of heavily sialylated N-glycans, including polysialylated N-glycans.
Collapse
Affiliation(s)
- Scott R Kronewitter
- Biological Sciences Division, Pacific Northwest National Laboratory , P.O. Box 999, Richland, Washington 99352, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Tsai TH, Wang M, Di Poto C, Hu Y, Zhou S, Zhao Y, Varghese RS, Luo Y, Tadesse MG, Ziada DH, Desai CS, Shetty K, Mechref Y, Ressom HW. LC-MS profiling of N-Glycans derived from human serum samples for biomarker discovery in hepatocellular carcinoma. J Proteome Res 2014; 13:4859-68. [PMID: 25077556 PMCID: PMC4227556 DOI: 10.1021/pr500460k] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Defining
clinically relevant biomarkers for early stage hepatocellular
carcinoma (HCC) in a high-risk population of cirrhotic patients has
potentially far-reaching implications for disease management and patient
health. Changes in glycan levels have been associated with the onset
of numerous diseases including cancer. In the present study, we used
liquid chromatography coupled with electrospray ionization mass spectrometry
(LC–ESI-MS) to analyze N-glycans in sera from 183 participants
recruited in Egypt and the U.S. and identified candidate biomarkers
that distinguish HCC cases from cirrhotic controls. N-Glycans were
released from serum proteins and permethylated prior to the LC–ESI-MS
analysis. Through two complementary LC–ESI-MS quantitation
approaches, global profiling and targeted quantitation, we identified
11 N-glycans with statistically significant differences between HCC
cases and cirrhotic controls. These glycans can further be categorized
into four structurally related clusters, matching closely with the
implications of important glycosyltransferases in cancer progression
and metastasis. The results of this study illustrate the power of
the integrative approach combining complementary LC–ESI-MS
based quantitation approaches to investigate changes in N-glycan levels
between HCC cases and patients with liver cirrhosis.
Collapse
Affiliation(s)
- Tsung-Heng Tsai
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center , Washington, DC 20057, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Mayampurath A, Song E, Mathur A, Yu CY, Hammoud Z, Mechref Y, Tang H. Label-free glycopeptide quantification for biomarker discovery in human sera. J Proteome Res 2014; 13:4821-32. [PMID: 24946017 DOI: 10.1021/pr500242m] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Glycan moieties of glycoproteins modulate many biological processes in mammals, such as immune response, inflammation, and cell signaling. Numerous studies show that many human diseases are correlated with quantitative alteration of protein glycosylation. In some cases, these changes can occur for certain types of glycans over specific sites in a glycoprotein rather than on the global abundance of the glycoprotein. Conventional analytical techniques that analyze the abundance of glycans cleaved from glycoproteins cannot reveal these subtle effects. Here we present a novel statistical method to quantify the site-specific glycosylation of glycoproteins in complex samples using label-free mass spectrometric techniques. Abundance variations between sites of a glycoprotein as well as different glycoforms, that is, glycopeptides with different glycans attached to the same site, can be detected using these techniques. We applied our method to an esophageal cancer study based on blood serum samples from cancer patients in an attempt to detect potential biomarkers of site-specific N-linked glycosylation. A few glycoproteins, including vitronectin, showed significantly different site-specific glycosylations within cancer/control samples, indicating that our method is ready to be used for the discovery of glycosylated biomarkers.
Collapse
Affiliation(s)
- Anoop Mayampurath
- School of Informatics & Computing, Indiana University , 901 East 10th Street, Bloomington, Indiana 47408, United States
| | | | | | | | | | | | | |
Collapse
|
111
|
Thaysen-Andersen M, Packer NH. Advances in LC-MS/MS-based glycoproteomics: getting closer to system-wide site-specific mapping of the N- and O-glycoproteome. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1437-52. [PMID: 24830338 DOI: 10.1016/j.bbapap.2014.05.002] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 04/23/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Site-specific structural characterization of glycoproteins is important for understanding the exact functional relevance of protein glycosylation. Resulting partly from the multiple layers of structural complexity of the attached glycans, the system-wide site-specific characterization of protein glycosylation, defined as glycoproteomics, is still far from trivial leaving the N- and O-linked glycoproteomes significantly under-defined. However, recent years have seen significant advances in glycoproteomics driven, in part, by the developments of dedicated workflows and efficient sample preparation, including glycopeptide enrichment and prefractionation. In addition, glycoproteomics has benefitted from the continuous performance enhancement and more intelligent use of liquid chromatography and tandem mass spectrometry (LC-MS/MS) instrumentation and a wider selection of specialized software tackling the unique challenges of glycoproteomics data. Together these advances promise more streamlined N- and O-linked glycoproteome analysis. Tangible examples include system-wide glycoproteomics studies detecting thousands of intact glycopeptides from hundreds of glycoproteins from diverse biological samples. With a strict focus on the system-wide site-specific analysis of protein N- and O-linked glycosylation, we review the recent advances in LC-MS/MS based glycoproteomics. The review opens with a more general discussion of experimental designs in glycoproteomics and sample preparation prior to LC-MS/MS based data acquisition. Although many challenges still remain, it becomes clear that glycoproteomics, one of the last frontiers in proteomics, is gradually maturing enabling a wider spectrum of researchers to access this new emerging research discipline. The next milestone in analytical glycobiology is being reached allowing the glycoscientist to address the functional importance of protein glycosylation in a system-wide yet protein-specific manner.
