101
|
Yang M, Peng X, Wu J, Wu RN, Liu B, Ye W, Xu X, Yue X. Differential proteomic analysis of milk fat globule membrane proteins in human and bovine colostrum by iTRAQ-coupled LC-MS/MS. Eur Food Res Technol 2016. [DOI: 10.1007/s00217-016-2798-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
102
|
Le Huërou-Luron I, Bouzerzour K, Ferret-Bernard S, Ménard O, Le Normand L, Perrier C, Le Bourgot C, Jardin J, Bourlieu C, Carton T, Le Ruyet P, Cuinet I, Bonhomme C, Dupont D. A mixture of milk and vegetable lipids in infant formula changes gut digestion, mucosal immunity and microbiota composition in neonatal piglets. Eur J Nutr 2016; 57:463-476. [PMID: 27744547 DOI: 10.1007/s00394-016-1329-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 10/11/2016] [Indexed: 01/29/2023]
Abstract
PURPOSE Although composition of infant formula has been significantly improved during the last decade, major differences with the composition and structure of breast milk still remain and might affect nutrient digestion and gut biology. We hypothesized that the incorporation of dairy fat in infant formulas could modify their physiological impacts by making their composition closer to that of human milk. The effect of milk fat and milk fat globule membrane (MFGM) fragments in infant formulas on gut digestion, mucosal immunity and microbiota composition was evaluated. METHODS Three formulas containing either (1) vegetable lipids stabilized only by proteins (V-P), (2) vegetable lipids stabilized by a mixture of proteins and MFGM fragments (V-M) and (3) a mixture of milk and vegetable lipids stabilized by a mixture of proteins and MFGM fragments (M-M) were automatically distributed to 42 newborn piglets until slaughter at postnatal day (PND) 7 or 28, and compared to a fourth group of sow's suckling piglets (SM) used as a breast-fed reference. RESULTS At both PND, casein and β-lactoglobulin digestion was reduced in M-M proximal jejunum and ileum contents compared to V-P and V-M ones leading to more numerous β-Cn peptides in M-M contents. The IFNγ cytokine secretion of ConA-stimulated MLN cells from M-M piglets tended to be higher than in V-P ones at PND 7 and PND 28 and was closer to that of SM piglets. No dietary treatment effect was observed on IL-10 MLN cell secretion. Changes in faecal microbiota in M-M piglets resulted in an increase in Proteobacteria and Bacteroidetes and a decrease in Firmicutes phyla compared to V-P ones. M-M piglets showed higher abundances of Parabacteroides, Escherichia/Shigella and Klebsiella genus. CONCLUSIONS The incorporation of both milk fat and MFGM fragments in infant formula modifies protein digestion, the dynamic of the immune system maturation and the faecal microbiota composition.
Collapse
Affiliation(s)
- Isabelle Le Huërou-Luron
- UR1341 ADNC, INRA, Domaine de la Prise, 35590, Saint-Gilles, France. .,UR1341 ADNC, INRA, Domaine de la Prise, 35590, Saint-Gilles, France.
| | - Karima Bouzerzour
- UMR1253 STLO, INRA, 35000, Rennes, France.,UMR1253 STLO, Agrocampus Ouest, 35000, Rennes, France
| | | | - Olivia Ménard
- UMR1253 STLO, INRA, 35000, Rennes, France.,UMR1253 STLO, Agrocampus Ouest, 35000, Rennes, France
| | | | - Cécile Perrier
- UR1341 ADNC, INRA, Domaine de la Prise, 35590, Saint-Gilles, France
| | - Cindy Le Bourgot
- UR1341 ADNC, INRA, Domaine de la Prise, 35590, Saint-Gilles, France
| | - Julien Jardin
- UMR1253 STLO, INRA, 35000, Rennes, France.,UMR1253 STLO, Agrocampus Ouest, 35000, Rennes, France
| | - Claire Bourlieu
- UMR1253 STLO, INRA, 35000, Rennes, France.,UMR1253 STLO, Agrocampus Ouest, 35000, Rennes, France
| | | | | | | | | | - Didier Dupont
- UMR1253 STLO, INRA, 35000, Rennes, France.,UMR1253 STLO, Agrocampus Ouest, 35000, Rennes, France
| |
Collapse
|
103
|
Claumarchirant L, Cilla A, Matencio E, Sanchez-Siles LM, Castro-Gomez P, Fontecha J, Alegría A, Lagarda MJ. Addition of milk fat globule membrane as an ingredient of infant formulas for resembling the polar lipids of human milk. Int Dairy J 2016. [DOI: 10.1016/j.idairyj.2016.06.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
104
|
Palmeira P, Carneiro-Sampaio M. Immunology of breast milk. Rev Assoc Med Bras (1992) 2016; 62:584-593. [DOI: 10.1590/1806-9282.62.06.584] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 07/26/2016] [Indexed: 12/14/2022] Open
Abstract
Summary In the critical phase of immunological immaturity of the newborn, particularly for the immune system of mucous membranes, infants receive large amounts of bioactive components through colostrum and breast milk. Colostrum is the most potent natural immune booster known to science. Breastfeeding protects infants against infections mainly via secretory IgA (SIgA) antibodies, but also via other various bioactive factors. It is striking that the defense factors of human milk function without causing inflammation; some components are even anti-inflammatory. Protection against infections has been well evidenced during lactation against, e.g., acute and prolonged diarrhea, respiratory tract infections, including otitis media, urinary tract infection, neonatal septicemia, and necrotizing enterocolitis. The milk’s immunity content changes over time. In the early stages of lactation, IgA, anti-inflammatory factors and, more likely, immunologically active cells provide additional support for the immature immune system of the neonate. After this period, breast milk continues to adapt extraordinarily to the infant’s ontogeny and needs regarding immune protection and nutrition. The need to encourage breastfeeding is therefore justifiable, at least during the first 6 months of life, when the infant’s secretory IgA production is insignificant.
