101
|
Englezos V, Cachón DC, Rantsiou K, Blanco P, Petrozziello M, Pollon M, Giacosa S, Río Segade S, Rolle L, Cocolin L. Effect of mixed species alcoholic fermentation on growth and malolactic activity of lactic acid bacteria. Appl Microbiol Biotechnol 2019; 103:7687-7702. [PMID: 31388732 DOI: 10.1007/s00253-019-10064-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 01/06/2023]
Abstract
In recent years, there is an increasing interest from the winemaking industry for the use of mixed fermentations with Starmerella bacillaris (synonym Candida zemplinina) and Saccharomyces cerevisiae, due to their ability to modulate metabolites of oenological interest. The current study was carried out to elucidate the effect of this fermentation protocol on the growth and malolactic activity of lactic acid bacteria (LAB) used for malolactic fermentation (MLF) and on the chemical and volatile profile of Nebbiolo wines and their chromatic characteristics. To this end, two LAB species, namely Lactobacillus plantarum and Oenococcus oeni, were inoculated at the beginning and at the end of the alcoholic fermentation (AF) performed by pure and mixed yeast using the abovementioned yeasts. The different yeast inoculation protocols and the combination of species tested influenced greatly the interactions and behavior of the inoculated yeasts and LAB during AF and MLF. For both LAB species, inoculation timing was critical to how rapidly MLF started and finished. Fermentation inoculated with L. plantarum, at the beginning of the AF, completed MLF faster than those inoculated with O. oeni. The presence of Starm. bacillaris in mixed fermentation promoted LAB growth and activity, in particular, O. oeni. Furthermore, LAB species choice had a greater impact on the volatile and chromatic profile of the wines than inoculation time. These findings reveal new knowledge about the importance of LAB species choice and inoculation time to ensure fast MLF completion and to improve wine characteristics in mixed fermentation with Starm. bacillaris and S. cerevisiae.
Collapse
Affiliation(s)
- Vasileios Englezos
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Largo Braccini 2, 10095, Grugliasco, Italy
| | - David Castrillo Cachón
- Estación de Viticultura e Enoloxía de Galicia (EVEGA-AGACAL), Ponte San Clodio s/n., 32428, Ourense, Leiro, Spain
| | - Kalliopi Rantsiou
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Largo Braccini 2, 10095, Grugliasco, Italy
| | - Pilar Blanco
- Estación de Viticultura e Enoloxía de Galicia (EVEGA-AGACAL), Ponte San Clodio s/n., 32428, Ourense, Leiro, Spain
| | - Maurizio Petrozziello
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca Viticoltura ed Enologia - CREA - VE, Via P. Micca 35, Asti, Italy
| | - Matteo Pollon
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Largo Braccini 2, 10095, Grugliasco, Italy
| | - Simone Giacosa
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Largo Braccini 2, 10095, Grugliasco, Italy
| | - Susana Río Segade
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Largo Braccini 2, 10095, Grugliasco, Italy
| | - Luca Rolle
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Largo Braccini 2, 10095, Grugliasco, Italy
| | - Luca Cocolin
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Largo Braccini 2, 10095, Grugliasco, Italy.
| |
Collapse
|
102
|
Gao F, Chen J, Xiao J, Cheng W, Zheng X, Wang B, Shi X. Microbial community composition on grape surface controlled by geographical factors of different wine regions in Xinjiang, China. Food Res Int 2019; 122:348-360. [DOI: 10.1016/j.foodres.2019.04.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 02/15/2019] [Accepted: 04/13/2019] [Indexed: 10/27/2022]
|
103
|
Engineering Synthetic Microbial Communities through a Selective Biofilm Cultivation Device for the Production of Fermented Beverages. Microorganisms 2019; 7:microorganisms7070206. [PMID: 31330825 PMCID: PMC6680646 DOI: 10.3390/microorganisms7070206] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 11/24/2022] Open
Abstract
Production of Cambodian rice wine involves complex microbial consortia. Indeed, previous studies focused on traditional microbial starters used for this product revealed that three microbial strains with complementary metabolic activities are required for an effective fermentation, i.e., filamentous fungi (Rhizopus oryzae), yeast (Saccharomycescerevisiae), and lactic acid bacteria (Lactobacillusplantarum). Modulating the ratio between these three key players led to significant differences, not only in terms of ethanol and organic acid production, but also on the profile of volatile compounds, in comparison with natural communities. However, we observed that using an equal ratio of spores/cells of the three microbial strains during inoculation led to flavor profile and ethanol yield close to that obtained through the use of natural communities. Compartmentalization of metabolic tasks through the use of a biofilm cultivation device allows further improvement of the whole fermentation process, notably by increasing the amount of key components of the aroma profile of the fermented beverage (i.e., mainly phenylethyl alcohol, isobutyl alcohol, isoamyl alcohol, and 2-methyl-butanol) and reducing the amount of off-flavor compounds. This study is a step forward in our understanding of interkingdom microbial interactions with strong application potential in food biotechnology.
Collapse
|
104
|
Coelho C, Gougeon RD, Perepelkine L, Alexandre H, Guzzo J, Weidmann S. Chemical Transfers Occurring Through Oenococcus oeni Biofilm in Different Enological Conditions. Front Nutr 2019; 6:95. [PMID: 31294028 PMCID: PMC6603213 DOI: 10.3389/fnut.2019.00095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/07/2019] [Indexed: 11/30/2022] Open
Abstract
Chardonnay wine malolactic fermentations were carried out to evaluate the chemical transfers occurring at the wood/wine interface in the presence of two different bacterial lifestyles. To do this, Oenococcus oeni was inoculated into must and wine in its planktonic and biofilm lifestyles, whether adhering or not to oak chips, leading to three distinct enological conditions: (i) post-alcoholic fermentation inoculation in wine in the absence of oak chips, (ii) post-alcoholic fermentation inoculation in wine in the presence of oak chips, and (iii) co-inoculation of both Saccharomyces cerevisiae and O. oeni directly in Chardonnay musts in the presence of oak chips. Classical microbiological and physico-chemical parameters analyzed during the fermentation processes confirmed that alcoholic fermentation was completed identically regardless of the enological conditions, and that once O. oeni had acquired a biofilm lifestyle in the presence or absence of oak, malolactic fermentation occurred faster and with better reproducibility compared to planktonic lifestyles. Analyses of volatile components (higher alcohols and wood aromas) and non-volatile components (Chardonnay grape polyphenols) carried out in the resulting wines revealed chemical differences, particularly when bacterial biofilms were present at the wood interface. This study revealed the non-specific trapping activity of biofilm networks in the presence of wood and grape compounds regardless of the enological conditions. Changes of concentrations in higher alcohols reflected the fermentation bioactivity of bacterial biofilms on wood surfaces. These chemical transfers were statistically validated by an untargeted approach using Excitation Emission Matrices of Fluorescence combined with multivariate analysis to discriminate innovative enological practices during winemaking and to provide winemakers with an optical tool for validating the biological and chemical differentiations occurring in wine that result from their decisions.