Collapse
Affiliation(s)
- Morten Thaysen-Andersen
- Biomolecular Frontiers Research Centre, Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia.
| | - Nicolle H Packer
- Biomolecular Frontiers Research Centre, Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
112
|
Tan Z, Lu W, Li X, Yang G, Guo J, Yu H, Li Z, Guan F. Altered N-Glycan Expression Profile in Epithelial-to-Mesenchymal Transition of NMuMG Cells Revealed by an Integrated Strategy Using Mass Spectrometry and Glycogene and Lectin Microarray Analysis. J Proteome Res 2014; 13:2783-95. [DOI: 10.1021/pr401185z] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
| | | | | | | | | | - Hanjie Yu
- Laboratory
for Functional Glycomics, College of Life Sciences, Northwest University, 229 Taibai Beilu, Xi’an 710069, China
| | - Zheng Li
- Laboratory
for Functional Glycomics, College of Life Sciences, Northwest University, 229 Taibai Beilu, Xi’an 710069, China
| | | |
Collapse
|
113
|
A comprehensive surface proteome analysis of myeloid leukemia cell lines for therapeutic antibody development. J Proteomics 2014; 99:138-51. [DOI: 10.1016/j.jprot.2014.01.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 12/20/2013] [Accepted: 01/11/2014] [Indexed: 12/12/2022]
|
114
|
Ruhaak LR, Uh HW, Deelder AM, Dolhain REJM, Wuhrer M. Total Plasma N-Glycome Changes during Pregnancy. J Proteome Res 2014; 13:1657-68. [DOI: 10.1021/pr401128j] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- L. Renee Ruhaak
- Center
for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
- Department
of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Hae-Won Uh
- Department
of Medical Statistics and Bioinformatics, Section of Medical Statistics, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - André M. Deelder
- Center
for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Radboud E. J. M. Dolhain
- Department
of Rheumatology, Erasmus MC University Medical Center, Rotterdam 3015 CE, The Netherlands
| | - M. Wuhrer
- Center
for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
- Division
of BioAnalytical Chemistry, VU University Amsterdam, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
115
|
Kim K, Ruhaak LR, Nguyen UT, Taylor SL, Dimapasoc L, Williams C, Stroble C, Ozcan S, Miyamoto S, Lebrilla CB, Leiserowitz GS. Evaluation of glycomic profiling as a diagnostic biomarker for epithelial ovarian cancer. Cancer Epidemiol Biomarkers Prev 2014; 23:611-21. [PMID: 24557531 DOI: 10.1158/1055-9965.epi-13-1073] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Prior studies suggested that glycans were differentially expressed in patients with ovarian cancer and controls. We hypothesized that glycan-based biomarkers might serve as a diagnostic test for ovarian cancer and evaluated the ability of glycans to distinguish ovarian cancer cases from matched controls. METHODS Serum samples were obtained from the tissue-banking repository of the Gynecologic Oncology Group, and included healthy female controls (n = 100), women diagnosed with low malignant potential (LMP) tumors (n = 52), and epithelial ovarian cancers (EOC) cases (n = 147). Cases and controls were matched on age at enrollment within ±5 years. Serum samples were analyzed by glycomics analysis to detect abundance differences in glycan expression levels. A two-stage procedure was carried out for biomarker discovery and validation. Candidate classifiers of glycans that separated cases from controls were developed using a training set in the discovery phase and the classification performance of the candidate classifiers was assessed using independent test samples that were not used in discovery. RESULTS The patterns of glycans showed discriminatory power for distinguishing EOC and LMP cases from controls. Candidate glycan-based biomarkers developed on a training set (sensitivity, 86% and specificity, 95.8% for distinguishing EOC from controls through leave-one-out cross-validation) confirmed their potential use as a detection test using an independent test set (sensitivity, 70% and specificity, 86.5%). CONCLUSION Formal investigations of glycan biomarkers that distinguish cases and controls show great promise for an ovarian cancer diagnostic test. Further validation of a glycan-based test for detection of ovarian cancer is warranted. IMPACT An emerging diagnostic test based on the knowledge gained from understanding the glycobiology should lead to an assay that improves sensitivity and specificity and allows for early detection of ovarian cancer.
