101
|
Ghosh S, Mishra P, Banerjee S, Maiti K, Khopade A, Misra A, Sawant K, Bhowmick S. Exploration of the cardinal formulation parameters influencing the encapsulation and physicochemical properties of co-loaded anticancer dual drug nanoliposomes. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
102
|
Li Q, Zhu M, Li Y, Tang H, Wang Z, Zhang Y, Xie Y, Lv Z, Bao H, Li Y, Liu R, Shen Y, Zheng Y, Miao D, Guo X, Pei J. Estrone-targeted PEGylated Liposomal Nanoparticles for Cisplatin (DDP) Delivery in Cervical Cancer. Eur J Pharm Sci 2022; 174:106187. [PMID: 35430381 DOI: 10.1016/j.ejps.2022.106187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/30/2022] [Accepted: 04/10/2022] [Indexed: 11/27/2022]
|
103
|
Nanoliposome Use to Improve the Stability of Phenylethyl Resorcinol and Serve as a Skin Penetration Enhancer for Skin Whitening. COATINGS 2022. [DOI: 10.3390/coatings12030362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Phenylethyl resorcinol (PR) is a potent tyrosinase inhibitor and a cosmeceutical skin lightening agent. However, the application of PR is limited by photoinstability and poor solubility. In this study, we formulated and optimized phenylethyl resorcinol loaded nanoliposomes (PR-NLPs) to improve the stability and effective delivery of PR. PR-NLPs were prepared by the ethanol injection method and optimized by a single factor experimental and Box–Behnken design. In addition, Diethylamino Hydroxybenzoyl Hexyl Benzoate (DHHB) as the UBA absorber was added to PR-NLPs, which significantly improved the photostability of PR. The mean size, polydispersity index (PDI), and zeta potential of the optimized PR-NLPs were 130.1 ± 3.54 nm, 0.225 ± 0.02, and −43.9 ± 3.44 mV, respectively. The drug encapsulation efficiency (EE) and loading efficiency (LC) of PR-NLPs were 96.81 ± 3.46% and 8.82 ± 0.6%, respectively. These PR-NLPs showed good physicochemical stability for 3 months at 4 °C and 25 °C in the dark. They showed typical sustained and prolonged drug-release behavior in vitro. The in vitro cytotoxicity assay and cellular uptake demonstrated that the PR-NLPs had excellent biocompatibility and cell transport ability. It significantly inhibited tyrosinase activity and reduced melanin production in B16F10 cells at concentrations of 20 or 30 μg/mL. Moreover, the PR-NLPs enhanced the PR into the skin. These results indicate that PR-NLPs can be used as a nanocarrier to improve the transdermal delivery of PR.
Collapse
|
104
|
Evaluation of Zebrafish DNA Integrity after Individual and Combined Exposure to TiO2 Nanoparticles and Lincomycin. TOXICS 2022; 10:toxics10030132. [PMID: 35324757 PMCID: PMC8954801 DOI: 10.3390/toxics10030132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 12/02/2022]
Abstract
Environmental contamination by nanoparticles (NPs) and drugs represents one of the most debated issues of the last years. The aquatic biome and, indirectly, human health are strongly influenced by the negative effects induced by the widespread presence of pharmaceutical products in wastewater, mainly due to the massive use of antibiotics and inefficient treatment of the waters. The present study aimed to evaluate the harmful consequences due to exposure to antibiotics and NPs, alone and in combination, in the aquatic environment. By exploiting some of their peculiar characteristics, such as small size and ability to bind different types of substances, NPs can carry drugs into the body, showing potential genotoxic effects. The research was conducted on zebrafish (Danio rerio) exposed in vivo to lincomycin (100 mg/L) and titanium dioxide nanoparticles (TiO2 NPs) (10 µg/L) for 7 and 14 exposure days. The effects on zebrafish were evaluated in terms of cell viability, DNA fragmentation, and genomic template stability (GTS%) investigated using Trypan blue staining, TUNEL assay, and the random amplification of polymorphic DNA PCR (RAPD PCR) technique, respectively. Our results show that after TiO2 NPs exposure, as well as after TiO2 NPs and lincomycin co-exposure, the percentage of damaged DNA significantly increased and cell viability decreased. On the contrary, exposure to lincomycin alone caused only a GTS% reduction after 14 exposure days. Therefore, the results allow us to assert that genotoxic effect in target cells could be through a synergistic effect, also potentially mediated by the establishment of intermolecular interactions between lincomycin and TiO2 NPs.
Collapse
|
105
|
Formulation and Characterization of Doxycycline-Loaded Polymeric Nanoparticles for Testing Antitumor/Antiangiogenic Action in Experimental Colon Cancer in Mice. NANOMATERIALS 2022; 12:nano12050857. [PMID: 35269343 PMCID: PMC8912660 DOI: 10.3390/nano12050857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 02/04/2023]
Abstract
Nanotherapeutics can enhance the characteristics of drugs, such as rapid systemic clearance and systemic toxicities. Polymeric nanoparticles (PRNPs) depend on dispersion of a drug in an amorphous state in a polymer matrix. PRNPs are capable of delivering drugs and improving their safety. The primary goal of this study is to formulate doxycycline-loaded PRNPs by applying the nanoprecipitation method. Eudragit S100 (ES100) (for DOX-PRNP1) and hydroxypropyl methyl cellulose phthalate HP55 (for DOX-PRNP2) were tested as the drug carrying polymers and the DOX-PRNP2 showed better characteristics and drug release % and was hence selected to be tested in the biological study. Six different experimental groups were formed from sixty male albino mice. 1,2,-Dimethylhydrazine was used for 16 weeks to induce experimental colon cancer. We compared the oral administration of DOX-PRNP2 in doses of 5 and 10 mg/kg with the free drug. Results indicated that DOX-PRNP2 had greater antitumor activity, as evidenced by an improved histopathological picture for colon specimens as well as a decrease in the tumor scores. In addition, when compared to free DOX, the DOX-PRNP2 reduced the angiogenic indicators VEGD and CD31 to a greater extent. Collectively, the findings demonstrated that formulating DOX in PRNPs was useful in enhancing antitumor activity and can be used in other models of cancers to verify their efficacy and compatibility with our study.
Collapse
|
106
|
Das P, Dutta T, Manna S, Loganathan S, Basak P. Facile green synthesis of non-genotoxic, non-hemolytic organometallic silver nanoparticles using extract of crushed, wasted, and spent Humulus lupulus (hops): Characterization, anti-bacterial, and anti-cancer studies. ENVIRONMENTAL RESEARCH 2022; 204:111962. [PMID: 34450158 DOI: 10.1016/j.envres.2021.111962] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Since the last few decades, the green synthesis of metal nanoparticles was one of the most thrust areas due to its widespread application. The study proposed using wasted and unusable Humulus lupulus (Hops) extract to synthesize silver nanoparticles for biomedical application. The environment around us gives us many scopes to use the waste from environmental sources and turn it into something valuable. The spent Hops extract was used to synthesize silver nanoparticles (AgNP@HOPs), and the synthesized product exhibited an excellent therapeutic effect in terms of anti-bacterial and anti-cancer agents. The synthesis was optimized considering different factors like time and the concentration of AgNO3. The silver nanoparticles were characterized in detail using different characterization techniques XRD, DLS, TEM, BET, XPS, Raman Spectroscopy, SEM, EDAX, AFM, which revealed the uniqueness of the silver nanoparticles. The average hydrodynamic size was found to be 92.42 ± 2.41 with a low polydispersity index. The presence of Ag-C and Ag-O bonds in the AgNP@HOPs indicated that it is composed of organo-silver and silver oxides. The nanoparticles were found to be spherical with an average size of 17.40 nm. The AgNPs were lethal to both E. coli and S. aureus with a MIC-50 of 201.881 μg/mL and 213.189 μg/mL, respectively. The AgNP@HOPs also exhibited an anti-cancer effect with an IC-50 of 147.175. The AgNP@HOPs exhibited less cytotoxicity and genotoxicity against normal cells and exhibited superior haemocompatibility (major criteria for drug selection). There are indeed various reports on the synthesis of silver nanoparticles, but this study proposes a green method for producing non-genotoxic, non-hemolytic organometallic silver nanoparticles using waste material with considerable therapeutic index from the environmental source with potential application in the medical industry. This work could be taken forward for in-vivo studies and for pre clinical studies.
Collapse
Affiliation(s)
- Pratik Das
- School of Bioscience and Engineering, Jadavpur University, India
| | - Tanusree Dutta
- School of Bioscience and Engineering, Jadavpur University, India
| | - Suvendu Manna
- School of Bioscience and Engineering, Jadavpur University, India; Department of Health Safety, Environment and Civil Engineering, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 247008, India
| | - Sravanthi Loganathan
- CSIR - Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630006, India
| | - Piyali Basak
- School of Bioscience and Engineering, Jadavpur University, India.
| |
Collapse
|
107
|
Shakoori Z, Pashaei-Asl R, Pashaiasl M, Davaran S, Ghanbari H, Ebrahimie E, Rezayat SM. Biocompatibility study of P (N-isopropylacrylamide)-based nanocomposite and its cytotoxic effect on HeLa cells as a drug delivery system for Cisplatin. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
108
|
Pinto E, Aggrey WN, Boakye P, Amenuvor G, Sokama-Neuyam YA, Fokuo MK, Karimaie H, Sarkodie K, Adenutsi CD, Erzuah S, Rockson MAD. Cellulose processing from biomass and its derivatization into carboxymethylcellulose: A review. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2021.e01078] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
109
|
Ferrari G, Pang LY, De Moliner F, Vendrell M, Reardon RJM, Higgins AJ, Chopra S, Argyle DJ. Effective Penetration of a Liposomal Formulation of Bleomycin through Ex-Vivo Skin Explants from Two Different Species. Cancers (Basel) 2022; 14:cancers14041083. [PMID: 35205831 PMCID: PMC8870439 DOI: 10.3390/cancers14041083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 01/25/2023] Open
Abstract
Bleomycin is a chemotherapy agent that, when administered systemically, can cause severe pulmonary toxicity. Bleosome is a novel formulation of bleomycin encapsulated in ultra-deformable (UD) liposomes that may be applicable as a topical chemotherapy for diseases such as non-melanoma skin cancer. To date, the ability of Bleosome to effectively penetrate through the skin has not been evaluated. In this study, we investigated the ability of Bleosome to penetrate through ex vivo skin explants from dogs and horses. We visualized the penetration of UD liposomes through the skin by transmission electron microscopy. However, to effectively image the drug itself we fluorescently labeled bleomycin prior to encapsulation within liposomes and utilized multiphoton microscopy. We showed that UD liposomes do not penetrate beyond the stratum corneum, whereas bleomycin is released from UD liposomes and can penetrate to the deeper layers of the epidermis. This is the first study to show that Bleosome can effectively penetrate through the skin. We speculate that UD liposomes are penetration enhancers in that UD liposomes carry bleomycin through the outer skin to the stratum corneum and then release the drug, allowing diffusion into the deeper layers. Our results are comparative in dogs and horses and warrant further studies on the efficacy of Bleosome as topical treatment.
Collapse
Affiliation(s)
- Giulia Ferrari
- Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK; (G.F.); (R.J.M.R.); (D.J.A.)
| | - Lisa Y. Pang
- Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK; (G.F.); (R.J.M.R.); (D.J.A.)
