101
|
Therapeutic Approaches in COVID-19 Patients: The Role of the Renin-Angiotensin System. Can Respir J 2022; 2022:8698825. [PMID: 36199292 PMCID: PMC9529525 DOI: 10.1155/2022/8698825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/11/2022] [Accepted: 08/27/2022] [Indexed: 12/02/2022] Open
Abstract
Two and a half years after COVID-19 was first reported in China, thousands of people are still dying from the disease every day around the world. The condition is forcing physicians to adopt new treatment strategies while emphasizing continuation of vaccination programs. The renin-angiotensin system plays an important role in the development and progression of COVID-19 patients. Nonetheless, administration of recombinant angiotensin-converting enzyme 2 has been proposed for the treatment of the disease. The catalytic activity of cellular ACE2 (cACE2) and soluble ACE2 (sACE2) prevents angiotensin II and Des-Arg-bradykinin from accumulating in the body. On the other hand, SARS-CoV-2 mainly enters cells via cACE2. Thus, inhibition of ACE2 can prevent viral entry and reduce viral replication in host cells. The benefits of bradykinin inhibitors (BKs) have been reported in some COVID-19 clinical trials. Furthermore, the effects of cyclooxygenase (COX) inhibitors on ACE2 cleavage and prevention of viral entry into host cells have been reported in COVID-19 patients. However, the administration of COX inhibitors can reduce innate immune responses and have the opposite effect. A few studies suggest benefits of low-dose radiation therapy (LDR) in treating acute respiratory distress syndrome in COVID-19 patients. Nonetheless, radiation therapy can stimulate inflammatory pathways, resulting in adverse effects on lung injury in these patients. Overall, progress is being made in treating COVID-19 patients, but questions remain about which drugs will work and when. This review summarizes studies on the effects of a recombinant ACE2, BK and COX inhibitor, and LDR in patients with COVID-19.
Collapse
|
102
|
Bizjak DA, Stangl M, Börner N, Bösch F, Durner J, Drunin G, Buhl JL, Abendroth D. Kynurenine serves as useful biomarker in acute, Long- and Post-COVID-19 diagnostics. Front Immunol 2022; 13:1004545. [PMID: 36211365 PMCID: PMC9537769 DOI: 10.3389/fimmu.2022.1004545] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/06/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction In patients with SARS-CoV-2, innate immunity is playing a central role, depicted by hyperinflammation and longer lasting inflammatory response. Reliable inflammatory markers that cover both acute and long-lasting COVID-19 monitoring are still lacking. Thus, we investigated one specific inflammatory marker involved as one key player of the immune system, kynurenine (Kyn), and its use for diagnosis/detection of the Long-/Post-COVID syndrome in comparison to currently used markers in both serum and saliva samples. Material and methods The study compromised in total 151 inpatients with a SARS-CoV-2 infection hospitalized between 03/2020 and 09/2021. The group NC (normal controls) included blood bank donors (n=302, 144f/158m, mean age 47.1 ± 18.3 years (range 18-75)). Two further groups were generated based on Group A (n=85, 27f/58m, mean age 63.1 ± 18.3 years (range 19-90), acute admission to the hospital) and Group B (n=66, 22f/44m, mean age 66.6 ± 17.6 years (range 17-90), admitted either for weaning or for rehabilitation period due to Long-COVID symptoms/syndrome). Plasma concentrations of Kyn, C-Reactive Protein (CRP) and interleukin-6 (IL-6) were measured on admission. In Group B we determined Kyn 4 weeks after the negative PCR-test. In a subset of patients (n=11) concentrations of Kyn and CRP were measured in sera and saliva two, three and four months after dismission. We identified 12 patients with Post-COVID symptoms >20 weeks with still significant elevated Kyn-levels. Results Mean values for NC used as reference were 2.79 ± 0.61 µM, range 1.2-4.1 µM. On admission, patients showed significantly higher concentrations of Kyn compared to NC (p-values < 0.001). Kyn significantly correlated with IL-6 peak-values (r=0.411; p-values <0.001) and CRP (r=0.488, p-values<0.001). Kyn values in Group B (Long-/Post-COVID) showed still significant higher values (8.77 ± 1.72 µM, range 5.5-16.6 µM), whereas CRP values in Group B were in the normal range. Conclusion Serum and saliva Kyn are reflecting the acute and long-term pathophysiology of the SARS-CoV-2 disease concerning the innate immune response and thus may serve a useful biomarker for diagnosis and monitoring both Long- and Post-COVID syndrome and its therapy.