Collapse
|
105
|
Wang Q, Hulzebosch A, Bovenhuis H. Genetic and environmental variation in bovine milk infrared spectra. J Dairy Sci 2016; 99:6793-6803. [DOI: 10.3168/jds.2015-10488] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 04/03/2016] [Indexed: 11/19/2022]
|
106
|
Guo Z, Wang Y, Feng X, Bao C, He Q, Bao L, Hao H, Wang Z. Rapamycin Inhibits Expression of Elongation of Very-long-chain Fatty Acids 1 and Synthesis of Docosahexaenoic Acid in Bovine Mammary Epithelial Cells. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 29:1646-1652. [PMID: 26954224 PMCID: PMC5088386 DOI: 10.5713/ajas.15.0660] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 11/11/2015] [Accepted: 01/05/2016] [Indexed: 12/25/2022]
Abstract
Mammalian target of rapamycin complex 1 (mTORC1) is a central regulator of cell growth and metabolism and is sufficient to induce specific metabolic processes, including de novo lipid biosynthesis. Elongation of very-long-chain fatty acids 1 (ELOVL1) is a ubiquitously expressed gene and the product of which was thought to be associated with elongation of carbon (C) chain in fatty acids. In the present study, we examined the effects of rapamycin, a specific inhibitor of mTORC1, on ELOVL1 expression and docosahexaenoic acid (DHA, C22:6 n-3) synthesis in bovine mammary epithelial cells (BMECs). We found that rapamycin decreased the relative abundance of ELOVL1 mRNA, ELOVL1 expression and the level of DHA in a time-dependent manner. These data indicate that ELOVL1 expression and DHA synthesis are regulated by mTORC1 in BMECs.
Collapse
Affiliation(s)
- Zhixin Guo
- College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Yanfeng Wang
- College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Xue Feng
- College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Chaogetu Bao
- College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Qiburi He
- College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Lili Bao
- College of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010110, China
| | - Huifang Hao
- College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Zhigang Wang
- College of Life Science, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
107
|
Wang T, Lee HG. Advances in research on cis-9, trans-11 conjugated linoleic acid: a major functional conjugated linoleic acid isomer. Crit Rev Food Sci Nutr 2016; 55:720-31. [PMID: 24915361 DOI: 10.1080/10408398.2012.674071] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Conjugated linoleic acid (CLA) consists of a group of positional and geometric conjugated isomers of linoleic acid. Since the identification of CLA as a factor that can inhibit mutagenesis and carcinogenesis, thousands of studies have been conducted in the last several decades. Among the many isomers discovered, cis-9, trans-11 CLA is the most intensively studied because of its multiple, isomer-specific effects in humans and animals. This paper provides an overview of the available data on cis-9, trans-11 CLA, including its isomer-specific effects, biosynthesis, in vivo/in vitro research models, quantification, and the factors influencing its content in ruminant products.
Collapse
Affiliation(s)
- Tao Wang
- a Department of Animal Science, and Technology, College of Animal Bioscience & Technology , Konkuk University , 120 Neungdong-ro, Gwangjin-gu , Seoul 143-701 , Republic of Korea
| | | |
Collapse
|
108
|
Shah PT, Maxwell KD, Shapiro JI. Dashing away hypertension: Evaluating the efficacy of the dietary approaches to stop hypertension diet in controlling high blood pressure. World J Hypertens 2015; 5:119-128. [DOI: 10.5494/wjh.v5.i4.119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/23/2015] [Accepted: 10/27/2015] [Indexed: 02/06/2023] Open
Abstract
The dietary approaches to stop hypertension (DASH) diet has been developed and popularized as a non-pharmaceutical intervention for high blood pressure reduction since 1995. However, to date, a comprehensive description of the biochemical rationale behind the diet’s principal guidelines has yet to be compiled. With rising interest for healthy and reliable life-style modifications to combat cardiovascular disease, this review aims to compile the most recent and relevant studies on this topic and make an informed assessment as to the efficacy of and underlying mechanisms operant in the DASH diet. Specifically, the merits of lowering dietary intake of sodium and saturated fat, as well as increasing the intake of fruits, vegetables, fiber, and dairy, have been shown to attenuate hypertension individually. Upon review of this evidence, we conclude that the combination of dietary patterns proposed in the DASH diet is effective in attenuating high blood pressure. We also suggest that efforts to more widely implement adoption of the DASH diet would be beneficial to public health.
Collapse
|
109
|
Li R, Beaudoin F, Ammah AA, Bissonnette N, Benchaar C, Zhao X, Lei C, Ibeagha-Awemu EM. Deep sequencing shows microRNA involvement in bovine mammary gland adaptation to diets supplemented with linseed oil or safflower oil. BMC Genomics 2015; 16:884. [PMID: 26519053 PMCID: PMC4628385 DOI: 10.1186/s12864-015-1965-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 09/30/2015] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Bovine milk fat composition is responsive to dietary manipulation providing an avenue to modify the content of fatty acids and especially some specific unsaturated fatty acid (USFA) isomers of benefit to human health. MicroRNAs (miRNAs) regulate gene expression but their specific roles in bovine mammary gland lipogenesis are unclear. The objective of this study was to determine the expression pattern of miRNAs following mammary gland adaptation to dietary supplementation with 5 % linseed or safflower oil using next generation RNA-sequencing. METHODS Twenty-four Canadian Holstein dairy cows (twelve per treatment) in mid lactation were fed a control diet (total mixed ration of corn:grass silages) for 28 days followed by a treatment period (control diet supplemented with 5 % linseed or safflower oil) of 28 days. Milk samples were collected weekly for fat and individual fatty acid determination. RNA from mammary gland biopsies harvested on day-14 (control period) and on days +7 and +28 (treatment period) from six randomly selected cows per treatment was subjected to small RNA sequencing. RESULTS Milk fat percentage decreased significantly (P < 0.001) during treatment with the two diets as compared to the control period. The individual saturated fatty acids C4:0, C6:0, C8:0, C14:0 and C16:0 decreased significantly (P < 0.05) while five USFAs (C14:1, C18:1n11t, C20:3n3, C20:5n3 and CLA:t10c12) increased remarkably (P < 0.05) in response to both treatments. Analysis of 361 million sequence reads generated 321 known bovine miRNAs and 176 novel miRNAs. The expression of fourteen and twenty-two miRNAs was affected (P < 0.05) by linseed and safflower oil treatments, respectively. Seven miRNAs including six up-regulated (bta-miR-199c, miR-199a-3p, miR-98, miR-378, miR-148b and miR-21-5p) and one down-regulated (bta-miR-200a) were found to be regulated (P < 0.05) by both treatments, and thus considered core differentially expressed (DE) miRNAs. The gene targets of core DE miRNAs have functions related to gene expression and general cellular metabolism (P < 0.05) and are enriched in four pathways of lipid metabolism (3-phosphoinositide biosynthesis, 3-phosphoinositide degradation, D-myo-inisitol-5-phosphate metabolism and the superpathway of inositol phosphate compounds). CONCLUSION Our results suggest that DE miRNAs in this study might be important regulators of bovine mammary lipogenesis and metabolism. The novel miRNAs identified in this study will further enrich the bovine miRNome repertoire and contribute to understanding mammary gland biology.
