101
|
Lim SL, Tsend-Ayush E, Kortschak RD, Jacob R, Ricciardelli C, Oehler MK, Grützner F. Conservation and expression of PIWI-interacting RNA pathway genes in male and female adult gonad of amniotes. Biol Reprod 2013; 89:136. [PMID: 24108303 DOI: 10.1095/biolreprod.113.111211] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The PIWI-interacting RNA (piRNA) pathway is essential for germline development and transposable element repression. Key elements of this pathway are members of the piRNA-binding PIWI/Argonaute protein family and associated factors (e.g., VASA, MAELSTROM, and TUDOR domain proteins). PIWI-interacting RNAs have been identified in mouse testis and oocytes, but information about the expression of the different piRNA pathway genes, in particular in the mammalian ovary, remains incomplete. We investigated the evolution and expression of piRNA pathway genes in gonads of amniote species (chicken, platypus, and mouse). Database searches confirm a high level of conservation and revealed lineage-specific gain and loss of Piwi genes in vertebrates. Expression analysis in mammals shows that orthologs of Piwi-like (Piwil) genes, Mael (Maelstrom), Mvh (mouse vasa homolog), and Tdrd1 (Tudor domain-containing protein 1) are expressed in platypus adult testis. In contrast to mouse, Piwil4 is expressed in platypus and human adult testis. We found evidence for Mael and Piwil2 expression in mouse Sertoli cells. Importantly, we show mRNA expression of Piwil2, Piwil4, and Mael in oocytes and supporting cells of human, mouse, and platypus ovary. We found no Piwil1 expression in mouse and chicken ovary. The conservation of gene expression in somatic parts of the gonad and germ cells of species that diverged over 800 million yr ago indicates an important role in adult male and female gonad.
Collapse
Affiliation(s)
- Shu Ly Lim
- The Robinson Institute, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | | | | | | | | | | | | |
Collapse
|
102
|
Dowdle JA, Mehta M, Kass EM, Vuong BQ, Inagaki A, Egli D, Jasin M, Keeney S. Mouse BAZ1A (ACF1) is dispensable for double-strand break repair but is essential for averting improper gene expression during spermatogenesis. PLoS Genet 2013; 9:e1003945. [PMID: 24244200 PMCID: PMC3820798 DOI: 10.1371/journal.pgen.1003945] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 09/25/2013] [Indexed: 01/11/2023] Open
Abstract
ATP-dependent chromatin remodelers control DNA access for transcription, recombination, and other processes. Acf1 (also known as BAZ1A in mammals) is a defining subunit of the conserved ISWI-family chromatin remodelers ACF and CHRAC, first purified over 15 years ago from Drosophila melanogaster embryos. Much is known about biochemical properties of ACF and CHRAC, which move nucleosomes in vitro and in vivo to establish ordered chromatin arrays. Genetic studies in yeast, flies and cultured human cells clearly implicate these complexes in transcriptional repression via control of chromatin structures. RNAi experiments in transformed mammalian cells in culture also implicate ACF and CHRAC in DNA damage checkpoints and double-strand break repair. However, their essential in vivo roles in mammals are unknown. Here, we show that Baz1a-knockout mice are viable and able to repair developmentally programmed DNA double-strand breaks in the immune system and germ line, I-SceI endonuclease-induced breaks in primary fibroblasts via homologous recombination, and DNA damage from mitomycin C exposure in vivo. However, Baz1a deficiency causes male-specific sterility in accord with its high expression in male germ cells, where it displays dynamic, stage-specific patterns of chromosomal localization. Sterility is caused by pronounced defects in sperm development, most likely a consequence of massively perturbed gene expression in spermatocytes and round spermatids in the absence of BAZ1A: the normal spermiogenic transcription program is largely intact but more than 900 other genes are mis-regulated, primarily reflecting inappropriate up-regulation. We propose that large-scale changes in chromatin composition that occur during spermatogenesis create a window of vulnerability to promiscuous transcription changes, with an essential function of ACF and/or CHRAC chromatin remodeling activities being to safeguard against these alterations. The eukaryotic genome is packaged into a periodic nucleoprotein complex known as chromatin. Wrapping of DNA around nucleosomes, the basic repeat unit of chromatin, enables packing of long stretches of DNA into a compact nucleus but also impedes access by protein factors involved in essential cellular processes such as transcription, replication, recombination and repair. Chromatin remodeling factors are multi-protein complexes that utilize the energy released during ATP-hydrolysis to assemble, reposition, restructure and disassemble nucleosomes. These complexes disrupt histone-DNA contacts to ‘remodel’ the chromatin and grant access to the genome. Alternatively, access can also be denied to repress transcription, for example. Spermatogenesis, the developmental program that produces sperm, comprises a dramatic chromatin makeover and the induction of a transcriptional program that engages nearly one-third of the genome. Here we provide evidence suggesting that these large-scale alterations leave the genomic material vulnerable to spurious transcriptional changes which are normally repressed by ACF1 (BAZ1A in mammals), the defining member of the well-studied ACF/CHRAC chromatin remodeling complex. These findings indicate that Baz1a plays a previously unrealized role in male fertility and may represent a novel target for male contraceptive development.