Collapse
Affiliation(s)
- Christian Coelho
- UMR A 02.102 PAM Laboratoire PCAV AgroSup Dijon, Université de Bourgogne, Institut Universitaire de la Vigne et du Vin Jules Guyot, Dijon, France
| | - Régis D Gougeon
- UMR A 02.102 PAM Laboratoire PCAV AgroSup Dijon, Université de Bourgogne, Institut Universitaire de la Vigne et du Vin Jules Guyot, Dijon, France
| | - Luc Perepelkine
- SAAT Sayens, Maison Régionale de l'Innovation, Dijon, France
| | - Hervé Alexandre
- UMR A 02.102 PAM Laboratoire VAlMiS AgroSup Dijon, Université de Bourgogne, Institut Universitaire de la Vigne et du Vin Jules Guyot, Dijon, France
| | - Jean Guzzo
- UMR A 02.102 PAM Laboratoire VAlMiS AgroSup Dijon, Université de Bourgogne, Institut Universitaire de la Vigne et du Vin Jules Guyot, Dijon, France
| | - Stéphanie Weidmann
- UMR A 02.102 PAM Laboratoire VAlMiS AgroSup Dijon, Université de Bourgogne, Institut Universitaire de la Vigne et du Vin Jules Guyot, Dijon, France
| |
Collapse
|
105
|
Sirén K, Mak SST, Melkonian C, Carøe C, Swiegers JH, Molenaar D, Fischer U, Gilbert MTP. Taxonomic and Functional Characterization of the Microbial Community During Spontaneous in vitro Fermentation of Riesling Must. Front Microbiol 2019; 10:697. [PMID: 31024486 PMCID: PMC6465770 DOI: 10.3389/fmicb.2019.00697] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022] Open
Abstract
Although there is an extensive tradition of research into the microbes that underlie the winemaking process, much remains to be learnt. We combined the high-throughput sequencing (HTS) tools of metabarcoding and metagenomics, to characterize how microbial communities of Riesling musts sampled at four different vineyards, and their subsequent spontaneously fermented derivatives, vary. We specifically explored community variation relating to three points: (i) how microbial communities vary by vineyard; (ii) how community biodiversity changes during alcoholic fermentation; and (iii) how microbial community varies between musts that successfully complete alcoholic fermentation and those that become 'stuck' in the process. Our metabarcoding data showed a general influence of microbial composition at the vineyard level. Two of the vineyards (4 and 5) had strikingly a change in the differential abundance of Metschnikowia. We therefore additionally performed shotgun metagenomic sequencing on a subset of the samples to provide preliminary insights into the potential relevance of this observation, and used the data to both investigate functional potential and reconstruct draft genomes (bins). At these two vineyards, we also observed an increase in non-Saccharomycetaceae fungal functions, and a decrease in bacterial functions during the early fermentation stage. The binning results yielded 11 coherent bins, with both vineyards sharing the yeast bins Hanseniaspora and Saccharomyces. Read recruitment and functional analysis of this data revealed that during fermentation, a high abundance of Metschnikowia might serve as a biocontrol agent against bacteria, via a putative iron depletion pathway, and this in turn could help Saccharomyces dominate the fermentation. During alcoholic fermentation, we observed a general decrease in biodiversity in both the metabarcoding and metagenomic data. Unexpected Micrococcus behavior was observed in vineyard 4 according to metagenomic analyses based on reference-based read mapping. Analysis of open reading frames using these data showed an increase of functions assigned to class Actinobacteria in the end of fermentation. Therefore, we hypothesize that bacteria might sit-and-wait until Saccharomyces activity slows down. Complementary approaches to annotation instead of relying a single database provide more coherent information true species. Lastly, our metabarcoding data enabled us to identify a relationship between stuck fermentations and Starmerella abundance. Given that robust chemical analysis indicated that although the stuck samples contained residual glucose, all fructose had been consumed, we hypothesize that this was because fructophilic Starmerella, rather than Saccharomyces, dominated these fermentations. Overall, our results showcase the different ways in which metagenomic analyses can improve our understanding of the wine alcoholic fermentation process.
Collapse
Affiliation(s)
- Kimmo Sirén
- Institute for Viticulture and Oenology, Dienstleistungszentrum Ländlicher Raum Rheinpfalz, Neustadt an der Weinstraße, Germany
- Department of Chemistry, University of Kaiserslautern, Kaiserslautern, Germany
| | - Sarah Siu Tze Mak
- Section for Evolutionary Genomics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Chrats Melkonian
- Systems Bioinformatics, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Christian Carøe
- Section for Evolutionary Genomics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | | | - Douwe Molenaar
- Systems Bioinformatics, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ulrich Fischer
- Institute for Viticulture and Oenology, Dienstleistungszentrum Ländlicher Raum Rheinpfalz, Neustadt an der Weinstraße, Germany
| | - M. Thomas P. Gilbert
- Section for Evolutionary Genomics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
106
|
Sirén K, Mak SST, Fischer U, Hansen LH, Gilbert MTP. Multi-omics and potential applications in wine production. Curr Opin Biotechnol 2019; 56:172-178. [DOI: 10.1016/j.copbio.2018.11.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/17/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022]
|
107
|
Kállai Z, Pfliegler WP, Mitercsák J, Szendei G, Sipiczki M. Preservation of diversity and oenological properties of wine yeasts during long-term laboratory maintenance: A study of strains of a century-old Tokaj wine yeast collection. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
108
|
Measures to improve wine malolactic fermentation. Appl Microbiol Biotechnol 2019; 103:2033-2051. [DOI: 10.1007/s00253-018-09608-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 01/06/2023]
|
109
|
Vitulo N, Lemos WJF, Calgaro M, Confalone M, Felis GE, Zapparoli G, Nardi T. Bark and Grape Microbiome of Vitis vinifera: Influence of Geographic Patterns and Agronomic Management on Bacterial Diversity. Front Microbiol 2019; 9:3203. [PMID: 30671035 PMCID: PMC6331396 DOI: 10.3389/fmicb.2018.03203] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/11/2018] [Indexed: 12/30/2022] Open
Abstract
In recent years, the concept of “microbial terroir” has been introduced in the frame of the more renowned notion of “vitivinicultural terroir,’ since several studies demonstrated that wine characteristics are related to regional microbial community compositions. Most of the existing research focused on grape berries microbiota, since it can directly impact wine quality. In this work we studied, for the first time through next-generation sequencing, the epiphytic bacterial community of vine bark and its relationships with grape microbiota. The study was carried out in two Italian wine appellations (situated in different regions) to explore the impact of biogeography, and the influence of two agronomical practices (biodynamic and conventional) was evaluated as well. Overall, our results show that grapevine bark harbors a rich epiphytic microbiota and displays a higher microbial biodiversity than grape berry. Moreover, this study suggests that geographic and anthropogenic factors impact both bark and grape bacteriomes, but to a different extent. The evidence of a “microbial terroir” seems to be even more marked in bark than in berries, possibly due to its permanence over time and to its physical proximity with soil. The importance of vine trunk bark, as potential source of inoculum for grapes and as interesting bacterial diversity habitat, is evidenced. This opens new fields of investigation, not only for researchers that aim at describing this little-known habitat within the vineyard, but also for stakeholders from the wine industry that want to understand the roles of microorganisms on the entire winemaking process, from vineyard to cellar.
Collapse
Affiliation(s)
- Nicola Vitulo
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Matteo Calgaro
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Marco Confalone
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Giovanna E Felis
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Tiziana Nardi
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics-CREA, Conegliano, Italy
| |
Collapse
|
110
|
Deveau A, Bonito G, Uehling J, Paoletti M, Becker M, Bindschedler S, Hacquard S, Hervé V, Labbé J, Lastovetsky OA, Mieszkin S, Millet LJ, Vajna B, Junier P, Bonfante P, Krom BP, Olsson S, van Elsas JD, Wick LY. Bacterial-fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol Rev 2018; 42:335-352. [PMID: 29471481 DOI: 10.1093/femsre/fuy008] [Citation(s) in RCA: 372] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 02/16/2018] [Indexed: 12/14/2022] Open
Abstract
Fungi and bacteria are found living together in a wide variety of environments. Their interactions are significant drivers of many ecosystem functions and are important for the health of plants and animals. A large number of fungal and bacterial families engage in complex interactions that lead to critical behavioural shifts of the microorganisms ranging from mutualism to antagonism. The importance of bacterial-fungal interactions (BFI) in environmental science, medicine and biotechnology has led to the emergence of a dynamic and multidisciplinary research field that combines highly diverse approaches including molecular biology, genomics, geochemistry, chemical and microbial ecology, biophysics and ecological modelling. In this review, we discuss recent advances that underscore the roles of BFI across relevant habitats and ecosystems. A particular focus is placed on the understanding of BFI within complex microbial communities and in regard of the metaorganism concept. We also discuss recent discoveries that clarify the (molecular) mechanisms involved in bacterial-fungal relationships, and the contribution of new technologies to decipher generic principles of BFI in terms of physical associations and molecular dialogues. Finally, we discuss future directions for research in order to stimulate synergy within the BFI research area and to resolve outstanding questions.