Collapse
Affiliation(s)
- Ran Li
- Agriculture and Agri-Food Canada, Dairy and Swine Research and Development Centre, Sherbrooke, Quebec, J1M 0C8, Canada
- College of Animal Science and Technology, Northwest A&F University, Xi'an, Shaanxi, 712100, China
| | - Frédéric Beaudoin
- Agriculture and Agri-Food Canada, Dairy and Swine Research and Development Centre, Sherbrooke, Quebec, J1M 0C8, Canada
| | - Adolf A Ammah
- Agriculture and Agri-Food Canada, Dairy and Swine Research and Development Centre, Sherbrooke, Quebec, J1M 0C8, Canada
| | - Nathalie Bissonnette
- Agriculture and Agri-Food Canada, Dairy and Swine Research and Development Centre, Sherbrooke, Quebec, J1M 0C8, Canada
| | - Chaouki Benchaar
- Agriculture and Agri-Food Canada, Dairy and Swine Research and Development Centre, Sherbrooke, Quebec, J1M 0C8, Canada
| | - Xin Zhao
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Xi'an, Shaanxi, 712100, China
| | - Eveline M Ibeagha-Awemu
- Agriculture and Agri-Food Canada, Dairy and Swine Research and Development Centre, Sherbrooke, Quebec, J1M 0C8, Canada.
| |
Collapse
|
110
|
Pestana JM, Gennari A, Monteiro BW, Lehn DN, Souza CFV. Effects of Pasteurization and Ultra-High Temperature Processes on Proximate Composition and Fatty Acid Profile in Bovine Milk. ACTA ACUST UNITED AC 2015. [DOI: 10.3923/ajft.2015.265.272] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
111
|
Composition and microstructure of colostrum and mature bovine milk fat globule membrane. Food Chem 2015; 185:362-70. [DOI: 10.1016/j.foodchem.2015.03.145] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 03/29/2015] [Accepted: 03/31/2015] [Indexed: 11/17/2022]
|
112
|
Altamirano GA, Muñoz-de-Toro M, Luque EH, Gómez AL, Delconte MB, Kass L. Milk lipid composition is modified by perinatal exposure to bisphenol A. Mol Cell Endocrinol 2015; 411:258-67. [PMID: 25976663 DOI: 10.1016/j.mce.2015.05.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/13/2015] [Accepted: 05/06/2015] [Indexed: 02/05/2023]
Abstract
To evaluate whether bisphenol A (BPA) modifies the synthesis, composition and/or profile of fatty acids (FAs) in the mammary glands of perinatally exposed animals, pregnant rats were orally exposed to 0, 0.6 or 52 µg BPA/kg/day from gestation day (GD) 9 until weaning. F1 females were bred, and on GD21, lactation day 2 (LD2) and LD10, mammary glands were obtained. On LD10, milk samples were collected, and FA profiles and lipid compositions were established. On GD21 and LD2, BPA exposure delayed mammary alveolar maturation and modified the synthesis of milk fat globules. On LD10, mammary gland histo-architecture was restored; however, the milk of BPA-exposed F1 dams had a FA profile and lipid concentration different from those of the control milk. Furthermore, the body weight gain of BPA52 F2 pups was increased compared with control animals. Thus, perinatal exposure to BPA modifies milk quality, compromising the normal growth of offspring.
Collapse
Affiliation(s)
- Gabriela A Altamirano
- Instituto de Salud y Ambiente del Litoral (ISAL, CONICET-UNL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL, CONICET-UNL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL, CONICET-UNL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Ayelén L Gómez
- Instituto de Salud y Ambiente del Litoral (ISAL, CONICET-UNL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Melisa B Delconte
- Instituto de Salud y Ambiente del Litoral (ISAL, CONICET-UNL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Laura Kass
- Instituto de Salud y Ambiente del Litoral (ISAL, CONICET-UNL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
113
|
Zhang L, Boeren S, Hageman JA, van Hooijdonk T, Vervoort J, Hettinga K. Perspective on calf and mammary gland development through changes in the bovine milk proteome over a complete lactation. J Dairy Sci 2015; 98:5362-73. [DOI: 10.3168/jds.2015-9342] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/26/2015] [Indexed: 12/31/2022]
|
114
|
Wang Z, Chen Y, Luo H, Liu X, Liu K. Influence of Restricted Grazing Time Systems on Productive Performance and Fatty Acid Composition of Longissimus dorsi in Growing Lambs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 28:1105-15. [PMID: 26104518 PMCID: PMC4478478 DOI: 10.5713/ajas.14.0937] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/05/2015] [Accepted: 02/13/2015] [Indexed: 01/21/2023]
Abstract
Fifty 3-month-old male Tan lambs (similar in body weight) were divided into 5 groups to investigate the effects of different restricted pasture grazing times and indoor supplementation on the productive performances and fatty acid composition of the intramuscular fat in growing lambs. The lambs grazed for different periods of time (12 h/d, 8 h/d, 4 h/d, 2 h/d, and 0 h) and received various amounts of supplementary feedings during the 120-day trial. Pasture dry matter intake (DMI), total DMI, average daily gains and the live body weights of the lambs were measured during the experiment. The animals were slaughtered at the end of the study, their carcass traits were measured, and their longissimus dorsi muscles were sampled to analyze the intramuscular fat (IMF) content and fatty acid profiles. The results indicated that the different durations of grazing and supplementary feedings affected the animal performances and the composition of fatty acids. Grazing for 8 h/d or 2 h/d with the corresponding supplementary concentrate resulted in lambs with higher body weights, carcass weights and IMF contents. Lambs with longer grazing times and less concentrate accumulated more healthy fatty acids such as conjugated linoleic acid and n-3 polyunsaturated fatty acid and had higher n-3/n-6 ratios. Overall, a grazing allowance of 8 h/d and the corresponding concentrate was recommended to maintain a high quantity and quality of lamb meat.