Collapse
Affiliation(s)
- James A. Dowdle
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, New York, New York, United States of America
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Monika Mehta
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Elizabeth M. Kass
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Bao Q. Vuong
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Akiko Inagaki
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Dieter Egli
- The New York Stem Cell Foundation, New York, New York, United States of America
| | - Maria Jasin
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, New York, New York, United States of America
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Scott Keeney
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, New York, New York, United States of America
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
103
|
Vasileva A, Hopkins KM, Wang X, Weisbach MM, Friedman RA, Wolgemuth DJ, Lieberman HB. The DNA damage checkpoint protein RAD9A is essential for male meiosis in the mouse. J Cell Sci 2013; 126:3927-38. [PMID: 23788429 PMCID: PMC3757332 DOI: 10.1242/jcs.126763] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2013] [Indexed: 01/01/2023] Open
Abstract
In mitotic cells, RAD9A functions in repairing DNA double-strand breaks (DSBs) by homologous recombination and facilitates the process by cell cycle checkpoint control in response to DNA damage. DSBs occur naturally in the germline during meiosis but whether RAD9A participates in repairing such breaks is not known. In this study, we determined that RAD9A is indeed expressed in the male germ line with a peak of expression in late pachytene and diplotene stages, and the protein was found associated with the XY body. As complete loss of RAD9A is embryonic lethal, we constructed and characterized a mouse strain with Stra8-Cre driven germ cell-specific ablation of Rad9a beginning in undifferentiated spermatogonia in order to assess its role in spermatogenesis. Adult mutant male mice were infertile or sub-fertile due to massive loss of spermatogenic cells. The onset of this loss occurs during meiotic prophase, and there was an increase in the numbers of apoptotic spermatocytes as determined by TUNEL. Spermatocytes lacking RAD9A usually arrested in meiotic prophase, specifically in pachytene. The incidence of unrepaired DNA breaks increased, as detected by accumulation of γH2AX and DMC1 foci on the axes of autosomal chromosomes in pachytene spermatocytes. The DNA topoisomerase IIβ-binding protein 1 (TOPBP1) was still localized to the sex body, albeit with lower intensity, suggesting that RAD9A may be dispensable for sex body formation. We therefore show for the first time that RAD9A is essential for male fertility and for repair of DNA DSBs during meiotic prophase I.
Collapse
Affiliation(s)
- Ana Vasileva
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th St., VC 11-219/220, New York, NY 10032, USA
- Genetics & Development and Obstetrics and Gynecology, The Institute of Human Nutrition, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, Russ Berrie 608, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| | - Kevin M. Hopkins
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th St., VC 11-219/220, New York, NY 10032, USA
| | - Xiangyuan Wang
- Genetics & Development and Obstetrics and Gynecology, The Institute of Human Nutrition, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, Russ Berrie 608, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| | - Melissa M. Weisbach
- Genetics & Development and Obstetrics and Gynecology, The Institute of Human Nutrition, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, Russ Berrie 608, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| | - Richard A. Friedman
- Biomedical Informatics Shared Resource of the Herbert Irving Comprehensive Cancer Center and Department of Biomedical Informatics, Columbia University Medical Center, 1130 St. Nicholas Avenue, Room 824, New York, NY 10032, USA
| | - Debra J. Wolgemuth
- Genetics & Development and Obstetrics and Gynecology, The Institute of Human Nutrition, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, Russ Berrie 608, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| | - Howard B. Lieberman
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th St., VC 11-219/220, New York, NY 10032, USA
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
104
|
Mani SR, Juliano CE. Untangling the web: the diverse functions of the PIWI/piRNA pathway. Mol Reprod Dev 2013; 80:632-64. [PMID: 23712694 DOI: 10.1002/mrd.22195] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 05/13/2013] [Indexed: 12/26/2022]
Abstract
Small RNAs impact several cellular processes through gene regulation. Argonaute proteins bind small RNAs to form effector complexes that control transcriptional and post-transcriptional gene expression. PIWI proteins belong to the Argonaute protein family, and bind PIWI-interacting RNAs (piRNAs). They are highly abundant in the germline, but are also expressed in some somatic tissues. The PIWI/piRNA pathway has a role in transposon repression in Drosophila, which occurs both by epigenetic regulation and post-transcriptional degradation of transposon mRNAs. These functions are conserved, but clear differences in the extent and mechanism of transposon repression exist between species. Mutations in piwi genes lead to the upregulation of transposon mRNAs. It is hypothesized that this increased transposon mobilization leads to genomic instability and thus sterility, although no causal link has been established between transposon upregulation and genome instability. An alternative scenario could be that piwi mutations directly affect genomic instability, and thus lead to increased transposon expression. We propose that the PIWI/piRNA pathway controls genome stability in several ways: suppression of transposons, direct regulation of chromatin architecture and regulation of genes that control important biological processes related to genome stability. The PIWI/piRNA pathway also regulates at least some, if not many, protein-coding genes, which further lends support to the idea that piwi genes may have broader functions beyond transposon repression. An intriguing possibility is that the PIWI/piRNA pathway is using transposon sequences to coordinate the expression of large groups of genes to regulate cellular function.
Collapse
Affiliation(s)
- Sneha Ramesh Mani
- Yale Stem Cell Center, Yale University, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
105
|
Zhang QJ, Luo YJ, Wu HR, Chen YT, Yu JK. Expression of germline markers in three species of amphioxus supports a preformation mechanism of germ cell development in cephalochordates. EvoDevo 2013; 4:17. [PMID: 23777831 PMCID: PMC3735472 DOI: 10.1186/2041-9139-4-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 04/22/2013] [Indexed: 12/21/2022] Open
Abstract
Background In a previous study, we showed that the cephalochordate amphioxus Branchiostoma floridae has localized maternal transcripts of conserved germ cell markers Vasa and Nanos in its early embryos. These results provided strong evidence to support a preformation mechanism for primordial germ cell (PGC) development in B. floridae. Results In this study, we further characterize the expression of B. floridae homologs of Piwi and Tudor, which play important roles in germline development in diverse metazoan animals. We show that maternal mRNA of one of the identified Piwi-like homologs, Bf-Piwil1, also colocalizes with Vasa in the vegetal germ plasm and has zygotic expression in both the putative PGCs and the tail bud, suggesting it may function in both germline and somatic stem cells. More interestingly, one Tudor family gene, Bf-Tdrd7, is only expressed maternally and colocalizes with Vasa in germ plasm, suggesting that it may function exclusively in germ cell specification. To evaluate the conservation of the preformation mechanism among amphioxus species, we further analyze Vasa, Nanos, Piwil1, and Tdrd7 expression in two Asian amphioxus species, B. belcheri and B. japonicum. Their maternal transcripts all localize in similar patterns to those seen in B. floridae. In addition, we labeled putative PGCs with Vasa antibody to trace their dynamic distribution in developing larvae. Conclusions We identify additional germ plasm components in amphioxus and demonstrate the molecular distinction between the putative germline stem cells and somatic stem cells. Moreover, our results suggest that preformation may be a conserved mechanism for PGC specification among Branchiostoma species. Our Vasa antibody staining results suggest that after the late neurula stage, amphioxus PGCs probably proliferate with the tail bud cells during posterior elongation and are deposited near the forming myomere boundaries. Subsequently, these PGCs would concentrate at the ventral tip of the myoseptal walls to form the gonad anlagen.