Collapse
Affiliation(s)
- Aurélie Deveau
- Université de Lorraine, INRA, UMR IAM, 54280 Champenoux, France
| | - Gregory Bonito
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Jessie Uehling
- Biology Department, Duke University, Box 90338, Durham, NC 27705, USA.,Plant and Microbial Biology, University of California, Berkeley, CA 94703, USA
| | - Mathieu Paoletti
- Institut de Biologie et Génétique Cellulaire, UMR 5095 CNRS et Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux cedex, France
| | - Matthias Becker
- IGZ, Leibniz-Institute of Vegetable and Ornamental Crops, 14979 Großbeeren, Germany
| | - Saskia Bindschedler
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Stéphane Hacquard
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Vincent Hervé
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland.,Laboratory of Biogeosciences, Institute of Earth Surface Dynamics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Jessy Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.,Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Olga A Lastovetsky
- Graduate Field of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Sophie Mieszkin
- Université de Lorraine, INRA, UMR IAM, 54280 Champenoux, France
| | - Larry J Millet
- Joint Institute for Biological Science, University of Tennessee, and the Biosciences Division of Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Balázs Vajna
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Paola Bonfante
- Department of Life Science and Systems Biology, University of Torino, 10125 Torino, Italy
| | - Bastiaan P Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry, G. Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Stefan Olsson
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China
| | - Jan Dirk van Elsas
- Microbial Ecology group, GELIFES, University of Groningen, 9747 Groningen, The Netherlands
| | - Lukas Y Wick
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
111
|
Kok CR, Hutkins R. Yogurt and other fermented foods as sources of health-promoting bacteria. Nutr Rev 2018; 76:4-15. [DOI: 10.1093/nutrit/nuy056] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Car Reen Kok
- Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska, USA
| | - Robert Hutkins
- Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska, USA
| |
Collapse
|
112
|
|
113
|
Managing wine quality using Torulaspora delbrueckii and Oenococcus oeni starters in mixed fermentations of a red Barbera wine. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3161-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
114
|
Cell-to-cell contact mechanism modulates Starmerella bacillaris death in mixed culture fermentations with Saccharomyces cerevisiae. Int J Food Microbiol 2018; 289:106-114. [PMID: 30223194 DOI: 10.1016/j.ijfoodmicro.2018.09.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 01/17/2023]
Abstract
The use of mixed culture fermentations with selected Starmerella bacillaris and Saccharomyces cerevisiae strains is gaining winemaking attention, mainly due to their ability to enhance particular characteristics in the resulting wines. In this context, yeast interspecies interactions during fermentation have a fundamental role to determine the desired product characteristics, since they may modulate yeast growth and as a consequence metabolite production. In order to get an insight into these interactions, the growth and death kinetics of the abovementioned species were investigated in pure and mixed culture fermentations, using cv. Nebbiolo grape must. Trials were conducted in flasks but also in a double-compartment fermentation system in which cells of the two species were kept separate by a filter membrane. Although the two species had similar growth pattern during the first days of fermentation, Starm. bacillaris died earlier when tested in the flask than in the double-compartment fermentor. The early death of Starm. bacillaris seemed to be not caused by nutrient limitation nor by accumulation of growth inhibitory compounds (which were not measured in the present study). Rather, cell-to-cell contact mechanism, dependent on the presence of viable S. cerevisiae cells, appears to be responsible for the observations made. These results contribute to better understand the factors that influence Starm. bacillaris death during wine fermentations.
Collapse
|
115
|
Miranda-Castilleja DE, Martínez-Peniche RÁ, Nadal Roquet-Jalmar M, Aldrete-Tapia JA, Arvizu-Medrano SM. Enological Qualities and Interactions Between Native Yeast and Lactic Acid Bacteria from Queretaro, Mexico. J Food Sci 2018; 83:1904-1912. [PMID: 29905939 DOI: 10.1111/1750-3841.14197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 04/04/2018] [Accepted: 04/24/2018] [Indexed: 12/01/2022]
Abstract
Despite the importance of strain compatibility, most of the enological strain selection studies are carried out separately on yeasts and lactic acid bacteria (LAB). In this study, the enological traits and interactions between native yeasts and LAB were studied. The H2 S and acetic acid production, growth rates at 8 °C, killer phenotypes, flocculation, and tolerance to must and wine inhibitors were determined for 25 Saccharomyces yeasts. The ability to grow under two wine-like conditions was also determined in 37 LAB (Oenococcus oeni and Lactobacillus plantarum). The yeast-LAB compatibility of selected strains was tested in a sequential scheme. Finally, microvinification trials were performed using two strains from each group to determine the efficiencies and quality parameters. The phenotypic characterization by the K-means and hierarchical clusters indicated a correlation between flocculation and optical density increase in simulated must and wine medium (r = -0.415) and grouped the prominent yeasts SR19, SR26, and N05 as moderately flocculent, killer, acid producing, and highly tolerant strains. Among the LAB, L. plantarum FU39 grew 230% more than the rest. With regard to interactions, LAB growth stimulation (14-fold on average) due to the previous action of yeasts, particularly of SR19, was observed. The final quality of all wines was similar, but yeast SR19 performed a faster and more efficient fermentation than did N05, Also L. plantarum FU39 fermented faster than did O. oeni VC32. The use of quantitative data, and multivariate analyses allowed an integrative approach to the selection of a compatible and efficient pair of enological yeast-LAB strains. PRACTICAL APPLICATION An alternative scheme is proposed for the joint selection of yeast and lactic acid bacteria strains, which allows us to foresee the interactions that may occur between them during winemaking. The kinetic parameters, turbidimetrically measured and analyzed by multivariate methods, simplify the detection of outstanding selectable microorganisms. This methodology can be implemented at any cellar or even any fermentative industry that aims to select compatible yeast and lactic acid bacteria.
Collapse
Affiliation(s)
- Dalia E Miranda-Castilleja
- Cuerpo Académico de Inocuidad Microbiana de los Alimentos. Depto. de Investigación y Posgrado en Alimentos, Facultad de Química, Univ. Autónoma de Querétaro, Centro Univ. S/N, Colonia Las Campanas, 76010, Querétaro, México
| | - Ramón Á Martínez-Peniche
- Cuerpo Académico de Inocuidad Microbiana de los Alimentos. Depto. de Investigación y Posgrado en Alimentos, Facultad de Química, Univ. Autónoma de Querétaro, Centro Univ. S/N, Colonia Las Campanas, 76010, Querétaro, México
| | - Montserrat Nadal Roquet-Jalmar
- Grup Vitivinicultura, Facultat d'Enologia, Dept. Bioquímica i Biotecnologia, Univ. Rovira i Virgili, Campus Sescelades, 43007, Tarragona, España
| | - J Alejandro Aldrete-Tapia
- Cuerpo Académico de Inocuidad Microbiana de los Alimentos. Depto. de Investigación y Posgrado en Alimentos, Facultad de Química, Univ. Autónoma de Querétaro, Centro Univ. S/N, Colonia Las Campanas, 76010, Querétaro, México
| | - Sofía M Arvizu-Medrano
- Cuerpo Académico de Inocuidad Microbiana de los Alimentos. Depto. de Investigación y Posgrado en Alimentos, Facultad de Química, Univ. Autónoma de Querétaro, Centro Univ. S/N, Colonia Las Campanas, 76010, Querétaro, México
| |
Collapse
|
116
|
Guzzon R, Franciosi E, Moser S, Carafa I, Larcher R. Application of ozone during grape drying for the production of straw wine. Effects on the microbiota and compositive profile of grapes. J Appl Microbiol 2018; 125:513-527. [DOI: 10.1111/jam.13774] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/27/2018] [Accepted: 03/19/2018] [Indexed: 11/28/2022]
Affiliation(s)
- R. Guzzon
- Edmund Mach Foundation San Michele all'Adige Trento Italy
| | - E. Franciosi
- Edmund Mach Foundation San Michele all'Adige Trento Italy
| | - S. Moser
- Edmund Mach Foundation San Michele all'Adige Trento Italy
| | - I. Carafa
- Edmund Mach Foundation San Michele all'Adige Trento Italy
| | - R. Larcher
- Edmund Mach Foundation San Michele all'Adige Trento Italy
| |
Collapse
|
117
|
Mezzasalma V, Sandionigi A, Guzzetti L, Galimberti A, Grando MS, Tardaguila J, Labra M. Geographical and Cultivar Features Differentiate Grape Microbiota in Northern Italy and Spain Vineyards. Front Microbiol 2018; 9:946. [PMID: 29867854 PMCID: PMC5962658 DOI: 10.3389/fmicb.2018.00946] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/23/2018] [Indexed: 12/17/2022] Open
Abstract
Recent studies have highlighted the role of the grapevine microbiome in addressing a wide panel of features, ranging from the signature of field origin to wine quality. Although the influence of cultivar and vineyard environmental conditions in shaping the grape microbiome have already been ascertained, several aspects related to this topic, deserve to be further investigated. In this study, we selected three international diffused grapevine cultivars (Cabernet Sauvignon, Syrah, and Sauvignon Blanc) at three germplasm collections characterized by different climatic conditions [Northern Italy (NI), Italian Alps (AI), and Northern Spain (NS)]. The soil and grape microbiome was characterized by 16s rRNA High Throughput Sequencing (HTS), and the obtained results showed that all grape samples shared some bacterial taxa, regardless of sampling locality (e.g., Bacillus, Methylobacterium, Sphingomonas, and other genera belonging to Alphaproteobacteria, Gammaproteobacteria, and Actinobacteria). However, some Operational Taxonomic Units (OTUs) could act as geographical signatures and in some cases as cultivar fingerprint. Concerning the origin of the grape microbiome, our study confirms that vineyard soil represents a primary reservoir for grape associated bacteria with almost 60% of genera shared between the soil and grape. At each locality, grapevine cultivars shared a core of bacterial genera belonging to the vineyard soil, as well as from other local biodiversity elements such as arthropods inhabiting or foraging in the vineyard. Finally, a machine learning analysis showed that it was possible to predict the geographical origin and cultivar of grape starting from its microbiome composition with a high accuracy (9 cases out of 12 tested samples). Overall, these findings open new perspectives for the development of more comprehensive and integrated research activities to test which environmental variables have an effective role in shaping the microbiome composition and dynamics of cultivated species over time and space.
