101
|
Chariou PL, Ortega-Rivera OA, Steinmetz NF. Nanocarriers for the Delivery of Medical, Veterinary, and Agricultural Active Ingredients. ACS NANO 2020; 14:2678-2701. [PMID: 32125825 PMCID: PMC8085836 DOI: 10.1021/acsnano.0c00173] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nanocarrier-based delivery systems can be used to increase the safety and efficacy of active ingredients in medical, veterinary, or agricultural applications, particularly when such ingredients are unstable, sparingly soluble, or cause off-target effects. In this review, we highlight the diversity of nanocarrier materials and their key advantages compared to free active ingredients. We discuss current trends based on peer-reviewed research articles, patent applications, clinical trials, and the nanocarrier formulations already approved by regulatory bodies. Although most nanocarriers have been engineered to combat cancer, the number of formulations developed for other purposes is growing rapidly, especially those for the treatment of infectious diseases and parasites affecting humans, livestock, and companion animals. The regulation and prohibition of many pesticides have also fueled research to develop targeted pesticide delivery systems based on nanocarriers, which maximize efficacy while minimizing the environmental impact of agrochemicals.
Collapse
|
102
|
Chackerian B, Peabody DS. Factors That Govern the Induction of Long-Lived Antibody Responses. Viruses 2020; 12:v12010074. [PMID: 31936163 PMCID: PMC7019776 DOI: 10.3390/v12010074] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/30/2019] [Accepted: 01/04/2020] [Indexed: 12/14/2022] Open
Abstract
The induction of long-lasting, high-titer antibody responses is critical to the efficacy of many vaccines. The ability to produce durable antibody responses is governed by the generation of the terminally differentiated antibody-secreting B cells known as long-lived plasma cells (LLPCs). Once induced, LLPCs likely persist for decades, providing long-term protection against infection. The factors that control the generation of this important class of B cells are beginning to emerge. In particular, antigens with highly dense, multivalent structures are especially effective. Here we describe some pathogens for which the induction of long-lived antibodies is particularly important, and discuss the basis for the extraordinary ability of multivalent antigens to drive differentiation of naïve B cells to LLPCs.
Collapse
|
103
|
Puente-Massaguer E, Lecina M, Gòdia F. Application of advanced quantification techniques in nanoparticle-based vaccine development with the Sf9 cell baculovirus expression system. Vaccine 2020; 38:1849-1859. [PMID: 31911032 DOI: 10.1016/j.vaccine.2019.11.087] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/24/2022]
Abstract
Nanoparticles generated by recombinant technologies are receiving increased interest in several applications, particularly the use of virus like particles (VLPs) for the generation of safer vaccines. The characterization and quantification of these nanoparticles with complex structures is very relevant for a better comprehension of the production systems and should circumvent the limitations of the most conventional quantification techniques often used. Here, we applied confocal microscopy, flow virometry and nanoparticle tracking analysis (NTA) to assess the production process of Gag virus-like particles (VLPs) in the Sf9 cell/baculovirus expression vector system (BEVS). These novel techniques were implemented in an optimization workflow based on Design of Experiments (DoE) and desirability functions to determine the best production conditions. A higher level of sensitivity was observed for NTA and confocal microscopy but flow virometry proved to be more accurate. Interestingly, extracellular vesicles were detected as an important source of contamination of this system. The synergistic interplay of viable cell concentration at infection (CCI), multiplicity of infection (MOI) and time of harvest (TOH) was assessed on five objective responses: VLP assembly, baculovirus infection, VLP production, cell viability and VLP productivity. Two global optimal conditions were defined, one targeting the maximal yield of VLPs and the other providing a balance between production and assembled VLPs. In both cases, a low MOI proved to be the best condition to achieve the highest VLP production and productivity yields. Cryo-EM analysis of nanoparticles produced in these conditions showed the typical size and morphology of HIV-1 VLPs. This study presents an integrative approach based on the combination of DoE and direct nanoparticle quantification techniques to comprehensively optimize the production of VLPs and other viral-based biotherapeutics.