Collapse
Affiliation(s)
- Kyoungmi Kim
- Authors' Affiliations: Division of Biostatistics, Department of Public Health Sciences; Department of Chemistry, University of California, Davis; UC Davis Cancer Center; and Division of Gynecologic Oncology, UC Davis Medical Center, Sacramento, California
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Tsuchida S, Satoh M, Sogawa K, Kawashima Y, Kado S, Ishige T, Beppu M, Sawai S, Nishimura M, Kodera Y, Matsushita K, Nomura F. Application of proteomic technologies to discover and identify biomarkers for periodontal diseases in gingival crevicular fluid: A review. Proteomics Clin Appl 2014. [DOI: 10.1002/prca.201300122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sachio Tsuchida
- Department of Molecular Diagnosis; Graduate School of Medicine; Chiba University; Chiba Japan
- Clinical Proteomics Research Center; Chiba University Hospital; Chiba Japan
| | - Mamoru Satoh
- Department of Molecular Diagnosis; Graduate School of Medicine; Chiba University; Chiba Japan
- Clinical Proteomics Research Center; Chiba University Hospital; Chiba Japan
- Chemical Analysis Center; Chiba University; Chiba Japan
| | - Kazuyuki Sogawa
- Department of Molecular Diagnosis; Graduate School of Medicine; Chiba University; Chiba Japan
- Clinical Proteomics Research Center; Chiba University Hospital; Chiba Japan
| | - Yusuke Kawashima
- Laboratory of Biomolecular Dynamics; Department of Physics; School of Science; Kitasato University; Sagamihara Japan
| | - Sayaka Kado
- Chemical Analysis Center; Chiba University; Chiba Japan
| | - Takayuki Ishige
- Department of Molecular Diagnosis; Graduate School of Medicine; Chiba University; Chiba Japan
| | - Minako Beppu
- Department of Molecular Diagnosis; Graduate School of Medicine; Chiba University; Chiba Japan
- Clinical Proteomics Research Center; Chiba University Hospital; Chiba Japan
| | - Setsu Sawai
- Department of Molecular Diagnosis; Graduate School of Medicine; Chiba University; Chiba Japan
- Clinical Proteomics Research Center; Chiba University Hospital; Chiba Japan
| | - Motoi Nishimura
- Department of Molecular Diagnosis; Graduate School of Medicine; Chiba University; Chiba Japan
- Clinical Proteomics Research Center; Chiba University Hospital; Chiba Japan
| | - Yoshio Kodera
- Clinical Proteomics Research Center; Chiba University Hospital; Chiba Japan
- Laboratory of Biomolecular Dynamics; Department of Physics; School of Science; Kitasato University; Sagamihara Japan
| | - Kazuyuki Matsushita
- Department of Molecular Diagnosis; Graduate School of Medicine; Chiba University; Chiba Japan
- Clinical Proteomics Research Center; Chiba University Hospital; Chiba Japan
| | - Fumio Nomura
- Department of Molecular Diagnosis; Graduate School of Medicine; Chiba University; Chiba Japan
- Clinical Proteomics Research Center; Chiba University Hospital; Chiba Japan
| |
Collapse
|
117
|
Abstract
Helicobacter pylori-associated gastric cancer is a major cause of morbidity and mortality worldwide, and is predicted to become even more common in developing countries as the population ages. Since gastric cancer develops slowly over years to decades, and typically progresses though a series of well-defined histologic stages, cancer biomarkers have potential to identify asymptomatic individuals in whom surgery might be curative, or even those for whom antibiotics to eradicate H. pylori could prevent neoplastic transformation. Here we describe some of the challenges of biomarker discovery, summarize current approaches to biomarkers of gastric cancer, and explore some recent novel strategies.