Collapse
Affiliation(s)
- Valerio Mezzasalma
- Zooplantlab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Anna Sandionigi
- Zooplantlab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Lorenzo Guzzetti
- Zooplantlab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Andrea Galimberti
- Zooplantlab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,BEST4FOOD, University of Milano-Bicocca, Milan, Italy
| | - Maria S Grando
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Center Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, Italy
| | - Javier Tardaguila
- Instituto de Ciencias de la Vid y del Vino, University of La Rioja, CSIC, Rioja Regional Government, Logroño, Spain
| | - Massimo Labra
- Zooplantlab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,BEST4FOOD, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
118
|
Zheng X, Liu F, Li K, Shi X, Ni Y, Li B, Zhuge B. Evaluating the microbial ecology and metabolite profile in Kazak artisanal cheeses from Xinjiang, China. Food Res Int 2018; 111:130-136. [PMID: 30007669 DOI: 10.1016/j.foodres.2018.05.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 04/01/2018] [Accepted: 05/08/2018] [Indexed: 11/30/2022]
Abstract
Kazak artisanal cheese is one of the famous fermented food in Uighur Autonomy Region of Xinjiang, China. However, the microbial ecology in Kazak artisanal cheeses across different regions is unclear. In this study, we determined the microbial community composition through amplicon sequencing and measured the flavor profile of 10 cheese samples from different regions of Xinjiang. The associations between microbial communities, flavors and environmental factors were examined by redundancy analysis and Monte Carlo permutation test. Cheeses from different regions had different microbial communities, which was mainly reflected in the relative abundance of Lactobacillus, Streptococcus, Issatchenkia, Debaryomyces and Kluyveromyces. In addition, Pichia and Torulaspora were also the key microbial groups, according to the high relative abundance and large co-occurrence incidence in the correlation network. Using the microbe-metabolites correlation analysis, the major flavor-producing taxa were identified as Kluyveromyces, Anoxybacillus, Torulaspora, Lactobacillus, Streptococcus and Dipodascus. Environmental factors accounted for the majority of the microbial community variations, 88.54% for bacteria and 75.71% for fungi. Compared to physico-chemical factors (temperature, moisture, and pH), geographical factors (longitude, latitude and elevation) had a stronger effect on microbial communities in cheese samples from different regions of Xinjiang.
Collapse
Affiliation(s)
- Xiaoji Zheng
- School of Food Sciences, Shihezi University, Shihezi, Xinjiang Uighur Autonomy Region 832003, China; The Key Lab of Industrial Biotechnology of Ministry of Education, Research Centre of Industrial Microorganisms, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, China.
| | - Fei Liu
- School of Food Sciences, Shihezi University, Shihezi, Xinjiang Uighur Autonomy Region 832003, China
| | - Kaixiong Li
- School of Food Sciences, Shihezi University, Shihezi, Xinjiang Uighur Autonomy Region 832003, China
| | - Xuewei Shi
- School of Food Sciences, Shihezi University, Shihezi, Xinjiang Uighur Autonomy Region 832003, China
| | - Yongqing Ni
- School of Food Sciences, Shihezi University, Shihezi, Xinjiang Uighur Autonomy Region 832003, China
| | - Baokun Li
- School of Food Sciences, Shihezi University, Shihezi, Xinjiang Uighur Autonomy Region 832003, China
| | - Bin Zhuge
- The Key Lab of Industrial Biotechnology of Ministry of Education, Research Centre of Industrial Microorganisms, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, China.
| |
Collapse
|
119
|
Simonin S, Alexandre H, Nikolantonaki M, Coelho C, Tourdot-Maréchal R. Inoculation of Torulaspora delbrueckii as a bio-protection agent in winemaking. Food Res Int 2018; 107:451-461. [PMID: 29580506 DOI: 10.1016/j.foodres.2018.02.034] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/19/2018] [Accepted: 02/13/2018] [Indexed: 01/06/2023]
Abstract
In oenology, bio-protection consists in adding bacteria, yeasts or a mixture of microorganisms on grape must before fermentation in order to reduce the use of chemical compounds such as sulphites. More particularly, non-Saccharomyces yeasts are used as a total or partial alternative to sulphites. However, scientific data capable of proving the effectiveness of adding these yeasts on grape must is lacking. This study reports the analysis of antimicrobial and antioxidant effects of one non-Saccharomyces yeast, Torulaspora delbrueckii, inoculated at the beginning of the white winemaking process in two Burgundian wineries as an alternative to sulphiting. The implantation of the T. delbrueckii strain was successful in both wineries and had no impact on fermentation kinetics. Adding T. delbrueckii reduced biodiversity during the pre-fermentation stages compared to sulphited controls and it also effectively limited the development of spoilage microorganisms in the same way as the addition of sulphites. T. delbrueckii could protect must and wine from oxidation as demonstrated by the analysis of colour and phenolic compounds. This is the first evidence that early addition of T. delbrueckii during winemaking can be a microbiogical and chemical alternative to sulphites. However, its contribution seems to be matrix dependent.
Collapse
Affiliation(s)
- Scott Simonin
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin Jules Guyot, rue Claude Ladrey, BP 27877, 21000 Dijon, France.
| | - Hervé Alexandre
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin Jules Guyot, rue Claude Ladrey, BP 27877, 21000 Dijon, France
| | - Maria Nikolantonaki
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin Jules Guyot, rue Claude Ladrey, BP 27877, 21000 Dijon, France
| | - Christian Coelho
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin Jules Guyot, rue Claude Ladrey, BP 27877, 21000 Dijon, France
| | - Raphaëlle Tourdot-Maréchal
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin Jules Guyot, rue Claude Ladrey, BP 27877, 21000 Dijon, France
| |
Collapse
|
120
|
Ioriatti C, Guzzon R, Anfora G, Ghidoni F, Mazzoni V, Villegas TR, Dalton DT, Walton VM. Drosophila suzukii (Diptera: Drosophilidae) Contributes to the Development of Sour Rot in Grape. JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:283-292. [PMID: 29202199 DOI: 10.1093/jee/tox292] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Indexed: 05/09/2023]
Abstract
This research aimed to more clearly describe the interactions of Drosophila suzukii (Matsumura; Diptera: Drosophilidae) with microorganisms that may contribute to spoilage or quality loss of wine grapes during harvest. Experiments were conducted in controlled laboratory experiments and under field conditions to determine these effects. Laboratory trials determined the role of insect contact and oviposition to vector spoilage bacteria onto wine grapes. In the field, the roles of key organoleptic parameters in grape fruit ripening were assessed to determine their relative contribution to oviposition potential as fruit ripened. Finally, field trials determined the relationships of egg and larval infestation to sour rot levels. Non-ovipositional trials indicated elevated levels of microbiota when D. suzukii was present. D. suzukii oviposition exponentially increased the concentration of acetic acid bacteria. Both incised and sound berries showed a significant increase in concentrations of acetic acid bacteria exposed to D. suzukii. Volatile acidity was higher in treatments infested with D. suzukii. Fruit with only eggs did not develop a significant increase of volatile acidity. Larva-infested grape berries in 9.5% of samples developed higher volatile acidity after 14 d. Sound grape berries were less susceptible to the development of microbiota associated with sour rot and spoilage. D. suzukii oviposition and larval development increase risk of spoilage bacteria vectored by D. suzukii adults. Acetic acid bacteria induced fermentation and produced several volatile compounds contributing to spoilage. Spoilage bacteria may create a positive feedback loop that attracts both D. suzukii and other drosophilids, which may contribute to additional spoilage.