Collapse
Affiliation(s)
- Qiu-Jin Zhang
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan.,Fujian Key Laboratory of Developmental and Neuro Biology, College of Life Sciences, Fujian Normal University, Fuzhou, 350108, People's Republic of China
| | - Yi-Jyun Luo
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Hui-Ru Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Yen-Ta Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan.,Institute of Oceanography, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| |
Collapse
|
106
|
Saxe JP, Chen M, Zhao H, Lin H. Tdrkh is essential for spermatogenesis and participates in primary piRNA biogenesis in the germline. EMBO J 2013; 32:1869-85. [PMID: 23714778 DOI: 10.1038/emboj.2013.121] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Accepted: 04/08/2013] [Indexed: 02/08/2023] Open
Abstract
Piwi proteins and Piwi-interacting RNAs (piRNAs) repress transposition, regulate translation, and guide epigenetic programming in the germline. Here, we show that an evolutionarily conserved Tudor and KH domain-containing protein, Tdrkh (a.k.a. Tdrd2), is required for spermatogenesis and involved in piRNA biogenesis. Tdrkh partners with Miwi and Miwi2 via symmetrically dimethylated arginine residues in Miwi and Miwi2. Tdrkh is a mitochondrial protein often juxtaposed to pi-bodies and piP-bodies and is required for Tdrd1 cytoplasmic localization and Miwi2 nuclear localization. Tdrkh mutants display meiotic arrest at the zygotene stage, attenuate methylation of Line1 DNA, and upregulate Line1 RNA and protein, without inducing apoptosis. Furthermore, Tdrkh mutants have severely reduced levels of mature piRNAs but accumulate a distinct population of 1'U-containing, 2'O-methylated 31-37 nt RNAs that largely complement the missing mature piRNAs. Our results demonstrate that the primary piRNA biogenesis pathway involves 3'→5' processing of 31-37 nt intermediates and that Tdrkh promotes this final step of piRNA biogenesis but not the ping-pong cycle. These results shed light on mechanisms underlying primary piRNA biogenesis, an area in which information is conspicuously absent.
Collapse
Affiliation(s)
- Jonathan P Saxe
- Yale Stem Cell Center, Yale University, New Haven, CT 06519, USA
| | | | | | | |
Collapse
|
107
|
Abstract
Transposable elements and their fossil sequences occupy about half of the genome in mammals. While most of these selfish mobile elements have been inactivated by truncations and mutations during evolution, some copies remain competent to transpose and/or amplify, posing an ongoing genetic threat. To control such mutagenic sequences, host genomes have developed multiple layers of defence mechanisms, including epigenetic regulation and RNA silencing. Germ cells, in particular, employ the piwi-small RNA pathway, which plays a central and adaptive role in safeguarding the germline genome from retrotransposons. Recent studies have revealed that a class of developmentally regulated genes, which have long been implicated in germ cell specification and differentiation, such as vasa and tudor family genes, play key roles in the piwi pathway to suppress retrotransposons, indicating that the piwi-mediated genome protection is at the core of germline development. Furthermore, while the piwi system primarily operates post-transcriptionally at the RNA level, it also affects the epigenetics of cognate genome loci, offering an intriguing link between small RNAs and transcriptional control in mammals. In this review, we summarize our current understanding of the piwi pathway in mice, which is emerging as a fundamental component of spermatogenesis that ensures male fertility and genome integrity.
Collapse
Affiliation(s)
- Shinichiro Chuma
- Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | | |
Collapse
|
108
|
Cui G, Botuyan MV, Mer G. (1)H, (15)N and (13)C resonance assignments for the three LOTUS RNA binding domains of Tudor domain-containing protein TDRD7. BIOMOLECULAR NMR ASSIGNMENTS 2013; 7:79-83. [PMID: 22481467 PMCID: PMC3399036 DOI: 10.1007/s12104-012-9382-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 03/23/2012] [Indexed: 05/31/2023]
Abstract
The LOTUS or OST-HTH domain is a recently discovered motif of about 80 amino acids and is found in several germline-specific proteins including the Tudor domain-containing proteins TDRD5 and TDRD7, which are important for germ cell development. The LOTUS domain is an RNA binding domain but its exact function is unknown. Here, we report the (1)H, (13)C and (15)N resonance assignments for the three LOTUS domains present in mouse TDRD7. These assignments will allow three-dimensional structure determination of the LOTUS domains and mapping of their interaction with RNA, steps toward deciphering the function of TDRD7.
Collapse
|
109
|
Li XZ, Roy CK, Dong X, Bolcun-Filas E, Wang J, Han BW, Xu J, Moore MJ, Schimenti JC, Weng Z, Zamore PD. An ancient transcription factor initiates the burst of piRNA production during early meiosis in mouse testes. Mol Cell 2013; 50:67-81. [PMID: 23523368 PMCID: PMC3671569 DOI: 10.1016/j.molcel.2013.02.016] [Citation(s) in RCA: 305] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/17/2013] [Accepted: 02/12/2013] [Indexed: 02/07/2023]
Abstract
Animal germ cells produce PIWI-interacting RNAs (piRNAs), small silencing RNAs that suppress transposons and enable gamete maturation. Mammalian transposon-silencing piRNAs accumulate early in spermatogenesis, whereas pachytene piRNAs are produced later during postnatal spermatogenesis and account for >95% of all piRNAs in the adult mouse testis. Mutants defective for pachytene piRNA pathway proteins fail to produce mature sperm, but neither the piRNA precursor transcripts nor the trigger for pachytene piRNA production is known. Here, we show that the transcription factor A-MYB initiates pachytene piRNA production. A-MYB drives transcription of both pachytene piRNA precursor RNAs and the mRNAs for core piRNA biogenesis factors including MIWI, the protein through which pachytene piRNAs function. A-MYB regulation of piRNA pathway proteins and piRNA genes creates a coherent feedforward loop that ensures the robust accumulation of pachytene piRNAs. This regulatory circuit, which can be detected in rooster testes, likely predates the divergence of birds and mammals.