- Correspondence: ; Tel.: +44-13-1651-9164
| | - Fabio De Moliner
- Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; (F.D.M.); (M.V.)
| | - Marc Vendrell
- Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; (F.D.M.); (M.V.)
| | - Richard J. M. Reardon
- Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK; (G.F.); (R.J.M.R.); (D.J.A.)
| | | | - Sunil Chopra
- The London Dermatology Centre, London W1G 8AS, UK; (A.J.H.); (S.C.)
| | - David J. Argyle
- Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK; (G.F.); (R.J.M.R.); (D.J.A.)
| |
Collapse
|
110
|
Liu Z, Ji X, He D, Zhang R, Liu Q, Xin T. Nanoscale Drug Delivery Systems in Glioblastoma. NANOSCALE RESEARCH LETTERS 2022; 17:27. [PMID: 35171358 PMCID: PMC8850533 DOI: 10.1186/s11671-022-03668-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/09/2022] [Indexed: 05/13/2023]
Abstract
Glioblastoma is the most aggressive cerebral tumor in adults. However, the current pharmaceuticals in GBM treatment are mainly restricted to few chemotherapeutic drugs and have limited efficacy. Therefore, various nanoscale biomaterials that possess distinct structure and unique property were constructed as vehicles to precisely deliver molecules with potential therapeutic effect. In this review, nanoparticle drug delivery systems including CNTs, GBNs, C-dots, MOFs, Liposomes, MSNs, GNPs, PMs, Dendrimers and Nanogel were exemplified. The advantages and disadvantages of these nanoparticles in GBM treatment were illustrated.
Collapse
Affiliation(s)
- Zihao Liu
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Xiaoshuai Ji
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China
| | - Dong He
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Rui Zhang
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Qian Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Tao Xin
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China.
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Medicine and Health Key Laboratory of Neurosurgery, Jinan, 250014, China.
- Department of Neurosurgery, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang Jiangxi, 330006, China.
| |
Collapse
|
111
|
Alimoradi H, Thomas A, Lyth DDB, Barzegar-Fallah A, Matikonda SS, Gamble AB, Giles GI. SMA-BmobaSNO: an intelligent photoresponsive nitric oxide releasing polymer for drug nanoencapsulation and targeted delivery. NANOTECHNOLOGY 2022; 33:195101. [PMID: 35078165 DOI: 10.1088/1361-6528/ac4eb0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Nitric oxide (NO) is an important biological signalling molecule that acts to vasodilate blood vessels and change the permeability of the blood vessel wall. Due to these cardiovascular actions, co-administering NO with a therapeutic could enhance drug uptake. However current NO donors are not suitable for targeted drug delivery as they systemically release NO. To overcome this limitation we report the development of a smart polymer, SMA-BmobaSNO, designed to release NO in response to a photostimulus. The polymer's NO releasing functionality is an S-nitrosothiol group that, at 10 mg ml-1, is highly resistant to both thermal (t1/216 d) and metabolic (t1/232 h) decomposition, but rapidly brakes down under photoactivation (2700 W m-2, halogen source) to release NO (t1/225 min). Photoresponsive NO release from SMA-BmobaSNO was confirmed in a cardiovascular preparation, where irradiation resulted in a 12-fold decrease in vasorelaxation EC50(from 5.2μM to 420 nM). To demonstrate the polymer's utility for drug delivery we then used SMA-BmobaSNO to fabricate a nanoparticle containing the probe Nile Red (NR). The resulting SMA-BmobaSNO-NR nanoparticle exhibited spherical morphology (180 nm diameter) and sustained NR release (≈20% over 5 d). Targeted delivery was characterised in an abdominal preparation, where photoactivation (450 W m-2) caused localized increases in vasodilation and blood vessel permeability, resulting in a 3-fold increase in NR uptake into photoactivated tissue. Nanoparticles fabricated from SMA-BmobaSNO therefore display highly photoresponsive NO release and can apply the Trojan Horse paradigm by using endogenous NO signalling pathways to smuggle a therapeutic cargo into target tissue.
Collapse
Affiliation(s)
- Houman Alimoradi
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Ansa Thomas
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Daniel D B Lyth
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | | | | | - Allan B Gamble
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Gregory I Giles
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
112
|
Kaplan A. The nanocomposites designs of phytomolecules from medicinal and aromatic plants: promising anticancer-antiviral applications. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022; 11:17. [PMID: 35127958 PMCID: PMC8799966 DOI: 10.1186/s43088-022-00198-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/17/2022] [Indexed: 12/25/2022] Open
Abstract
Abstract
Background
Nowadays, researchers are moving toward a herbal approach to cancer treatment because of the harmful effects of synthetic anti-tumor drugs. The evaluation of active compounds with plant origin may help in the remedy of human illnesses in the future. These active compounds have direct or indirect curative efficacies on difficult to cure diseases such as cancer. Investigation of nanoforms of these active compounds is one of the curious topics of the scientific community.
Main body
Saffron and its components obtained from Crocus sativa, essential oils obtained from lavender, Syzygium aromaticum called cloves and Beta vulgaris are known for their anticancer effects. Nano-drugs are designed to increase the anticancer activity of plant-derived drugs. Herbal extracts operate very great in the production of nanoparticles. The aim is to ensure that only the nano-drug is delivered to the tumor site. Furthermore, nanoparticles have hazardous effects when analyzed at elevated doses, but this issue can be doped together with plant extracts.
Short conclusions
The nanocomposites (graphene oxide, solid lipid nano and nanoemulsion) of phytomolecules obtained from saffron, clove, lavender and red beet may be effective in minimizing these toxic effects. In the near future, detecting the anticancer molecular mechanisms of these naturally derived compounds and nanocomposites could contribute to further cancer research. Apart from these, these compounds and its nanocomposites could have antiviral effects against today's threat covid-19 virus. Consequently, more promising anticancer and antiviral agents would be discovered.
Graphical abstract
Collapse
|
113
|
Rana MS, Ediriweera MK, Rajagopalan U, Karunaratne DN, Tennekoon KH, Samarakoon SR. A new liposomal nanocarrier for co-delivery of gedunin and p-glycoprotein siRNA to target breast cancer stem cells. Nat Prod Res 2022; 36:6389-6392. [PMID: 35084278 DOI: 10.1080/14786419.2022.2032048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Gedunin is a secondary metabolite found in neem tree. Since the first discovery of this compound, its bio-active properties have been continuously evaluated. However, the low hydrophobicity of gedunin decreases its bioavailability and pharmacokinetic profile. In the present investigation, a new liposomal nanocarrier for co-delivery of gedunin and P-glycoprotein (P-gp) siRNA [siRNA coated liposomal gedunin (Lipo-Ged-siRNA)] was developed to improve the anti-proliferative activity of gedunin. Characteristics of prepared Lipo-Ged-siRNA demonstrated promising effects. Lipo-Ged-siRNA showed greater anti-proliferative effects (IC50-8.5 µg/mL) followed by pure gedunin (IC50- 40.2 µg/mL) in breast cancer stem cells (bCSCs). Immunofluorescence analysis demonstrated reduced expression of P-gp following exposure to Lipo-Ged-siRNA. Furthermore, Lipo-Ged-siRNA affected the expression of ABCB1, Cyclin D1, Bax, p53, and surviving genes in bCSCs.
Collapse
Affiliation(s)
- Mohan Singh Rana
- Institute of Biochemistry, Molecular Biology and Biotechnology, Cumaratunga Munidasa Mawatha, University of Colombo, Colombo, Sri Lanka
| | - Meran Keshawa Ediriweera
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Umapriyatharshini Rajagopalan
- Institute of Biochemistry, Molecular Biology and Biotechnology, Cumaratunga Munidasa Mawatha, University of Colombo, Colombo, Sri Lanka
| | | | - Kamani Hemamala Tennekoon
- Institute of Biochemistry, Molecular Biology and Biotechnology, Cumaratunga Munidasa Mawatha, University of Colombo, Colombo, Sri Lanka
| | - Sameera Ranganath Samarakoon
- Institute of Biochemistry, Molecular Biology and Biotechnology, Cumaratunga Munidasa Mawatha, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
114
|
Ramos TI, Villacis-Aguirre CA, López-Aguilar KV, Santiago Padilla L, Altamirano C, Toledo JR, Santiago Vispo N. The Hitchhiker's Guide to Human Therapeutic Nanoparticle Development. Pharmaceutics 2022; 14:247. [PMID: 35213980 PMCID: PMC8879439 DOI: 10.3390/pharmaceutics14020247] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/04/2022] [Accepted: 01/13/2022] [Indexed: 02/06/2023] Open
Abstract
Nanomedicine plays an essential role in developing new therapies through novel drug delivery systems, diagnostic and imaging systems, vaccine development, antibacterial tools, and high-throughput screening. One of the most promising drug delivery systems are nanoparticles, which can be designed with various compositions, sizes, shapes, and surface modifications. These nanosystems have improved therapeutic profiles, increased bioavailability, and reduced the toxicity of the product they carry. However, the clinical translation of nanomedicines requires a thorough understanding of their properties to avoid problems with the most questioned aspect of nanosystems: safety. The particular physicochemical properties of nano-drugs lead to the need for additional safety, quality, and efficacy testing. Consequently, challenges arise during the physicochemical characterization, the production process, in vitro characterization, in vivo characterization, and the clinical stages of development of these biopharmaceuticals. The lack of a specific regulatory framework for nanoformulations has caused significant gaps in the requirements needed to be successful during their approval, especially with tests that demonstrate their safety and efficacy. Researchers face many difficulties in establishing evidence to extrapolate results from one level of development to another, for example, from an in vitro demonstration phase to an in vivo demonstration phase. Additional guidance is required to cover the particularities of this type of product, as some challenges in the regulatory framework do not allow for an accurate assessment of NPs with sufficient evidence of clinical success. This work aims to identify current regulatory issues during the implementation of nanoparticle assays and describe the major challenges that researchers have faced when exposing a new formulation. We further reflect on the current regulatory standards required for the approval of these biopharmaceuticals and the requirements demanded by the regulatory agencies. Our work will provide helpful information to improve the success of nanomedicines by compiling the challenges described in the literature that support the development of this novel encapsulation system. We propose a step-by-step approach through the different stages of the development of nanoformulations, from their design to the clinical stage, exemplifying the different challenges and the measures taken by the regulatory agencies to respond to these challenges.
Collapse
Affiliation(s)
- Thelvia I. Ramos
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4070386, Chile; (T.I.R.); (C.A.V.-A.)
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas—ESPE, Sangolquí 171103, Ecuador
| | - Carlos A. Villacis-Aguirre
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4070386, Chile; (T.I.R.); (C.A.V.-A.)
| | - Katherine V. López-Aguilar
- Carrera Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas—ESPE, Sangolquí 171103, Ecuador;
| | | | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile;
- Centro Regional de Estudios en Alimentos Saludables, Av. Universidad 330, Placilla, Sector Curauma, Valparaíso 2340000, Chile
| | - Jorge R. Toledo
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4070386, Chile; (T.I.R.); (C.A.V.-A.)
| | - Nelson Santiago Vispo
- School of Biological Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador
| |
Collapse
|
115
|
Nanodelivery Strategies for Skin Diseases with Barrier Impairment: Focusing on Ceramides and Glucocorticoids. NANOMATERIALS 2022; 12:nano12020275. [PMID: 35055292 PMCID: PMC8779445 DOI: 10.3390/nano12020275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023]
Abstract
The human epidermis has a characteristic lipidic composition in the stratum corneum, where ceramides play a crucial role in the skin barrier homeostasis and in water-holding capacity. Several skin diseases, such as atopic dermatitis and psoriasis, exhibit a dysfunction in the lipid barrier with altered ceramide levels and increased loss of transepidermal water. Glucocorticoids are normally employed in the therapeutical management of these pathologies. However, they have shown a poor safety profile and reduced treatment efficiency. The main objective of this review is to, within the framework of the limitations of the currently available therapeutical approaches, establish the relevance of nanocarriers as a safe and efficient delivery strategy for glucocorticoids and ceramides in the topical treatment of skin disorders with barrier impairment.