Collapse
Affiliation(s)
- Claudio Ioriatti
- Technology Transfer Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Raffaele Guzzon
- Technology Transfer Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Gianfranco Anfora
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
- Center Agriculture Food Environment, University of Trento, San Michele all'Adige (TN), Italy
| | - Franca Ghidoni
- Technology Transfer Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Valerio Mazzoni
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Tomas Roman Villegas
- Technology Transfer Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Daniel T Dalton
- Department of Horticulture, Oregon State University, Corvallis, OR
| | - Vaughn M Walton
- Department of Horticulture, Oregon State University, Corvallis, OR
| |
Collapse
|
121
|
Starter cultures as biocontrol strategy to prevent Brettanomyces bruxellensis proliferation in wine. Appl Microbiol Biotechnol 2017; 102:569-576. [PMID: 29189899 PMCID: PMC5756568 DOI: 10.1007/s00253-017-8666-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/16/2017] [Accepted: 11/17/2017] [Indexed: 11/04/2022]
Abstract
Brettanomyces bruxellensis is a common and significant wine spoilage microorganism. B. bruxellensis strains generally detain the molecular basis to produce compounds that are detrimental for the organoleptic quality of the wine, including some classes of volatile phenols that derive from the sequential bioconversion of specific hydroxycinnamic acids such as ferulate and p-coumarate. Although B. bruxellensis can be detected at any stage of the winemaking process, it is typically isolated at the end of the alcoholic fermentation (AF), before the staring of the spontaneous malolactic fermentation (MLF) or during barrel aging. For this reason, the endemic diffusion of B. bruxellensis leads to consistent economic losses in the wine industry. Considering the interest in reducing sulfur dioxide use during winemaking, in recent years, biological alternatives, such as the use of tailored selected yeast and bacterial strains inoculated to promote AF and MLF, are actively sought as biocontrol agents to avoid the “Bretta” character in wines. Here, we review the importance of dedicated characterization and selection of starter cultures for AF and MLF in wine, in order to reduce or prevent both growth of B. bruxellensis and its production of volatile phenols in the matrix.
Collapse
|
122
|
Gobert A, Tourdot-Maréchal R, Morge C, Sparrow C, Liu Y, Quintanilla-Casas B, Vichi S, Alexandre H. Non- Saccharomyces Yeasts Nitrogen Source Preferences: Impact on Sequential Fermentation and Wine Volatile Compounds Profile. Front Microbiol 2017; 8:2175. [PMID: 29163451 PMCID: PMC5672154 DOI: 10.3389/fmicb.2017.02175] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/23/2017] [Indexed: 11/22/2022] Open
Abstract
Nitrogen sources in the must are important for yeast metabolism, growth, and performance, and wine volatile compounds profile. Yeast assimilable nitrogen (YAN) deficiencies in grape must are one of the main causes of stuck and sluggish fermentation. The nitrogen requirement of Saccharomyces cerevisiae metabolism has been described in detail. However, the YAN preferences of non-Saccharomyces yeasts remain unknown despite their increasingly widespread use in winemaking. Furthermore, the impact of nitrogen consumption by non-Saccharomyces yeasts on YAN availability, alcoholic performance and volatile compounds production by S. cerevisiae in sequential fermentation has been little studied. With a view to improving the use of non-Saccharomyces yeasts in winemaking, we studied the use of amino acids and ammonium by three strains of non-Saccharomyces yeasts (Starmerella bacillaris, Metschnikowia pulcherrima, and Pichia membranifaciens) in grape juice. We first determined which nitrogen sources were preferentially used by these yeasts in pure cultures at 28 and 20°C (because few data are available). We then carried out sequential fermentations at 20°C with S. cerevisiae, to assess the impact of the non-Saccharomyces yeasts on the availability of assimilable nitrogen for S. cerevisiae. Finally, 22 volatile compounds were quantified in sequential fermentation and their levels compared with those in pure cultures of S. cerevisiae. We report here, for the first time, that non-Saccharomyces yeasts have specific amino-acid consumption profiles. Histidine, methionine, threonine, and tyrosine were not consumed by S. bacillaris, aspartic acid was assimilated very slowly by M. pulcherrima, and glutamine was not assimilated by P. membranifaciens. By contrast, cysteine appeared to be a preferred nitrogen source for all non-Saccharomyces yeasts. In sequential fermentation, these specific profiles of amino-acid consumption by non-Saccharomyces yeasts may account for some of the interactions observed here, such as poorer performances of S. cerevisiae and volatile profile changes.
Collapse
Affiliation(s)
- Antoine Gobert
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon - Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, Dijon, France
| | - Raphaëlle Tourdot-Maréchal
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon - Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, Dijon, France
| | | | | | - Youzhong Liu
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon - Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, Dijon, France
| | - Beatriz Quintanilla-Casas
- Nutrition, Food Science and Gastronomy Department, INSA - XaRTA (Catalonian Reference Network on Food Technology), University of Barcelona, Santa Coloma de Gramenet, Spain
| | - Stefania Vichi
- Nutrition, Food Science and Gastronomy Department, INSA - XaRTA (Catalonian Reference Network on Food Technology), University of Barcelona, Santa Coloma de Gramenet, Spain
| | - Hervé Alexandre
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon - Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, Dijon, France
| |
Collapse
|
123
|
Abstract
Next generation sequencing has radically changed research in the life sciences, in both academic and corporate laboratories. The potential impact is tremendous, yet a majority of citizens have little or no understanding of the technological and ethical aspects of this widespread adoption. We designed BeerDeCoded as a pretext to discuss the societal issues related to genomic and metagenomic data with fellow citizens, while advancing scientific knowledge of the most popular beverage of all. In the spirit of citizen science, sample collection and DNA extraction were carried out with the participation of non-scientists in the community laboratory of Hackuarium, a not-for-profit organisation that supports unconventional research and promotes the public understanding of science. The dataset presented herein contains the targeted metagenomic profile of 39 bottled beers from 5 countries, based on internal transcribed spacer (ITS) sequencing of fungal species. A preliminary analysis reveals the presence of a large diversity of wild yeast species in commercial brews. With this project, we demonstrate that coupling simple laboratory procedures that can be carried out in a non-professional environment with state-of-the-art sequencing technologies and targeted metagenomic analyses, can lead to the detection and identification of the microbial content in bottled beer.
Collapse
Affiliation(s)
| | - Luc Henry
- Hackuarium Association, Renens, Switzerland
| | | | | |
Collapse
|
124
|
Abstract
Next generation sequencing has radically changed research in the life sciences, in both academic and corporate laboratories. The potential impact is tremendous, yet a majority of citizens have little or no understanding of the technological and ethical aspects of this widespread adoption. We designed BeerDeCoded as a pretext to discuss the societal issues related to genomic and metagenomic data with fellow citizens, while advancing scientific knowledge of the most popular beverage of all. In the spirit of citizen science, sample collection and DNA extraction were carried out with the participation of non-scientists in the community laboratory of Hackuarium, a not-for-profit organisation that supports unconventional research and promotes the public understanding of science. The dataset presented herein contains the targeted metagenomic profile of 39 bottled beers from 5 countries, based on internal transcribed spacer (ITS) sequencing of fungal species. A preliminary analysis reveals the presence of a large diversity of wild yeast species in commercial brews. With this project, we demonstrate that coupling simple laboratory procedures that can be carried out in a non-professional environment, with state-of-the-art sequencing technologies and targeted metagenomic analyses, can lead to the detection and identification of the microbial content in bottled beer.