Collapse
Affiliation(s)
- Cara L Cooke
- Departments of Medicine and Microbiology & Immunology; University of California; Davis School of Medicine; Davis, CA USA,Center for Comparative Medicine; University of California; Davis School of Medicine; Davis, CA USA
| | - Javier Torres
- Infectious Diseases Research Unit; Instituto Mexicano del Seguro Social; Mexico City, Mexico
| | - Jay V Solnick
- Departments of Medicine and Microbiology & Immunology; University of California; Davis School of Medicine; Davis, CA USA,Center for Comparative Medicine; University of California; Davis School of Medicine; Davis, CA USA,California National Primate Research Center; University of California; Davis School of Medicine; Davis, CA USA,Correspondence to: Jay V Solnick,
| |
Collapse
|
118
|
Li N, Chow AM, Ganesh HVS, Brown IR, Kerman K. Quantum Dot Based Fluorometric Detection of Cancer TF-Antigen. Anal Chem 2013; 85:9699-704. [DOI: 10.1021/ac402082s] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Nan Li
- Department of Physical and Environmental
Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada
| | - Ari M. Chow
- Centre for the
Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada
| | - Hashwin V. S. Ganesh
- Centre for the
Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada
| | - Ian R. Brown
- Centre for the
Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada
| | - Kagan Kerman
- Department of Physical and Environmental
Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada
| |
Collapse
|
119
|
Abstract
Advancement in electrophoresis and mass spectrometry techniques along with the recent progresses in genomics, culminating in bovine and pig genome sequencing, widened the potential application of proteomics in the field of veterinary medicine. The aim of the present review is to provide an in-depth perspective about the application of proteomics to animal disease pathogenesis, as well as its utilization in veterinary diagnostics. After an overview on the various proteomic techniques that are currently applied to veterinary sciences, the article focuses on proteomic approaches to animal disease pathogenesis. Included as well are recent achievements in immunoproteomics (ie, the identifications through proteomic techniques of antigen involved in immune response) and histoproteomics (ie, the application of proteomics in tissue processed for immunohistochemistry). Finally, the article focuses on clinical proteomics (ie, the application of proteomics to the identification of new biomarkers of animal diseases).
Collapse
|
120
|
Zhang Z, Sun J, Hao L, Liu C, Ma H, Jia L. Modification of glycosylation mediates the invasive properties of murine hepatocarcinoma cell lines to lymph nodes. PLoS One 2013; 8:e65218. [PMID: 23840320 PMCID: PMC3688732 DOI: 10.1371/journal.pone.0065218] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 04/24/2013] [Indexed: 01/29/2023] Open
Abstract
Among the various posttranslational modification reactions, glycosylation is the most common, and nearly 50% of all known proteins are thought to be glycosylated. In fact, changes in glycosylation readily occur in carcinogenesis, invasion and metastasis. This report investigated the modification of glycosylation mediated the invasive properties of Hca-F and Hca-P murine hepatocarcinoma cell lines, which have high, low metastatic potential in the lymph nodes, respectively. Analysis revealed that the N-glycan composition profiling, expression of glycogenes and lectin binding profiling were different in Hca-F cells, as compared to those in Hca-P cells. Further analysis of the N-glycan regulation by tunicamycin (TM) application or PNGase F treatment in Hca-F cells showed partial inhibition of N-glycan glycosylation and decreased invasion both in vitro and in vivo. We targeted glycogene ST6GAL1, which was expressed differently in Hca-F and Hca-P cells, and regulated the expression of ST6GAL1. The altered levels of ST6GAL1 were also responsible for changed invasive properties of Hca-F and Hca-P cells both in vitro and in vivo. These findings indicate a role for glycosylation modification as a mediator of tumor lymphatic metastasis, with its altered expression causing an invasive ability differentially.
Collapse
Affiliation(s)
- Zhaohai Zhang
- Department of Basic Laboratory Medicine, College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, China
| | - Jie Sun
- Department of Basic Laboratory Medicine, College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, China
- Liaoning International Travel Health Care Center, Dalian, Liaoning Province, China
| | - Lihong Hao
- Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning Province, China
| | - Chunqing Liu
- Department of Basic Laboratory Medicine, College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, China
| | - Hongye Ma
- Department of Basic Laboratory Medicine, College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, China
| | - Li Jia
- Department of Basic Laboratory Medicine, College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, China
- * E-mail:
| |
Collapse
|