101
|
Castro-Bravo N, Wells JM, Margolles A, Ruas-Madiedo P. Interactions of Surface Exopolysaccharides From Bifidobacterium and Lactobacillus Within the Intestinal Environment. Front Microbiol 2018; 9:2426. [PMID: 30364185 PMCID: PMC6193118 DOI: 10.3389/fmicb.2018.02426] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/21/2018] [Indexed: 12/28/2022] Open
Abstract
Exopolysaccharides (EPS) are surface carbohydrate polymers present in most bacteria acting as a protective surface layer but also interacting with the surrounding environment. This review discusses the roles of EPS synthesized by strains of Lactobacillus and Bifidobacterium, many of them with probiotic characteristics, in the intestinal environment. Current knowledge on genetics and biosynthesis pathways of EPS in lactic acid bacteria and bifidobacteria, as well as the development of genetic tools, has created possibilities to elucidate the interplay between EPS and host intestinal mucosa. These include the microbiota that inhabits this ecological niche and the host cells. Several carbohydrate recognition receptors located in the intestinal epithelium could be involved in the interaction with bacterial EPS and modulation of immune response; however, little is known about the receptors recognizing EPS from lactobacilli or bifidobacteria and the triggered response. On the contrary, it has been clearly demonstrated that EPS play a relevant role in the persistence of the producing bacteria in the intestinal tract. Indeed, some authors postulate that some of the beneficial actions of EPS-producing probiotics could be related to the formation of a biofilm layer protecting the host against injury, for example by pathogens or their toxins. Nevertheless, the in vivo formation of biofilms by probiotics has not been proved to date. Finally, EPS produced by probiotic strains are also able to interact with the intestinal microbiota that populates the gut. In fact, some of these polymers can be used as carbohydrate fermentable source by some gut commensals thus being putatively involved in the release of bacterial metabolites that exert positive benefits for the host. In spite of the increasing knowledge about the role that these surface molecules play in the interaction of probiotic bacteria with the gut mucosal actors, both intestinal receptors and microbiota, the challenging issue is to demonstrate the functionality of EPS in vivo, which will open an avenue of opportunities for the application of EPS-producing probiotics to improve health.
Collapse
Affiliation(s)
- Nuria Castro-Bravo
- Microhealth Group, Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain.,Host-Microbe Interactomics Group, Animal Science Department, Wageningen University and Research (WUR), Wageningen, Netherlands
| | - Jerry M Wells
- Host-Microbe Interactomics Group, Animal Science Department, Wageningen University and Research (WUR), Wageningen, Netherlands
| | - Abelardo Margolles
- Microhealth Group, Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
| | - Patricia Ruas-Madiedo
- Microhealth Group, Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
| |
Collapse
|
102
|
Ispirli H, Demirbaş F, Yüzer MO, Dertli E. Identification of Lactic Acid Bacteria from Spontaneous Rye Sourdough and Determination of Their Functional Characteristics. FOOD BIOTECHNOL 2018. [DOI: 10.1080/08905436.2018.1507913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Hümeyra Ispirli
- Department of Food Engineering, Bayburt University, Bayburt, Turkey
| | | | - Mustafa O. Yüzer
- Department of Food Engineering, Bayburt University, Bayburt, Turkey
| | - Enes Dertli
- Department of Food Engineering, Bayburt University, Bayburt, Turkey
| |
Collapse
|
103
|
Tang X, Liu R, Huang W, Zhang B, Wu Y, Zhuang J, Omedi JO, Wang F, Zheng J. Impact of in situ formed exopolysaccharides on dough performance and quality of Chinese steamed bread. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.04.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
104
|
Investigation on “spontaneous fermentation” and the productivity of microbial exopolysaccharides by Lactobacillus plantarum and Pediococcus pentosaceus isolated from wheat bran sourdough. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.05.071] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
105
|
Liu A, Jia Y, Zhao L, Gao Y, Liu G, Chen Y, Zhao G, Xu L, Shen L, Liu Y, Chen H, Wu W, Li C, Liu S. Diversity of isolated lactic acid bacteria in Ya'an sourdoughs and evaluation of their exopolysaccharide production characteristics. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.04.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
106
|
Impact of in situ produced exopolysaccharides on rheology and texture of fava bean protein concentrate. Food Res Int 2018; 115:191-199. [PMID: 30599931 DOI: 10.1016/j.foodres.2018.08.054] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/09/2018] [Accepted: 08/18/2018] [Indexed: 12/13/2022]
Abstract
The aim of this study was to investigate the impact of in situ produced exopolysaccharides (EPS) on the rheological and textural properties of fava bean protein concentrate (FPC). EPS (dextrans) were produced from sucrose by two lactic acid bacteria (LAB). The acidification, rheology, and texture of FPC pastes fermented with Leuconostoc pseudomesenteroides DSM 20193 and Weissella confusa VTT E-143403 (E3403) were compared. A clear improvement in rheological and textural parameters was observed in sucrose-added pastes after fermentation, especially with W. confusa VTT E3403. Only moderate proteolysis of fava bean protein during fermentation was observed. The microstructure of the protein in FPC pastes, as observed by confocal laser scanning microscopy, revealed a less continuous and denser structure in EPS-abundant pastes. The beneficial structure formed during EPS-producing fermentation could not be mimicked by simply mixing FPC, isolated dextran, lactic acid, and acetic acid with water. These results emphasize the benefits of in situ produced EPS in connection with the LAB fermentation of legume protein-rich foods. Fermentation with EPS-producing LAB is a cost-effective and clean-labeled technology to obtain tailored textures, and it can further enhance the usability of legumes in novel foods.