Collapse
Affiliation(s)
| | - Luc Henry
- Hackuarium Association, Renens, Switzerland
| | | | | |
Collapse
|
125
|
Sadoudi M, Rousseaux S, David V, Alexandre H, Tourdot-Maréchal R. Metschnikowia pulcherrima Influences the Expression of Genes Involved in PDH Bypass and Glyceropyruvic Fermentation in Saccharomyces cerevisiae. Front Microbiol 2017; 8:1137. [PMID: 28702001 PMCID: PMC5487418 DOI: 10.3389/fmicb.2017.01137] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/06/2017] [Indexed: 12/02/2022] Open
Abstract
Previous studies reported that the use of Metschnikowia pulcherrima in sequential culture fermentation with Saccharomyces cerevisiae mainly induced a reduction of volatile acidity in wine. The impact of the presence of this yeast on the metabolic pathway involved in pyruvate dehydrogenase (PDH) bypass and glycerol production in S. cerevisiae has never been investigated. In this work, we compared acetic acid and glycerol production kinetics between pure S. cerevisiae culture and its sequential culture with M. pulcherrima during alcoholic fermentation. In parallel, the expression levels of the principal genes involved in PDH bypass and glyceropyruvic fermentation in S. cerevisiae were investigated. A sequential culture of M. pulcherrima/S. cerevisiae at an inoculation ratio of 10:1 produced 40% less acetic acid than pure S. cerevisiae culture and led to the enhancement of glycerol content (12% higher). High expression levels of pyruvate decarboxylase PDC1 and PDC5, acetaldehyde dehydrogenase ALD6, alcohol dehydrogenase ADH1 and glycerol-3-phosphate dehydrogenase PDC1 genes during the first 3 days of fermentation in sequential culture conditions are highlighted. Despite the complexity of correlating gene expression levels to acetic acid formation kinetics, we demonstrate that the acetic acid production pathway is altered by sequential culture conditions. Moreover, we show for the first time that the entire acetic acid and glycerol metabolic pathway can be modulated in S. cerevisiae by the presence of M. pulcherrima at the beginning of fermentation.
Collapse
Affiliation(s)
- Mohand Sadoudi
- UMR Procédés Alimentaires Microbiologiques - Université de Bourgogne Franche-Comté/AgroSup Dijon - équipe Vin ALiments Micro-organismes Stress, Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de BourgogneDijon, France
| | - Sandrine Rousseaux
- UMR Procédés Alimentaires Microbiologiques - Université de Bourgogne Franche-Comté/AgroSup Dijon - équipe Vin ALiments Micro-organismes Stress, Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de BourgogneDijon, France
| | - Vanessa David
- UMR Procédés Alimentaires Microbiologiques - Université de Bourgogne Franche-Comté/AgroSup Dijon - équipe Vin ALiments Micro-organismes Stress, Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de BourgogneDijon, France
| | - Hervé Alexandre
- UMR Procédés Alimentaires Microbiologiques - Université de Bourgogne Franche-Comté/AgroSup Dijon - équipe Vin ALiments Micro-organismes Stress, Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de BourgogneDijon, France
| | - Raphaëlle Tourdot-Maréchal
- UMR Procédés Alimentaires Microbiologiques - Université de Bourgogne Franche-Comté/AgroSup Dijon - équipe Vin ALiments Micro-organismes Stress, Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de BourgogneDijon, France
| |
Collapse
|
126
|
Philippe C, Jaomanjaka F, Claisse O, Laforgue R, Maupeu J, Petrel M, Le Marrec C. A survey of oenophages during wine making reveals a novel group with unusual genomic characteristics. Int J Food Microbiol 2017. [PMID: 28651079 DOI: 10.1016/j.ijfoodmicro.2017.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Oenophages have so far been mostly isolated from red wines under malolactic fermentation (MLF), and correspond to temperate or ex-temperate phages of Oenococcus oeni. Their genomes are clustered into 4 integrase gene sequence groups, which are also related to the chromosomal integration site. Our aims were to survey the occurrence of oenophages in a broader and more diverse collection of samples than those previously explored. Active phages were isolated from 33 out of 166 samples, which mostly originated from must and MLF. Seventy one phage lysates were produced and 30% were assigned to a novel group with unusual genomic characteristics, called unk. All unk members produced similar RAPD and DNA restriction patterns, were negative by PCR for the signature sequences previously identified in the integrase and endolysin genes of oenophages, and lacked any BamHI restriction site in their genome. The data support that development of additional and novel signature genes for assessing oenophage diversity is now required.
Collapse
Affiliation(s)
- Cécile Philippe
- Univ. Bordeaux, ISVV, EA 4577, Unité de recherche Oenologie, F-33882 Villenave d'Ornon, France
| | - Fety Jaomanjaka
- Univ. Bordeaux, ISVV, EA 4577, Unité de recherche Oenologie, F-33882 Villenave d'Ornon, France; Institut Polytechnique de Bordeaux, ISVV, EA 4577 Oenologie, F-33140 Villenave d'Ornon, France
| | - Olivier Claisse
- Univ. Bordeaux, ISVV, EA 4577, Unité de recherche Oenologie, F-33882 Villenave d'Ornon, France; INRA, ISVV, USC 1366 Oenologie, F-33882 Villenave d'Ornon, France
| | - Rémi Laforgue
- Univ. Bordeaux, ISVV, EA 4577, Unité de recherche Oenologie, F-33882 Villenave d'Ornon, France; MICROFLORA, ISVV, EA 4577 Oenologie, F-33140 Villenave d'Ornon, France
| | - Julie Maupeu
- Univ. Bordeaux, ISVV, EA 4577, Unité de recherche Oenologie, F-33882 Villenave d'Ornon, France; MICROFLORA, ISVV, EA 4577 Oenologie, F-33140 Villenave d'Ornon, France
| | - Melina Petrel
- Univ. Bordeaux, Bordeaux Imaging Center, UMS 3420 CNRS-US4 INSERM, Bordeaux, France
| | - Claire Le Marrec
- Univ. Bordeaux, ISVV, EA 4577, Unité de recherche Oenologie, F-33882 Villenave d'Ornon, France; Institut Polytechnique de Bordeaux, ISVV, EA 4577 Oenologie, F-33140 Villenave d'Ornon, France.
| |
Collapse
|
127
|
Petruzzi L, Capozzi V, Berbegal C, Corbo MR, Bevilacqua A, Spano G, Sinigaglia M. Microbial Resources and Enological Significance: Opportunities and Benefits. Front Microbiol 2017. [PMID: 28642742 PMCID: PMC5462979 DOI: 10.3389/fmicb.2017.00995] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Among the innovative trends in the wine sector, the continuous exploration of enological properties associated with wine microbial resources represents a cornerstone driver of quality improvement. Since the advent of starter cultures technology, the attention has been focused on intraspecific biodiversity within the primary species responsible for alcoholic fermentation (Saccharomyces cerevisiae) and, subsequently, for the so-called ‘malolactic fermentation’ (Oenococcus oeni). However, in the last decade, a relevant number of studies proposed the enological exploitation of an increasing number of species (e.g., non-Saccharomyces yeasts) associated with spontaneous fermentation in wine. These new species/strains may provide technological solutions to specific problems and/or improve sensory characteristics, such as complexity, mouth-feel and flavors. This review offers an overview of the available information on the enological/protechnological significance of microbial resources associated with winemaking, summarizing the opportunities and the benefits associated with the enological exploitation of this microbial potential. We discuss proposed solutions to improve quality and safety of wines (e.g., alternative starter cultures, multistrains starter cultures) and future perspectives.