Collapse
Affiliation(s)
- Eduard Puente-Massaguer
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Martí Lecina
- IQS School of Engineering, Universitat Ramón Llull, Barcelona, Spain
| | - Francesc Gòdia
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
104
|
Wetzel D, Barbian A, Jenzelewski V, Schembecker G, Merz J, Piontek M. Bioprocess optimization for purification of chimeric VLP displaying BVDV E2 antigens produced in yeast Hansenula polymorpha. J Biotechnol 2019; 306:203-212. [PMID: 31634510 DOI: 10.1016/j.jbiotec.2019.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022]
Abstract
Chimeric virus-like particles (VLP) are known as promising tools in the development of safe and effective subunit vaccines. Recently, a technology platform to produce VLP based on the small surface protein (dS) of the duck hepatitis B virus was established. In this study, chimeric VLP were investigated displaying the 195 N-terminal amino acids derived from the glycoprotein E2 of the bovine viral diarrhea virus (BVDV) on their surface. Isolation of the VLP from methylotrophic yeast Hansenula polymorpha was allowed upon co-expression of wild-type dS and a fusion protein composed of the BVDV-derived antigen N-terminally fused to the dS. It was shown the VLP could be purified by a process adapted from the production of a recombinant hepatitis B VLP vaccine. However, the process essentially depended on costly ultracentrifugation which is critical for low cost production. In novel process variants, this step was avoided after modification of the initial batch capture step, the introduction of a precipitation step and adjusting the ion exchange chromatography. The product yield could be improved by almost factor 8 to 93 ± 12 mg VLP protein per 100 g dry cell weight while keeping similar product purity and antigenicity. This allows scalable and cost efficient VLP production.
Collapse
Affiliation(s)
- David Wetzel
- ARTES Biotechnology GmbH, Elisabeth-Selbert-Strasse 9, 40764 Langenfeld, Germany; Technical University of Dortmund, Laboratory of Plant and Process Design, Emil-Figge-Strasse 70, 44227 Dortmund, Germany.
| | - Andreas Barbian
- Duesseldorf University Hospital, Institute for anatomy I, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Volker Jenzelewski
- ARTES Biotechnology GmbH, Elisabeth-Selbert-Strasse 9, 40764 Langenfeld, Germany
| | - Gerhard Schembecker
- Technical University of Dortmund, Laboratory of Plant and Process Design, Emil-Figge-Strasse 70, 44227 Dortmund, Germany
| | - Juliane Merz
- Evonik Technology & Infrastructure GmbH, Rodenbacher Chaussee 4, 63457 Hanau, Germany
| | - Michael Piontek
- ARTES Biotechnology GmbH, Elisabeth-Selbert-Strasse 9, 40764 Langenfeld, Germany
| |
Collapse
|
105
|
Pereira Aguilar P, Schneider TA, Wetter V, Maresch D, Ling WL, Tover A, Steppert P, Jungbauer A. Polymer-grafted chromatography media for the purification of enveloped virus-like particles, exemplified with HIV-1 gag VLP. Vaccine 2019; 37:7070-7080. [PMID: 31300289 DOI: 10.1016/j.vaccine.2019.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 06/13/2019] [Accepted: 07/01/2019] [Indexed: 01/08/2023]
Abstract
Polymer-grafted chromatography media, especially ion exchangers, are high performance materials for protein purification. However, due to the pore size limitation, conventional chromatography beads are usually not considered for the downstream processing of large biomolecules such as virus-like particles (VLPs). Contrariwise, since the outer surface of the chromatography beads provides satisfactory binding capacity for VLPs and impurities of smaller size can bind inside of the beads, conventional porous beads should be considered for VLP capture and purification. We used HIV-1 gag VLPs with a diameter of 100-200 nm as a model to demonstrate that polymer-grafted anion exchangers are suitable for the purification of bionanoparticles. The equilibrium binding capacity was 1 × 1013 part/mL resin. Moderate salt concentration up to 100 mM NaCl did not affect binding, allowing direct loading of cell culture supernatant onto the column for purification. Dynamic binding capacity at 10% breakthrough, when loading cell culture supernatant, was approximately 6 × 1011 part/mL column; only 1-log lower than for monoliths. Endonuclease treatment of the cell culture supernatant did not increase the dynamic binding capacity, suggesting that dsDNA does not compete for the binding sites of VLPs. Nevertheless, due to simultaneous elution of particles and dsDNA, endonuclease treatment is required to reduce dsDNA contamination in the product. Proteomic analysis revealed that HIV-1 gag VLPs contain different host cell proteins in their cargo. This cargo is composed of conserved proteins and other proteins that vary from one particle population to another, as well as from batch to batch. This process allowed the separation of different particle populations. HIV-1 gag VLPs were directly captured and purified from cell culture supernatant with a total particle recovery in the elution of about 35%. Columns packed with beads can be scaled to practically any dimension and therefore a tailored design of the process is possible.