Collapse
Affiliation(s)
- Xin Zhiguo Li
- Department of Biochemistry and Molecular Pharmacology, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Vincent JJ, Huang Y, Chen PY, Feng S, Calvopiña JH, Nee K, Lee SA, Le T, Yoon AJ, Faull K, Fan G, Rao A, Jacobsen SE, Pellegrini M, Clark AT. Stage-specific roles for tet1 and tet2 in DNA demethylation in primordial germ cells. Cell Stem Cell 2013; 12:470-8. [PMID: 23415914 DOI: 10.1016/j.stem.2013.01.016] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/21/2013] [Accepted: 01/27/2013] [Indexed: 12/18/2022]
Abstract
Primordial germ cells (PGCs) undergo dramatic rearrangements to their methylome during embryogenesis, including initial genome-wide DNA demethylation that establishes the germline epigenetic ground state. The role of the 5-methylcytosine (5mC) dioxygenases Tet1 and Tet2 in the initial genome-wide DNA demethylation process has not been examined directly. Using PGCs differentiated from either control or Tet2(-/-); Tet1 knockdown embryonic stem cells (ESCs), we show that in vitro PGC (iPGC) formation and genome-wide DNA demethylation are unaffected by the absence of Tet1 and Tet2, and thus 5-hydroxymethylcytosine (5hmC). However, numerous promoters and gene bodies were hypermethylated in mutant iPGCs, which is consistent with a role for 5hmC as an intermediate in locus-specific demethylation. Altogether, our results support a revised model of PGC DNA demethylation in which the first phase of comprehensive 5mC loss does not involve 5hmC. Instead, Tet1 and Tet2 have a locus-specific role in shaping the PGC epigenome during subsequent development.
Collapse
Affiliation(s)
- John J Vincent
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Ding X, Guan H, Li H. Characterization of a piRNA binding protein Miwi in mouse oocytes. Theriogenology 2012; 79:610-5.e1. [PMID: 23244769 DOI: 10.1016/j.theriogenology.2012.11.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 11/06/2012] [Accepted: 11/12/2012] [Indexed: 11/19/2022]
Abstract
Argonaute proteins and Piwi proteins bind with microRNA (mRNA) and Piwi-interacting RNA (piRNA), respectively, to form functional complexes. Piwi proteins are mostly restricted to germ cells and stem cells, and the Piwi-piRNA pathway is required for normal spermatogenesis. Although piRNAs were also recently identified in mammalian oocytes, expression of Piwi proteins in the ovary has not been well characterized. Previous studies did not detect mRNA of Miwi, a murine homologue of Piwi proteins, in total RNA of mouse ovary tissue. We demonstrated herein the presence of Miwi in murine oocytes. Reverse transcription polymerase chain reaction (RT-PCR), Western blot, and immunofluorescence based on quantum dots immune labeling technique were used to investigate the expression profile of Miwi in oocytes of adult and neonatal females at 0, 1, 2, 3, and 4 weeks postpartum. Although RT-PCR was negative in total RNA of the adult ovary, both RT-PCR and Western blot detected Miwi in oocytes of adult mice, and ovaries of neonatal females. Miwi transcript and protein peaked at 1 and 2 weeks postpartum, respectively. Miwi mRNA was detectable in newborn mouse ovaries, implying its transcription was initiated at least in the primordial follicle. Its protein was strong in late primary and secondary follicles, but appeared to decrease as maturation proceeded. The exclusion of anti-Miwi immunofluorescence from some cytoplasmic granules was observed. Given that diverse biologic and molecular functions have been revealed for the Piwi-piRNA pathway in germline cells of many species, Miwi might be an important functional protein in murine folliculogenesis.
Collapse
Affiliation(s)
- Xiaofang Ding
- Center of Reproductive Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | | | | |
Collapse
|
112
|
Blockade of pachytene piRNA biogenesis reveals a novel requirement for maintaining post-meiotic germline genome integrity. PLoS Genet 2012; 8:e1003038. [PMID: 23166510 PMCID: PMC3499362 DOI: 10.1371/journal.pgen.1003038] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 09/05/2012] [Indexed: 11/19/2022] Open
Abstract
Piwi-interacting RNAs are a diverse class of small non-coding RNAs implicated in the silencing of transposable elements and the safeguarding of genome integrity. In mammals, male germ cells express two genetically and developmentally distinct populations of piRNAs at the pre-pachytene and pachytene stages of meiosis, respectively. Pre-pachytene piRNAs are mostly derived from retrotransposons and required for their silencing. In contrast, pachytene piRNAs originate from ~3,000 genomic clusters, and their biogenesis and function remain enigmatic. Here, we report that conditional inactivation of the putative RNA helicase MOV10L1 in mouse spermatocytes produces a specific loss of pachytene piRNAs, significant accumulation of pachytene piRNA precursor transcripts, and unusual polar conglomeration of Piwi proteins with mitochondria. Pachytene piRNA-deficient spermatocytes progress through meiosis without derepression of LINE1 retrotransposons, but become arrested at the post-meiotic round spermatid stage with massive DNA damage. Our results demonstrate that MOV10L1 acts upstream of Piwi proteins in the primary processing of pachytene piRNAs and suggest that, distinct from pre-pachytene piRNAs, pachytene piRNAs fulfill a unique function in maintaining post-meiotic genome integrity.
Collapse
|
113
|
Gao M, Arkov AL. Next generation organelles: structure and role of germ granules in the germline. Mol Reprod Dev 2012; 80:610-23. [PMID: 23011946 DOI: 10.1002/mrd.22115] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 09/14/2012] [Indexed: 12/20/2022]
Abstract
Germ cells belong to a unique class of stem cells that gives rise to eggs and sperm, and ultimately to an entire organism after gamete fusion. In many organisms, germ cells contain electron-dense structures that are also known as nuage or germ granules. Although germ granules were discovered more than 100 years ago, their composition, structure, assembly, and function are not fully understood. Germ granules contain non-coding RNAs, mRNAs, and proteins required for germline development. Here we review recent studies that highlight the importance of several protein families in germ granule assembly and function, including germ granule inducers, which initiate the granule formation, and downstream components, such as RNA helicases and Tudor domain-Piwi protein-piRNA complexes. Assembly of these components into one granule is likely to result in a highly efficient molecular machine that ensures translational control and protects germline DNA from mutations caused by mobile genetic elements. Furthermore, recent studies have shown that different somatic cells, including stem cells and neurons, produce germ granule components that play a crucial role in stem cell maintenance and memory formation, indicating a much more diverse functional repertoire for these organelles than previously thought.