Collapse
|
116
|
Aleixo NA, Gomes PSDS, Silva PBD, Sato MR, Campos DL, Barud HDS, Castro GR, Islan GA, Toledo C, Karp F, Chorilli M, Pavan FR, Resende FA. Study of antimycobacterial, cytotoxic, and mutagenic potential of polymeric nanoparticles of copper (II) complex. J Microencapsul 2022; 39:61-71. [PMID: 34984941 DOI: 10.1080/02652048.2022.2025935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This study aimed to encapsulate and characterize a potential anti-tuberculosis copper complex (CuCl2(INH)2.H2O:I1) into polymeric nanoparticles (PNs) of polymethacrylate copolymers (Eudragit®, Eu) developed by nanoprecipitation method. NE30D, S100 and, E100 polymers were tested. The physicochemical characterizations were performed by DLS, TEM, FTIR, encapsulation efficiency and, in vitro release studies. Encapsulation of I1 in PN-NE30D, PN-E100, and PN-S100 was 26.3%, 94.5%, 22.6%, respectively. The particle size and zeta potential were 82.3 nm and -24.5 mV for PNs-NE30D, 304.4 nm and +18.7 mV for PNs-E100, and 517.9 nm and -6.9 mV for PNs-S100, respectively. All PDIs were under 0.5. The formulations showed a I1 controlled release at alkaline pH with 29.7% from PNs-NE30D, 7.9% from PNs-E100 and, 28.1% from PNs-S100 at 1 h incubation. PNs were stable for at least 3 months. Particularly, PNs-NE30D demonstrated moderate inhibition of M. tuberculosis and low cytotoxic activity. None of the PNs induced mutagenicity.
Collapse
Affiliation(s)
- Nadia Andrade Aleixo
- University of Araraquara (UNIARA), Department of Biological Sciences and Health, Araraquara, São Paulo State, Brazil
| | - Pietra Stefany da Silva Gomes
- University of Araraquara (UNIARA), Department of Biological Sciences and Health, Araraquara, São Paulo State, Brazil
| | - Patrícia Bento da Silva
- São Paulo State University (UNESP), Department of Drugs and Medicines, School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State, Brazil.,Nanobiotechnology Laboratory, Institute of Biological Sciences, Department of Genetics and Morphology, University of Brasilia, Brasília, Brazil
| | - Mariana Rillo Sato
- São Paulo State University (UNESP), Department of Drugs and Medicines, School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State, Brazil
| | - Débora Leite Campos
- São Paulo State University (UNESP), Department of Biological Sciences, School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State, Brazil
| | - Hernane da Silva Barud
- University of Araraquara (UNIARA), Department of Biological Sciences and Health, Araraquara, São Paulo State, Brazil
| | - Guillermo Raul Castro
- Universidad Nacional de La Plata - CONICET (CCT La Plata), Facultad de Ciencias Exactas, Departmento de Química, CINDEFI, Laboratorio de Nanobiomateriales, La Plata, Argentina.,Universidad Nacional de Rosario, Centro de Estudios Interdisciplinarios (CEI), Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC). Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPIbpC, MPG), Rosario, Santa Fe, Argentina
| | - German Abel Islan
- Universidad Nacional de La Plata - CONICET (CCT La Plata), Facultad de Ciencias Exactas, Departmento de Química, CINDEFI, Laboratorio de Nanobiomateriales, La Plata, Argentina
| | - Constanza Toledo
- Universidad Nacional de La Plata - CONICET (CCT La Plata), Facultad de Ciencias Exactas, Departmento de Química, CINDEFI, Laboratorio de Nanobiomateriales, La Plata, Argentina
| | - Federico Karp
- Universidad Nacional del Litoral (UNL), INTEC, Laboratorio de Química Fina (UNL-CONICET), Santa Fe, Argentina
| | - Marlus Chorilli
- São Paulo State University (UNESP), Department of Drugs and Medicines, School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State, Brazil
| | - Fernando Rogério Pavan
- São Paulo State University (UNESP), Department of Biological Sciences, School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State, Brazil
| | - Flávia Aparecida Resende
- University of Araraquara (UNIARA), Department of Biological Sciences and Health, Araraquara, São Paulo State, Brazil
| |
Collapse
|
117
|
Herdiana Y, Wathoni N, Shamsuddin S, Muchtaridi M. Drug release study of the chitosan-based nanoparticles. Heliyon 2022; 8:e08674. [PMID: 35028457 PMCID: PMC8741465 DOI: 10.1016/j.heliyon.2021.e08674] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/08/2021] [Accepted: 12/22/2021] [Indexed: 02/08/2023] Open
Abstract
Recently, multifunctional drug delivery systems (DDSs) have been designed to provide a comprehensive approach with multiple functionalities, including diagnostic imaging, targeted drug delivery, and controlled drug release. Chitosan-based drug nanoparticles (CSNPs) systems are employed as diagnostic imaging and delivering the drug to particular targeted sites in a regulated manner. Drug release is an important factor in ensuring high reproducibility, stability, quality control of CSNPs, and scientific-based for developing CSNPs. Several factors influence drug release from CSNPs, including composition, composition ratio, ingredient interactions, and preparation methods. Early, CSNPs were used for improving drug solubility, stability, pharmacokinetics, and pharmacotherapeutics properties. Chitosan has been developed toward a multifunctional drug delivery system by exploring positively charged properties and modifiable functional groups. Various modifications to the polymer backbone, charge, or functional groups will undoubtedly affect the drug release from CSNPs. The drug release from CSNPs has a significant influence on its therapeutic actions. Our review's objective was to summarize and discuss the relationship between the modification in CSNPs as multifunctional delivery systems and drug release properties and kinetics of the drug release model. Kinetic models help describe the release rate, leading to increased efficiency, accuracy, the safety of the dose, optimizing the drug delivery device's design, evaluating the drug release rate, and improvement of patient compatibility. In conclusion, almost all CSNPs showed bi-phasic release, initial burst release drug in a particular time followed controlled manner release in achieving the expected release, stimuli external can be applied. CSNPs are a promising technique for multifunctional drug delivery systems.
Collapse
Affiliation(s)
- Yedi Herdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U CoE), Universitas Padjadjaran, Indonesia
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
- USM-RIKEN Interdisciplinary Collaboration on Advanced Sciences (URICAS), 11800, USM, Penang, Malaysia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U CoE), Universitas Padjadjaran, Indonesia
| |
Collapse
|
118
|
Abdel-Moneim A, Ramadan H. Novel strategies to oral delivery of insulin: Current progress of nanocarriers for diabetes management. Drug Dev Res 2021; 83:301-316. [PMID: 34859477 DOI: 10.1002/ddr.21903] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/30/2021] [Accepted: 11/25/2021] [Indexed: 12/17/2022]
Abstract
Diabetes mellitus is one of the most serious public health problems in the world. Repeated daily injections of subcutaneous insulin is the standard treatment for patients with type 1 diabetes mellitus; however, subcutaneous insulin injections can potentially cause local discomfort, patient noncompliance, hypoglycemia, failure to regulate glucose homeostasis, infections, and fat deposits at the injection sites. In recent years, numerous attempts have been made to produce safe and efficient nanoparticles for oral insulin delivery. Oral administration is considered the most effective alternative route to insulin injection, but it is accompanied by several challenges related to enzymatic proteolysis, digestive breakdown, and absorption barriers. A number of natural and synthetic polymeric, lipid-based, and inorganic nanoparticles have been investigated for use. Although improvements have recently been made in potential oral insulin delivery systems, these require further investigation before clinical trials are conducted. In this review, new approaches to oral insulin delivery for diabetes treatment are discussed, including polymeric, lipid-based, and inorganic nanoparticles, as well as the clinical trials performed for this purpose.
Collapse
Affiliation(s)
- Adel Abdel-Moneim
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Hanaa Ramadan
- Histology and Molecular Cytology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
119
|
Asghar S, Khan IU, Salman S, Khalid SH, Ashfaq R, Vandamme TF. Plant-derived nanotherapeutic systems to counter the overgrowing threat of resistant microbes and biofilms. Adv Drug Deliv Rev 2021; 179:114019. [PMID: 34699940 DOI: 10.1016/j.addr.2021.114019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/03/2021] [Accepted: 10/19/2021] [Indexed: 12/17/2022]
Abstract
Since antiquity, the survival of human civilization has always been threatened by the microbial infections. An alarming surge in the resistant microbial strains against the conventional drugs is quite evident in the preceding years. Furthermore, failure of currently available regimens of antibiotics has been highlighted by the emerging threat of biofilms in the community and hospital settings. Biofilms are complex dynamic composites rich in extracellular polysaccharides and DNA, supporting plethora of symbiotic microbial life forms, that can grow on both living and non-living surfaces. These enforced structures are impervious to the drugs and lead to spread of recurrent and non-treatable infections. There is a strong realization among the scientists and healthcare providers to work out alternative strategies to combat the issue of drug resistance and biofilms. Plants are a traditional but rich source of effective antimicrobials with wider spectrum due to presence of multiple constituents in perfect synergy. Other than the biocompatibility and the safety profile, these phytochemicals have been repeatedly proven to overcome the non-responsiveness of resistant microbes and films via multiple pathways such as blocking the efflux pumps, better penetration across the cell membranes or biofilms, and anti-adhesive properties. However, the unfavorable physicochemical attributes and stability issues of these phytochemicals have hampered their commercialization. These issues of the phytochemicals can be solved by designing suitably constructed nanoscaled structures. Nanosized systems can not only improve the physicochemical features of the encapsulated payloads but can also enhance their pharmacokinetic and therapeutic profile. This review encompasses why and how various types of phytochemicals and their nanosized preparations counter the microbial resistance and the biofouling. We believe that phytochemical in tandem with nanotechnological innovations can be employed to defeat the microbial resistance and biofilms. This review will help in better understanding of the challenges associated with developing such platforms and their future prospects.
Collapse
|
120
|
Souri M, Soltani M, Moradi Kashkooli F, Kiani Shahvandi M. Engineered strategies to enhance tumor penetration of drug-loaded nanoparticles. J Control Release 2021; 341:227-246. [PMID: 34822909 DOI: 10.1016/j.jconrel.2021.11.024] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023]
Abstract
Nanocarriers have been widely employed in preclinical studies and clinical trials for the delivery of anticancer drugs. The most important causes of failure in clinical translation of nanocarriers is their inefficient accumulation and penetration which arises from special characteristics of tumor microenvironment such as insufficient blood supply, dense extracellular matrix, and elevated interstitial fluid pressure. Various strategies such as engineering extracellular matrix, optimizing the physicochemical properties of nanocarriers have been proposed to increase the depth of tumor penetration; however, these strategies have not been very successful so far. Novel strategies such as transformable nanocarriers, transcellular transport of peptide-modified nanocarriers, and bio-inspired carriers have recently been emerged as an advanced generation of drug carriers. In this study, the latest developments of nanocarrier-based drug delivery to solid tumor are presented with their possible limitations. Then, the prospects of advanced drug delivery systems are discussed in detail.