Collapse
|
107
|
Exopolysaccharide producing lactic acid bacteria: Their techno-functional role and potential application in gluten-free bread products. Food Res Int 2018; 110:52-61. [DOI: 10.1016/j.foodres.2017.03.012] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/03/2017] [Accepted: 03/10/2017] [Indexed: 11/18/2022]
|
108
|
Loponen J, Gänzle MG. Use of Sourdough in Low FODMAP Baking. Foods 2018; 7:E96. [PMID: 29932101 PMCID: PMC6068548 DOI: 10.3390/foods7070096] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 12/14/2022] Open
Abstract
A low FODMAP (fermentable oligosaccharides, disaccharides, monosaccharides, and polyols) diet allows most irritable bowel syndrome (IBS) patients to manage their gastrointestinal symptoms by avoiding FODMAP-containing foods, such as onions, pulses, and products made from wheat or rye. The downside of a low FODMAP diet is the reduced intake of dietary fiber. Applying sourdoughs—with specific FODMAP-targeting metabolic properties—to wholegrain bread making can help to remarkably reduce the content of FODMAPs in bread without affecting the content of the slowly fermented and well-tolerated dietary fiber. In this review, we outline the metabolism of FODMAPs in conventional sourdoughs and outline concepts related to fructan and mannitol metabolism that allow development of low FODMAP sourdough bread. We also summarize clinical studies where low FODMAP but high fiber, rye sourdough bread was tested for its effects on gut fermentation and gastrointestinal symptoms with very promising results. The sourdough bread-making process offers a means to develop natural and fiber-rich low FODMAP bakery products for IBS patients and thereby help them to increase their dietary fiber intake.
Collapse
Affiliation(s)
| | - Michael G Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| |
Collapse
|
109
|
Sourdoughs as a source of lactic acid bacteria and yeasts with technological characteristics useful for improved bakery products. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3100-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
110
|
Zafar SB, Siddiqui NN, Shahid F, Qader SAU, Aman A. Bioprospecting of indigenous resources for the exploration of exopolysaccharide producing lactic acid bacteria. J Genet Eng Biotechnol 2018; 16:17-22. [PMID: 30647699 PMCID: PMC6296591 DOI: 10.1016/j.jgeb.2017.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 10/04/2017] [Accepted: 10/15/2017] [Indexed: 10/26/2022]
Abstract
Exploration of biodiversity lead towards the discovery of novel exopolysaccharide (EPS) producing microbes that have multiple applications. The safety compatibility status of lactic acid bacteria (LAB) makes it an attractive candidate for the production of EPS in industries. Therefore, new bacterial isolates are continuously being identified from different habitats. Current research was conducted to explore indigenous biodiversity for the production of dextransucrase, which is involved in the synthesis of dextran. Dextran is an EPS which is used in different industries. In this study, thirty-nine LAB were isolated from different food samples. The isolates were identified as genus Leuconostoc, Weissella and Streptococcus based on genotypic and phenotypic characteristics. Screening revealed that only eight isolates can produce dextransucrase in high titres. Fermentation conditions of dextran producing LAB was optimized. The results indicated that Weissella confusa exhibited maximum specific activity (1.50 DSU mg-1) in 8 h at 25 °C with pH 7.5. Dextran produced from Weissella proved to be a useful alternative to commercially used dextran produced by Leuconostoc mesenteroides in industries for various applications.
Collapse
Affiliation(s)
- Syeda Bushra Zafar
- The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi 75270, Pakistan
| | - Nadir Naveed Siddiqui
- The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi 75270, Pakistan
| | - Faiza Shahid
- The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi 75270, Pakistan
| | - Shah Ali Ul Qader
- Department of Biochemistry, University of Karachi, Karachi 75270, Pakistan
| | - Afsheen Aman
- The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
111
|
Coda R, Xu Y, Moreno DS, Mojzita D, Nionelli L, Rizzello CG, Katina K. Performance of Leuconostoc citreum FDR241 during wheat flour sourdough type I propagation and transcriptional analysis of exopolysaccharides biosynthesis genes. Food Microbiol 2018; 76:164-172. [PMID: 30166137 DOI: 10.1016/j.fm.2018.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/28/2018] [Accepted: 05/12/2018] [Indexed: 12/23/2022]
Abstract
This study focused on the performance of the dextran producer Leuconostoc citreum as starter culture during 30 days of wheat flour type I sourdough propagation (back-slopping). As confirmed by RAPD-PCR analysis, the strain dominated throughout the propagation procedure, consisting of daily fermentations at 20 °C. The sourdoughs were characterized by consistent lactic acid bacteria cell density and acidification parameters, reaching pH values of 4.0 and mild titratable acidity. Carbohydrates consumption remained consistent during the propagation procedure, leading to formation of mannitol and almost equimolar amount of lactic and acetic acid. The addition of sucrose enabled the formation of dextran, inducing an increase in viscosity of the sourdough of 2-2.6 fold, as well as oligosaccharides. The transcriptional analysis based on glucosyltransferases genes (GH70) showed the existence in L. citreum FDR241 of at least five different dextransucrases. Among these, only one gene, previously identified as forming only α-(1-6) glycosidic bonds, was significantly upregulated in sourdough fermentation conditions, and the main responsible of dextran formation. A successful application of a starter culture during long sourdough back-slopping procedure will depend on the strain robustness and fermentation conditions. Transcriptional regulation of EPS-synthetizing genes might contribute to increase the efficiency of industrial processes.
Collapse
Affiliation(s)
- Rossana Coda
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland; Helsinki Institute of Sustainability Science, Finland.
| | - Yan Xu
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland
| | - David Sàez Moreno
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland
| | | | - Luana Nionelli
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland
| | - Carlo G Rizzello
- Department of Soil, Plant and Food Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Kati Katina
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
112
|
Hu Y, Gänzle MG. Effect of temperature on production of oligosaccharides and dextran by Weissella cibaria 10 M. Int J Food Microbiol 2018; 280:27-34. [PMID: 29772465 DOI: 10.1016/j.ijfoodmicro.2018.05.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/01/2018] [Accepted: 05/06/2018] [Indexed: 12/20/2022]
Abstract
The formation of HoPS and oligosaccharides in sourdough fermentation improves bread quality but is dependent on the expression of glycansucrases by lactic acid bacteria. Data on the expression of dextransucrases by Weissella spp., however, are limited. This study therefore aimed to assess dextansucrase expression in W. cibaria 10 M, focusing on the effect of temperature. The effect of temperature on growth, oligosaccharide and dextran synthesis by W. cibaria 10 M was determined and the expression and activity of cell-associated dextransucrase from W. cibaria 10 M were investigated. The oligosaccharides profiles were measured by thin layer chromatography and high performance anion exchange chromatography coupled to pulsed amperometric detection. Dextran formation was quantified by size exclusion chromatography. W. cibaria grew fastest at 30 °C but oligosaccharide formation was highest at 20 °C or less. Dextransucrase expression as measured by reverse transcription quantitative PCR, SDS-PAGE, and activity of cell-associated dextransucrase were maximal at 15 °C. Cold shift incubation, characterized by incubation at 30 °C to obtain biomass, followed by shift to 6 °C to induce dextransucrase expression, supported high dextransucrase activity in laboratory media. Cold shift fermentation of wheat and sorghum sourdoughs supplemented with 15 or 30% sucrose increased the yields of oligosaccharides, and resulted in formation of 16 and 12 g/kg dextran in wheat and sorghum sourdoughs, respectively. Dextran formation was decreased in favour of oligosaccharide formation when doughs were supplemented with maltose. In conclusion, cold shift fermentation of sourdough with W. cibaria supports high dextran yields or formation of oligosaccharides without excess acidification.