Collapse
Affiliation(s)
| | - Manfred Stangl
- Division of General, Visceral and Transplant Surgery, Hospital Großhadern, Ludwig-Maximilians-University, Munich, Germany
| | - Nikolaus Börner
- Division of General, Visceral and Transplant Surgery, Hospital Großhadern, Ludwig-Maximilians-University, Munich, Germany
| | - Florian Bösch
- Division of General, Visceral and Transplant Surgery, Hospital Großhadern, Ludwig-Maximilians-University, Munich, Germany
| | - Joachim Durner
- Neurology Department, Special Medical Clinic Ichenhausen, Ichenhausen, Germany
| | - Gergana Drunin
- Neurology Department, Special Medical Clinic Ichenhausen, Ichenhausen, Germany
| | - Jasmine-Leonike Buhl
- Division of Sports and Rehabilitation Medicine, Ulm University Hospital, Ulm, Germany
| | | |
Collapse
|
103
|
Aref ZF, Bazeed SEES, Hassan MH, Hassan AS, Ghweil AA, Sayed MAA, Rashad A, Mansour H, Abdelmaksoud AA. Possible Role of Ivermectin Mucoadhesive Nanosuspension Nasal Spray in Recovery of Post-COVID-19 Anosmia. Infect Drug Resist 2022; 15:5483-5494. [PMID: 36164334 PMCID: PMC9508858 DOI: 10.2147/idr.s381715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Anosmia or hyposmia, with or without taste changes, are common symptoms that occur in SARS-CoV-2 infection and frequently persist as post-COVID-19 manifestations. This is the first trial to assess the potential value of using local ivermectin in the form of a mucoadhesive nanosuspension nasal spray to treat post-COVID-19 anosmia. METHODS It is a controlled, randomized trial. Participants were recruited from South Valley University Hospitals in Qena, Upper Egypt, from the ENT and Chest Diseases Departments and outpatient clinics. Patients with persistent post COVID-19 anosmia were randomly divided into two groups, the first group "ivermectin group" included 49 patients treated by ivermectin nanosuspension mucoadhesive nasal spray (two puffs per day). The second group included 47 patients "placebo group" who received saline nasal spray. Follow- up of anosmia [using Visual analogue scale (VAS)] in all patients for three months or appearance of any drug related side effects was done. RESULTS The mean duration of pre-treatment post COVID-19 anosmia was 19.5± 5.8 days in the ivermectin group and 19.1± 5.9 days in the placebo group,p˃0.05. Regarding the median duration of anosmia recovery, the ivermectin group recovered from post COVID-19 anosmia in 13 days compared to 50 days in the placebo group, p˂ 0.001. Following the first week of ivermectin nanosuspension mucoadhesive nasal spray therapy, the ivermectin group had a significantly higher percentage of anosmia recovery (59.2%) than the placebo group (27.7%), p˂ 0.01, with no significant differences in recovery rates between the two groups at 1, 2, and 3 months of follow up, p˃0.05. CONCLUSION In the small number of patients treated, local Ivermectin exhibited no side effects. In persistent post-COVID-19 anosmia, it could be used for one week at the most as the treatment was extended to one, two and three months, with no difference in recovery compared to the placebo treatment. TRIAL REGISTRATION NO NCT04951362.
Collapse
Affiliation(s)
- Zaki F Aref
- ENT Department, Faculty of Medicine, South Valley University, Qena, Egypt
| | | | - Mohammed H Hassan
- Department of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Abeer S Hassan
- Department of Pharmaceutics, Faculty of Pharmacy, South Valley University, Qena, Egypt
| | - Ali A Ghweil
- Tropical Medicine and Gastroenterology Department, Faculty of Medicine, South Valley University, Qena, Egypt
| | | | - Alaa Rashad
- Department of Chest Diseases and Tuberculosis, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Haggagy Mansour
- Department of Chest Diseases and Tuberculosis, Faculty of Medicine, South Valley University, Qena, Egypt
| | | |
Collapse
|
104
|
Intravenous Ascorbic Acid and Lung Function in Severely IllCOVID-19 Patients. Metabolites 2022; 12:metabo12090865. [PMID: 36144269 PMCID: PMC9505837 DOI: 10.3390/metabo12090865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 11/22/2022] Open
Abstract
Current evidence suggests that ascorbic acid improves the host’s immune system and, therefore, may play a role in reducing the severity of infectious diseases. Coronavirus disease 2019 (COVID-19) is a potentially life-threatening viral infection that mainly infects the lungs. The objective of this review was to synthesize the existing findings from studies related to the effect of intravenous ascorbic acid on lung function in COVID-19 patients. For this review, PubMed, Cochrane, SCOPUS, EMBASE, Clinical Trial Registry, and Google Scholar databases were searched from December 2019 to May 2022. There was a total of six studies that investigated the large dose of ascorbic acid infusion intravenously on lung function in severely ill subjects with COVID-19. Out of six, three studies found that high-dose intravenous ascorbic acid improved lung function markers, and three studies found null results. Infusions of 12 g/d and 24 g/d of intravenous ascorbic acid had shown a significant improvement in lung function markers in two clinical trials. Studies that administered 8 g/d, 2 g/d, and 50 mg/kg/d of intravenous ascorbic acid found no influence on mechanical ventilation need and other lung function markers in critically ill subjects with COVID-19. Overall, the effect of intravenous ascorbic acid on the lung function of subjects with COVID yielded equivocal findings. More double-blinded, randomized, clinical studies with a larger sample size are required to confirm the effect of ascorbic acid in ameliorating the lung pathologies associated with COVID infection.