Collapse
Affiliation(s)
- Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Department of Electrical and Computer Engineering, University of Waterloo, ON, Canada; Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, Canada; Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran.
| | | | | |
Collapse
|
121
|
Tacchi F, Orozco-Aguilar J, Gutiérrez D, Simon F, Salazar J, Vilos C, Cabello-Verrugio C. Scaffold biomaterials and nano-based therapeutic strategies for skeletal muscle regeneration. Nanomedicine (Lond) 2021; 16:2521-2538. [PMID: 34743611 DOI: 10.2217/nnm-2021-0224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Skeletal muscle is integral to the functioning of the human body. Several pathological conditions, such as trauma (primary lesion) or genetic diseases such as Duchenne muscular dystrophy (DMD), can affect and impair its functions or exceed its regeneration capacity. Tissue engineering (TE) based on natural, synthetic and hybrid biomaterials provides a robust platform for developing scaffolds that promote skeletal muscle regeneration, strength recovery, vascularization and innervation. Recent 3D-cell printing technology and the use of nanocarriers for the release of drugs, peptides and antisense oligonucleotides support unique therapeutic alternatives. Here, the authors present recent advances in scaffold biomaterials and nano-based therapeutic strategies for skeletal muscle regeneration and perspectives for future endeavors.
Collapse
Affiliation(s)
- Franco Tacchi
- Department of Biological Sciences, Laboratory of Muscle Pathology, Fragility & Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, 8370146, Chile.,Millennium Institute on Immunology & Immunotherapy, Santiago, 8370146, Chile.,Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, 8350709, Chile
| | - Josué Orozco-Aguilar
- Department of Biological Sciences, Laboratory of Muscle Pathology, Fragility & Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, 8370146, Chile.,Millennium Institute on Immunology & Immunotherapy, Santiago, 8370146, Chile.,Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, 8350709, Chile
| | - Danae Gutiérrez
- Department of Biological Sciences, Laboratory of Muscle Pathology, Fragility & Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, 8370146, Chile.,Millennium Institute on Immunology & Immunotherapy, Santiago, 8370146, Chile.,Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, 8350709, Chile
| | - Felipe Simon
- Millennium Institute on Immunology & Immunotherapy, Santiago, 8370146, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD),Universidad de Chile, Santiago, 8370146, Chile.,Department of Biological Sciences, Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, 8370146, Chile
| | - Javier Salazar
- Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, 8350709, Chile.,Laboratory of Nanomedicine & Targeted Delivery, Center for Medical Research, School of Medicine, Universidad de Talca, Talca, 3460000, Chile
| | - Cristian Vilos
- Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, 8350709, Chile.,Laboratory of Nanomedicine & Targeted Delivery, Center for Medical Research, School of Medicine, Universidad de Talca, Talca, 3460000, Chile
| | - Claudio Cabello-Verrugio
- Department of Biological Sciences, Laboratory of Muscle Pathology, Fragility & Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, 8370146, Chile.,Millennium Institute on Immunology & Immunotherapy, Santiago, 8370146, Chile.,Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, 8350709, Chile
| |
Collapse
|
122
|
Synthesis and Biodistribution of 99mTc-Labeled PLGA Nanoparticles by Microfluidic Technique. Pharmaceutics 2021; 13:pharmaceutics13111769. [PMID: 34834184 PMCID: PMC8621482 DOI: 10.3390/pharmaceutics13111769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of present study was to develop radiolabeled NPs to overcome the limitations of fluorescence with theranostic potential. Synthesis of PLGA-NPs loaded with technetium-99m was based on a Dean-Vortex-Bifurcation Mixer (DVBM) using an innovative microfluidic technique with high batch-to-batch reproducibility and tailored-made size of NPs. Eighteen different formulations were tested and characterized for particle size, zeta potential, polydispersity index, labeling efficiency, and in vitro stability. Overall, physical characterization by dynamic light scattering (DLS) showed an increase in particle size after radiolabeling probably due to the incorporation of the isotope into the PLGA-NPs shell. NPs of 60 nm (obtained by 5:1 PVA:PLGA ratio and 15 mL/min TFR with 99mTc included in PVA) had high labeling efficiency (94.20 ± 5.83%) and >80% stability after 24 h and showed optimal biodistribution in BALB/c mice. In conclusion, we confirmed the possibility of radiolabeling NPs with 99mTc using the microfluidics and provide best formulation for tumor targeting studies.
Collapse
|
123
|
Optimization and Development of Selective Histone Deacetylase Inhibitor (MPT0B291)-Loaded Albumin Nanoparticles for Anticancer Therapy. Pharmaceutics 2021; 13:pharmaceutics13101728. [PMID: 34684020 PMCID: PMC8541575 DOI: 10.3390/pharmaceutics13101728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/03/2021] [Accepted: 10/12/2021] [Indexed: 12/16/2022] Open
Abstract
Histone deacetylase (HDAC) inhibitors have emerged as a new class of antitumor agent for various types of tumors. MPT0B291, a novel selective inhibitor of HDAC6, demonstrated significant antiproliferative activity in various human cancer cell types. However, MPT0B291 has very low water solubility, which limits its clinical use for cancer therapy. In the current study, MPT0B291 was encapsulated in human serum albumin (HSA), and its anticancer activities were investigated. Nanoparticles (NPs) were prepared using two-stage emulsification resulting in 100~200-nm NPs with a fine size distribution (polydispersity index of <0.3). The in vitro drug release profiles of MPT0B291-loaded HSA NPs presented sustained-release properties. The cytotoxic effect on MIA PaCa-2 human pancreatic carcinoma cells was found to be similar to MPT0B291-loaded HSA NPs and the free-drug group. The albumin-based formulation provided a higher maximum tolerated dose than that of a drug solution with reduced toxicity toward normal cells. Furthermore, in vivo pharmacokinetic studies demonstrated an effective increase (5~8-fold) in the bioavailability of NPs containing MPT0B291 loaded in HSA compared to the free-drug solution with an extended circulation time (t1/2) leading to significantly enhanced efficacy of anticancer treatment.
Collapse
|
124
|
Haroon HB, Mukherjee D, Anbu J, Teja BV. Thiolated Chitosan-Centella asiatica Nanocomposite: A Potential Brain Targeting Strategy Through Nasal Route. AAPS PharmSciTech 2021; 22:251. [PMID: 34668091 DOI: 10.1208/s12249-021-02131-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/27/2021] [Indexed: 01/02/2023] Open
Abstract
The major challenge associated with the treatment of neurological disorders is the inefficiency of drugs to enter the Central Nervous System (CNS). Polymer-drug conjugates are now being tailored to overcome this hindrance associated with conventional drugs. The study aimed at developing polymer hybrid nasal nanocomposite for enhanced delivery of Centella to the CNS. Thiolated chitosan was complexed with Centella to form a composite using EDAC hydrochloride. The composite was characterized by FTIR, XRD, NMR, and MS. Further, this composite was converted into a nanoformulation by the ionic-gelation method, characterized, and subjected to ex vivo permeation studies. Additionally, MTT assay was performed using Human Uumbilical cord Vein Endothelial Cells (HUVECs) mimicking Blood-Brain Barrier (BBB) to establish the safety of nanocomposite. The targeting efficacy was predicted by molecular docking studies against receptors associated with BBB. The FTIR, XRD, NMR, and MS studies confirmed the chemical conjugation of thiolated chitosan with Centella. Nanocomposite characterization through SEM, AFM, and DLS confirmed the size and stability of the developed nanocomposite having a zeta potential of - 14.5 mV and PDI of 0.260. The nanocomposite showed no signs of nasal ciliotoxicity and good permeation of 89.44 ± 1.75% (mean ± SD, n = 3) at 8 h across the nasal mucosa. MTT assay showed that the nanocomposite had lesser toxicity compared to the free drug (IC50 of Centella-269.1 μg/mL and IC50 of CTC nanocomposite-485.375 μg/mL). The affinity of polymer to the BBB receptors as proved by docking studies suggests the ability of polymer-based nanocomposite to concentrate in the brain post nasal administration.
Collapse
|
125
|
Pramanik S, Mohanto S, Manne R, Rajendran RR, Deepak A, Edapully SJ, Patil T, Katari O. Nanoparticle-Based Drug Delivery System: The Magic Bullet for the Treatment of Chronic Pulmonary Diseases. Mol Pharm 2021; 18:3671-3718. [PMID: 34491754 DOI: 10.1021/acs.molpharmaceut.1c00491] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic pulmonary diseases encompass different persistent and lethal diseases, including chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), cystic fibrosis (CF), asthma, and lung cancers that affect millions of people globally. Traditional pharmacotherapeutic treatment approaches (i.e., bronchodilators, corticosteroids, chemotherapeutics, peptide-based agents, etc.) are not satisfactory to cure or impede diseases. With the advent of nanotechnology, drug delivery to an intended site is still difficult, but the nanoparticle's physicochemical properties can accomplish targeted therapeutic delivery. Based on their surface, size, density, and physical-chemical properties, nanoparticles have demonstrated enhanced pharmacokinetics of actives, achieving the spotlight in the drug delivery research field. In this review, the authors have highlighted different nanoparticle-based therapeutic delivery approaches to treat chronic pulmonary diseases along with the preparation techniques. The authors have remarked the nanosuspension delivery via nebulization and dry powder carrier is further effective in the lung delivery system since the particles released from these systems are innumerable to composite nanoparticles. The authors have also outlined the inhaled particle's toxicity, patented nanoparticle-based pulmonary formulations, and commercial pulmonary drug delivery devices (PDD) in other sections. Recently advanced formulations employing nanoparticles as therapeutic carriers for the efficient treatment of chronic pulmonary diseases are also canvassed.