Collapse
Affiliation(s)
- Ying Hu
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada; Hubei University of Technology, College of Bioengineering and Food Science, Wuhan, China
| | - Michael G Gänzle
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada; Hubei University of Technology, College of Bioengineering and Food Science, Wuhan, China.
| |
Collapse
|
113
|
Hendek Ertop M, Coşkun Y. Shelf-life, physicochemical, and nutritional properties of wheat bread with optimized amount of dried chickpea sourdough and yeast by response surface methodology. J FOOD PROCESS PRES 2018. [DOI: 10.1111/jfpp.13650] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Muge Hendek Ertop
- Faculty of Engineering and Architecture, Department of Food Engineering; Kastamonu University; Kastamonu Turkey
| | - Yunus Coşkun
- Faculty of Engineering and Natural Sciences, Department of Food Engineering; Gümüşhane University, Gümüşhane; Turkey
| |
Collapse
|
114
|
|
115
|
Lorusso A, Coda R, Montemurro M, Rizzello CG. Use of Selected Lactic Acid Bacteria and Quinoa Flour for Manufacturing Novel Yogurt-Like Beverages. Foods 2018; 7:E51. [PMID: 29614769 PMCID: PMC5920416 DOI: 10.3390/foods7040051] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/15/2018] [Accepted: 03/28/2018] [Indexed: 02/07/2023] Open
Abstract
This study aimed at investigating the suitability of quinoa for making yogurt-like beverages. After the selection of the adequate technological parameters, the fermentation was carried out by using different lactic acid bacteria strains: a probiotic (Lactobacillus rhamnosus SP1), an exopolysaccharides (EPS)-producing (Weissella confusa DSM 20194), and one isolated from quinoa (Lactobacillus plantarum T6B10). During the 20 h of fermentation, W. confusa caused the highest viscosity increase. All the strains had improved concentration of free amino acids and γ-Aminobutyric acid (GABA), polyphenols availability, antioxidant activity (up to 54%), and protein digestibility. The nutritional index (NI) was the highest when L. rhamnosus SP1 was used. The starch hydrolysis index in vitro ranged from 52 to 60. During storage at 4 °C, viscosity and water holding capacity decreased with the exception of the beverage fermented with W. confusa, while all the nutritional characteristics remained stable or slightly increased. Sensory analyses showed that beverages had good textural and organoleptic profiles. Besides the well-known positive properties of the raw matrix, fermentation allowed the obtainment of beverages with different features. Due to the nutritional and functional characteristics conferred to the quinoa beverages, the use of the probiotic and EPS-producing strains showed adequate potential for the industrial application.
Collapse
Affiliation(s)
- Anna Lorusso
- Department of Soil, Plant, and Food Science, University of Bari "Aldo Moro", 70126 Bari, Italy.
| | - Rossana Coda
- Department of Food and Nutrition, Helsinki Institute of Sustainability Science, University of Helsinki, 00100 Helsinki, Finland.
| | - Marco Montemurro
- Department of Soil, Plant, and Food Science, University of Bari "Aldo Moro", 70126 Bari, Italy.
| | - Carlo Giuseppe Rizzello
- Department of Soil, Plant, and Food Science, University of Bari "Aldo Moro", 70126 Bari, Italy.
| |
Collapse
|
116
|
Wu Q, Shah NP. Comparative mRNA-Seq Analysis Reveals the Improved EPS Production Machinery in Streptococcus thermophilus ASCC 1275 During Optimized Milk Fermentation. Front Microbiol 2018; 9:445. [PMID: 29593689 PMCID: PMC5859087 DOI: 10.3389/fmicb.2018.00445] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/26/2018] [Indexed: 12/16/2022] Open
Abstract
Exo-polysaccharide (EPS) produced by dairy starters plays critical roles in improving texture and functionalities of fermented dairy products. One of such high EPS producers, Streptococcus thermophilus ASCC 1275 (ST1275) was used as a model dairy strain to understand the stimulation of its EPS production under optimal milk fermentation conditions. The mRNA-seq analysis and targeted pathway analysis indicate that genes associated with lactose (milk sugar) catabolism, EPS assembly, proteolytic activity, and arginine/methionine/cysteine synthesis and transport in ST1275 were significantly up-regulated under the optimized conditions of pH 5.5, 40°C, or WPI supplementation compared to that of pH 6.5 and 37°C, respectively. This indicates that genes involved in above metabolisms cooperate together for improving EPS yield from ST1275. This study provides a global view map on potential targeted pathways and specific genes accounted for enhanced EPS production in Str. thermophilus and that could be modulated by fermentation conditions.