Collapse
|
105
|
Review of the impact of COVID-19 on male reproduction, and its implications on assisted reproductive technology services. ZYGOTE 2022; 30:743-748. [DOI: 10.1017/s0967199421000666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Summary
The announcement in 2019 of a new coronavirus disease that quickly became a major pandemic, is an exceptional challenge to healthcare systems never seen before. Such a public health emergency can largely influence various aspects of people’s health as well as reproductive outcome. IVF specialists should be vigilant, monitoring the situation whilst contributing by sharing novel evidence to counsel patients, both pregnant women and would-be mothers. Coronavirus infection might adversely affect pregnant women and their offspring. Consequently, this review paper aims to analyse its potential risks for reproductive health, as well as potential effects of the virus on gamete function and embryo development. In addition, reopening fertility clinics poses several concerns that need immediate addressing, such as the effect of severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) on reproductive cells and also the potential risk of cross-contamination and viral transmission. Therefore, this manuscript summarizes what is currently known about the effect of the SARS-CoV-2 infection on medically assisted reproductive treatments and its effect on reproductive health and pregnancy.
Collapse
|
106
|
Abbasi AF, Marinkovic A, Prakash S, Sanyaolu A, Smith S. COVID-19 and the Human Gut Microbiome: An Under-Recognized Association. Chonnam Med J 2022; 58:96-101. [PMID: 36245770 PMCID: PMC9535107 DOI: 10.4068/cmj.2022.58.3.96] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/06/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease with a wide range of respiratory and extrapulmonary symptoms, as well as gastrointestinal symptoms. Despite recent research linking gut microbiota to infectious diseases like influenza, minimal information is known about the gut microbiota's function in COVID-19 pathogenesis. Studies suggest that dysbiosis of the gut microbiota and gut barrier dysfunction may play a role in COVID-19 pathogenesis by disrupting host immune homeostasis. Regardless of whether patients had taken medication or disease severity, the gut microbiota composition was significantly altered in COVID-19 patients compared to non-COVID-19 individuals. Several gut commensals with recognized immunomodulatory potential, such as Faecalibacterium prausnitzii, Eubacterium rectale, and bifidobacteria, were underrepresented in patients and remained low in samples taken several weeks after disease resolution. Furthermore, even with disease resolution, dysbiosis in the gut microbiota may contribute to chronic symptoms, underscoring the need to learn more about how gut microbes play a role in inflammation and COVID-19.
Collapse
Affiliation(s)
| | | | | | | | - Stella Smith
- Nigerian Institute of Medical Research, Lagos, Nigeria
| |
Collapse
|
107
|
Sukocheva OA, Maksoud R, Beeraka NM, Madhunapantula SV, Sinelnikov M, Nikolenko VN, Neganova ME, Klochkov SG, Amjad Kamal M, Staines DR, Marshall-Gradisnik S. Analysis of post COVID-19 condition and its overlap with myalgic encephalomyelitis/chronic fatigue syndrome. J Adv Res 2022; 40:179-196. [PMID: 36100326 PMCID: PMC8619886 DOI: 10.1016/j.jare.2021.11.013] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/02/2021] [Accepted: 11/22/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) disease (COVID-19) triggers the development of numerous pathologies and infection-linked complications and exacerbates existing pathologies in nearly all body systems. Aside from the primarily targeted respiratory organs, adverse SARS-CoV-2 effects were observed in nervous, cardiovascular, gastrointestinal/metabolic, immune, and other systems in COVID-19 survivors. Long-term effects of this viral infection have been recently observed and represent distressing sequelae recognised by the World Health Organisation (WHO) as a distinct clinical entity defined as post-COVID-19 condition. Considering the pandemic is still ongoing, more time is required to confirm post COVID-19 condition diagnosis in the COVID-19 infected cohorts, although many reported post COVID-19 symptoms overlap with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). AIMS OF REVIEW In this study, COVID-19 clinical presentation and associated post-infection sequelae (post-COVID-19 condition) were reviewed and compared with ME/CFS symptomatology. KEY SCIENTIFIC CONCEPTS OF REVIEW The onset, progression, and symptom profile of post COVID-19 condition patients have considerable overlap with ME/CFS. Considering the large scope and range of pro-inflammatory effects of this virus, it is reasonable to expect development of post COVID-19 clinical complications in a proportion of the affected population. There are reports of a later debilitating syndrome onset three months post COVID-19 infection (often described as long-COVID-19), marked by the presence of fatigue, headache, cognitive dysfunction, post-exertional malaise, orthostatic intolerance, and dyspnoea. Acute inflammation, oxidative stress, and increased levels of interleukin-6 (IL-6) and tumor necrosis factor α (TNFα), have been reported in SARS-CoV-2 infected patients. Longitudinal monitoring of post COVID-19 patients is warranted to understand the long-term effects of SARS-CoV-2 infection and the pathomechanism of post COVID-19 condition.
Collapse
Affiliation(s)
- Olga A Sukocheva
- College of Nursing and Health Sciences, Flinders University of South Australia, Bedford Park 5042, SA, Australia; The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.