Collapse
|
115
|
Rodríguez-Alcalá L, Castro-Gómez P, Felipe X, Noriega L, Fontecha J. Effect of processing of cow milk by high pressures under conditions up to 900 MPa on the composition of neutral, polar lipids and fatty acids. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2014.12.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
116
|
Nyyssölä A, Miettinen H, Kontkanen H, Lille M, Partanen R, Rokka S, Järvenpää E, Lantto R, Kruus K. Treatment of milk fat with sn-2 specific Pseudozyma antarctica lipase A for targeted hydrolysis of saturated medium and long-chain fatty acids. Int Dairy J 2015. [DOI: 10.1016/j.idairyj.2014.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
117
|
Linking fat intake, the intestinal microbiome, and necrotizing enterocolitis in premature infants. Pediatr Res 2015; 77:121-6. [PMID: 25303279 DOI: 10.1038/pr.2014.155] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 05/04/2014] [Indexed: 12/12/2022]
Abstract
Components of diet, including the total amounts and specific types of fat, affect the composition of the intestinal microbiome in both animal models and cohort studies of humans. Amounts of total fat and specific fatty acids (FA) are some of the most variable nutritional components of breast milk. Evaluations of the microbiome in premature infants have shown decreased diversity of species and increased proportions of potentially pathogenic bacteria. Microbial patterns in premature infants may be affected by nutritional fat intake, altering risk of diseases such as necrotizing enterocolitis. Dietary FA may also impact disease susceptibility through molecular mechanisms. Specifically, intestinal Toll-like receptor 4 expression is altered by manipulation of FA in murine models. Abnormal increased expression of Toll-like receptor 4, the receptor for lipopolysaccharide, has been implicated in necrotizing enterocolitis. This report will review the role of dietary fat in the composition of the intestinal microbiome, the extreme variability of FA intake in premature infants, and associations of both dysbiosis and FA intake with the development of necrotizing enterocolitis.
Collapse
|
118
|
Lewis ZT, Totten SM, Smilowitz JT, Popovic M, Parker E, Lemay DG, Van Tassell ML, Miller MJ, Jin YS, German JB, Lebrilla CB, Mills DA. Maternal fucosyltransferase 2 status affects the gut bifidobacterial communities of breastfed infants. MICROBIOME 2015; 3:13. [PMID: 25922665 PMCID: PMC4412032 DOI: 10.1186/s40168-015-0071-z] [Citation(s) in RCA: 289] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 01/29/2015] [Indexed: 05/21/2023]
Abstract
BACKGROUND Individuals with inactive alleles of the fucosyltransferase 2 gene (FUT2; termed the 'secretor' gene) are common in many populations. Some members of the genus Bifidobacterium, common infant gut commensals, are known to consume 2'-fucosylated glycans found in the breast milk of secretor mothers. We investigated the effects of maternal secretor status on the developing infant microbiota with a special emphasis on bifidobacterial species abundance. RESULTS On average, bifidobacteria were established earlier and more often in infants fed by secretor mothers than in infants fed by non-secretor mothers. In secretor-fed infants, the relative abundance of the Bifidobacterium longum group was most strongly correlated with high percentages of the order Bifidobacteriales. Conversely, in non-secretor-fed infants, Bifidobacterium breve was positively correlated with Bifidobacteriales, while the B. longum group was negatively correlated. A higher percentage of bifidobacteria isolated from secretor-fed infants consumed 2'-fucosyllactose. Infant feces with high levels of bifidobacteria had lower milk oligosaccharide levels in the feces and higher amounts of lactate. Furthermore, feces containing different bifidobacterial species possessed differing amounts of oligosaccharides, suggesting differential consumption in situ. CONCLUSIONS Infants fed by non-secretor mothers are delayed in the establishment of a bifidobacteria-laden microbiota. This delay may be due to difficulties in the infant acquiring a species of bifidobacteria able to consume the specific milk oligosaccharides delivered by the mother. This work provides mechanistic insight into how milk glycans enrich specific beneficial bacterial populations in infants and reveals clues for enhancing enrichment of bifidobacterial populations in at risk populations - such as premature infants.
Collapse
Affiliation(s)
- Zachery T Lewis
- />Department of Food Science and Technology, UC Davis, 1 Shields Avenue, Davis, CA 95616 USA
- />Foods For Health Institute, UC Davis, 1 Peter J Shields Avenue, Davis, CA 95616 USA
| | - Sarah M Totten
- />Department of Chemistry, UC Davis, 1 Shields Avenue, Davis, CA 95616 USA
- />Foods For Health Institute, UC Davis, 1 Peter J Shields Avenue, Davis, CA 95616 USA
| | - Jennifer T Smilowitz
- />Department of Food Science and Technology, UC Davis, 1 Shields Avenue, Davis, CA 95616 USA
- />Foods For Health Institute, UC Davis, 1 Peter J Shields Avenue, Davis, CA 95616 USA
| | - Mina Popovic
- />Department of Life Sciences, PhD School in Science and Technologies for Health Products, University of Modena and Reggio Emilia, Via Università, 4, Modena, MO 41100 Italy
| | - Evan Parker
- />Department of Chemistry, UC Davis, 1 Shields Avenue, Davis, CA 95616 USA
| | - Danielle G Lemay
- />Genome Center, UC Davis, 1 Shields Avenue, Davis, CA 95616 USA
| | - Maxwell L Van Tassell
- />Department of Food Science and Human Nutrition, University Illinois at Urbana-Champaign, S. Goodwin Ave., Urbana, IL 61801 USA
| | - Michael J Miller
- />Department of Food Science and Human Nutrition, University Illinois at Urbana-Champaign, S. Goodwin Ave., Urbana, IL 61801 USA
| | - Yong-Su Jin
- />Department of Food Science and Human Nutrition, University Illinois at Urbana-Champaign, S. Goodwin Ave., Urbana, IL 61801 USA
| | - J Bruce German
- />Department of Food Science and Technology, UC Davis, 1 Shields Avenue, Davis, CA 95616 USA
- />Foods For Health Institute, UC Davis, 1 Peter J Shields Avenue, Davis, CA 95616 USA
| | - Carlito B Lebrilla
- />Department of Chemistry, UC Davis, 1 Shields Avenue, Davis, CA 95616 USA
- />Foods For Health Institute, UC Davis, 1 Peter J Shields Avenue, Davis, CA 95616 USA
| | - David A Mills
- />Department of Food Science and Technology, UC Davis, 1 Shields Avenue, Davis, CA 95616 USA
- />Department of Viticulture and Enology, UC Davis, 1 Shields Avenue, Davis, CA 95616 USA
- />Foods For Health Institute, UC Davis, 1 Peter J Shields Avenue, Davis, CA 95616 USA