Collapse
Affiliation(s)
| | - Nagendra P. Shah
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
117
|
Tang X, Liu N, Huang W, Cheng X, Wang F, Zhang B, Chen J, Jiang H, Omedi JO, Li Z. Syneresis rate, water distribution, and microstructure of wheat starch gel during freeze‐thaw process: Role of a high molecular weight dextran produced by
Weissella confusa
QS
813 from traditional sourdough. Cereal Chem 2018. [DOI: 10.1094/cchem-08-17-0174-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Xiaojuan Tang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
| | - Na Liu
- MagiBake International Inc. Wuxi China
| | - Weining Huang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
| | | | - Feng Wang
- MagiBake International Inc. Wuxi China
| | - Binle Zhang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
| | - Jiafang Chen
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
| | - Hui Jiang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
| | - Jacob O. Omedi
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
| | - Zhibin Li
- Fujian Wheat City Food Development Co., Ltd. Jinjiang Quanzhou China
| |
Collapse
|
118
|
Ertop MH, Hayta M. Optimization of the Level of Chickpea Sourdough and Baking Powder in Cake Formulation by Response Surface Methodology: Effects on Physicochemical, Sensory and Antioxidant Properties. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2018. [DOI: 10.3136/fstr.24.697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Müge Hendek Ertop
- Kastamonu University, Faculty of Engineering and Architecture, Dept. of Food Engineering
| | - Mehmet Hayta
- Erciyes University, Faculty of Engineering, Dept. of Food Engineering
| |
Collapse
|
119
|
Verni M, Wang C, Montemurro M, De Angelis M, Katina K, Rizzello CG, Coda R. Exploring the Microbiota of Faba Bean: Functional Characterization of Lactic Acid Bacteria. Front Microbiol 2017; 8:2461. [PMID: 29312174 PMCID: PMC5732949 DOI: 10.3389/fmicb.2017.02461] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 11/27/2017] [Indexed: 12/31/2022] Open
Abstract
This study investigated the metabolic traits of 27 lactic acid bacteria (LAB) strains belonging to different species, previously isolated from faba bean. The activities assayed, related to technological and nutritional improvement of fermented faba bean, included peptidases, β-glucosidase, phytase, as well as exopolysaccharides synthesis and antimicrobial properties. In addition, the bacteria performance as starter cultures during faba bean fermentation on proteolysis, antioxidant potential, and degradation of condensed tannins were assessed. Fermentative profiling showed that only 7 out of 27 strains were able to metabolize D-raffinose, particularly Leuc. mesenteroides I01 and I57. All strains of Pediococcus pentosaceus exerted high PepN activity and exhibited β-glucosidase activity higher than the median value of 0.015 U, while phytase activity was largely distributed among the different strains. All the weissellas, and in lower amount leuconostocs, showed ability to produce EPS from sucrose. None of the strains did not survive the simulated gastrointestinal tract with the exception of P. pentosaceus I56, I76, 147, I214, having a viability of 8–9 log CFU/ml at the end of the treatment. None of the strains showed antimicrobial activity toward Staphylococcus aureus, while eight strains of P. pentosaceus exhibited a strong inhibitory activity toward Escherichia coli and Listeria monocytogenes. Generally, the doughs fermented with pediococci exhibited high amount of total free amino acids, antioxidant activity, and condensed tannins degradation. These results allowed the identification of LAB biotypes as potential starter cultures for faba bean bioprocessing, aiming at the enhancement of faba bean use in novel food applications.
Collapse
Affiliation(s)
- Michela Verni
- Department of Soil, Plant, and Food Science, University of Bari, Bari, Italy
| | - Changyin Wang
- Department of Food and Environmental Science, University of Helsinki, Helsinki, Finland
| | - Marco Montemurro
- Department of Soil, Plant, and Food Science, University of Bari, Bari, Italy
| | - Maria De Angelis
- Department of Soil, Plant, and Food Science, University of Bari, Bari, Italy
| | - Kati Katina
- Department of Food and Environmental Science, University of Helsinki, Helsinki, Finland
| | - Carlo G Rizzello
- Department of Soil, Plant, and Food Science, University of Bari, Bari, Italy
| | - Rossana Coda
- Department of Food and Environmental Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
120
|
Structural analysis of the α-d-glucan produced by the sourdough isolate Lactobacillus brevis E25. Food Chem 2017; 242:45-52. [PMID: 29037713 DOI: 10.1016/j.foodchem.2017.09.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/22/2017] [Accepted: 09/04/2017] [Indexed: 11/24/2022]
Abstract
Cereal-associated Lactic Acid Bacteria (LAB) are well known for homopolymeric exopolysaccharide (EPS) production. Herein, the structure of an EPS isolated from sourdough isolate Lactobacillus brevis E25 was determined. A modified BHI medium was used for production of EPS-E25 in order to eliminate potential contaminants. Analysis of sugar monomers in EPS revealed that glucose was the only sugar present. Structural characterisation of EPS by NMR and methylation analysis revealed that E25 produced a highly branched α-glucan with (α1→3) and (α1→6) glycosidic linkages, and was similar in structure to a previously reported EPS from Lactobacillus reuteri 180. The 1H and 13C NMR data were contrasted with newly recorded data for known polysaccharides (alternan, commercial dextran) which also contain α-(1,3,6)Glc branch points. It was found in both E25 EPS and alternan that NMR parameters could be used to distinguish glucose residues that had the same substitution pattern but occupied different positions in the structure.
Collapse
|
121
|
Gangoiti J, van Leeuwen SS, Meng X, Duboux S, Vafiadi C, Pijning T, Dijkhuizen L. Mining novel starch-converting Glycoside Hydrolase 70 enzymes from the Nestlé Culture Collection genome database: The Lactobacillus reuteri NCC 2613 GtfB. Sci Rep 2017; 7:9947. [PMID: 28855510 PMCID: PMC5577214 DOI: 10.1038/s41598-017-07190-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/22/2017] [Indexed: 11/16/2022] Open
Abstract
The Glycoside hydrolase (GH) family 70 originally was established for glucansucrases of lactic acid bacteria (LAB) converting sucrose into α-glucan polymers. In recent years we have identified 3 subfamilies of GH70 enzymes (designated GtfB, GtfC and GtfD) as 4,6-α-glucanotransferases, cleaving (α1 → 4)-linkages in maltodextrins/starch and synthesizing new (α1 → 6)-linkages. In this work, 106 putative GtfBs were identified in the Nestlé Culture Collection genome database with ~2700 genomes, and the L. reuteri NCC 2613 one was selected for further characterization based on variations in its conserved motifs. Using amylose the L. reuteri NCC 2613 GtfB synthesizes a low-molecular-mass reuteran-like polymer consisting of linear (α1 → 4) sequences interspersed with (α1 → 6) linkages, and (α1 → 4,6) branching points. This product specificity is novel within the GtfB subfamily, mostly comprising 4,6-α-glucanotransferases synthesizing consecutive (α1 → 6)-linkages. Instead, its activity resembles that of the GtfD 4,6-α-glucanotransferases identified in non-LAB strains. This study demonstrates the potential of large-scale genome sequence data for the discovery of enzymes of interest for the food industry. The L. reuteri NCC 2613 GtfB is a valuable addition to the starch-converting GH70 enzyme toolbox. It represents a new evolutionary intermediate between families GH13 and GH70, and provides further insights into the structure-function relationships of the GtfB subfamily enzymes.