| | - Rebekah Maksoud
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| | - Narasimha M Beeraka
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), JSS Academy of Higher Education & Research (JSS AHER), Mysore, India
| | - SabbaRao V Madhunapantula
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), JSS Academy of Higher Education & Research (JSS AHER), Mysore, India; Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysore, India
| | - Mikhail Sinelnikov
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Mohovaya 11c10, Moscow, Russia
| | - Vladimir N Nikolenko
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Mohovaya 11c10, Moscow, Russia
| | - Margarita E Neganova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Sergey G Klochkov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Donald R Staines
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| | - Sonya Marshall-Gradisnik
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
108
|
Habas E, Ali E, Habas A, Rayani A, Ghazouani H, Khan F, Farfar K, Elzouki AN. Hyponatremia and SARS-CoV-2 infection: A narrative review. Medicine (Baltimore) 2022; 101:e30061. [PMID: 35960124 PMCID: PMC9370252 DOI: 10.1097/md.0000000000030061] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 01/04/2023] Open
Abstract
A novel rapid spreading and changing virus called SARS-CoV-2 appeared in Wuhan city in December 2019. It was announced by the World Health Organization (WHO) as a pandemic disease in March 2020. It commonly presents with respiratory symptoms; however, it may be asymptomatic. Electrolyte abnormalities are not uncommon features of SARS-CoV-2 infection. Hyponatremia is one of these electrolyte disturbances among SARS-CoV-2 patients, and it may produce symptoms such as weakness and seizure as the initial presenting symptoms. The underlying mechanism(s) of hyponatremia due to SARS-CoV-2 infection is (are) not established. The aim of this review is to evaluate the possible mechanism of hyponatremia in patients with COVID-19. Understanding and categorizing the hyponatremia in these patients will lead to better treatment and correction of the hyponatremia. A review of the literature between December 2019 and March 2022 was conducted searching for the possible reported mechanism(s) of hyponatremia in SARS-CoV-2. Although SIADH is the commonly reported cause of hyponatremia in SARS-CoV-2 infection, other causes such as diarrhea, vomiting, and kidney salt loss must be considered before SIADH.
Collapse
Affiliation(s)
| | - Elrazi Ali
- Internal Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Aml Habas
- Tripoli Children Hospital, Tripoli, Libya
| | | | | | - Fahmi Khan
- Internal Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Khalifa Farfar
- Internal Medicine, Hamad Medical Corporation, Doha, Qatar
- Tripoli Children Hospital, Tripoli, Libya
- Quality Department, Hamad Medical Corporation, Doha, Qatar
| | | |
Collapse
|
109
|
Assessing and improving the validity of COVID-19 autopsy studies - A multicentre approach to establish essential standards for immunohistochemical and ultrastructural analyses. EBioMedicine 2022; 83:104193. [PMID: 35930888 PMCID: PMC9344879 DOI: 10.1016/j.ebiom.2022.104193] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 12/26/2022] Open
Abstract
Background Autopsy studies have provided valuable insights into the pathophysiology of COVID-19. Controversies remain about whether the clinical presentation is due to direct organ damage by SARS-CoV-2 or secondary effects, such as overshooting immune response. SARS-CoV-2 detection in tissues by RT-qPCR and immunohistochemistry (IHC) or electron microscopy (EM) can help answer these questions, but a comprehensive evaluation of these applications is missing. Methods We assessed publications using IHC and EM for SARS-CoV-2 detection in autopsy tissues. We systematically evaluated commercially available antibodies against the SARS-CoV-2 proteins in cultured cell lines and COVID-19 autopsy tissues. In a multicentre study, we evaluated specificity, reproducibility, and inter-observer variability of SARS-CoV-2 IHC. We correlated RT-qPCR viral tissue loads with semiquantitative IHC scoring. We used qualitative and quantitative EM analyses to refine criteria for ultrastructural identification of SARS-CoV-2. Findings Publications show high variability in detection and interpretation of SARS-CoV-2 abundance in autopsy tissues by IHC or EM. We show that IHC using antibodies against SARS-CoV-2 nucleocapsid yields the highest sensitivity and specificity. We found a positive correlation between presence of viral proteins by IHC and RT-qPCR-determined SARS-CoV-2 viral RNA load (N= 35; r=-0.83, p-value <0.0001). For EM, we refined criteria for virus identification and provide recommendations for optimized sampling and analysis. 135 of 144 publications misinterpret cellular structures as virus using EM or show only insufficient data. We provide publicly accessible digitized EM sections as a reference and for training purposes. Interpretation Since detection of SARS-CoV-2 in human autopsy tissues by IHC and EM is difficult and frequently incorrect, we propose criteria for a re-evaluation of available data and guidance for further investigations of direct organ effects by SARS-CoV-2. Funding German Federal Ministry of Health, German Federal Ministry of Education and Research, Berlin University Alliance, German Research Foundation, German Center for Infectious Research.
Collapse
|
110
|
Kazmierski J, Friedmann K, Postmus D, Emanuel J, Fischer C, Jansen J, Richter A, Bosquillon de Jarcy L, Schüler C, Sohn M, Sauer S, Drosten C, Saliba A, Sander LE, Müller MA, Niemeyer D, Goffinet C. Nonproductive exposure of PBMCs to SARS-CoV-2 induces cell-intrinsic innate immune responses. Mol Syst Biol 2022; 18:e10961. [PMID: 35975552 PMCID: PMC9382356 DOI: 10.15252/msb.202210961] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 12/15/2022] Open
Abstract
Cell-intrinsic responses mounted in PBMCs during mild and severe COVID-19 differ quantitatively and qualitatively. Whether they are triggered by signals emitted by productively infected cells of the respiratory tract or result from physical interaction with virus particles remains unclear. Here, we analyzed susceptibility and expression profiles of PBMCs from healthy donors upon ex vivo exposure to SARS-CoV and SARS-CoV-2. In line with the absence of detectable ACE2 receptor expression, human PBMCs were refractory to productive infection. RT-PCR experiments and single-cell RNA sequencing revealed JAK/STAT-dependent induction of interferon-stimulated genes (ISGs) but not proinflammatory cytokines. This SARS-CoV-2-specific response was most pronounced in monocytes. SARS-CoV-2-RNA-positive monocytes displayed a lower ISG signature as compared to bystander cells of the identical culture. This suggests a preferential invasion of cells with a low ISG baseline profile or delivery of a SARS-CoV-2-specific sensing antagonist upon efficient particle internalization. Together, nonproductive physical interaction of PBMCs with SARS-CoV-2- and, to a much lesser extent, SARS-CoV particles stimulate JAK/STAT-dependent, monocyte-accentuated innate immune responses that resemble those detected in vivo in patients with mild COVID-19.