| |
Collapse
|
119
|
A genetic variant of PPARA modulates cardiovascular risk biomarkers after milk consumption. Nutrition 2014; 30:1144-50. [DOI: 10.1016/j.nut.2014.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/10/2014] [Accepted: 02/14/2014] [Indexed: 11/23/2022]
|
120
|
Bilal G, Cue RI, Mustafa AF, Hayes JF. Effects of parity, age at calving and stage of lactation on fatty acid composition of milk in Canadian Holsteins. CANADIAN JOURNAL OF ANIMAL SCIENCE 2014. [DOI: 10.4141/cjas2013-172] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- G. Bilal
- Department of Animal Science, McGill University, Macdonald Campus, Sainte-Anne-de-Bellevue, Quebec, Canada H9X 3V9
| | - R. I. Cue
- Department of Animal Science, McGill University, Macdonald Campus, Sainte-Anne-de-Bellevue, Quebec, Canada H9X 3V9
| | - A. F. Mustafa
- Department of Animal Science, McGill University, Macdonald Campus, Sainte-Anne-de-Bellevue, Quebec, Canada H9X 3V9
| | - J. F. Hayes
- Department of Animal Science, McGill University, Macdonald Campus, Sainte-Anne-de-Bellevue, Quebec, Canada H9X 3V9
| |
Collapse
|
121
|
Claeys W, Verraes C, Cardoen S, De Block J, Huyghebaert A, Raes K, Dewettinck K, Herman L. Consumption of raw or heated milk from different species: An evaluation of the nutritional and potential health benefits. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.01.045] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
122
|
Bilal G, Cue R, Mustafa A, Hayes J. Short communication: Genetic parameters of individual fatty acids in milk of Canadian Holsteins. J Dairy Sci 2014; 97:1150-6. [DOI: 10.3168/jds.2012-6508] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 10/13/2013] [Indexed: 11/19/2022]
|
123
|
Peng Q, Wang X, Shang M, Huang J, Guan G, Li Y, Shi B. Isolation of a novel alkaline-stable lipase from a metagenomic library and its specific application for milkfat flavor production. Microb Cell Fact 2014; 13:1. [PMID: 24387764 PMCID: PMC3880967 DOI: 10.1186/1475-2859-13-1] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 12/29/2013] [Indexed: 12/01/2022] Open
Abstract
Background Lipolytic enzymes are commonly used to produce desired flavors in lipolyzed milkfat (LMF) manufacturing processes. However, the choice of enzyme is critical because it determines the final profile of fatty acids released and the consequent flavor of the product. We previously constructed a metagenomic library from marine sediments, to explore the novel enzymes which have unique properties useful in flavor-enhancing LMF. Results A novel lipase Est_p6 was isolated from a metagenomic library and was expressed highly in E.coli. Bioinformatic analysis indicated that Est_p6 belongs to lipolytic enzyme family IV, the molecular weight of purified Est_p6 was estimated at 36 kDa by SDS-PAGE. The hydrolytic activity of the enzyme was stable under alkaline condition and the optimal temperature was 50°C. It had a high specific activity (2500 U/mg) toward pNP butyrate (pNP-C4), with Km and Vmax values of 1.148 mM and 3497 μmol∙min-1∙mg-1, respectively. The enzyme activity was enhanced by DTT and was not significantly inhibited by PMSF, EDTA or SDS. This enzyme also showed high hydrolysis specificity for myristate (C14) and palmitate (C16). It seems that Est_p6 has safety for commercial LMF flavor production and food manufacturing processes. Conclusions The ocean is a vast and largely unexplored resource for enzymes. According the outstanding alkaline-stability of Est_p6 and it produced myristic acid and palmitic acid more efficiently than other free fatty acids in lipolyzed milkfat. This novel lipase may be used to impart a distinctive and desirable flavor and odor in milkfat flavor production.
Collapse
Affiliation(s)
| | | | | | | | | | - Ying Li
- State Key Laboratories for Agro-biotechnology and College of Biological Sciences, China Agricultural University, Beijing 100193, P, R, China.
| | | |
Collapse
|
124
|
Lopez C, Briard-Bion V, Bourgaux C, Pérez J. Solid triacylglycerols within human fat globules: β crystals with a melting point above in-body temperature of infants, formed upon storage of breast milk at low temperature. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
125
|
Miettinen H, Nyyssölä A, Rokka S, Kontkanen H, Kruus K. Screening of microbes for lipases specific for saturated medium and long-chain fatty acids of milk fat. Int Dairy J 2013. [DOI: 10.1016/j.idairyj.2013.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
126
|
Georgi G, Bartke N, Wiens F, Stahl B. Functional glycans and glycoconjugates in human milk. Am J Clin Nutr 2013; 98:578S-85S. [PMID: 23783293 DOI: 10.3945/ajcn.112.039065] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Human milk contains complex carbohydrates that are important dietary factors with multiple functions during early life. Several aspects of these glycostructures are human specific; some aspects vary between lactating women, and some change during the course of lactation. This review outlines how variability of complex glycostructures present in human milk is linked to changing infants' needs.
Collapse
Affiliation(s)
- Gilda Georgi
- Danone Research–Centre for Specialised Nutrition, Friedrichsdorf, Germany
| | | | | | | |
Collapse
|
127
|
Zou X, Huang J, Jin Q, Guo Z, Liu Y, Cheong L, Xu X, Wang X. Lipid composition analysis of milk fats from different mammalian species: potential for use as human milk fat substitutes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:7070-7080. [PMID: 23800239 DOI: 10.1021/jf401452y] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The lipid compositions of commercial milks from cow, buffalo, donkey, sheep, and camel were compared with that of human milk fat (HMF) based on total and sn-2 fatty acid, triacylglycerol (TAG), phospholipid, and phospholipid fatty acid compositions and melting and crystallization profiles, and their degrees of similarity were digitized and differentiated by an evaluation model. The results showed that these milk fats had high degrees of similarity to HMF in total fatty acid composition. However, the degrees of similarity in other chemical aspects were low, indicating that these milk fats did not meet the requirements of human milk fat substitutes (HMFSs). However, an economically feasible solution to make these milks useful as raw materials for infant formula production could be to modify these fats, and a possible method is blending of polyunsaturated fatty acids (PUFA) and 1,3-dioleoyl-2-palmitoylglycerol (OPO) enriched fats and minor lipids based on the corresponding chemical compositions of HMF.