Collapse
Affiliation(s)
- Sheersha Pramanik
- Department of Pharmacy, Institute of Pharmacy Jalpaiguri, Netaji Subhas Chandra Bose Road, Hospital Para, Jalpaiguri, West Bengal 735101, India.,Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Himalayan Pharmacy Institute, Majhitar, East Sikkim 737176, India.,Department of Pharmaceutics, Yenepoya Pharmacy College and Research Centre, Yenepoya, Mangalore, Karnataka 575018, India
| | - Ravi Manne
- Quality Control and Assurance Department, Chemtex Environmental Lab, 3082 25th Street, Port Arthur, Texas 77642, United States
| | - Rahul R Rajendran
- Department of Mechanical Engineering and Mechanics, Lehigh University, 19 Memorial Drive West, Bethlehem, Pennsylvania 18015, United States
| | - A Deepak
- Saveetha Institute of Medical and Technical Sciences, Saveetha School of Engineering, Chennai, Tamil Nadu 600128, India
| | - Sijo Joy Edapully
- School of Biotechnology, National Institute of Technology Calicut, NIT campus, Kozhikode, Kerala 673601, India.,Corporate Head Office, HLL Lifecare Limited, Poojappura, Thiruvananthapuram, Kerala 695012, India
| | - Triveni Patil
- Department of Pharmaceutics, Bharati Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune, Maharashtra 411038, India
| | - Oly Katari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Sila Katamur (Halugurisuk), Changsari, Kamrup, Guwahati, Assam 781101, India
| |
Collapse
|
126
|
Sun H, Wang Y, He T, He D, Hu Y, Fu Z, Wang Y, Sun D, Wang J, Liu Y, Shu L, He L, Deng Z, Yang X. Hollow polydopamine nanoparticles loading with peptide RL-QN15: a new pro-regenerative therapeutic agent for skin wounds. J Nanobiotechnology 2021; 19:304. [PMID: 34600530 PMCID: PMC8487533 DOI: 10.1186/s12951-021-01049-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/19/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Although the treatments of skin wounds have greatly improved with the increase in therapeutic methods and agents, available interventions still cannot meet the current clinical needs. Therefore, the development of new pro-regenerative therapies remains urgent. Owing to their unique characteristics, both nanomaterials and peptides have provided novel clues for the development of pro-regenerative agents, however, more efforts were still be awaited and anticipated. RESULTS In the current research, Hollow polydopamine (HPDA) nanoparticles were synthesized and HPDA nanoparticles loading with RL-QN15 (HPDAlR) that was an amphibian-derived peptide with obvious prohealing activities were prepared successfully. The characterization, biodistribution and clearance of both HPDA nanoparticles and HPDAlR were evaluated, the loading efficiency of HPDA against RL-QN15 and the slow-releasing rate of RL-QN15 from HPDAlR were also determined. Our results showed that both HPDA nanoparticles and HPDAlR exerted no obvious toxicity against keratinocyte, macrophage and mice, and HPDA nanoparticles showed no prohealing potency in vivo and in vitro. Interestingly, HPDAlR significantly enhanced the ability of RL-QN15 to accelerate the healing of scratch of keratinocytes and selectively modulate the release of healing-involved cytokines from macrophages. More importantly, in comparison with RL-QN15, by evaluating on animal models of full-thickness injured skin wounds in mice and oral ulcers in rats, HPDAlR showed significant increasing in the pro-regenerative potency of 50 and 10 times, respectively. Moreover, HPDAlR also enhanced the prohealing efficiency of peptide RL-QN15 against skin scald in mice and full-thickness injured wounds in swine. CONCLUSIONS HPDA obviously enhanced the pro-regenerative potency of RL-QN15 in vitro and in vivo, hence HPDAlR exhibited great potential in the development of therapeutics for skin wound healing.
Collapse
Affiliation(s)
- Huiling Sun
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethno-Medicine and Ethno-Pharmacy, Yunnan Minzu University, Kunming, 650504, Yunnan, China
| | - Tiantian He
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Dingwei He
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yan Hu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Zhe Fu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yinglei Wang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Dandan Sun
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Junsong Wang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yixiang Liu
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethno-Medicine and Ethno-Pharmacy, Yunnan Minzu University, Kunming, 650504, Yunnan, China
| | - Longjun Shu
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethno-Medicine and Ethno-Pharmacy, Yunnan Minzu University, Kunming, 650504, Yunnan, China
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, 650500, Yunnan, China.
| | - Ziwei Deng
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China.
| | - Xinwang Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China.
| |
Collapse
|
127
|
Rajendran R, Menon KN, Nair SC. Nanotechnology Approaches for Enhanced CNS Drug Delivery in the Management of Schizophrenia. Adv Pharm Bull 2021; 12:490-508. [PMID: 35935056 PMCID: PMC9348538 DOI: 10.34172/apb.2022.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 06/02/2021] [Accepted: 09/27/2021] [Indexed: 11/09/2022] Open
Abstract
Schizophrenia is a neuropsychiatric disorder mainly affecting the central nervous system, presented with auditory and visual hallucinations, delusion and withdrawal from society. Abnormal dopamine levels mainly characterise the disease; various theories of neurotransmitters explain the pathophysiology of the disease. The current therapeutic approach deals with the systemic administration of drugs other than the enteral route, altering the neurotransmitter levels within the brain and providing symptomatic relief. Fluid biomarkers help in the early detection of the disease, which would improve the therapeutic efficacy. However, the major challenge faced in CNS drug delivery is the blood-brain barrier. Nanotherapeutic approaches may overcome these limitations, which will improve safety, efficacy, and targeted drug delivery. This review article addresses the main challenges faced in CNS drug delivery and the significance of current therapeutic strategies and nanotherapeutic approaches for a better understanding and enhanced drug delivery to the brain, which improve the quality of life of schizophrenia patients.
Collapse
Affiliation(s)
| | - Krishnakumar Neelakandha Menon
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Science and Research Centre, Amrita Vishwa Vidyapeetham, Kochi-682041, Kerala, India
| | | |
Collapse
|
128
|
Pukale SS, Mittal A, Chitkara D. Topical Application of Vitamin D 3-Loaded Hybrid Nanosystem to Offset Imiquimod-Induced Psoriasis. AAPS PharmSciTech 2021; 22:238. [PMID: 34561775 DOI: 10.1208/s12249-021-02116-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022] Open
Abstract
Lipid-polymer hybrid nanoparticles display several benefits over either lipid and/or polymer based systems with respect to enhanced drug loading, good colloidal stability, sustained release profile, and high cellular uptake. The present work rivets on development and evaluation of vitamin D3-loaded monolithic lipid-polymer hybrid nanoparticles (VD3/LPHNPs) for their in vivo anti-psoriatic efficacy. These LPHNPs were prepared using a hot homogenization method and exhibited spherical morphology with a lower particle size (123.1 nm) with narrow PDI (0.234) and efficient encapsulation (76.80%). Further, these LPHNPs demonstrated a sustained release profile of VD3 for up to 3 days following a Korsemeyer-Peppas release model. Further, VD3/LPHNPs were formulated into a topical gel containing 0.005% w/w of VD3. Rheological data suggested that the product exhibited non-newtonian flow properties with characteristic shear-thinning and variable thixotropy features that are desirable for topical formulation. The successful formation of gel structure and its long-term stability were confirmed from the oscillatory studies such as amplitude and frequency sweep tests. In vivo efficacy assessment in imiquimod-induced psoriatic mouse model demonstrated enhanced anti-psoriatic activity of VD3 with improved PASI score when delivered as LPHNPs gel as compared to the free VD3 gel that were further supported by histopathology and immunohistochemistry.
Collapse
|
129
|
Ramos TI, Villacis-Aguirre CA, Santiago Vispo N, Santiago Padilla L, Pedroso Santana S, Parra NC, Alonso JRT. Forms and Methods for Interferon's Encapsulation. Pharmaceutics 2021; 13:1533. [PMID: 34683824 PMCID: PMC8538586 DOI: 10.3390/pharmaceutics13101533] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022] Open
Abstract
Interferons (IFNs) are cytokines involved in the immune response that act on innate and adaptive immunity. These proteins are natural cell-signaling glycoproteins expressed in response to viral infections, tumors, and biological inducers and constitute the first line of defense of vertebrates against infectious agents. They have been marketed for more than 30 years with considerable impact on the global therapeutic protein market thanks to their diversity in terms of biological activities. They have been used as single agents or with combination treatment regimens, demonstrating promising clinical results, resulting in 22 different formulations approved by regulatory agencies. The 163 clinical trials with currently active IFNs reinforce their importance as therapeutics for human health. However, their application has presented difficulties due to the molecules' size, sensitivity to degradation, and rapid elimination from the bloodstream. For some years now, work has been underway to obtain new drug delivery systems to provide adequate therapeutic concentrations for these cytokines, decrease their toxicity and prolong their half-life in the circulation. Although different research groups have presented various formulations that encapsulate IFNs, to date, there is no formulation approved for use in humans. The current review exhibits an updated summary of all encapsulation forms presented in the scientific literature for IFN-α, IFN-ß, and IFN-γ, from the year 1996 to the year 2021, considering parameters such as: encapsulating matrix, route of administration, target, advantages, and disadvantages of each formulation.
Collapse
Affiliation(s)
- Thelvia I. Ramos
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción P.O. Box 160-C, Chile; (T.I.R.); (C.A.V.-A.); (S.P.S.); (N.C.P.)
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas—ESPE, Sangolquí 171103, Ecuador
| | - Carlos A. Villacis-Aguirre
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción P.O. Box 160-C, Chile; (T.I.R.); (C.A.V.-A.); (S.P.S.); (N.C.P.)
| | - Nelson Santiago Vispo
- School of Biological Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador;
| | | | - Seidy Pedroso Santana
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción P.O. Box 160-C, Chile; (T.I.R.); (C.A.V.-A.); (S.P.S.); (N.C.P.)
| | - Natalie C. Parra
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción P.O. Box 160-C, Chile; (T.I.R.); (C.A.V.-A.); (S.P.S.); (N.C.P.)
| | - Jorge Roberto Toledo Alonso
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción P.O. Box 160-C, Chile; (T.I.R.); (C.A.V.-A.); (S.P.S.); (N.C.P.)