Collapse
Affiliation(s)
- Ming Gao
- Department of Biological Sciences, Murray State University, Murray, Kentucky 42071, USA
| | | |
Collapse
|
114
|
Meiosis arrest female 1 (MARF1) has nuage-like function in mammalian oocytes. Proc Natl Acad Sci U S A 2012; 109:18653-60. [PMID: 23090997 DOI: 10.1073/pnas.1216904109] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Orderly regulation of meiosis and protection of germline genomic integrity from transposable elements are essential for male and female gamete development. In the male germline, these processes are ensured by proteins associated with cytoplasmic nuage, but morphologically similar germ granules or nuage have not been identified in mammalian female germ cells. Indeed, many mutations affecting nuage-associated proteins such as PIWI and tudor domain containing proteins 5 and 7 (TDRD5/7) can result in failure of meiosis, up-regulation of retrotransposons, and infertility only in males and not in females. We recently identified MARF1 (meiosis arrest female 1) as a protein essential for controlling meiosis and retrotransposon surveillance in oocytes; and in contrast to PIWI-pathway mutations, Marf1 mutant females are infertile, whereas mutant males are fertile. Here we put forward the hypothesis that MARF1 in mouse oocytes is a functional counterpart of the nuage-associated components of spermatocytes. We describe the developmental pattern of Marf1 expression and its roles in retrotransposon silencing and protection from DNA double-strand breaks. Analysis of MARF1 protein domains compared with PIWI and TDRD5/7 revealed that these functional similarities are reflected in remarkable structural analogies. Thus, functions that in the male germline require protein interactions and cooperative scaffolding are combined in MARF1, allowing a single molecule to execute crucial activities of meiotic regulation and protection of germline genomic integrity.
Collapse
|
115
|
Ohgami H, Hiyoshi M, Mostafa MG, Kubo H, Abe SI, Takamune K. Xtr, a plural tudor domain-containing protein, is involved in the translational regulation of maternal mRNA during oocyte maturation in Xenopus laevis. Dev Growth Differ 2012; 54:660-71. [PMID: 22889276 DOI: 10.1111/j.1440-169x.2012.01367.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Xtr in the fertilized eggs of Xenopus has been demonstrated to be a member of a messenger ribonucleoprotein (mRNP) complex that plays a crucial role in karyokinesis during cleavage. Since the Xtr is also present both in oocytes and spermatocytes and its amount increases immediately after spematogenic cells enter into the meiotic phase, this protein was also predicted to act during meiotic progression. Taking advantage of Xenopus oocytes' large size to microinject anti-Xtr antibody into them for inhibition of Xtr function, we examined the role of Xtr in meiotic progression of oocytes. Microinjection of anti-Xtr antibody into immature oocytes followed by reinitiation of oocyte maturation did not affect germinal vesicle break down and the oscillation of Cdc2/cyclin B activity during meiotic progression but caused abnormal spindle formation and chromosomal alignment at meiotic metaphase I and II. Immunoprecipitation of Xtr showed the association of Xtr with FRGY2 and mRNAs such as RCC1 and XL-INCENP mRNAs, which are involved in the progression of karyokinesis. When anti-Xtr antibody was injected into oocytes, translation of XL-INCENP mRNA, which is known to be repressed in immature oocytes and induced after reinitiation of oocyte maturation, was inhibited even if the oocytes were treated with progesterone. A similar translational regulation was observed in oocytes injected with a reporter mRNA, which was composed of an enhanced green fluorescent protein open reading frame followed by the 3' untranslational region (3'UTR) of XL-INCENP mRNA. These results indicate that Xtr regulates the translation of XL-INCENP mRNA through its 3'UTR during meiotic progression of oocyte.
Collapse
Affiliation(s)
- Hiroki Ohgami
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555, Japan
| | | | | | | | | | | |
Collapse
|
116
|
Spadaro PA, Bredy TW. Emerging role of non-coding RNA in neural plasticity, cognitive function, and neuropsychiatric disorders. Front Genet 2012; 3:132. [PMID: 22811697 PMCID: PMC3395882 DOI: 10.3389/fgene.2012.00132] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/28/2012] [Indexed: 11/18/2022] Open
Abstract
Non-coding RNAs (ncRNAs) have emerged as critical regulators of transcription, epigenetic processes, and gene silencing, which make them ideal candidates for insight into molecular evolution and a better understanding of the molecular pathways of neuropsychiatric disease. Here, we provide an overview of the current state of knowledge regarding various classes of ncRNAs and their role in neural plasticity and cognitive function, and highlight the potential contribution they may make to the development of a variety of neuropsychiatric disorders, including schizophrenia, addiction, and fear-related anxiety disorders.
Collapse
Affiliation(s)
- Paola A Spadaro
- Psychiatric Epigenomics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | | |
Collapse
|
117
|
Abstract
Mobile DNAs have had a central role in shaping our genome. More than half of our DNA is comprised of interspersed repeats resulting from replicative copy and paste events of retrotransposons. Although most are fixed, incapable of templating new copies, there are important exceptions to retrotransposon quiescence. De novo insertions cause genetic diseases and cancers, though reliably detecting these occurrences has been difficult. New technologies aimed at uncovering polymorphic insertions reveal that mobile DNAs provide a substantial and dynamic source of structural variation. Key questions going forward include how and how much new transposition events affect human health and disease.
Collapse
Affiliation(s)
- Kathleen H Burns
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
118
|
Abstract
Tudor domain proteins function as molecular adaptors, binding methylated arginine or lysine residues on their substrates to promote physical interactions and the assembly of macromolecular complexes. Here, we discuss the emerging roles of Tudor domain proteins during development, most notably in the Piwi-interacting RNA pathway, but also in other aspects of RNA metabolism, the DNA damage response and chromatin modification.