Collapse
Affiliation(s)
- Joana Gangoiti
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.,CarbExplore Research BV, Zernikepark 12, 9747 AN, Groningen, The Netherlands
| | - Sander S van Leeuwen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Xiangfeng Meng
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Stéphane Duboux
- Nestlé Research Center, Vers-Chez-Les-Blanc, Lausanne, Switzerland
| | | | - Tjaard Pijning
- Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Lubbert Dijkhuizen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
122
|
Zeidan AA, Poulsen VK, Janzen T, Buldo P, Derkx PMF, Øregaard G, Neves AR. Polysaccharide production by lactic acid bacteria: from genes to industrial applications. FEMS Microbiol Rev 2017; 41:S168-S200. [DOI: 10.1093/femsre/fux017] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/29/2017] [Indexed: 01/14/2023] Open
|
123
|
Xu Y, Coda R, Shi Q, Tuomainen P, Katina K, Tenkanen M. Exopolysaccharides Production during the Fermentation of Soybean and Fava Bean Flours by Leuconostoc mesenteroides DSM 20343. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2805-2815. [PMID: 28326776 DOI: 10.1021/acs.jafc.6b05495] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Consumption of legumes is highly recommended due to their beneficial properties. Thus, there is a great interest in developing new legume-based products with good texture. In situ produced microbial exopolysaccharides (EPS) are regarded as efficient texture modifiers in the food industry. In this study, soybean and fava bean flours with different levels of added sucrose were fermented by Leuconostoc mesenteroides DSM 20343. After fermentation, a significant increase in viscosity was observed. Sugars, glucans, fructans, mannitol, lactic acid, and acetic acid were quantified to follow the EPS and metabolite production. By treating the fermented doughs selectively with dextranase or levanase, the major role of glucans in viscosity improvement was confirmed. The roles of microbial fructansucrase and endogenous α-galactosidase in degradation of raffinose family oligosaccharides (RFO) were also investigated. This study shows the potential of Ln. mesenteroides DSM 20343 in tailoring viscosity and RFO profiles in soybean and fava bean flours.
Collapse
Affiliation(s)
- Yan Xu
- Department of Food and Environmental Sciences, University of Helsinki , P.O. Box 27, FI-00014 Helsinki, Finland
| | - Rossana Coda
- Department of Food and Environmental Sciences, University of Helsinki , P.O. Box 27, FI-00014 Helsinki, Finland
| | - Qiao Shi
- Department of Food and Environmental Sciences, University of Helsinki , P.O. Box 27, FI-00014 Helsinki, Finland
| | - Päivi Tuomainen
- Department of Food and Environmental Sciences, University of Helsinki , P.O. Box 27, FI-00014 Helsinki, Finland
| | - Kati Katina
- Department of Food and Environmental Sciences, University of Helsinki , P.O. Box 27, FI-00014 Helsinki, Finland
| | - Maija Tenkanen
- Department of Food and Environmental Sciences, University of Helsinki , P.O. Box 27, FI-00014 Helsinki, Finland
| |
Collapse
|
124
|
Nikinmaa M, Alam SA, Raulio M, Katina K, Kajala I, Nordlund E, Sozer N. Bioprocessing of bran with exopolysaccharide producing microorganisms as a tool to improve expansion and textural properties of extruded cereal foams with high dietary fibre content. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.11.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
125
|
Draft Genome Sequence of Lactobacillus reuteri 121, a Source of α-Glucan and β-Fructan Exopolysaccharides. GENOME ANNOUNCEMENTS 2017; 5:5/10/e01691-16. [PMID: 28280024 PMCID: PMC5347244 DOI: 10.1128/genomea.01691-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The probiotic bacterium Lactobacillus reuteri 121 is a well-known producer of diverse homoexopolysaccharides (α-glucans and β-fructans) from sucrose and maltodextrins/starches of interest for food applications. Here, we report the draft genome sequence of this strain, with a focus on carbohydrate-active enzymes.
Collapse
|
126
|
Xu Y, Wang Y, Coda R, Säde E, Tuomainen P, Tenkanen M, Katina K. In situ synthesis of exopolysaccharides by Leuconostoc spp. and Weissella spp. and their rheological impacts in fava bean flour. Int J Food Microbiol 2017; 248:63-71. [PMID: 28258980 DOI: 10.1016/j.ijfoodmicro.2017.02.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/05/2017] [Accepted: 02/20/2017] [Indexed: 11/29/2022]
Abstract
Fava bean flour is regarded as a potential plant-based protein source, but the addition of it at high concentration is restricted by its poor texture-improving ability and by anti-nutritional factors (ANF). Exopolysaccharides (EPS) produced by lactic acid bacteria (LAB) are regarded as good texture modifiers. In this study, fava bean flour was fermented with Leuconostoc spp. and Weissella spp. with or without sucrose addition, in order to evaluate their potential in EPS production. The contents of free sugars, organic acids, mannitol and EPS in all fermented fava bean doughs were measured. Rheological properties of sucrose-enriched doughs, including viscosity flow curves, hysteresis loop and dynamic oscillatory sweep curves, were measured after fermentation. As one of the ANF, the degradation of raffinose family oligosaccharides (RFO) was also studied by analyzing RFO profiles of different doughs. Quantification of EPS revealed the potential of Leuconostoc pseudomesenteroides DSM 20193 in EPS production, and the rheological analysis showed that the polymers produced by this strain has the highest thickening and gelling capability. Furthermore, the viscous fava bean doughs containing plant proteins and synthesized in situ EPS may have a potential application in the food industry and fulfill consumers' increasing demands for "clean labels" and plant-originated food materials.