Collapse
Affiliation(s)
- Xiaoqiang Zou
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University , 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Walther B, Karl JP, Booth SL, Boyaval P. Menaquinones, bacteria, and the food supply: the relevance of dairy and fermented food products to vitamin K requirements. Adv Nutr 2013; 4:463-73. [PMID: 23858094 PMCID: PMC3941825 DOI: 10.3945/an.113.003855] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Vitamin K exists in the food supply as phylloquinone, a plant-based form and as menaquinones (MKs), a collection of isoprenologues mostly originating from bacterial synthesis. Although multiple bacterial species used as starter cultures for food fermentations synthesize MK, relatively little is known about the presence and distribution of MK in the food supply and the relative contribution of MK to total dietary vitamin K intake. Dairy products may be a predominant source of dietary MK in many regions of the world, and there is recent interest in enhancing the MK content of dairy products through identification and selection of MK-producing bacteria in dairy fermentations. This interest is increased by emerging evidence that current dietary recommendations based on the classic role of vitamin K as an enzyme cofactor for coagulation proteins may not be optimal for supporting vitamin K requirements in extrahepatic tissues and that MK may have unique bioactivity beyond that as an enzyme cofactor. Observational studies have reported favorable associations between MK intake and bone and cardiovascular health. Although randomized trials have provided some evidence to support the beneficial effects of MK on bone, the evidence to date is not definitive, and randomized trials have not yet examined MK intake in relation to cardiovascular outcomes. Food production practices provide a means to enhance dietary MK availability and intake. However, parallel research is needed to optimize these production practices, develop comprehensive food MK content databases, and test hypotheses of unique beneficial physiological roles of MK beyond that achieved by phylloquinone.
Collapse
Affiliation(s)
- Barbara Walther
- Research Station Agroscope Liebefeld-Posieux ALP, Bern, Switzerland.
| | | | | | | |
Collapse
|
129
|
|
130
|
|
131
|
Nafikov RA, Schoonmaker JP, Korn KT, Noack K, Garrick DJ, Koehler KJ, Minick-Bormann J, Reecy JM, Spurlock DE, Beitz DC. Sterol regulatory element binding transcription factor 1 (SREBF1) polymorphism and milk fatty acid composition. J Dairy Sci 2013; 96:2605-2616. [PMID: 23403193 DOI: 10.3168/jds.2012-6075] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 12/03/2012] [Indexed: 11/19/2022]
Abstract
Milk is known to contain high concentrations of saturated fatty acids-such as palmitic (16:0), myristic (14:0), and lauric (12:0) acids-that can raise plasma cholesterol in humans, making their presence in milk undesirable. The main objective of our candidate gene study was to develop genetic markers that can be used to improve the healthfulness of bovine milk. The sterol regulatory element binding transcription factor 1 (SREBF1) known to regulate the transcription of lipogenic genes together with SREBF chaperone and insulin induced gene 1 were the candidate genes. The results showed significant association of the overall SREBF1 haplotypes with milk production and variations in lauric (12:0) and myristic (14:0) acid concentrations in milk. Haplotype H1 of SREBF1 was the most desirable to improve milk healthfulness because it was significantly associated with lower lauric (12:0) and myristic (14:0) acid concentrations compared with haplotype H3 of SREBF1, and lower lauric acid (12:0) concentration compared with haplotype H2 of SREBF1. Haplotype H1 of SREBF1, however, was significantly associated with lower milk production compared with haplotype H3 of SREBF1. We did not detect any significant associations between genetic polymorphisms in insulin induced gene 1 (INSIG1) and SREBF chaperone and milk fatty acid composition. In conclusion, genetic polymorphisms in SREBF1 can be used to develop genetic tools for the selection of animals producing milk with healthier fatty acid composition.
Collapse
Affiliation(s)
- R A Nafikov
- Department of Animal Science, Iowa State University, Ames 50011
| | - J P Schoonmaker
- Department of Animal Science, Iowa State University, Ames 50011
| | - K T Korn
- Department of Animal Science, Iowa State University, Ames 50011
| | - K Noack
- Department of Animal Science, Iowa State University, Ames 50011
| | - D J Garrick
- Department of Animal Science, Iowa State University, Ames 50011
| | - K J Koehler
- Department of Statistics, Iowa State University, Ames 50011
| | - J Minick-Bormann
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| | - J M Reecy
- Department of Animal Science, Iowa State University, Ames 50011
| | - D E Spurlock
- Department of Animal Science, Iowa State University, Ames 50011
| | - D C Beitz
- Department of Animal Science, Iowa State University, Ames 50011.