Collapse
Affiliation(s)
- Jun Wei Pek
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604
| | - Amit Anand
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604
| | - Toshie Kai
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117604
| |
Collapse
|
119
|
Nuage proteins: their localization in subcellular structures of spermatogenic cells as revealed by immunoelectron microscopy. Histochem Cell Biol 2012; 138:1-11. [PMID: 22585039 DOI: 10.1007/s00418-012-0962-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2012] [Indexed: 10/28/2022]
Abstract
Chromatoid body (CB) was identified as granules stained by basic dye 130 years ago and called by various names. Electron microscopy revealed that the CB belonged to nuage (cloud in French) specific for germ cells. We described the localization of several proteins, including RNA helicases, in the nuage compartments classified into six types and in several spermatogenic cell-specific structures. All the proteins examined were detected in the nuage, including the CB with different staining intensities. Several proteins were localized to non-nuage structures, suggesting that these nuage proteins structures are related to nuage function.
Collapse
|
120
|
Rouhana L, Vieira AP, Roberts-Galbraith RH, Newmark PA. PRMT5 and the role of symmetrical dimethylarginine in chromatoid bodies of planarian stem cells. Development 2012; 139:1083-94. [PMID: 22318224 DOI: 10.1242/dev.076182] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Planarian flatworms contain a population of adult stem cells (neoblasts) that proliferate and generate cells of all tissues during growth, regeneration and tissue homeostasis. A characteristic feature of neoblasts is the presence of chromatoid bodies, large cytoplasmic ribonucleoprotein (RNP) granules morphologically similar to structures present in the germline of many organisms. This study aims to reveal the function, and identify additional components, of planarian chromatoid bodies. We uncover the presence of symmetrical dimethylarginine (sDMA) on chromatoid body components and identify the ortholog of protein arginine methyltransferase PRMT5 as the enzyme responsible for sDMA modification in these proteins. RNA interference-mediated depletion of planarian PRMT5 results in defects in homeostasis and regeneration, reduced animal size, reduced number of neoblasts, fewer chromatoid bodies and increased levels of transposon and repetitive-element transcripts. Our results suggest that PIWI family member SMEDWI-3 is one sDMA-containing chromatoid body protein for which methylation depends on PRMT5. Additionally, we discover an RNA localized to chromatoid bodies, germinal histone H4. Our results reveal new components of chromatoid bodies and their function in planarian stem cells, and also support emerging studies indicative of sDMA function in stabilization of RNP granules and the Piwi-interacting RNA pathway.
Collapse
Affiliation(s)
- Labib Rouhana
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
121
|
|
122
|
Pillai RS, Chuma S. piRNAs and their involvement in male germline development in mice. Dev Growth Differ 2012; 54:78-92. [PMID: 22221002 DOI: 10.1111/j.1440-169x.2011.01320.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Piwi-interacting RNAs (piRNAs) are a class of small non-coding RNAs expressed in the animal gonads. They are implicated in silencing the genome instability threat posed by mobile genetic elements called transposons. Unlike other small RNAs, which use double-stranded precursors, piRNAs seem to arise from long single-stranded precursor transcripts expressed from discrete genomic regions. In mice, the Piwi pathway is essential for male fertility, and its loss-of-function mutations affect several distinct stages of spermatogenesis. While this small RNA pathway primarily operates post-transcriptionally, it also impacts DNA methylation of target retrotransposon loci, representing an intriguing model of RNA-directed epigenetic control in mammals. Remarkably the Piwi pathway components are specifically localized at germinal granule/nuage, an evolutionarily conserved but still enigmatic ribonucleoprotein compartment in the germline. The inaccessibility of the germline for easy experimental manipulation has meant that this class of RNAs has remained enigmatic. However, recent advances in the use of cell culture models and cell-free systems have greatly advanced our understanding. In this review, we briefly summarize our current understanding of the Piwi pathway, focusing on its developmental regulation, piRNA biogenesis and key function in male germline development from fetal spermatogonial stem cell stage to postnatal haploid spermiogenesis in mice.
Collapse
Affiliation(s)
- Ramesh S Pillai
- European Molecular Biology Laboratory, 6 Rue Jules Horowitz, BP 181 CNRS-UJF-EMBL International Unit (UMI 3265) for Virus Host Cell Interactions (UVHCI), 38042 Grenoble, France.
| | | |
Collapse
|
123
|
Bao J, Wang L, Lei J, Hu Y, Liu Y, Shen H, Yan W, Xu C. STK31(TDRD8) is dynamically regulated throughout mouse spermatogenesis and interacts with MIWI protein. Histochem Cell Biol 2011; 137:377-89. [PMID: 22205278 DOI: 10.1007/s00418-011-0897-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2011] [Indexed: 01/01/2023]
Abstract
Tudor-domain-containing proteins (TDRDs) are suggested to be critical regulators of germinal granules assembly involved in Piwi-interacting RNAs (piRNAs)-mediated pathways, of which associated components and the underlying functional mechanisms, however, remain to be elucidated. We herein characterized the expression pattern of STK31, a member of TDRDs subfamily (also termed as TDRD8), throughout spermatogenesis during mouse postnatal development. RT-PCR and Western blot verified its preferential expression in testis, but not in any other somatic tissues, in addition to embryonic stem cells. Immunofluorescent staining demonstrated that STK31 was confined to granules-like structures in mid-to-late spermatocyte cytoplasm and to acrosomal cap starting at steps 7-8 of spermatids. Furthermore, STK31 retained its localization to equatorial segment of acrosome during epididymal maturation, capacitation, and acrosome reaction. Co-immunoprecipitation assay in vivo and in vitro confirmed MIWI is a bona fide partner of STK31 in mice testes, in combination with LC/MS identification. We also discovered a group of heat shock proteins specifically associated with STK31 in vivo. Our findings suggest mouse STK31 could be a potential nuage-associated protein in the cytoplasm of mid-to-late spermatocytes and play pivotal roles related to fertilization.