Collapse
Affiliation(s)
- Yan Xu
- Department of Food and Environmental Sciences, University of Helsinki, P.O. Box 27, FI-00014 University of Helsinki, Finland.
| | - Yaqin Wang
- Department of Food and Environmental Sciences, University of Helsinki, P.O. Box 27, FI-00014 University of Helsinki, Finland
| | - Rossana Coda
- Department of Food and Environmental Sciences, University of Helsinki, P.O. Box 27, FI-00014 University of Helsinki, Finland
| | - Elina Säde
- Division of Food Hygiene and Environmental Health, University of Helsinki, P.O. Box 66, FI-00014 University of Helsinki, Finland
| | - Päivi Tuomainen
- Department of Food and Environmental Sciences, University of Helsinki, P.O. Box 27, FI-00014 University of Helsinki, Finland
| | - Maija Tenkanen
- Department of Food and Environmental Sciences, University of Helsinki, P.O. Box 27, FI-00014 University of Helsinki, Finland
| | - Kati Katina
- Department of Food and Environmental Sciences, University of Helsinki, P.O. Box 27, FI-00014 University of Helsinki, Finland
| |
Collapse
|
127
|
Microbial Ecology and Process Technology of Sourdough Fermentation. ADVANCES IN APPLIED MICROBIOLOGY 2017; 100:49-160. [PMID: 28732554 DOI: 10.1016/bs.aambs.2017.02.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
From a microbiological perspective, sourdough is to be considered as a specific and stressful ecosystem, harboring yeasts and lactic acid bacteria (LAB), that is used for the production of baked goods. With respect to the metabolic impact of the sourdough microbiota, acidification (LAB), flavor formation (LAB and yeasts), and leavening (yeasts and heterofermentative LAB species) are most noticeable. Three distinct types of sourdough fermentation processes can be discerned based on the inocula applied, namely backslopped ones (type 1), those initiated with starter cultures (type 2), and those initiated with a starter culture followed by backslopping (type 3). A sourdough-characteristic LAB species is Lactobacillus sanfranciscensis. A sourdough-characteristic yeast species is Candida humilis. Although it has been suggested that the microbiota of a specific sourdough may be influenced by its geographical origin, region specificity often seems to be an artefact resulting from interpretation of the research data, as those are dependent on sampling, isolation, and identification procedures. It is however clear that sourdough-adapted microorganisms are able to withstand stress conditions encountered during their growth. Based on the technological setup, type 0 (predoughs), type I (artisan bakery firm sourdoughs), type II (industrial liquid sourdoughs), and type III sourdoughs (industrial dried sourdoughs) can be distinguished. The production of all sourdoughs, independent of their classification, depends on several intrinsic and extrinsic factors. Both the flour (type, quality status, etc.) and the process parameters (fermentation temperature, pH and pH evolution, dough yield, water activity, oxygen tension, backslopping procedure and fermentation duration, etc.) determine the dynamics and outcome of (backslopped) sourdough fermentation processes.
Collapse
|
128
|
Chen XY, Levy C, Gänzle MG. Structure-function relationships of bacterial and enzymatically produced reuterans and dextran in sourdough bread baking application. Int J Food Microbiol 2016; 239:95-102. [DOI: 10.1016/j.ijfoodmicro.2016.06.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 05/09/2016] [Accepted: 06/10/2016] [Indexed: 11/24/2022]
|
129
|
Gänzle M, Ripari V. Composition and function of sourdough microbiota: From ecological theory to bread quality. Int J Food Microbiol 2016; 239:19-25. [DOI: 10.1016/j.ijfoodmicro.2016.05.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 11/30/2022]
|
130
|
Ruiz-Rodríguez L, Bleckwedel J, Eugenia Ortiz M, Pescuma M, Mozzi F. Lactic Acid Bacteria. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Luciana Ruiz-Rodríguez
- Centro de Referencia para Lactobacilos (CERELA)-CONICET; Chacabuco 145. San Miguel de Tucumán 4000 Argentina
| | - Juliana Bleckwedel
- Centro de Referencia para Lactobacilos (CERELA)-CONICET; Chacabuco 145. San Miguel de Tucumán 4000 Argentina
| | - Maria Eugenia Ortiz
- Centro de Referencia para Lactobacilos (CERELA)-CONICET; Chacabuco 145. San Miguel de Tucumán 4000 Argentina
| | - Micaela Pescuma
- Centro de Referencia para Lactobacilos (CERELA)-CONICET; Chacabuco 145. San Miguel de Tucumán 4000 Argentina
| | - Fernanda Mozzi
- Centro de Referencia para Lactobacilos (CERELA)-CONICET; Chacabuco 145. San Miguel de Tucumán 4000 Argentina
| |
Collapse
|
131
|
Silow C, Axel C, Zannini E, Arendt EK. Current status of salt reduction in bread and bakery products – A review. J Cereal Sci 2016. [DOI: 10.1016/j.jcs.2016.10.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
132
|
Structural determinants of alternating (α1 → 4) and (α1 → 6) linkage specificity in reuteransucrase of Lactobacillus reuteri. Sci Rep 2016; 6:35261. [PMID: 27748434 PMCID: PMC5066211 DOI: 10.1038/srep35261] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/26/2016] [Indexed: 12/29/2022] Open
Abstract
The glucansucrase GTFA of Lactobacillus reuteri 121 produces an α-glucan (reuteran) with a large amount of alternating (α1 → 4) and (α1 → 6) linkages. The mechanism of alternating linkage formation by this reuteransucrase has remained unclear. GTFO of the probiotic bacterium Lactobacillus reuteri ATCC 55730 shows a high sequence similarity (80%) with GTFA of L. reuteri 121; it also synthesizes an α-glucan with (α1 → 4) and (α1 → 6) linkages, but with a clearly different ratio compared to GTFA. In the present study, we show that residues in loop977 (970DGKGYKGA977) and helix α4 (1083VSLKGA1088) are main determinants for the linkage specificity difference between GTFO and GTFA, and hence are important for the synthesis of alternating (α1 → 4) and (α1 → 6) linkages in GTFA. More remote acceptor substrate binding sites (i.e.+3) are also involved in the determination of alternating linkage synthesis, as shown by structural analysis of the oligosaccharides produced using panose and maltotriose as acceptor substrate. Our data show that the amino acid residues at acceptor substrate binding sites (+1, +2, +3…) together form a distinct physicochemical micro-environment that determines the alternating (α1 → 4) and (α1 → 6) linkages synthesis in GTFA.