| |
Collapse
|
132
|
Duchemin S, Bovenhuis H, Stoop W, Bouwman A, van Arendonk J, Visker M. Genetic correlation between composition of bovine milk fat in winter and summer, and DGAT1 and SCD1 by season interactions. J Dairy Sci 2013; 96:592-604. [DOI: 10.3168/jds.2012-5454] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 09/14/2012] [Indexed: 11/19/2022]
|
133
|
Poulsen N, Gustavsson F, Glantz M, Paulsson M, Larsen L, Larsen M. The influence of feed and herd on fatty acid composition in 3 dairy breeds (Danish Holstein, Danish Jersey, and Swedish Red). J Dairy Sci 2012; 95:6362-71. [DOI: 10.3168/jds.2012-5820] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 06/21/2012] [Indexed: 11/19/2022]
|
134
|
Zou XQ, Huang JH, Jin QZ, Liu YF, Tao GJ, Cheong LZ, Wang XG. Preparation of human milk fat substitutes from palm stearin with arachidonic and docosahexaenoic acid: combination of enzymatic and physical methods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:9415-9423. [PMID: 22920386 DOI: 10.1021/jf3017354] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Human milk fat substitutes (HMFSs) were prepared by a two-step process, namely, Lipozyme RM IM-catalyzed acidolysis of interesterified high-melting palm stearin with fatty acids from rapeseed oil and blending of the enzymatic product with the selected oils on the basis of the calculation model. The optimum conditions for the enzymatic reaction were a mole ratio of palm stearin/fatty acids 1:10, 60 °C, 8% enzyme load (wt % of substrates), 4 h, and 3.5% water content (wt % of enzyme); the enzymatic product contained 39.6% palmitic acid (PA), 83.7% of the fatty acids at sn-2 position were PA (sn-2 PA), and the distribution probability of PA at the sn-2 position among total PA (% sn-2 PA) was 70.5%. With the fatty acid profiles of human milk fat (HMF) as a preferable goal, a physical blending model was established for the second step to guarantee the maximum addition of selected oils. Based on the model prediction, a desirable formula constituted enzymatic product/rapeseed oil/sunflower oil/palm kernel oil/algal oil/microbial oil at a mole ratio of 1:0.28:0.40:0.36:0.015:0.017, and the final product had PA content, sn-2 PA, and %sn-2 PA at 23.5, 43.1, and 61.1%, respectively. The contents of arachidonic and docosahexaenoic acids were 0.4 and 0.3%, respectively. Relying on the total and sn-2 fatty acid compositions of HMF and "deducting score" principle, the score for the similarity between the final product and HMF was scaled as 89.2, indicating the potential as a fat substitute in infant formulas.
Collapse
Affiliation(s)
- Xiao-Qiang Zou
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
135
|
Miciński J, Zwierzchowski G, Kowalski IM, Szarek J, Pierożyński B, Raistenskis J. The effects of bovine milk fat on human health. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.poamed.2012.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
136
|
Zou XQ, Guo Z, Huang JH, Jin QZ, Cheong LZ, Wang XG, Xu XB. Human milk fat globules from different stages of lactation: a lipid composition analysis and microstructure characterization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:7158-7167. [PMID: 22747344 DOI: 10.1021/jf3013597] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The physicochemical properties of human milk fat globules (MFG) at different lactation stages from Danish mothers and the microstructure changes of MFG membrane (MFGM) at varied temperatures were investigated, and the relationship between chemical composition and the microstructure of MFGM was elucidated. The fat content in MFG was found to be significantly increased as lactation progressed, and colostrum MFG had the largest mean diameter of 5.75 ± 0.81 μm and the lowest ζ potential of -5.60 ± 0.12 mV. Chemical composition analyses of MFG revealed the following: (i) Colostrum milk fat constituted higher content in PUFAs (ω-6, and long-chain ω-6 and ω-3) than transitional and mature milk fats, with the corresponding lower content of SFA in its sn-2 position. (ii) The content of polar lipids among total lipids varied during lactation course (maximized at transitional stage); however, in terms of subclasses of polar lipids, no significant change of the relative content of sphingomyelin was observed, while the content of phosphatidycholine in mature milk was higher than that in colostrum and transitional milk. (iii) Inspection of fatty acid composition in phospholipids from different lactation milk revealed no remarkable and regular changes could be generalized; and no obvious difference of the morphologies of MFGM at different lactation stages can be visualized. An investigation of the microstructure change of MFGM vs temperature demonstrated that the segregated domains became larger as temperature decreased to 4 °C, while it became smaller when increased to 37 °C. This phenomenon indicated that, in addition to sphingimyelin and cholesterol, phospholipids might also contribute to increasing the segregated domains at lower temperature, while, at elevated temperature, these domains could be diminished, most likely due to a restructuring or distributing of sphingimyelin and cholesterol.
Collapse
Affiliation(s)
- Xiao-Qiang Zou
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China
| | | | | | | | | | | | | |
Collapse
|
137
|
Van de Perre P, Rubbo PA, Viljoen J, Nagot N, Tylleskar T, Lepage P, Vendrell JP, Tuaillon E. HIV-1 Reservoirs in Breast Milk and Challenges to Elimination of Breast-Feeding Transmission of HIV-1. Sci Transl Med 2012; 4:143sr3. [DOI: 10.1126/scitranslmed.3003327] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
138
|
Rodriguez-Alcala LM, Calvo MV, Fontecha J. A Quick, Optimized Method for Routine Analysis of Essential and Trans-Octadecenoic Acids in Edible Fats and Oils by GLC. J Chromatogr Sci 2012; 51:70-81. [DOI: 10.1093/chromsci/bms109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
139
|
A mini-review on health and nutritional aspects of cheese with a focus on bioactive peptides. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s13594-012-0066-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
140
|
Valentine CJ. Maternal dietary DHA supplementation to improve inflammatory outcomes in the preterm infant. Adv Nutr 2012; 3:370-6. [PMID: 22585914 PMCID: PMC3649472 DOI: 10.3945/an.111.001248] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Dietary DHA (22:6n-3) is a long-chain PUFA that has provocative effects on inflammatory signal events that could potentially affect preterm infant health. It is well known that the essential fatty acid of the (n-3) series; α-linolenic acid (18:3n:3) can be desaturated and elongated in the liver endoplasmic reticulum and peroxisome to produce the 22-carbon DHA. Nevertheless, concern exists as to the efficiency of this mechanism in providing the preterm infant with adequate DHA. Activity of the δ-6-desaturase and the δ-5-desaturase necessary for DHA synthesis is decreased by protein deprivation. The combined effects of suboptimal intake of both DHA and protein in the preterm infants could have substantial clinical consequences.