Collapse
Affiliation(s)
- Jianqiang Bao
- Shanghai Key Laboratory for Reproductive Medicine, Department of Histology and Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Abstract
"Germ granules" are cytoplasmic, nonmembrane-bound organelles unique to germline. Germ granules share components with the P bodies and stress granules of somatic cells, but also contain proteins and RNAs uniquely required for germ cell development. In this review, we focus on recent advances in our understanding of germ granule assembly, dynamics, and function. One hypothesis is that germ granules operate as hubs for the posttranscriptional control of gene expression, a function at the core of the germ cell differentiation program.
Collapse
Affiliation(s)
- Ekaterina Voronina
- Department of Molecular Biology and Genetics and Howard Hughes Medical Institute, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
125
|
Onohara Y, Yokota S. Expression of DDX25 in nuage components of mammalian spermatogenic cells: immunofluorescence and immunoelectron microscopic study. Histochem Cell Biol 2011; 137:37-51. [PMID: 22038044 DOI: 10.1007/s00418-011-0875-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2011] [Indexed: 12/31/2022]
Abstract
The localization of DDX25/GRTH and gonadotropin-stimulated RNA helicase was studied in the spermatogenic cells of rat, mouse, and guinea pig by immunofluorescence and immunoelectron microscopy (IEM). Immunofluorescence studies identified four kinds of granular staining: (1) fine particles observed in meiotic cells; (2) small granules associated with a mitochondrial marker, appearing in pachytene spermatocytes after stage V; (3) short strands lacking the mitochondrial marker in late spermatocytes; and, (4) large irregularly shaped granules in round spermatids. IEM identified DDX25 signals in nine compartments: (1) fine dense particles in the meiotic cells; (2) intermitochondrial cement; (3) loose aggregates of 70-90 nm particles; (4) chromatoid bodies; (5) late chromatoid bodies; (6) satellite bodies; (7) granulated bodies; (8) mitochondria-associated granules; and, (9) reticulated bodies. Compartments (1) to (6) were previously classified into nuage while (7) to (9) were classified as nuage components by the present study. The results suggest that DDX25 functions in these nine compartments.
Collapse
Affiliation(s)
- Yuko Onohara
- Section of Functional Morphology, Faculty of Pharmaceutical Sciences, Nagasaki International University, Huis Ten Bosch 2825-7, Nagasaki, Sasebo 859-3298, Japan
| | | |
Collapse
|
126
|
Chen C, Nott TJ, Jin J, Pawson T. Deciphering arginine methylation: Tudor tells the tale. Nat Rev Mol Cell Biol 2011; 12:629-42. [PMID: 21915143 DOI: 10.1038/nrm3185] [Citation(s) in RCA: 240] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proteins can be modified by post-translational modifications such as phosphorylation, methylation, acetylation and ubiquitylation, creating binding sites for specific protein domains. Methylation has pivotal roles in the formation of complexes that are involved in cellular regulation, including in the generation of small RNAs. Arginine methylation was discovered half a century ago, but the ability of methylarginine sites to serve as binding motifs for members of the Tudor protein family, and the functional significance of the protein-protein interactions that are mediated by Tudor domains, has only recently been appreciated. Tudor proteins are now known to be present in PIWI complexes, where they are thought to interact with methylated PIWI proteins and regulate the PIWI-interacting RNA (piRNA) pathway in the germ line.
Collapse
Affiliation(s)
- Chen Chen
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | | | | | | |
Collapse
|
127
|
Kleene KC, Cullinane DL. Maybe repressed mRNAs are not stored in the chromatoid body in mammalian spermatids. Reproduction 2011; 142:383-8. [DOI: 10.1530/rep-11-0113] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The chromatoid body is a dynamic organelle that is thought to coordinate the cytoplasmic regulation of mRNA translation and degradation in mammalian spermatids. The chromatoid body is also postulated to function in repression of mRNA translation by sequestering dormant mRNAs where they are inaccessible to the translational apparatus. This review finds no convincing evidence that dormant mRNAs are localized exclusively in the chromatoid body. This discrepancy can be explained by two hypotheses. First, experimental artifacts, possibly related to peculiarities of the structure and function of the chromatoid body, preclude obtaining an accurate indication of mRNA localization. Second, mRNA is not stored in the chromatoid body, because, like perinuclear P granules in Caenorhabditis elegans, the chromatoid body functions as a center for mRNP remodeling and export to other cytoplasmic sites.
Collapse
|
128
|
Dupont PY, Stepien G. Computational analysis of the transcriptional regulation of the adenine nucleotide translocator isoform 4 gene and its role in spermatozoid glycolytic metabolism. Gene 2011; 487:38-45. [PMID: 21827840 DOI: 10.1016/j.gene.2011.07.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/08/2011] [Accepted: 07/14/2011] [Indexed: 01/01/2023]
Abstract
Computational phylogenetic analysis coupled to promoter sequence alignment was used to understand mechanisms of transcriptional regulation and to identify potentially coregulated genes. Our strategy was validated on the human ANT4 gene which encodes the fourth isoform of the mitochondrial adenine nucleotide translocator specifically expressed during spermatogenesis. The movement of sperm flagella is driven mainly by ATP generated by glycolytic pathways, and the specific induction of the mitochondrial ANT4 protein presented an interesting puzzle. We analysed the sequences of the promoters, introns and exons of 30 mammalian ANT4 genes and constructed regulatory models. The whole human genome and promoter database were screened for genes that were potentially regulated by the generated models. 80% of the identified co-regulated genes encoded proteins with specific roles in spermatogenesis and with functions linked to male reproduction. Our in silico study enabled us to precise the specific role of the ANT4 isoform in spermatozoid bioenergetics.
Collapse
|
129
|
Gunter KM, McLaughlin EA. Translational control in germ cell development: A role for the RNA-binding proteins Musashi-1 and Musashi-2. IUBMB Life 2011; 63:678-85. [PMID: 21766416 DOI: 10.1002/iub.499] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 04/13/2011] [Indexed: 12/26/2022]
Abstract
Mammalian gametogenesis is a complex process involving specialised cell cycle progression and differentiation. As part of their differentiation, germ cells experience periods of transcriptional inactivation and chromatin inaccessibility whilst continuing to coordinate the correct temporal and spatial expression of genes required for continued development. To overcome these obstacles, mammalian germ cells express a wide variety of sequence-specific RNA-binding proteins, which assist in the translational control of many mRNA transcripts which are produced and stored during periods of high mRNA synthesis. In this review we focus on the Musashi family of RNA-binding proteins, a highly conserved family of translational regulatory proteins whose recent identification in germ cells of Drosophila and Xenopus, as well as their well described role in processes such as cell cycle progression and stem cell identity, has led us to investigate the role of these proteins in mammalian germ cell development.