Collapse
|
133
|
Zhang GH, Wu T, Sadiq FA, Yang HY, Liu TJ, Ruan H, He GQ. A study revealing the key aroma compounds of steamed bread made by Chinese traditional sourdough. J Zhejiang Univ Sci B 2016; 17:787-797. [PMID: 27704748 PMCID: PMC5064172 DOI: 10.1631/jzus.b1600130] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/23/2016] [Indexed: 11/11/2022]
Abstract
Aroma of Chinese steamed bread (CSB) is one of the important parameters that determines the overall quality attributes and consumer acceptance. However, the aroma profile of CSB still remains poorly understood, mainly because of relying on only a single method for aroma extraction in previous studies. Therefore, the objective of this study was to determine the volatile aroma compounds of five different samples of CSB using three different aroma extraction methods, namely solid-phase microextraction (SPME), simultaneous distillation-extraction (SDE), and purge and trap (P&T). All samples showed a unique aroma profile, which could be attributed to their unique microbial consortia. (E)-2-Nonenal and (E,E)-2,4-decadienal were the most prevalent aromatic compounds revealed by SDE, which have not been reported previously, while ethanol and acetic acid proved to be the most dominant compounds by both SPME and P&T. Our approach of combining three different aroma extraction methods provided better insights into the aroma profile of CSB, which had remained largely unknown in previous studies.
Collapse
Affiliation(s)
- Guo-hua Zhang
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Tao Wu
- College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Faizan A. Sadiq
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Food Microbiology, Zhejiang University, Hangzhou 310058, China
| | - Huan-yi Yang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Food Microbiology, Zhejiang University, Hangzhou 310058, China
| | - Tong-jie Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Food Microbiology, Zhejiang University, Hangzhou 310058, China
| | - Hui Ruan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Food Microbiology, Zhejiang University, Hangzhou 310058, China
| | - Guo-qing He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Food Microbiology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
134
|
Characterisation of lactic acid bacteria from Turkish sourdough and determination of their exopolysaccharide (EPS) production characteristics. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.03.030] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
135
|
Peyer LC, Zannini E, Arendt EK. Lactic acid bacteria as sensory biomodulators for fermented cereal-based beverages. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.05.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
136
|
Meng X, Gangoiti J, Bai Y, Pijning T, Van Leeuwen SS, Dijkhuizen L. Structure-function relationships of family GH70 glucansucrase and 4,6-α-glucanotransferase enzymes, and their evolutionary relationships with family GH13 enzymes. Cell Mol Life Sci 2016; 73:2681-706. [PMID: 27155661 PMCID: PMC4919382 DOI: 10.1007/s00018-016-2245-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/13/2022]
Abstract
Lactic acid bacteria (LAB) are known to produce large amounts of α-glucan exopolysaccharides. Family GH70 glucansucrase (GS) enzymes catalyze the synthesis of these α-glucans from sucrose. The elucidation of the crystal structures of representative GS enzymes has advanced our understanding of their reaction mechanism, especially structural features determining their linkage specificity. In addition, with the increase of genome sequencing, more and more GS enzymes are identified and characterized. Together, such knowledge may promote the synthesis of α-glucans with desired structures and properties from sucrose. In the meantime, two new GH70 subfamilies (GTFB- and GTFC-like) have been identified as 4,6-α-glucanotransferases (4,6-α-GTs) that represent novel evolutionary intermediates between the family GH13 and "classical GH70 enzymes". These enzymes are not active on sucrose; instead, they use (α1 → 4) glucans (i.e. malto-oligosaccharides and starch) as substrates to synthesize novel α-glucans by introducing linear chains of (α1 → 6) linkages. All these GH70 enzymes are very interesting biocatalysts and hold strong potential for applications in the food, medicine and cosmetic industries. In this review, we summarize the microbiological distribution and the structure-function relationships of family GH70 enzymes, introduce the two newly identified GH70 subfamilies, and discuss evolutionary relationships between family GH70 and GH13 enzymes.
Collapse
Affiliation(s)
- Xiangfeng Meng
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands
| | - Joana Gangoiti
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands
| | - Yuxiang Bai
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands
| | - Tjaard Pijning
- Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands
| | - Sander S Van Leeuwen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands
| | - Lubbert Dijkhuizen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands.
| |
Collapse
|
137
|
Manini F, Casiraghi M, Poutanen K, Brasca M, Erba D, Plumed-Ferrer C. Characterization of lactic acid bacteria isolated from wheat bran sourdough. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.10.045] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
138
|
Lhomme E, Urien C, Legrand J, Dousset X, Onno B, Sicard D. Sourdough microbial community dynamics: An analysis during French organic bread-making processes. Food Microbiol 2016; 53:41-50. [DOI: 10.1016/j.fm.2014.11.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/20/2014] [Accepted: 11/28/2014] [Indexed: 10/24/2022]
|
139
|
Rye bran as fermentation matrix boosts in situ dextran production by Weissella confusa compared to wheat bran. Appl Microbiol Biotechnol 2015; 100:3499-510. [PMID: 26649737 DOI: 10.1007/s00253-015-7189-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/15/2015] [Accepted: 11/19/2015] [Indexed: 12/28/2022]
Abstract
The consumption of fiber-rich foods such as cereal bran is highly recommended due to its beneficial health effects. Pre-fermentation of bran with lactic acid bacteria can be used to improve the otherwise impaired flavor and textural qualities of bran-rich products. These positive effects are attributed to enzymatic modification of bran components and the production of functional metabolites like organic acids and exopolysaccharides such as dextrans. The aim of this study was to investigate dextran production in wheat and rye bran by fermentation with two Weissella confusa strains. Bran raw materials were analyzed for their chemical compositions and mineral content. Microbial growth and acidification kinetics were determined from the fermentations. Both strains produced more dextran in rye bran in which the fermentation-induced acidification was slower and the acidification lag phase longer than in wheat bran. Higher dextran production in rye bran is expected to be due to the longer period of optimal pH for dextran synthesis during fermentation. The starch content of wheat bran was higher, which may promote isomaltooligosaccharide formation at the expense of dextran production. W. confusa Cab3 produced slightly higher amounts of dextran than W. confusa VTT E-90392 in all raw materials. Fermentation with W. confusa Cab3 also resulted in lower residual fructose content which has technological relevance. The results indicate that wheat and particularly rye bran are promising matrices for producing technologically significant amounts of dextran, which facilitates the use of nutritionally valuable raw bran in food applications.