Collapse
Affiliation(s)
- Julia Kazmierski
- Institute of Virology, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlinGermany
- Berlin Institute of HealthBerlinGermany
| | - Kirstin Friedmann
- Institute of Virology, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlinGermany
| | - Dylan Postmus
- Institute of Virology, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlinGermany
- Berlin Institute of HealthBerlinGermany
| | - Jackson Emanuel
- Institute of Virology, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlinGermany
| | - Cornelius Fischer
- Scientific Genomics Platforms, Laboratory of Functional Genomics, Nutrigenomics and Systems BiologyMax Delbrück Center for Molecular MedicineBerlinGermany
| | - Jenny Jansen
- Institute of Virology, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlinGermany
- Berlin Institute of HealthBerlinGermany
| | - Anja Richter
- Institute of Virology, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlinGermany
| | - Laure Bosquillon de Jarcy
- Institute of Virology, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlinGermany
- Department of Infectious Diseases and Respiratory MedicineCharité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of Health (BIH)BerlinGermany
| | - Christiane Schüler
- Institute of Virology, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlinGermany
- Berlin Institute of HealthBerlinGermany
| | - Madlen Sohn
- Scientific Genomics Platforms, Laboratory of Functional Genomics, Nutrigenomics and Systems BiologyMax Delbrück Center for Molecular MedicineBerlinGermany
| | - Sascha Sauer
- Scientific Genomics Platforms, Laboratory of Functional Genomics, Nutrigenomics and Systems BiologyMax Delbrück Center for Molecular MedicineBerlinGermany
| | - Christian Drosten
- Institute of Virology, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlinGermany
- German Center for Infection Research, Associated Partner CharitéBerlinGermany
| | - Antoine‐Emmanuel Saliba
- Helmholtz Institute for RNA‐based Infection Research (HIRI)Helmholtz‐Center for Infection Research (HZI)WürzburgGermany
| | - Leif Erik Sander
- Department of Infectious Diseases and Respiratory MedicineCharité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of Health (BIH)BerlinGermany
| | - Marcel A Müller
- Institute of Virology, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlinGermany
- German Center for Infection Research, Associated Partner CharitéBerlinGermany
| | - Daniela Niemeyer
- Institute of Virology, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlinGermany
- German Center for Infection Research, Associated Partner CharitéBerlinGermany
| | - Christine Goffinet
- Institute of Virology, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlinGermany
- Berlin Institute of HealthBerlinGermany
| |
Collapse
|
111
|
Deroubaix A, Kramvis A. Imaging Techniques: Essential Tools for the Study of SARS-CoV-2 Infection. Front Cell Infect Microbiol 2022; 12:794264. [PMID: 35937687 PMCID: PMC9355083 DOI: 10.3389/fcimb.2022.794264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 06/21/2022] [Indexed: 01/08/2023] Open
Abstract
The world has seen the emergence of a new virus in 2019, SARS-CoV-2, causing the COVID-19 pandemic and millions of deaths worldwide. Microscopy can be much more informative than conventional detection methods such as RT-PCR. This review aims to present the up-to-date microscopy observations in patients, the in vitro studies of the virus and viral proteins and their interaction with their host, discuss the microscopy techniques for detection and study of SARS-CoV-2, and summarize the reagents used for SARS-CoV-2 detection. From basic fluorescence microscopy to high resolution techniques and combined technologies, this article shows the power and the potential of microscopy techniques, especially in the field of virology.
Collapse
Affiliation(s)
- Aurélie Deroubaix
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Life Sciences Imaging Facility, University of the Witwatersrand, Johannesburg, South Africa
| | - Anna Kramvis
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
112
|
Wei R, Qin Z, Huang Q, Liu L, Cheng F, Meng S, Wang L. A Landscape Study on COVID-19 Immunity at the Single-Cell Level. Front Immunol 2022; 13:918383. [PMID: 35911765 PMCID: PMC9334848 DOI: 10.3389/fimmu.2022.918383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/16/2022] [Indexed: 01/08/2023] Open
Abstract
Since 2019, the coronavirus (COVID-19) has outbroken continuously, spreading internationally and threatening the public health. However, it was unknown how the disorder at the single-cell level was associated with the pathogenesis of COVID-19. This study presented the disorders of macrophages, epithelial cells, CD8+ T cells, and natural killer (NK) cells at the single-cell level in the courses of COVID-19 and analyzed the immune response to cytokine storm. Compared with the healthy group, patients with COVID-19 had higher proportions of macrophages and lower proportions of T and NK cells, especially proportions of macrophages and epithelial cells with an increase during patients’ conditions from mild to severe. This study suggested that there were high levels of pro-inflammatory and chemokine expressions in cells of COVID-19 and analyzed cell subsets to explore its changes and pathways. It was worth noting that several subsets of macrophages, epithelial cells, CD8 T cells, and NK cells were involved in inflammation pathways, including interleukin-17 (IL-17) signaling pathway and tumor necrosis factor (TNF) signaling pathway. Moreover, the pathways interacting COVID-19 and cytokine receptor with each other were remarkably enriched. In addition, these cell subsets played important roles in inflammation, and their abnormal functions may cause COVID-19. In conclusion, this study provided an immune outlook for COVID-19 at the single-cell level and revealed different pathways in immune response of COVID-19 single cells.