Collapse
Affiliation(s)
- Kara M Gunter
- Reproductive Science Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | | |
Collapse
|
130
|
Huang HY, Houwing S, Kaaij LJT, Meppelink A, Redl S, Gauci S, Vos H, Draper BW, Moens CB, Burgering BM, Ladurner P, Krijgsveld J, Berezikov E, Ketting RF. Tdrd1 acts as a molecular scaffold for Piwi proteins and piRNA targets in zebrafish. EMBO J 2011; 30:3298-308. [PMID: 21743441 PMCID: PMC3160653 DOI: 10.1038/emboj.2011.228] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 06/10/2011] [Indexed: 12/31/2022] Open
Abstract
Piwi proteins function in an RNAi-like pathway that silences transposons. Piwi-associated RNAs, also known as piRNAs, act as a guide to identify Piwi targets. The tudor domain-containing protein Tdrd1 has been linked to this pathway but its function has thus far remained unclear. We show that zebrafish Tdrd1 is required for efficient Piwi-pathway activity and proper nuage formation. Furthermore, we find that Tdrd1 binds both zebrafish Piwi proteins, Ziwi and Zili, and reveals sequence specificity in the interaction between Tdrd1 tudor domains and symmetrically dimethylated arginines (sDMAs) in Zili. Finally, we show that Tdrd1 complexes contain piRNAs and RNA molecules that are longer than piRNAs. We name these longer transcripts Tdrd1-associated transcripts (TATs). TATs likely represent cleaved Piwi pathway targets and may serve as piRNA biogenesis intermediates. Altogether, our data suggest that Tdrd1 acts as a molecular scaffold for Piwi proteins, bound through specific tudor domain-sDMA interactions, piRNAs and piRNA targets.
Collapse
Affiliation(s)
- Hsin-Yi Huang
- Hubrecht Institute-KNAW, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Saskia Houwing
- Hubrecht Institute-KNAW, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Lucas J T Kaaij
- Hubrecht Institute-KNAW, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Amanda Meppelink
- Hubrecht Institute-KNAW, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Stefan Redl
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria
| | - Sharon Gauci
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Centre for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences and Netherlands Proteomics Center, Utrecht University, Utrecht, The Netherlands
| | - Harmjan Vos
- Department of Physiological Chemistry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bruce W Draper
- Molecular and Cellular Biology, University of California Davis, Davis, CA, USA
| | - Cecilia B Moens
- Howard Hughes Medical Institute and Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Boudewijn M Burgering
- Department of Physiological Chemistry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter Ladurner
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria
| | - Jeroen Krijgsveld
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Centre for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences and Netherlands Proteomics Center, Utrecht University, Utrecht, The Netherlands
| | - Eugene Berezikov
- Hubrecht Institute-KNAW, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - René F Ketting
- Hubrecht Institute-KNAW, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
131
|
Tudor domain containing 7 (Tdrd7) is essential for dynamic ribonucleoprotein (RNP) remodeling of chromatoid bodies during spermatogenesis. Proc Natl Acad Sci U S A 2011; 108:10579-84. [PMID: 21670278 DOI: 10.1073/pnas.1015447108] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the male germline in mammals, chromatoid bodies, a specialized assembly of cytoplasmic ribonucleoprotein (RNP), are structurally evident during meiosis and haploidgenesis, but their developmental origin and regulation remain elusive. The tudor domain containing proteins constitute a conserved class of chromatoid body components. We show that tudor domain containing 7 (Tdrd7), the deficiency of which causes male sterility and age-related cataract (as well as glaucoma), is essential for haploid spermatid development and defines, in concert with Tdrd6, key biogenesis processes of chromatoid bodies. Single and double knockouts of Tdrd7 and Tdrd6 demonstrated that these spermiogenic tudor genes orchestrate developmental programs for ordered remodeling of chromatoid bodies, including the initial establishment, subsequent RNP fusion with ubiquitous processing bodies/GW bodies and later structural maintenance. Tdrd7 suppresses LINE1 retrotransposons independently of piwi-interacting RNA (piRNA) biogenesis wherein Tdrd1 and Tdrd9 operate, indicating that distinct Tdrd pathways act against retrotransposons in the male germline. Tdrd6, in contrast, does not affect retrotransposons but functions at a later stage of spermiogenesis when chromatoid bodies exhibit aggresome-like properties. Our results delineate that chromatoid bodies assemble as an integrated compartment incorporating both germline and ubiquitous features as spermatogenesis proceeds and that the conserved tudor family genes act as master regulators of this unique RNP remodeling, which is genetically linked to the male germline integrity in mammals.
Collapse
|
132
|
Hawkins SM, Buchold GM, Matzuk MM. Minireview: The roles of small RNA pathways in reproductive medicine. Mol Endocrinol 2011; 25:1257-79. [PMID: 21546411 DOI: 10.1210/me.2011-0099] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The discovery of small noncoding RNA, including P-element-induced wimpy testis-interacting RNA, small interfering RNA, and microRNA, has energized research in reproductive medicine. In the two decades since the identification of small RNA, first in Caenorhabditis elegans and then in other animals, scientists in many disciplines have made significant progress in elucidating their biology. A powerful battery of tools, including knockout mice and small RNA mimics and antagonists, has facilitated investigation into the functional roles and therapeutic potential of these small RNA pathways. Current data indicate that small RNA play significant roles in normal development and physiology and pathological conditions of the reproductive tracts of females and males. Biologically plausible mRNA targets for these microRNA are aggressively being discovered. The next phase of research will focus on elucidating the clinical utility of small RNA-selective agonists and antagonists.
Collapse
Affiliation(s)
- Shannon M Hawkins
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
133
|
Short B. The Tudor family produces heirs. J Biophys Biochem Cytol 2011. [PMCID: PMC3051822 DOI: 10.1083/jcb.1925iti3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|