Collapse
Affiliation(s)
- Christina J Valentine
- Division of Neonatology, Perinatal, and Pulmonary Biology, Center for Interdisciplinary Research in Human Milk and Lactation, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
141
|
KUCHTA ANNAM, KELLY PHILIPM, STANTON CATHERINE, DEVERY ROSALEENA. Milk fat globule membrane - a source of polar lipids for colon health? A review. INT J DAIRY TECHNOL 2012. [DOI: 10.1111/j.1471-0307.2011.00759.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
142
|
|
143
|
Chou CJ, Affolter M, Kussmann M. A Nutrigenomics View of Protein Intake. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 108:51-74. [DOI: 10.1016/b978-0-12-398397-8.00003-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
144
|
Lepage P, Van de Perre P. The Immune System of Breast Milk: Antimicrobial and Anti-inflammatory Properties. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 743:121-37. [DOI: 10.1007/978-1-4614-2251-8_9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
145
|
Lopez C. Milk fat globules enveloped by their biological membrane: Unique colloidal assemblies with a specific composition and structure. Curr Opin Colloid Interface Sci 2011. [DOI: 10.1016/j.cocis.2011.05.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
146
|
The effect of milk polar lipids separated from butter serum on the lipid levels in the liver and the plasma of obese-model mouse (KK-A ). J Funct Foods 2011. [DOI: 10.1016/j.jff.2011.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
147
|
Snow DR, Ward RE, Olsen A, Jimenez-Flores R, Hintze KJ. Membrane-rich milk fat diet provides protection against gastrointestinal leakiness in mice treated with lipopolysaccharide. J Dairy Sci 2011; 94:2201-12. [PMID: 21524510 DOI: 10.3168/jds.2010-3886] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 02/04/2011] [Indexed: 01/07/2023]
Abstract
Milk fat globule membrane is a protein-lipid complex that may strengthen the gut barrier. The main objective of this study was to assess the ability of a membrane-rich milk fat diet to promote the integrity of the gut barrier and to decrease systemic inflammation in lipopolysaccharide (LPS)-challenged mice. Animals were randomly assigned to one of 2 American Institute of Nutrition (AIN)-76A formulations differing only in fat source: control diet (corn oil) and milk fat diet (anhydrous milk fat with 10% milk fat globule membrane). Each diet contained 12% calories from fat. Mice were fed diets for 5 wk, then injected with vehicle or LPS (10mg/kg of BW) and gavaged with dextran-fluorescein to assess gut barrier integrity. Serum was assayed for fluorescence 24h after gavage, and 16 serum cytokines were measured to assess the inflammatory response. Gut permeability was 1.8-fold higher in LPS-challenged mice fed the control diet compared with the milk fat diet. Furthermore, mice fed the milk fat diet and injected with LPS had lower serum levels of IL-6, IL-10, IL-17, monocyte chemotactic protein (MCP)-1, interferon (IFN)-γ, tumor necrosis factor (TNF)-α, and IL-3 compared with LPS-injected mice fed the control diet. The results indicate that the membrane-rich milk fat diet decreases the inflammatory response to a systemic LPS challenge compared with corn oil, and the effect coincides with decreased gut permeability.
Collapse
Affiliation(s)
- D R Snow
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan 84322, USA
| | | | | | | | | |
Collapse
|
148
|
Effects of conjugated linoleic acid on cleavage of amyloid precursor protein via PPARγ. Neurol Sci 2011; 32:1095-101. [PMID: 21800078 DOI: 10.1007/s10072-011-0711-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 07/13/2011] [Indexed: 12/28/2022]
Abstract
Conjugated linoleic acid (CLA) plays important roles in physiological conditions. The aim of present study was to explore the effects of CLA on the cleavage of amyloid precursor protein (APP) and the potential mechanism involved. The effects of CLA on intracellular APP, BACE1 (β-site APP Cleaving Enzyme1, BACE1), a disintegrin and metalloprotease (ADAM10) and extracellular sAPPα (soluble) were analyzed by RT-PCR, Western blot and ELISA in SH-SY5Y cells. Our study indicated that CLA significantly decreased the expression of BACE1 and increased the extracellular secretion of sAPPα, but not affected the levels of APP and ADAM10. The study also revealed that the nuclear receptor peroxisome proliferators activated receptor γ (PPARγ) played an important role in the CLA-induced intracellular BACE1 decrease, as well as the extracellular sAPPα increase through knockdown of PPARγ transcription using siRNA. We hypothesize that CLA acts as an agonist or ligand, which binds with PPARγ and leads to the increase in APP cleavage via α-secretase-mediated pathway and the decrease in the deposition of Aβ.
Collapse
|
149
|
Mills S, Ross R, Hill C, Fitzgerald G, Stanton C. Milk intelligence: Mining milk for bioactive substances associated with human health. Int Dairy J 2011. [DOI: 10.1016/j.idairyj.2010.12.011] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
150
|
Kussmann M, Van Bladeren PJ. The Extended Nutrigenomics - Understanding the Interplay between the Genomes of Food, Gut Microbes, and Human Host. Front Genet 2011; 2:21. [PMID: 22303317 PMCID: PMC3268576 DOI: 10.3389/fgene.2011.00021] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 04/29/2011] [Indexed: 12/28/2022] Open
Abstract
Comprehensive investigation of nutritional health effects at the molecular level requires the understanding of the interplay between three genomes, the food, the gut microbial, and the human host genome. Food genomes are researched for discovery and exploitation of macro- and micronutrients as well as specific bioactives, with those genes coding for bioactive proteins and peptides being of central interest. The human gut microbiota encompasses a complex ecosystem in the intestine with profound impact on host metabolism. It is being studied at genomic and, more recently, also at proteomic and metabonomic level. Humans are being characterized at the level of genetic pre-disposition and inter-individual variability in terms of (i) response to nutritional interventions and direction of health trajectories; (ii) epigenetic, metabolic programming at certain life stages with health consequences later in life and even for subsequent generations; and (iii) acute genomic expression as a holistic response to diet, monitored at gene transcript, protein and metabolite level. Modern nutrition science explores health-related aspects of bioactive food components, thereby promoting health, preventing, or delaying the onset of disease, optimizing performance and assessing benefits and risks in individuals and subpopulations. Personalized nutrition means adapting food to individual needs, depending on the human host's life stage, -style, and -situation. Traditionally, nutrigenomics and nutri(epi)genetics are seen as the key sciences to understand human variability in preferences and requirements for diet as well as responses to nutrition. This article puts the three nutrition and health-relevant genomes into perspective, namely the food, the gut microbial and the human host's genome, and calls for an "extended nutrigenomics" approach in order to build the future tools for personalized nutrition, health maintenance, and disease prevention. We discuss examples of these genomes, proteomes, transcriptomes, and metabolomes under the definition of genomics as the overarching term covering essentially all Omics rather than the sole study of DNA and RNA.
Collapse
Affiliation(s)
- Martin Kussmann
- Nestlé Institute of Health SciencesLausanne, Switzerland
- Faculty of Science, Aarhus UniversityDenmark
| | | |
Collapse
|