Collapse
Affiliation(s)
- Rongguo Wei
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zheng Qin
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Clinical Laboratory, The First People’s Hospital of Nanning, Nanning, China
| | - Qi Huang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Clinical Laboratory, The First People’s Hospital of Nanning, Nanning, China
| | - Lulu Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Fang Cheng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Songdong Meng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Songdong Meng, ; Lin Wang,
| | - Lin Wang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Clinical Laboratory, The First People’s Hospital of Nanning, Nanning, China
- *Correspondence: Songdong Meng, ; Lin Wang,
| |
Collapse
|
113
|
Batista Simões JL, Sobierai LD, Pereira SM, Rodrigues Dos Santos MV, Bagatini MD. Therapeutic potential of P2X7 purinergic receptor modulation in the main organs affected by the COVID-19 cytokine storm. Curr Pharm Des 2022; 28:1798-1814. [PMID: 35838210 DOI: 10.2174/1381612828666220713115906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/31/2022] [Indexed: 01/08/2023]
Abstract
Defined by the World Health Organization as a global public health pandemic, coronavirus 2019 (COVID-19) has a global impact and the death of thousands of people. The "severe acute respiratory syndrome coronavirus 2" virus (SARS-CoV-2) is the etiologic agent of this disease, which uses the angiotensin-converting enzyme receptor 2 (ACE2) to infect the body, so any organ that expresses the gene ACE2 is a possible target for the new coronavirus. In addition, in severe cases of COVID-19, a cytokine storm occurs, which triggers widespread systemic inflammation due to the uncontrolled release of proinflammatory cytokines. In this perspective, the modulation of purinergic receptors are highlighted in the literature as a possible therapy, considering its application in other viral infections and systemic inflammation. Therefore, the objective of this review is to gather information on the modulation of the P2X7 receptor in the main organs directly affected by the virus and by the cytokine storm: heart, brain, lung, liver and kidneys. Thus, demonstrating possible therapies for reducing inflammation, as well as reducing the level of morbidity and mortality of COVID-19.
Collapse
|
114
|
Yang RC, Huang K, Zhang HP, Li L, Tan C, Chen HC, Jin ML, Wang XR. Transcriptional landscape of human neuroblastoma cells in response to SARS-CoV-2. BMC Neurosci 2022; 23:43. [PMID: 35794518 PMCID: PMC9258770 DOI: 10.1186/s12868-022-00728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/29/2022] [Indexed: 11/28/2022] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly contagious, and the neurological symptoms of SARS-CoV-2 infection have already been reported. However, the mechanisms underlying the effect of SARS-CoV-2 infection on patients with central nervous system injuries remain unclear. Methods The high-throughput RNA sequencing was applied to analyze the transcriptomic changes in SK-N-SH cells after SARS-CoV-2 infection. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed to identify the functions of differentially expressed genes and related pathways. Results A total of 820 mRNAs were significantly altered, including 671 upregulated and 149 downregulated mRNAs (showing an increase of ≥ 2-fold or decrease to ≤ 0.5-fold, respectively; p ≤ 0.05). Moreover, we verified the significant induction of cytokines, chemokines, and their receptors, as well as the activation of NF-κB, p38, and Akt signaling pathways, in SK-N-SH by SARS-CoV-2. Conclusions To our knowledge, this is the first time the transcriptional profiles of the host mRNAs involved in SARS-CoV-2 infection of SK-N-SH cells have been reported. These findings provide novel insight into the pathogenic mechanism of SARS-CoV-2 and might constitute a new approach for future prevention and treatment of SARS-CoV-2-induced central nervous system infection. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-022-00728-6.
Collapse
Affiliation(s)
- Rui-Cheng Yang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, 430070, China
| | - Kun Huang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, 430070, China
| | - Hui-Peng Zhang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, 430070, China
| | - Liang Li
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, 430070, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, 430070, China
| | - Huan-Chun Chen
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, 430070, China
| | - Mei-Lin Jin
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, 430070, China
| | - Xiang-Ru Wang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China. .,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, 430070, China.