Collapse
Affiliation(s)
- Leonardo Petruzzi
- Department of the Science of Agriculture, Food and Environment, University of FoggiaFoggia, Italy
| | - Vittorio Capozzi
- Department of the Science of Agriculture, Food and Environment, University of FoggiaFoggia, Italy
| | - Carmen Berbegal
- Department of the Science of Agriculture, Food and Environment, University of FoggiaFoggia, Italy
| | - Maria R Corbo
- Department of the Science of Agriculture, Food and Environment, University of FoggiaFoggia, Italy
| | - Antonio Bevilacqua
- Department of the Science of Agriculture, Food and Environment, University of FoggiaFoggia, Italy
| | - Giuseppe Spano
- Department of the Science of Agriculture, Food and Environment, University of FoggiaFoggia, Italy
| | - Milena Sinigaglia
- Department of the Science of Agriculture, Food and Environment, University of FoggiaFoggia, Italy
| |
Collapse
|
128
|
Belda I, Ruiz J, Alonso A, Marquina D, Santos A. The Biology of Pichia membranifaciens Killer Toxins. Toxins (Basel) 2017; 9:toxins9040112. [PMID: 28333108 PMCID: PMC5408186 DOI: 10.3390/toxins9040112] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/07/2017] [Accepted: 03/20/2017] [Indexed: 02/07/2023] Open
Abstract
The killer phenomenon is defined as the ability of some yeast to secrete toxins that are lethal to other sensitive yeasts and filamentous fungi. Since the discovery of strains of Saccharomyces cerevisiae capable of secreting killer toxins, much information has been gained regarding killer toxins and this fact has substantially contributed knowledge on fundamental aspects of cell biology and yeast genetics. The killer phenomenon has been studied in Pichia membranifaciens for several years, during which two toxins have been described. PMKT and PMKT2 are proteins of low molecular mass that bind to primary receptors located in the cell wall structure of sensitive yeast cells, linear (1→6)-β-d-glucans and mannoproteins for PMKT and PMKT2, respectively. Cwp2p also acts as a secondary receptor for PMKT. Killing of sensitive cells by PMKT is characterized by ionic movements across plasma membrane and an acidification of the intracellular pH triggering an activation of the High Osmolarity Glycerol (HOG) pathway. On the contrary, our investigations showed a mechanism of killing in which cells are arrested at an early S-phase by high concentrations of PMKT2. However, we concluded that induced mortality at low PMKT2 doses and also PMKT is indeed of an apoptotic nature. Killer yeasts and their toxins have found potential applications in several fields: in food and beverage production, as biocontrol agents, in yeast bio-typing, and as novel antimycotic agents. Accordingly, several applications have been found for P. membranifaciens killer toxins, ranging from pre- and post-harvest biocontrol of plant pathogens to applications during wine fermentation and ageing (inhibition of Botrytis cinerea, Brettanomyces bruxellensis, etc.).
Collapse
Affiliation(s)
- Ignacio Belda
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Javier Ruiz
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Alejandro Alonso
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Domingo Marquina
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Antonio Santos
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
129
|
Belda I, Ruiz J, Esteban-Fernández A, Navascués E, Marquina D, Santos A, Moreno-Arribas MV. Microbial Contribution to Wine Aroma and Its Intended Use for Wine Quality Improvement. Molecules 2017; 22:E189. [PMID: 28125039 PMCID: PMC6155689 DOI: 10.3390/molecules22020189] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/14/2017] [Accepted: 01/19/2017] [Indexed: 12/29/2022] Open
Abstract
Wine is a complex matrix that includes components with different chemical natures, the volatile compounds being responsible for wine aroma quality. The microbial ecosystem of grapes and wine, including Saccharomyces and non-Saccharomyces yeasts, as well as lactic acid bacteria, is considered by winemakers and oenologists as a decisive factor influencing wine aroma and consumer's preferences. The challenges and opportunities emanating from the contribution of wine microbiome to the production of high quality wines are astounding. This review focuses on the current knowledge about the impact of microorganisms in wine aroma and flavour, and the biochemical reactions and pathways in which they participate, therefore contributing to both the quality and acceptability of wine. In this context, an overview of genetic and transcriptional studies to explain and interpret these effects is included, and new directions are proposed. It also considers the contribution of human oral microbiota to wine aroma conversion and perception during wine consumption. The potential use of wine yeasts and lactic acid bacteria as biological tools to enhance wine quality and the advent of promising advice allowed by pioneering -omics technologies on wine research are also discussed.
Collapse
Affiliation(s)
- Ignacio Belda
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Javier Ruiz
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Adelaida Esteban-Fernández
- CIAL-Institute of Food Science Research (CSIC-UAM), Dpt. Food Biotechnology and Microbiology, 28049 Madrid, Spain.
| | - Eva Navascués
- Department of Food Technology, Escuela Técnica Superior de Ingenieros Agrónomos, Polytechnic University of Madrid, 28040 Madrid, Spain.
| | - Domingo Marquina
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Antonio Santos
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| | - M Victoria Moreno-Arribas
- CIAL-Institute of Food Science Research (CSIC-UAM), Dpt. Food Biotechnology and Microbiology, 28049 Madrid, Spain.
| |
Collapse
|
130
|
Salvetti E, Campanaro S, Campedelli I, Fracchetti F, Gobbi A, Tornielli GB, Torriani S, Felis GE. Whole-Metagenome-Sequencing-Based Community Profiles of Vitis vinifera L. cv. Corvina Berries Withered in Two Post-harvest Conditions. Front Microbiol 2016; 7:937. [PMID: 27445999 PMCID: PMC4917526 DOI: 10.3389/fmicb.2016.00937] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/31/2016] [Indexed: 12/20/2022] Open
Abstract
Vitis vinifera L. cv. Corvina grape forms the basis for the production of unique wines, such as Amarone, whose distinctive sensory features are strongly linked to the post-harvest grape withering process. Indeed, this process increases sugar concentration and changes must characteristics. While microorganisms involved in must fermentation have been widely investigated, few data are available on the microbiota of withered grapes. Thus, in this paper, a whole metagenome sequencing (WMS) approach was used to analyse the microbial consortium associated with Corvina berries at the end of the withering process performed in two different conditions ("traditional withering," TW or "accelerated withering," AW), and to unveil whether changes of drying parameters could have an impact on microbial diversity. Samples of healthy undamaged berries were collected and washed, to recover microorganisms from the surface and avoid contamination with grapevine genetic material. Isolated DNA was sequenced and the data obtained were analyzed with several bioinformatics methods. The eukaryotic community was mainly composed by members of the phylum Ascomycota, including Eurotiomycetes, Sordariomycetes, and Dothideomycetes. Moreover, the distribution of the genera Aspergillus and Penicillium (class Eurotiomycetes) varied between the withered berry samples. Instead, Botryotinia, Saccharomyces, and other wine technologically useful microorganisms were relatively scarce in both samples. For prokaryotes, 25 phyla were identified, nine of which were common to both conditions. Environmental bacteria belonging to the class Gammaproteobacteria were dominant and, in particular, the TW sample was characterized by members of the family Pseudomonadaceae, while members of the family Enterobacteriaceae dominated the AW sample, in addition to Sphyngobacteria and Clostridia. Finally, the binning procedure discovered 15 putative genomes which dominated the microbial community of the two samples, and included representatives of genera Erwinia, Pantoea, Pseudomonas, Clostridium, Paenibacillus, and of orders Lactobacillales and Actinomycetales. These results provide insights into the microbial consortium of Corvina withered berries and reveal relevant variations attributable to post-harvest withering conditions, underling how WMS could open novel perspectives in the knowledge and management of the withering process of Corvina, with an impact on the winemaking of important Italian wines.
Collapse
Affiliation(s)
- Elisa Salvetti
- Department of Biotechnology, University of VeronaVerona, Italy
| | | | | | | | - Alex Gobbi
- Department of Biotechnology, University of VeronaVerona, Italy
| | | | - Sandra Torriani
- Department of Biotechnology, University of VeronaVerona, Italy
| | | |
Collapse
|
131
|
Tofalo R, Patrignani F, Lanciotti R, Perpetuini G, Schirone M, Di Gianvito P, Pizzoni D, Arfelli G, Suzzi G. Aroma Profile of Montepulciano d'Abruzzo Wine Fermented by Single and Co-culture Starters of Autochthonous Saccharomyces and Non-saccharomyces Yeasts. Front Microbiol 2016; 7:610. [PMID: 27199939 PMCID: PMC4848713 DOI: 10.3389/fmicb.2016.00610] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/12/2016] [Indexed: 11/13/2022] Open
Abstract
Montepulciano d'Abruzzo is a native grape variety of Vitis vinifera L., grown in central Italy and used for production of high quality red wines. Limited studies have been carried out to improve its enological characteristics through the use of indigenous strains of Saccharomyces cerevisiae. The main objective of the present work was to test two indigenous strains of S. cerevisiae (SRS1, RT73), a strain of Starmerella bacillaris (STS12), one of Hanseniaspora uvarum (STS45) and a co-culture of S. cerevisiae (SRS1) and S. bacillaris (STS12), in an experimental cellar to evaluate their role in the sensory characteristic of Montepulciano d'Abruzzo wine. A S. cerevisiae commercial strain was used. Fermentations were conducted under routine Montepulciano d'Abruzzo wine production, in which the main variables were the yeast strains used for fermentation. Basic winemaking parameters, some key chemical analysis and aroma compounds were considered. S. cerevisiae strain dynamics during fermentation were determined by molecular methods. The musts inoculated with the co-culture were characterized by a faster fermentation start and a higher content of glycerol after 3 days of fermentation, as well as the musts added with strains S. bacillaris (STS12) and H. uvarum (STS45). At the end of fermentation the parameters studied were quite similar in all the wines. Total biogenic amines (BA) content of all the wines was low. Ethanolamine was the predominant BA, with a concentration ranging from 21 to 24 mg/l. Wines were characterized by esters and alcohols. In particular, 2-phenylethanol, 3-methylbut-1-yl methanoate, and ethyl ethanoate were the major aroma volatile compounds in all wines. Statistical analysis highlighted the different role played by aroma compounds in the differentiation of wines, even if it was impossible to select a single class of compounds as the most important for a specific yeast. The present study represents a further step toward the use of tailored autochthonous strains to impart the specific characteristics of a given wine which are an expression of a specific terroir.