Collapse
|
140
|
Torino MI, Font de Valdez G, Mozzi F. Biopolymers from lactic acid bacteria. Novel applications in foods and beverages. Front Microbiol 2015; 6:834. [PMID: 26441845 PMCID: PMC4566036 DOI: 10.3389/fmicb.2015.00834] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/29/2015] [Indexed: 02/03/2023] Open
Abstract
Lactic acid bacteria (LAB) are microorganisms widely used in the fermented food industry worldwide. Certain LAB are able to produce exopolysaccharides (EPS) either attached to the cell wall (capsular EPS) or released to the extracellular environment (EPS). According to their composition, LAB may synthesize heteropolysaccharides or homopolysaccharides. A wide diversity of EPS are produced by LAB concerning their monomer composition, molecular mass, and structure. Although EPS-producing LAB strains have been traditionally applied in the manufacture of dairy products such as fermented milks and yogurts, their use in the elaboration of low-fat cheeses, diverse type of sourdough breads, and certain beverages are some of the novel applications of these polymers. This work aims to collect the most relevant issues of the former reviews concerning the monomer composition, structure, and yields and biosynthetic enzymes of EPS from LAB; to describe the recently characterized EPS and to present the application of both EPS-producing strains and their polymers in the fermented (specifically beverages and cereal-based) food industry.
Collapse
Affiliation(s)
- María I. Torino
- Technology Department, Centro de Referencia para Lactobacilos – Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de TucumánArgentina
| | | | - Fernanda Mozzi
- Technology Department, Centro de Referencia para Lactobacilos – Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de TucumánArgentina
| |
Collapse
|
141
|
Huang C, Miao M, Jiang B, Cui SW, Jia X, Zhang T. Polysaccharides modification through green technology: Role of ultrasonication towards improving physicochemical properties of (1-3)(1-6)-α-d-glucans. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2015.04.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
142
|
Huang C, Miao M, Janaswamy S, Hamaker BR, Li X, Jiang B. Polysaccharide Modification through Green Technology: Role of Endodextranase in Improving the Physicochemical Properties of (1→3)(1→6)-α-D-Glucan. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:6450-6456. [PMID: 26134382 DOI: 10.1021/acs.jafc.5b00472] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The structure and properties of bioengineered (1→3)(1→6)-α-D-glucan subjected to endodextranase treatment were investigated. Upon enzyme treatment, OD220 and Mw decreased substantially during the first 60 min and thereafter slowed as the modification progressed. Compared to the native glucan, the modified sample solution had a lighter opalescent, bluish-white color. The morphological analysis revealed that bioengineered glucan produced quite a few small particles after hydrolysis. The molecular weight distribution curve gradually shifted to the low Mw region with a significant broadening distribution, and the chain hydrolysis reaction followed a combination of zeroth- and first-order processes. The NMR results showed some specific α-1,6 linkages of glucan chains were cleaved with enzyme treatment. The viscosity of modified glucan solution was markedly reduced, and the Newtonian plateaus were also observed at high shear rates (10-100 1/s). The above results suggested that the modified (1→3)(1→6)-α-D-glucan showed a tailor-made solution character similar to that of arabic gum and would be used as a novel food gum substitute in the design of artificial carbohydrate-based foods.
Collapse
Affiliation(s)
| | | | - Srinivas Janaswamy
- §Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, Indiana 47907-2009, United States
| | - Bruce R Hamaker
- §Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, Indiana 47907-2009, United States
| | - Xingfeng Li
- #College of Bioscience and Bioengineering, Hebei University of Science and Technology, 70 Yuhuadonglu, Shijiazhuang, Hebei 050018, People's Republic of China
| | | |
Collapse
|
143
|
Ng’ong’ola-Manani TA, Wicklund T, Mwangwela AM, Østlie HM. Identification and Characterization of Lactic Acid Bacteria Involved in Natural and Lactic Acid Bacterial Fermentations of Pastes of Soybeans and Soybean-Maize Blends Using Culture-Dependent Techniques and Denaturing Gradient Gel Electrophoresis. FOOD BIOTECHNOL 2015. [DOI: 10.1080/08905436.2014.996894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
144
|
Gänzle MG. Enzymatic and bacterial conversions during sourdough fermentation. Food Microbiol 2013; 37:2-10. [PMID: 24230468 DOI: 10.1016/j.fm.2013.04.007] [Citation(s) in RCA: 230] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 04/11/2013] [Accepted: 04/14/2013] [Indexed: 10/26/2022]
Abstract
Enzymatic and microbial conversion of flour components during bread making determines bread quality. Metabolism of sourdough microbiota and the activity of cereal enzymes are interdependent. Acidification, oxygen consumption, and thiols accumulation by microbial metabolism modulate the activity of cereal enzymes. In turn, cereal enzymes provide substrates for bacterial growth. This review highlights the role of cereal enzymes and the metabolism of lactic acid bacteria in conversion of carbohydrates, proteins, phenolic compounds and lipids. Heterofermentative lactic acid bacteria prevailing in wheat and rye sourdoughs preferentially metabolise sucrose and maltose; the latter is released by cereal enzymes during fermentation. Sucrose supports formation of acetate by heterofermentative lactobacilli, and the formation of exopolysaccharides. The release of maltose and glucose by cereal enzymes during fermentation determines the exopolysaccharide yield in sourdough fermentations. Proteolysis is dependent on cereal proteases. Peptidase activities of sourdough lactic acid bacteria determine the accumulation of (bioactive) peptides, amino acids, and amino acid metabolites in dough and bread. Enzymatic conversion and microbial metabolism of phenolic compounds is relevant in sorghum and millet containing high levels of phenolic compounds. The presence of phenolic compounds with antimicrobial activity in sorghum selects for fermentation microbiota that are resistant to the phenolic compounds.
Collapse
Affiliation(s)
- Michael G Gänzle
- University of Alberta, Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Centre, Edmonton, Canada T6G 2P5.
| |
Collapse
|