| |
Collapse
|
115
|
Investigation and analysis of cognitive function and psychological status in stroke patients with COVID-19. J Stroke Cerebrovasc Dis 2022. [PMCID: PMC9279553 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
116
|
Rasmi Y, Hatamkhani S, Naderi R, Shokati A, Nayeb Zadeh V, Hosseinzadeh F, Farnamian Y, Jalali L. Molecular signaling pathways, pathophysiological features in various organs, and treatment strategies in SARS-CoV2 infection. Acta Histochem 2022; 124:151908. [PMID: 35662001 PMCID: PMC9130726 DOI: 10.1016/j.acthis.2022.151908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/19/2022] [Indexed: 01/08/2023]
Abstract
Cytokine storms and extra-activated cytokine signaling pathways can lead to severe tissue damage and patient death. Activation of inflammatory signaling pathways during Cytokine storms are an important factor in the development of acute respiratory syndrome (SARS-CoV-2), which is the major health problem today, causing systemic and local inflammation. Cytokine storms attract many inflammatory cells that attack the lungs and other organs and cause tissue damage. Angiotensin-converting enzyme 2 (ACE2) are expressed in a different type of tissues. inhibition of ACE2 activity impairs renin-angiotensin (RAS) function, which is related to the severity of symptoms and mortality rate in COVID-19 patients. Different signaling cascades are activated, affecting various organs during SARS-CoV-2 infection. Nowadays, there is no specific treatment for COVID-19, but scientists have recognized and proposed several treatment alternatives, including applying cytokine inhibitors, immunomodulators, and plasma therapy. Herein, we have provided the detailed mechanism of SARS-CoV-2 induced cytokine signaling and its connection with pathophysiological features in different organs. Possible treatment options to cope with the severe clinical manifestations of COVID-19 are also discussed.
Collapse
Affiliation(s)
- Yousef Rasmi
- Cellular and Molecular Research Center,Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shima Hatamkhani
- Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran; Department of Clinical Pharmacy, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Roya Naderi
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Physiology, school of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ameneh Shokati
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | | | - Faezeh Hosseinzadeh
- Department of Tissue Engineering, Qom University of Medical Sciences, Qom, Iran
| | - Yeganeh Farnamian
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Ladan Jalali
- Cellular and Molecular Research Center,Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
117
|
Singh D, Singh E. An overview of the neurological aspects in COVID-19 infection. J Chem Neuroanat 2022; 122:102101. [PMID: 35430271 PMCID: PMC9008979 DOI: 10.1016/j.jchemneu.2022.102101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 01/07/2023]
Abstract
The Crown-shaped, severe acute respiratory syndrome-Coronavirus-2 (SARS-CoV-2) triggered the globally fatal illness of Coronavirus disease-2019 (COVID-19). This infection is known to be initially reported in bats and has been causing major respiratory challenges. The primary symptoms of COVID-19 include fever, fatigue and dry cough. As progressed the complications may lead to acute respiratory distress syndrome (ADRS), arrhythmia and shock. This review illustrates the neurological and neuropsychiatric impairments due to COVID-19 infection. The SARS-CoV-2 virus enters via the hematogenous or neural route, spreads to the Central Nervous System (CNS), causing a blood-brain barrier (BBB) dysfunction. Recent scientific articles have reported that SARS-CoV-2 causes several neurological issues such as encephalitis, seizures, acute stroke, delirium, meningoencephalitis and Guillain-Barré Syndrome (GBS). As a long-term effect of this disease certain neuropsychiatric conditions are witnessed such as depression and anxiety. Invasion into followed by degeneration takes place causing an uncontrolled immune response. Transcription factors like NF-κB (nuclear factor kappa light chain enhancer of activated B cells), which modulate genes responsible for inflammatory response gets over expressed. Nrf2 (nuclear factor erythroid 2- related factor 2) counterpoises the inflammation by antioxidant response towards COVID-19 infection. Like every other infection, the severity of this infection leads to deterioration of major organ systems and even leads to death. By the columns of this review, we elaborate on the neurological aspects of this life-threatening infection.
Collapse
Affiliation(s)
- Divyanshi Singh
- KIIT School of Biotechnology, Bhubaneswar, Odisha 751024, India.
| | - Ekta Singh
- Acharya & BM Reddy College of Pharmacy, Soladevanahalli, Bengaluru 560107, India
| |
Collapse
|
118
|
Sbeih F, Gutierrez J, Saieed G, Chaaban MR. Chronic rhinosinusitis is associated with increased risk of COVID-19 hospitalization. Am J Otolaryngol 2022; 43:103469. [PMID: 35576660 PMCID: PMC8993453 DOI: 10.1016/j.amjoto.2022.103469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 01/17/2023]
Abstract
OBJECTIVE The rationale of the study was to examine the association between chronic rhinosinusitis (CRS) and COVID-19 hospitalization. STUDY DESIGN Retrospective cohort study. SETTING Cleveland Clinic hospital inpatient and outpatient. METHODS A retrospective chart review of patients that were tested for COVID-19 at Cleveland Clinic. The study took place between March 8, 2020 and May 15, 2020. RESULTS From a total of 23,282 Patients that underwent SARS-CoV-2 testing, 996 COVID-19 negative and 998 COVID-19 positive patients were included in the analysis. COVID-19 positive patients with chronic rhinosinusitis (CRS) were at higher risk for hospitalization compared to patients without CRS (39.2% vs 25.7%, p = 0.0486). There was no significant difference between the two groups in relation to ICU admission, mechanical ventilation, and death, After adjustment for covariates, our multivariate analysis showed that patients with chronic rhinosinusitis (CRS) were approximately 3.46 (OR = 3.19, 95% CI (1.12-10.68)) times more likely to be hospitalized compared to patients that have no CRS. CONCLUSION Our results demonstrated that patients with chronic rhinosinusitis are associated with higher risk of COVID-19 hospitalization, albeit no increased risk of mortality.