| |
Collapse
|
130
|
Allemailem KS, Almatroudi A, Alrumaihi F, Almatroodi SA, Alkurbi MO, Basfar GT, Rahmani AH, Khan AA. Novel Approaches of Dysregulating Lysosome Functions in Cancer Cells by Specific Drugs and Its Nanoformulations: A Smart Approach of Modern Therapeutics. Int J Nanomedicine 2021; 16:5065-5098. [PMID: 34345172 PMCID: PMC8324981 DOI: 10.2147/ijn.s321343] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/08/2021] [Indexed: 01/18/2023] Open
Abstract
The smart strategy of cancer cells to bypass the caspase-dependent apoptotic pathway has led to the discovery of novel anti-cancer approaches including the targeting of lysosomes. Recent discoveries observed that lysosomes perform far beyond just recycling of cellular waste, as these organelles are metabolically very active and mediate several signalling pathways to sense the cellular metabolic status. These organelles also play a significant role in mediating the immune system functions. Thus, direct or indirect lysosome-targeting with different drugs can be considered a novel therapeutic approach in different disease including cancer. Recently, some anticancer lysosomotropic drugs (eg, nortriptyline, siramesine, desipramine) and their nanoformulations have been engineered to specifically accumulate within these organelles. These drugs can enhance lysosome membrane permeabilization (LMP) or disrupt the activity of resident enzymes and protein complexes, like v-ATPase and mTORC1. Other anticancer drugs like doxorubicin, quinacrine, chloroquine and DQ661 have also been used which act through multi-target points. In addition, autophagy inhibitors, ferroptosis inducers and fluorescent probes have also been used as novel theranostic agents. Several lysosome-specific drug nanoformulations like mixed charge and peptide conjugated gold nanoparticles (AuNPs), Au-ZnO hybrid NPs, TPP-PEG-biotin NPs, octadecyl-rhodamine-B and cationic liposomes, etc. have been synthesized by diverse methods. These nanoformulations can target cathepsins, glucose-regulated protein 78, or other lysosome specific proteins in different cancers. The specific targeting of cancer cell lysosomes with drug nanoformulations is quite recent and faces tremendous challenges like toxicity concerns to normal tissues, which may be resolved in future research. The anticancer applications of these nanoformulations have led them up to various stages of clinical trials. Here in this review article, we present the recent updates about the lysosome ultrastructure, its cross-talk with other organelles, and the novel strategies of targeting this organelle in tumor cells as a recent innovative approach of cancer management.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohammad O Alkurbi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ghaiyda Talal Basfar
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
131
|
Al-jubori AA, Sulaiman GM, Tawfeeq AT, Mohammed HA, Khan RA, Mohammed SAA. Layer-by-Layer Nanoparticles of Tamoxifen and Resveratrol for Dual Drug Delivery System and Potential Triple-Negative Breast Cancer Treatment. Pharmaceutics 2021; 13:1098. [PMID: 34371789 PMCID: PMC8309206 DOI: 10.3390/pharmaceutics13071098] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 12/27/2022] Open
Abstract
Nanoparticle development demonstrates use in various physicochemical, biological, and functional properties for biomedical applications, including anti-cancer applications. In the current study, a cancer therapeutic conjugate was produced consisting of tamoxifen (TAM) and resveratrol (RES) by layer-by-layer (LbL) nanoparticles based on lipid-based drug delivery systems and liquid crystalline nanoparticles (LCNPs) coated with multiple layers of positively charged chitosan and negatively charged hyaluronic acid for the evaluation of biocompatibility and therapeutic properties against cancer cells. Multiple techniques characterized the synthesis of TAM/RES-LbL-LCNPs, such as Fourier-transform infrared spectroscopy (FTIR), X-ray crystallography (XRD), Zeta potential analysis, particle size analysis, Field Emission Scanning Electron Microscope (FESEM), and Transmission electron microscopy (TEM). The in vitro cytotoxic effects of TAM/RES-LbL-LCNPs were investigated against human breast cancer cell line, Michigan Cancer Foundation-7 (MCF-7), and human triple-negative breast cancer cell line, Centre Antoine Lacassagne-51 (CAL-51), using various parameters. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay confirmed that the treatment of cells with TAM/RES-LbL-LCNPs caused a reduction in cell proliferation, and no such inhibition was observed with human normal liver cell line: American Type Culture Collection Cell Line-48 (WRL-68 [ATCC CL-48]). Fluorescent microscopy examined the ability of Fluorescein isothiocyanate (FITC) to bind to TAM/RES-LbL-LCNPs along with their cellular uptake. Apoptosis determination was performed using hematoxylin-eosin and acridine orange-propidium iodide double staining. The expression of P53 and caspase-8 was analyzed by flow cytometry analysis. An in vivo study determined the toxicity of TAM/RES-LbL-LCNPs in mice and assessed the functional marker changes in the liver and kidneys. No significant statistical differences were found for the tested indicators. TAM/RES-LbL-LCNP treatment showed no apparent damages or histopathological abnormalities in the heart, lung, liver, spleen, and kidney histological images. The current findings observed for the first time propose that TAM/RES-LbL-LCNPs provide a new and safer method to use phytochemicals in combinatorial therapy and provide a novel treatment approach against breast cancers.
Collapse
Affiliation(s)
- Ali A. Al-jubori
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq; (A.A.A.-j.); (G.M.S.)
| | - Ghassan M. Sulaiman
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq; (A.A.A.-j.); (G.M.S.)
| | - Amer T. Tawfeeq
- Molecular Biology Department, Iraqi Center for Cancer and Medical Genetics Research, Mustansiriyah University, Baghdad 10052, Iraq;
| | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia; (H.A.M.); (R.A.K.)
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
| | - Riaz A. Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia; (H.A.M.); (R.A.K.)
| | - Salman A. A. Mohammed
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| |
Collapse
|
132
|
Tabish TA, Narayan RJ. Mitochondria-targeted graphene for advanced cancer therapeutics. Acta Biomater 2021; 129:43-56. [PMID: 33965624 DOI: 10.1016/j.actbio.2021.04.054] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 02/09/2023]
Abstract
There have been numerous efforts to develop targeted therapies for treating cancer. The non-specificity of 'classical' cytotoxic chemotherapy drugs and drug resistance remain major challenges in cancer dormancy. Mitochondria-targeted therapy is an alternative strategy for the treatment of numerous cancer types and is heavily dependent on the ability of the anticancer drugs to reach the tumor mitochondria in a safe and selective manner. Over the past two decades, research efforts have provided mechanistic insights into the roles of mitochondria in cancer progression and therapies that specifically target cancer mitochondria. Given that several nanotechnology-driven strategies aimed at therapeutically targeting mitochondrial dysfunction are still in their infancy, this review considers the cross-disciplinary nature of this area and focuses on the design and development of mitochondria-targeted graphene (mitoGRAPH), its immense potential, and future use for selective targeting of cancer mitochondria. This review also provides novel insights into the strategies for preparing mitoGRAPH to destroy the cell powerhouse in a targeted fashion. Targeting mitochondria with graphene may represent an important therapeutic approach that transforms therapeutic interventions. STATEMENT OF SIGNIFICANCE: Mitochondria-targeted therapy represents a major advance for treating several medical conditions. At this time, no nanoparticles (NPs) or nanocarriers are clinically available, which are capable of spatial targeting and controlled delivery of drugs to mitochondria. NPs-based approaches have revolutionized the field of targeted therapy and have demonstrated efficacy for delivering drugs selectively to mitochondria. These NPs show limited results in pre-clinical animal models due to their adverse side effects and inadequate therapeutic outcomes. Over the past decade, graphene has emerged as a potential anticancer agent and has shown great potential in targeting tumor mitochondria in a safe and targeted fashion. This review considers recent advances in the use of mitochondria-targeted graphene (mitoGRAPH) in chemotherapy, photodynamic therapy, photothermal therapy, and combination therapies.
Collapse
|
133
|
The Nanosystems Involved in Treating Lung Cancer. Life (Basel) 2021; 11:life11070682. [PMID: 34357054 PMCID: PMC8307574 DOI: 10.3390/life11070682] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 12/12/2022] Open
Abstract
Even though there are various types of cancer, this pathology as a whole is considered the principal cause of death worldwide. Lung cancer is known as a heterogeneous condition, and it is apparent that genome modification presents a significant role in the occurrence of this disorder. There are conventional procedures that can be utilized against diverse cancer types, such as chemotherapy or radiotherapy, but they are hampered by the numerous side effects. Owing to the many adverse events observed in these therapies, it is imperative to continuously develop new and improved strategies for managing individuals with cancer. Nanomedicine plays an important role in establishing new methods for detecting chromosomal rearrangements and mutations for targeted chemotherapeutics or the local delivery of drugs via different types of nano-particle carriers to the lungs or other organs or areas of interest. Because of the complex signaling pathways involved in developing different types of cancer, the need to discover new methods for prevention and detection is crucial in producing gene delivery materials that exhibit the desired roles. Scientists have confirmed that nanotechnology-based procedures are more effective than conventional chemotherapy or radiotherapy, with minor side effects. Several nanoparticles, nanomaterials, and nanosystems have been studied, including liposomes, dendrimers, polymers, micelles, inorganic nanoparticles, such as gold nanoparticles or carbon nanotubes, and even siRNA delivery systems. The cytotoxicity of such nanosystems is a debatable concern, and nanotechnology-based delivery systems must be improved to increase the bioavailability, biocompatibility, and safety profiles, since these nanosystems boast a remarkable potential in many biomedical applications, including anti-tumor activity or gene therapy. In this review, the nanosystems involved in treating lung cancer and its associated challenges are discussed.
Collapse
|
134
|
Yur D, Lieser RM, Sullivan MO, Chen W. Engineering bionanoparticles for improved biosensing and bioimaging. Curr Opin Biotechnol 2021; 71:41-48. [PMID: 34157601 DOI: 10.1016/j.copbio.2021.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/10/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022]
Abstract
The importance of bioimaging and biosensing has been clear with the onset of the COVID-19 pandemic. In addition to viral detection, detection of tumors, glucose levels, and microbes is necessary for improved disease treatment and prevention. Bionanoparticles, such as extracellular vesicles and protein nanoparticles, are ideal platforms for biosensing and bioimaging applications because of their propensity for high density surface functionalization and large loading capacity. Scaffolding large numbers of sensing modules and detection modules onto bionanoparticles allows for enhanced analyte affinity and specificity as well as signal amplification for highly sensitive detection even at low analyte concentrations. Here we demonstrate the potential of bionanoparticles for bioimaging and biosensing by highlighting recent examples in literature that utilize protein nanoparticles and extracellular vesicles to generate highly sensitive detection devices with impressive signal amplification.
Collapse
Affiliation(s)
- Daniel Yur
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716 United States
| | - Rachel M Lieser
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716 United States
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716 United States.
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716 United States.
| |
Collapse
|
135
|
Ezhumalai N, Nanthagopal M, Chandirasekar S, Elumalai M, Narayanasamy M, Singaravelu G, Rajendiran N. Synthesis of
N
‐Acetylcysteine Conjugated Cholic Acid Stabilized Gold and Silver Nanoparticles: Evaluation of Their Catalytic Activity and Toxicity Assessment. ChemistrySelect 2021. [DOI: 10.1002/slct.202100873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nishanthi Ezhumalai
- Department of Polymer Science University of Madras, Guindy Campus Chennai-25 Tamil Nadu India
| | - Manivannan Nanthagopal
- Centre for Advanced Studies in Botany University of Madras, Guindy Campus, Chennai-25 Tamil Nadu India
| | | | - Manikandan Elumalai
- Department of Polymer Science University of Madras, Guindy Campus Chennai-25 Tamil Nadu India
| | - Mathivanan Narayanasamy
- Centre for Advanced Studies in Botany University of Madras, Guindy Campus, Chennai-25 Tamil Nadu India
| | - Ganesan Singaravelu
- Department of Medical Physics Anna University, Guindy, Chennai-25 Tamil Nadu India
| | - Nagappan Rajendiran
- Department of Polymer Science University of Madras, Guindy Campus Chennai-25 Tamil Nadu India
| |
Collapse
|
136
|
Malik P, Hoidal JR, Mukherjee TK. Recent Advances in Curcumin Treated Non-Small Cell Lung Cancers: An Impetus of Pleiotropic Traits and Nanocarrier Aided Delive ry. Curr Med Chem 2021; 28:3061-3106. [PMID: 32838707 DOI: 10.2174/0929867327666200824110332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 01/10/2023]
Abstract
Characterized by the abysmal 18% five year survival chances, non-small cell lung cancers (NSCLCs) claim more than half of their sufferers within the first year of being diagnosed. Advances in biomedical engineering and molecular characterization have reduced the NSCLC diagnosis via timid screening of altered gene expressions and impaired cellular responses. While targeted chemotherapy remains a major option for NSCLCs complications, delayed diagnosis, and concurrent multi-drug resistance remain potent hurdles in regaining normalcy, ultimately resulting in relapse. Curcumin administration presents a benign resolve herein, via simultaneous interception of distinctly expressed pathological markers through its pleiotropic attributes and enhanced tumor cell internalization of chemotherapeutic drugs. Studies on NSCLC cell lines and related xenograft models have revealed a consistent decline in tumor progression owing to enhanced chemotherapeutics cellular internalization via co-delivery with curcumin. This presents an optimum readiness for screening the corresponding effectiveness in clinical subjects. Curcumin is delivered to NSCLC cells either (i) alone, (ii) in stoichiometrically optimal combination with chemotherapeutic drugs, (iii) through nanocarriers, and (iv) nanocarrier co-delivered curcumin and chemotherapeutic drugs. Nanocarriers protect the encapsulated drug from accidental and non-specific spillage. A unanimous trait of all nanocarriers is their moderate drug-interactions, whereby native structural expressions are not tampered. With such insights, this article focuses on the implicit NSCLC curative mechanisms viz-a-viz, free curcumin, nanocarrier delivered curcumin, curcumin + chemotherapeutic drug and nanocarrier assisted curcumin + chemotherapeutic drug delivery.