Collapse
Affiliation(s)
- Rosanna Tofalo
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo Mosciano Sant'Angelo, Italy
| | - Francesca Patrignani
- Department of Agricultural and Food Sciences, University of Bologna Bologna, Italy
| | - Rosalba Lanciotti
- Department of Agricultural and Food Sciences, University of Bologna Bologna, Italy
| | - Giorgia Perpetuini
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo Mosciano Sant'Angelo, Italy
| | - Maria Schirone
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo Mosciano Sant'Angelo, Italy
| | - Paola Di Gianvito
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo Mosciano Sant'Angelo, Italy
| | - Daniel Pizzoni
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo Mosciano Sant'Angelo, Italy
| | - Giuseppe Arfelli
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo Mosciano Sant'Angelo, Italy
| | - Giovanna Suzzi
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo Mosciano Sant'Angelo, Italy
| |
Collapse
|
132
|
Ciani M, Capece A, Comitini F, Canonico L, Siesto G, Romano P. Yeast Interactions in Inoculated Wine Fermentation. Front Microbiol 2016; 7:555. [PMID: 27148235 PMCID: PMC4840204 DOI: 10.3389/fmicb.2016.00555] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/04/2016] [Indexed: 11/13/2022] Open
Abstract
The use of selected starter culture is widely diffused in winemaking. In pure fermentation, the ability of inoculated Saccharomyces cerevisiae to suppress the wild microflora is one of the most important feature determining the starter ability to dominate the process. Since the wine is the result of the interaction of several yeast species and strains, many studies are available on the effect of mixed cultures on the final wine quality. In mixed fermentation the interactions between the different yeasts composing the starter culture can led the stability of the final product and the analytical and aromatic profile. In the present review, we will discuss the recent developments regarding yeast interactions in pure and in mixed fermentation, focusing on the influence of interactions on growth and dominance in the process.
Collapse
Affiliation(s)
- Maurizio Ciani
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche Ancona, Italy
| | - Angela Capece
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata Potenza, Italy
| | - Francesca Comitini
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche Ancona, Italy
| | - Laura Canonico
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche Ancona, Italy
| | - Gabriella Siesto
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata Potenza, Italy
| | - Patrizia Romano
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata Potenza, Italy
| |
Collapse
|
133
|
Wang C, Mas A, Esteve-Zarzoso B. The Interaction between Saccharomyces cerevisiae and Non-Saccharomyces Yeast during Alcoholic Fermentation Is Species and Strain Specific. Front Microbiol 2016; 7:502. [PMID: 27148191 PMCID: PMC4829597 DOI: 10.3389/fmicb.2016.00502] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/29/2016] [Indexed: 11/13/2022] Open
Abstract
The present study analyzes the lack of culturability of different non-Saccharomyces strains due to interaction with Saccharomyces cerevisiae during alcoholic fermentation. Interaction was followed in mixed fermentations with 1:1 inoculation of S. cerevisiae and ten non-Saccharomyces strains. Starmerella bacillaris, and Torulaspora delbrueckii indicated longer coexistence in mixed fermentations compared with Hanseniaspora uvarum and Metschnikowia pulcherrima. Strain differences in culturability and nutrient consumption (glucose, alanine, ammonium, arginine, or glutamine) were found within each species in mixed fermentation with S. cerevisiae. The interaction was further analyzed using cell-free supernatant from S. cerevisiae and synthetic media mimicking both single fermentations with S. cerevisiae and using mixed fermentations with the corresponding non-Saccharomyces species. Cell-free S. cerevisiae supernatants induced faster culturability loss than synthetic media corresponding to the same fermentation stage. This demonstrated that some metabolites produced by S. cerevisiae played the main role in the decreased culturability of the other non-Saccharomyces yeasts. However, changes in the concentrations of main metabolites had also an effect. Culturability differences were observed among species and strains in culture assays and thus showed distinct tolerance to S. cerevisiae metabolites and fermentation environment. Viability kit and recovery analyses on non-culturable cells verified the existence of viable but not-culturable status. These findings are discussed in the context of interaction between non-Saccharomyces and S. cerevisiae.
Collapse
Affiliation(s)
- Chunxiao Wang
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili Tarragona, Spain
| | - Albert Mas
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili Tarragona, Spain
| | - Braulio Esteve-Zarzoso
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili Tarragona, Spain
| |
Collapse
|
134
|
Belda I, Ruiz J, Alastruey-Izquierdo A, Navascués E, Marquina D, Santos A. Unraveling the Enzymatic Basis of Wine "Flavorome": A Phylo-Functional Study of Wine Related Yeast Species. Front Microbiol 2016; 7:12. [PMID: 26834730 PMCID: PMC4718978 DOI: 10.3389/fmicb.2016.00012] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/08/2016] [Indexed: 11/13/2022] Open
Abstract
Non-Saccharomyces yeasts are a heterogeneous microbial group involved in the early stages of wine fermentation. The high enzymatic potential of these yeasts makes them a useful tool for increasing the final organoleptic characteristics of wines in spite of their low fermentative power. Their physiology and contribution to wine quality are still poorly understood, with most current knowledge being acquired empirically and in most cases based in single species and strains. This work analyzed the metabolic potential of 770 yeast isolates from different enological origins and representing 15 different species, by studying their production of enzymes of enological interest and linking phylogenetic and enzymatic data. The isolates were screened for glycosidase enzymes related to terpene aroma release, the β-lyase activity responsible for the release of volatile thiols, and sulfite reductase. Apart from these aroma-related activities, protease, polygalacturonase and cellulase activities were also studied in the entire yeast collection, being related to the improvement of different technological and sensorial features of wines. In this context, and in terms of abundance, two different groups were established, with α-L-arabinofuranosidase, polygalacturonase and cellulase being the less abundant activities. By contrast, β-glucosidase and protease activities were widespread in the yeast collection studied. A classical phylogenetic study involving the partial sequencing of 26S rDNA was conducted in conjunction with the enzymatic profiles of the 770 yeast isolates for further typing, complementing the phylogenetic relationships established by using 26S rDNA. This has rendered it possible to foresee the contribution different yeast species make to wine quality and their potential applicability as pure inocula, establishing species-specific behavior. These consistent results allowed us to design future targeted studies on the impact different non-Saccharomyces yeast species have on wine quality, understanding intra and interspecific enzymatic odds and, therefore, aiming to predict the most suitable application for the current non-Saccharomyces strains, as well as the potential future applications of new strains. This work therefore contributes to a better understanding of the concept of wine microbiome and its potential consequences for wine quality, as well as to the knowledge of non-Saccharomyces yeasts for their use in the wine industry.
Collapse
Affiliation(s)
- Ignacio Belda
- Department of Microbiology, Biology Faculty, Complutense University of MadridMadrid, Spain
| | - Javier Ruiz
- Department of Microbiology, Biology Faculty, Complutense University of MadridMadrid, Spain
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos IIIMadrid, Spain
| | - Eva Navascués
- Department of Microbiology, Biology Faculty, Complutense University of MadridMadrid, Spain
- Agrovin, S.A.Ciudad Real, Spain
| | - Domingo Marquina
- Department of Microbiology, Biology Faculty, Complutense University of MadridMadrid, Spain
| | - Antonio Santos
- Department of Microbiology, Biology Faculty, Complutense University of MadridMadrid, Spain
| |
Collapse
|