Collapse
Affiliation(s)
| | | | - Viktoria Wetter
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Daniel Maresch
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Austria
| | - Wai Li Ling
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | | | - Petra Steppert
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Austria
| | - Alois Jungbauer
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Austria; Austrian Centre of Industrial Biotechnology, Vienna, Austria.
| |
Collapse
|
106
|
Shukla R, Ramasamy V, Rajpoot RK, Arora U, Poddar A, Ahuja R, Beesetti H, Swaminathan S, Khanna N. Next generation designer virus-like particle vaccines for dengue. Expert Rev Vaccines 2019; 18:105-117. [PMID: 30587054 DOI: 10.1080/14760584.2019.1562909] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION A safe and efficacious vaccine for dengue continues to be an unmet public health need. The recent licensing of a dengue vaccine (Dengvaxia) developed by Sanofi has brought to the fore the safety issue of vaccine-induced infection enhancement. AREAS COVERED This article focuses on two new yeast-produced tetravalent dengue envelope domain III-displaying virus-like particulate vaccine candidates reported in early 2018 and reviews the rationale underlying their design, and pre-clinical data which suggest that these may offer promising alternate options. EXPERT COMMENTARY These are the only vaccine candidates so far to have demonstrated the induction of primarily serotype-specific neutralizing antibodies to all dengue virus serotypes in experimental animals. Interestingly, these antibodies lack infection-enhancing potential when evaluated using the AG129 mouse model.
Collapse
Affiliation(s)
- Rahul Shukla
- a Recombinant Gene Products Group, Molecular Medicine Division , International Centre for Genetic Engineering & Biotechnology , New Delhi , India
| | - Viswanathan Ramasamy
- a Recombinant Gene Products Group, Molecular Medicine Division , International Centre for Genetic Engineering & Biotechnology , New Delhi , India
| | - Ravi Kant Rajpoot
- a Recombinant Gene Products Group, Molecular Medicine Division , International Centre for Genetic Engineering & Biotechnology , New Delhi , India
| | - Upasana Arora
- a Recombinant Gene Products Group, Molecular Medicine Division , International Centre for Genetic Engineering & Biotechnology , New Delhi , India
| | - Ankur Poddar
- a Recombinant Gene Products Group, Molecular Medicine Division , International Centre for Genetic Engineering & Biotechnology , New Delhi , India
| | - Richa Ahuja
- a Recombinant Gene Products Group, Molecular Medicine Division , International Centre for Genetic Engineering & Biotechnology , New Delhi , India
| | - Hemalatha Beesetti
- a Recombinant Gene Products Group, Molecular Medicine Division , International Centre for Genetic Engineering & Biotechnology , New Delhi , India
| | - Sathyamangalam Swaminathan
- a Recombinant Gene Products Group, Molecular Medicine Division , International Centre for Genetic Engineering & Biotechnology , New Delhi , India
| | - Navin Khanna
- a Recombinant Gene Products Group, Molecular Medicine Division , International Centre for Genetic Engineering & Biotechnology , New Delhi , India.,b NCR Biotech Science Cluster , Translational Health Science & Technology Institute , Faridabad , India
| |
Collapse
|
107
|
Virus-Like Particles-Based Mucosal Nanovaccines. NANOVACCINES 2019. [PMCID: PMC7120988 DOI: 10.1007/978-3-030-31668-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Virus-like particles (VLPs) are protein complexes that resemble a virus and constitute highly immunogenic entities as they mimic the pathogen at an important degree. Among nanovaccines, those based on VLPs are the most successful thus far with some formulations already commercialized (e.g., those against hepatitis B and E viruses and human papillomavirus). This chapter highlights the advantages of VLPs-based vaccines, describing approaches for their design and transmittance of the state of the art for mucosal VLPs-based vaccines development. Several candidates have been produced in insect cells, plants, and E. coli and mammalian cells; they have been mainly evaluated in i.n. and oral immunization schemes. i.n. vaccines against the influenza virus and the Norwalk virus are the most advanced applications. For the latter, i.n. formulations are under clinical evaluation. Perspectives for the field comprise the expansion of the use of low-cost platforms such as plants and bacteria, the development of multiepitopic/multivalent vaccines, and computationally designed VLPs. Mucosal VLPs-based vaccines stand as a major promising approach in vaccinology and the initiation of more clinical trials is envisaged in a short time.
Collapse
|