Collapse
Affiliation(s)
- Parth Malik
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, India
| | - John R Hoidal
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Tapan K Mukherjee
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
137
|
Navarro-Partida J, Castro-Castaneda CR, Santa Cruz-Pavlovich FJ, Aceves-Franco LA, Guy TO, Santos A. Lipid-Based Nanocarriers as Topical Drug Delivery Systems for Intraocular Diseases. Pharmaceutics 2021; 13:pharmaceutics13050678. [PMID: 34065059 PMCID: PMC8151015 DOI: 10.3390/pharmaceutics13050678] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Effective drug delivery to intraocular tissues remains a great challenge due to complex anatomical and physiological barriers that selectively limit the entry of drugs into the eye. To overcome these challenges, frequent topical application and regular intravitreal injections are currently used to achieve the desired drug concentrations into the eye. However, the repetitive installation or recurrent injections may result in several side effects. Recent advancements in the field of nanoparticle-based drug delivery have demonstrated promising results for topical ophthalmic nanotherapies in the treatment of intraocular diseases. Studies have revealed that nanocarriers enhance the intraocular half-life and bioavailability of several therapies including proteins, peptides and genetic material. Amongst the array of nanoparticles available nowadays, lipid-based nanosystems have shown an increased efficiency and feasibility in topical formulations, making them an important target for constant and thorough research in both preclinical and clinical practice. In this review, we will cover the promising lipid-based nanocarriers used in topical ophthalmic formulations for intraocular drug delivery.
Collapse
Affiliation(s)
- Jose Navarro-Partida
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, P.C., Zapopan 45138, Mexico; (J.N.-P.); (C.R.C.-C.); (F.J.S.C.-P.); (L.A.A.-F.); (T.O.G.)
- Centro de Retina Medica y Quirurgica, S.C., Centro Medico Puerta de Hierro, P.C., Zapopan 45116, Mexico
| | - Carlos Rodrigo Castro-Castaneda
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, P.C., Zapopan 45138, Mexico; (J.N.-P.); (C.R.C.-C.); (F.J.S.C.-P.); (L.A.A.-F.); (T.O.G.)
| | - Francisco J. Santa Cruz-Pavlovich
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, P.C., Zapopan 45138, Mexico; (J.N.-P.); (C.R.C.-C.); (F.J.S.C.-P.); (L.A.A.-F.); (T.O.G.)
| | - Luis Abraham Aceves-Franco
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, P.C., Zapopan 45138, Mexico; (J.N.-P.); (C.R.C.-C.); (F.J.S.C.-P.); (L.A.A.-F.); (T.O.G.)
- Centro de Retina Medica y Quirurgica, S.C., Centro Medico Puerta de Hierro, P.C., Zapopan 45116, Mexico
| | - Tomer Ori Guy
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, P.C., Zapopan 45138, Mexico; (J.N.-P.); (C.R.C.-C.); (F.J.S.C.-P.); (L.A.A.-F.); (T.O.G.)
| | - Arturo Santos
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, P.C., Zapopan 45138, Mexico; (J.N.-P.); (C.R.C.-C.); (F.J.S.C.-P.); (L.A.A.-F.); (T.O.G.)
- Centro de Retina Medica y Quirurgica, S.C., Centro Medico Puerta de Hierro, P.C., Zapopan 45116, Mexico
- Correspondence: ; Tel.: +52-(33)-36-69-30-00 (ext. 2540)
| |
Collapse
|
138
|
Mante PK, Adomako NO, Antwi P, Kusi-Boadum NK, Osafo N. Solid-lipid nanoparticle formulation improves antiseizure action of cryptolepine. Biomed Pharmacother 2021; 137:111354. [DOI: 10.1016/j.biopha.2021.111354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/25/2021] [Accepted: 01/31/2021] [Indexed: 10/22/2022] Open
|
139
|
Ghosh G, Panicker L. Protein-nanoparticle interactions and a new insight. SOFT MATTER 2021; 17:3855-3875. [PMID: 33885450 DOI: 10.1039/d0sm02050h] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The study of protein-nanoparticle interactions provides knowledge about the bio-reactivity of nanoparticles, and creates a database of nanoparticles for applications in nanomedicine, nanodiagnosis, and nanotherapy. The problem arises when nanoparticles come in contact with physiological fluids such as plasma or serum, wherein they interact with the proteins (or other biomolecules). This interaction leads to the coating of proteins on the nanoparticle surface, mostly due to the electrostatic interaction, called 'corona'. These proteins are usually partially unfolded. The protein corona can deter nanoparticles from their targeted functionalities, such as drug/DNA delivery at the site and fluorescence tagging of diseased tissues. The protein corona also has many repercussions on cellular intake, inflammation, accumulation, degradation, and clearance of the nanoparticles from the body depending on the exposed part of the proteins. Hence, the protein-nanoparticle interaction and the configuration of the bound-proteins on the nanosurface need thorough investigation and understanding. Several techniques such as DLS and zeta potential measurement, UV-vis spectroscopy, fluorescence spectroscopy, circular dichroism, FTIR, and DSC provide valuable information in the protein-nanoparticle interaction study. Besides, theoretical simulations also provide additional understanding. Despite a lot of research publications, the fundamental question remained unresolved. Can we aim for the application of functional nanoparticles in medicine? A new insight, given by us, in this article assumes a reasonable solution to this crucial question.
Collapse
Affiliation(s)
- Goutam Ghosh
- UGC-DAE Consortium for Scientific Research, Mumbai Centre, Mumbai 400 085, India.
| | | |
Collapse
|
140
|
Mdlovu NV, Lin KS, Chen Y, Wu CM. Formulation of magnetic nanocomposites for intracellular delivery of micro-RNA for MYCN inhibition in neuroblastoma. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
141
|
Abstract
Multifunctional nanoparticles have been identified as a promising drug-delivery system for sustainable drug release. The structural and size tunability and disease-targeting ability of nanoparticles have made them more suitable for multiple drug loading and delivery, thereby enhancing therapeutic results through synergistic effects. Nanoparticulate carriers with specific features such as target specificity and stimuli-responsiveness enable selective drug delivery with lower potential side effects. In this review we have classified the recently published articles on polymeric and inorganic nanoparticle-mediated drug delivery into three different categories based on functionality and discussed their efficiency for drug delivery and their therapeutic outcomes in preclinical models. Most of the drug-loaded nanodelivery systems discussed have demonstrated negligible or very low systemic toxicity throughout the experimental period in animal models compared with free drug administration. In addition, some challenges associated with the translation of nanoparticle-based drug carrier responses to clinical application are highlighted.
Collapse
|
142
|
Development of a New Polymeric Nanocarrier Dedicated to Controlled Clozapine Delivery at the Dopamine D 2-Serotonin 5-HT 1A Heteromers. Polymers (Basel) 2021; 13:polym13071000. [PMID: 33805130 PMCID: PMC8036403 DOI: 10.3390/polym13071000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022] Open
Abstract
Clozapine, the second generation antipsychotic drug, is one of the prominent compounds used for treatment of schizophrenia. Unfortunately, use of this drug is still limited due to serious side effects connected to its unspecific and non-selective action. Nevertheless, clozapine still remains the first-choice drug for the situation of drug-resistance schizophrenia. Development of the new strategy of clozapine delivery into well-defined parts of the brain has been a great challenge for modern science. In the present paper we focus on the presentation of a new nanocarrier for clozapine and its use for targeted transport, enabling its interaction with the dopamine D2 and serotonin 5-HT1A heteromers (D2-5-HT1A) in the brain tissue. Clozapine polymeric nanocapsules (CLO-NCs) were prepared using anionic surfactant AOT (sodium docusate) as an emulsifier, and bio-compatible polyelectrolytes such as: poly-l-glutamic acid (PGA) and poly-l-lysine (PLL). Outer layer of the carrier was grafted by polyethylene glycol (PEG). Several variants of nanocarriers containing the antipsychotic varying in physicochemical parameters were tested. This kind of approach may enable the availability and safety of the drug, improve the selectivity of its action, and finally increase effectiveness of schizophrenia therapy. Moreover, the purpose of the manuscript is to cover a wide scope of the issues, which should be considered while designing a novel means for drug delivery. It is important to determine the interactions of a new nanocarrier with many cell components on various cellular levels in order to be sure that the new nanocarrier will be safe and won’t cause undesired effects for a patient.
Collapse
|
143
|
Polymers in topical delivery of anti-psoriatic medications and other topical agents in overcoming the barriers of conventional treatment strategies. Prog Biomater 2021; 10:1-17. [PMID: 33738750 DOI: 10.1007/s40204-021-00154-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
In recent decades, topical treatments to dermal disorders have shown ineffectiveness in delivering the medication at a particular location without a suitable drug carrier. Psoriasis treatment is hindered because of the ineffective delivery and efficacy of conventional pharmaceutical treatment. In conventional medication formulation approach, it is difficult to breach the transdermal layer of a skin membrane for topical drugs, i.e. cyclosporine, methotrexate. This problem is further complicated by extreme disease-associated conditions such as hyperkeratosis and irritation. Intending to assure better drug delivery carriers, this review emphasizes the therapeutic efficacy of polymers and their potential to deliver the drug into the deeper layer of the skin membrane. The polymers are essential in structural and physiochemical perspectives as it works as a carrier for the medication. A vast variety of delivery carriers is available nowadays but their applicability in such dermal cases like psoriasis is still lacking due to less knowledge on an appropriate polymer. The current investigation of suitable polymer would assist in brushing our expertise to optimize the advantages of a wide spectrum of polymers to fulfill the topical targeting of psoriasis.
Collapse
|
144
|
Maretti E, Leo E, Rustichelli C, Truzzi E, Siligardi C, Iannuccelli V. In vivo β-carotene skin permeation modulated by Nanostructured Lipid Carriers. Int J Pharm 2021; 597:120322. [PMID: 33549810 DOI: 10.1016/j.ijpharm.2021.120322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/09/2021] [Accepted: 01/22/2021] [Indexed: 12/01/2022]
Abstract
Nanostructured Lipid Carriers (NLC) were investigated with the purpose of promoting skin permeation of the highly lipophilic β-carotene (BC) across the stratum corneum (SC) barrier so that it may perform its antioxidant properties in photo-aging and epithelial skin cancer prevention. Two differently sized NLC samples were developed using stearic acid and squalene as lipid matrix and evaluated in comparison with Microstructured Lipid Carriers (MLC). The carriers were characterized for morphology, size, Z-potential, BC loading and release as well as physical state by means of DSC and XRPD analyses. In vivo penetration of the carriers was assessed on humans by determining BC concentrations within the SC stratum disjunctum and stratum compactum layers removed by means of the tape stripping test in comparison with pure BC. Unlike MLC and pure BC that were mostly retained within the outermost layers of the SC, the NLC sample having the smallest size (about 200 nm) has proved to penetrate more deeply into the SC barrier. Accordingly, the goal of providing β-carotene actions against oxidative damages within the looser skin viable tissues could be envisaged.
Collapse
Affiliation(s)
- Eleonora Maretti
- Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
| | - Eliana Leo
- Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
| | - Cecilia Rustichelli
- Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
| | - Eleonora Truzzi
- Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
| | - Cristina Siligardi
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, via P. Vivarelli 10, 41125 Modena, Italy.
| | - Valentina Iannuccelli
- Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
| |
Collapse
|
145
|
Sameiyan E, Bagheri E, Dehghani S, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Aptamer-based ATP-responsive delivery systems for cancer diagnosis and treatment. Acta Biomater 2021; 123:110-122. [PMID: 33453405 DOI: 10.1016/j.actbio.2020.12.057] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/25/2020] [Accepted: 12/30/2020] [Indexed: 12/18/2022]
Abstract
In recent years, many stimuli-triggered drug delivery platforms have been designed to deliver drugs accurately to specific sites and reduce their side effects, improving "on-demand" therapeutic efficacy. Adenosine-5'-triphosphate (ATP)-responsive drug delivery methods are examples of these systems that use ATP molecules as a trigger for delivery of therapeutic agents. Since intra- and extra-cellular ATP concentrations are significantly different from each other (1-10 mM and <0.4 mM, respectively), the use of ATP can be a practical method for regulating drug release. Aptamers possess unique properties including, ligand-specific response, short sequence (~ 20-80 bases) and easy functionalization. Thus, their combination with ATP-responsive systems results in more accurate drug delivery systems and greater control of drug release. A wide range of nanoparticles, such as polymeric nanogels, liposomes, metallic nanoparticles, protein, or DNA nano-assemblies, have been employed in the fabrication of nanocarriers. In this review, we describe several ATP-responsive drug delivery systems based on the various carriers and discuss the challenges and strengths of each method.
Collapse
|
146
|
Lan JS, Qin YH, Liu L, Zeng RF, Yang Y, Wang K, Ding Y, Zhang T, Ho RJY. A Carrier-Free Folate Receptor-Targeted Ursolic Acid/Methotrexate Nanodelivery System for Synergetic Anticancer Therapy. Int J Nanomedicine 2021; 16:1775-1787. [PMID: 33692622 PMCID: PMC7938229 DOI: 10.2147/ijn.s287806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/22/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To avoid undefined metabolic mechanisms and to eliminate potential side effects of traditional nanocarriers, new green carriers are urgently needed in cancer treatment. Carrier-free nanoparticles (NPs) based on ursolic acid (UA) have attracted significant attention, but the UA NPs targeting the folate receptor have never been explored. We designed a novel self-assembled UA-Methotrexate (MTX) NPs targeting the folate-receptor and its synergetic anticancer activity was studied in vitro and in vivo. METHODS UA-MTX NPs were prepared using the solvent precipitation method. Characterization of the UA-MTX NPs preparation was performed using a size analyzer, transmission electron microscopy, and UV-vis spectrophotometry. The in vitro pH-responsive drug release capability of UA-MTX NPs was tested at different pH values. The UA-MTX NPs targeting of folates was determined by comparing the endocytosis rates of cell lines with low or overexpression of the folate receptor (A549 and MCF-7 cells). The cytotoxicity and cell apoptosis of UA-MTX NPs were also studied to determine the in vitro synergistic effects. Combination chemotherapy of UA-MTX NPs in vivo was evaluated using MCF-7 xenografted tumor models. RESULTS Compared with free UA or MTX, the water solubility of UA-MTX NPs improved significantly. Drug-release from the UA-MTX NPs was faster at pH 5.0 than pH 7.4, suggesting MTX-UA NPs could rapidly release MTX in the acidic conditions of the tumor microenvironment. Confocal laser scanning microscopy revealed the excellent folate receptor targeting of UA-MTX NPs in MCF-7 cells. Cytotoxicity and cell apoptosis results demonstrated greater antiproliferative capacity of UA-MTX NPs than that of free drug in folate receptor overexpressing MCF-7 cells. Anticancer effects in vivo suggested MTX-UA NPs exhibited good biological safety and could enhance antitumor efficacy due to the combination therapy. CONCLUSION Our findings indicate that the UA-MTX NPs targeting folate-receptors is an efficient strategy for combination chemotherapy.
Collapse
Affiliation(s)
- Jin-Shuai Lan
- Experiment Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Yan-Hong Qin
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Li Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Rui-Feng Zeng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Yang Yang
- Science and Technology Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Kai Wang
- Science and Technology Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Yue Ding
- Experiment Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Tong Zhang
- Experiment Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Rodney J Y Ho
- Department of Pharmaceutics, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
147
|
Luebbert CCE, Mansa R, Rahman R, Jakubek ZJ, Frahm GE, Zou S, Johnston MJW. Influence of bound dodecanoic acid on the reconstitution of albumin nanoparticles from a lyophilized state. Sci Rep 2021; 11:4768. [PMID: 33637809 PMCID: PMC7910568 DOI: 10.1038/s41598-021-84131-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
The development of reference standards for nanoparticle sizing allows for cross laboratory studies and effective transfer of particle sizing methodology. To facilitate this, these reference standards must be stable upon long-term storage. Here, we examine factors that influence the properties of cross-linked albumin nanoparticles, fabricated with an ethanol desolvation method, when reconstituted from a lyophilized state. We demonstrate, with nanoparticle tracking analysis, no significant changes in mean particle diameter upon reconstitution of albumin nanoparticles fabricated with bovine serum albumin loaded with dodecanoic acid, when compared to nanoparticles fabricated with a fatty acid-free BSA. We attribute this stability to the modulation of nanoparticle charge-charge interactions at dodecanoic acid specific binding locations. Furthermore, we demonstrate this in a lyophilized state over six months when stored at − 80 °C. We also show that the reconstitution process is readily transferable between technicians and laboratories and further confirm our finding with dynamic light scattering analysis.
Collapse
Affiliation(s)
- Christian C E Luebbert
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Rola Mansa
- Metrology Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
| | - Raisa Rahman
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada.,Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Zygmunt J Jakubek
- Metrology Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
| | - Grant E Frahm
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Shan Zou
- Metrology Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada.,Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Michael J W Johnston
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada. .,Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
148
|
Oseni BA, Azubuike CP, Okubanjo OO, Igwilo CI, Panyam J. Encapsulation of Andrographolide in poly(lactide-co-glycolide) Nanoparticles: Formulation Optimization and in vitro Efficacy Studies. Front Bioeng Biotechnol 2021; 9:639409. [PMID: 33681172 PMCID: PMC7930629 DOI: 10.3389/fbioe.2021.639409] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/19/2021] [Indexed: 01/04/2023] Open
Abstract
Andrographolide is a potential chemopreventive and chemotherapeutic agent that suffers from poor aqueous solubility. Encapsulation in poly(lactide-co-glycolide) (PLGA) nanoparticles can overcome solubility issues and enable sustained release of the drug, resulting in improved therapeutic efficacy. In this study, andrographolide was encapsulated in PLGA nanoparticles via emulsion solvent evaporation technique. Effect of various formulation parameters including polymer composition, polymer molecular weight, polymer to drug ratio, surfactant concentration and the organic solvent used on nanoparticle properties were investigated. A selected formulation was used to determine the effect of encapsulation in nanoparticles on andrographolide's in vitro anticancer efficacy. Nanoparticles formulated using a polymer with 85:15 lactide to glycolide ratio and ethyl acetate as the organic solvent were found to be optimal based on average hydrodynamic particle size (135 ± 4 nm) and drug loading (2.6 ± 0.6%w/w). This formulation demonstrated sustained release of andrographolide over 48 h and demonstrated significantly greater in vitro anticancer efficacy compared to free drug in a metastatic breast cancer cell line. These results suggest that additional, more in-depth efficacy studies are warranted for the nanoparticle formulation of andrographolide.
Collapse
Affiliation(s)
- Bukola A. Oseni
- Department of Pharmaceutics and Pharmaceutical Technology, University of Lagos, Lagos, Nigeria
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, United States
| | - Chukwuemeka P. Azubuike
- Department of Pharmaceutics and Pharmaceutical Technology, University of Lagos, Lagos, Nigeria
| | - Omotunde O. Okubanjo
- Department of Pharmaceutics and Pharmaceutical Technology, University of Lagos, Lagos, Nigeria
| | - Cecilia I. Igwilo
- Department of Pharmaceutics and Pharmaceutical Technology, University of Lagos, Lagos, Nigeria
| | - Jayanth Panyam
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, United States
- School of Pharmacy, Temple University, Philadelphia, PA, United States
| |
Collapse
|
149
|
Esim O, Hascicek C. Albumin-based Nanoparticles as Promising Drug Delivery Systems for Cancer Treatment. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916999200421142008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Albumin is an ideal material for the production of drug carrier nanoparticular systems since
it is a versatile and functional protein that has been proven to be biodegradable and biocompatible,
non-toxic, and immunogenic. Albumin nanoparticles are of great interest as they have the high binding
capacity to many drugs with different physicochemical and structural properties and are well tolerated
without any side effects. In this review, different types of albumin, special nanotechnological techniques
for the production of albumin nanoparticles, such as desolvation, emulsification, thermal gelation,
nano-spray drying, and self-assembly, as well as the characterization of albumin nanoparticles,
such as particle size, surface charge, morphological properties, drug content, and release profile have
been discussed. In addition, the in vitro and in vivo studies of albumin nanoparticles intended both diagnostic
and therapeutic usage have been investigated.
Collapse
Affiliation(s)
- Ozge Esim
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Canan Hascicek
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
150
|
Hagaman DE, Damasco JA, Perez JVD, Rojo RD, Melancon MP. Recent Advances in Nanomedicine for the Diagnosis and Treatment of Prostate Cancer Bone Metastasis. Molecules 2021; 26:E384. [PMID: 33450939 PMCID: PMC7828457 DOI: 10.3390/molecules26020384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Patients with advanced prostate cancer can develop painful and debilitating bone metastases. Currently available interventions for prostate cancer bone metastases, including chemotherapy, bisphosphonates, and radiopharmaceuticals, are only palliative. They can relieve pain, reduce complications (e.g., bone fractures), and improve quality of life, but they do not significantly improve survival times. Therefore, additional strategies to enhance the diagnosis and treatment of prostate cancer bone metastases are needed. Nanotechnology is a versatile platform that has been used to increase the specificity and therapeutic efficacy of various treatments for prostate cancer bone metastases. In this review, we summarize preclinical research that utilizes nanotechnology to develop novel diagnostic imaging tools, translational models, and therapies to combat prostate cancer bone metastases.
Collapse
Affiliation(s)
- Daniel E. Hagaman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.E.H.); (J.A.D.); (J.V.D.P.); (R.D.R.)
| | - Jossana A. Damasco
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.E.H.); (J.A.D.); (J.V.D.P.); (R.D.R.)
| | - Joy Vanessa D. Perez
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.E.H.); (J.A.D.); (J.V.D.P.); (R.D.R.)
- College of Medicine, University of the Philippines, Manila NCR 1000, Philippines
| | - Raniv D. Rojo
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.E.H.); (J.A.D.); (J.V.D.P.); (R.D.R.)
- College of Medicine, University of the Philippines, Manila NCR 1000, Philippines
| | - Marites P. Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.E.H.); (J.A.D.); (J.V.D.P.); (R.D.R.)
- UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|