Collapse
Affiliation(s)
- Firas Sbeih
- Head and Neck Institute, Cleveland Clinic, Cleveland, OH, United States of America
| | - Jorge Gutierrez
- Case Western Reserve University School of Medicine, United States of America
| | - George Saieed
- Case Western Reserve University School of Medicine, United States of America
| | - Mohamad R Chaaban
- Head and Neck Institute, Cleveland Clinic, Cleveland, OH, United States of America.
| |
Collapse
|
119
|
Meaney JF, O’Donnell JS, Bridgewood C, Harbison J, McGonagle D. Perspective: The Case for Acute Large Vessel Ischemic Stroke in COVID-19 Originating Within Thrombosed Pulmonary Venules. Stroke 2022; 53:2411-2419. [PMID: 35543127 PMCID: PMC9232249 DOI: 10.1161/strokeaha.121.038056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The main burden of SARS-CoV-2 falls on the lungs but neurological manifestations, the most disabling of which are strokes and which correlate with disease severity, are common. We proffer a novel mechanism for acute COVID-19 stroke whereby pulmonary vein clots developing within the characteristic pulmonary intravascular thrombotic lesions can embolize to the brain. Appreciation of this mechanism requires an understanding of the tricompartmental model of lung parenchyma oxygenation (the alveolus, the bronchial artery, and the pulmonary artery), all of which are compromised in COVID-19. Of these 3 sources, the bronchial artery plays a crucial role in COVID-19 stroke because the unique collaterals from bronchial artery to pulmonary vein which exist under normal physiological conditions (and which maintain venous patency when the pulmonary artery is blocked by embolus) are occluded, thus leading to venular thrombosis in the presence of hypercoagulability. Dislodgement of clots from this source translocates the pathology to the brain and is a disease mechanism, formerly rare, which may account for many cases of large vessel occlusion stroke in COVID-19. This mechanism extends the concept of cardioembolic stroke from endocardium retrogradely into the pulmonary circulation with which the left cardiac chambers lie in direct continuity, and which is an accepted stroke mechanism under other circumstances such as lung lobectomy, where surgical ligation of the pulmonary vein creates a blind sac from which thrombi can embolize. The proposed model is supported by postmortem studies which have demonstrated venular thrombosis and by case reports of pulmonary vein thrombosis in COVID-19. This concept provides a more plausible cause for COVID-19 associated large vessel occlusion stroke than other putative mechanisms, such as cerebral endotheliitis, cytokine storm, and hypercoagulopathy, although it is acknowledged that the latter mechanism contributes to the genesis of pulmonary vein clots. Recognizing that extrapulmonary manifestations including stroke arise within thrombosed pulmonary veins is key to understanding of neurological manifestations of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- James F.M. Meaney
- The Thomas Mitchell Centre for Advanced Medical Imaging, St James’s Hospital (J.F.M.M.), Trinity College Dublin, Ireland
| | - James S. O’Donnell
- Irish Centre for Vascular Biology, Royal College of Surgeons of Ireland (J.S.O.)
| | - Charles Bridgewood
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, United Kingdom (C.B.)
| | - Joseph Harbison
- Department of Stroke Medicine (J.H.), Trinity College Dublin, Ireland
| | - Dennis McGonagle
- National Institute for Health Research (NIHR), Leeds Biomedical Research Centre (BRC), Leeds Teaching Hospitals, United Kingdom (D.M.)
| |
Collapse
|
120
|
Wu Y, Rakotoarisoa M, Angelov B, Deng Y, Angelova A. Self-Assembled Nanoscale Materials for Neuronal Regeneration: A Focus on BDNF Protein and Nucleic Acid Biotherapeutic Delivery. NANOMATERIALS 2022; 12:nano12132267. [PMID: 35808102 PMCID: PMC9268293 DOI: 10.3390/nano12132267] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023]
Abstract
Enabling challenging applications of nanomedicine and precision medicine in the treatment of neurodegenerative disorders requires deeper investigations of nanocarrier-mediated biomolecular delivery for neuronal targeting and recovery. The successful use of macromolecular biotherapeutics (recombinant growth factors, antibodies, enzymes, synthetic peptides, cell-penetrating peptide–drug conjugates, and RNAi sequences) in clinical developments for neuronal regeneration should benefit from the recent strategies for enhancement of their bioavailability. We highlight the advances in the development of nanoscale materials for drug delivery in neurodegenerative disorders. The emphasis is placed on nanoformulations for the delivery of brain-derived neurotrophic factor (BDNF) using different types of lipidic nanocarriers (liposomes, liquid crystalline or solid lipid nanoparticles) and polymer-based scaffolds, nanofibers and hydrogels. Self-assembled soft-matter nanoscale materials show favorable neuroprotective characteristics, safety, and efficacy profiles in drug delivery to the central and peripheral nervous systems. The advances summarized here indicate that neuroprotective biomolecule-loaded nanoparticles and injectable hydrogels can improve neuronal survival and reduce tissue injury. Certain recently reported neuronal dysfunctions in long-COVID-19 survivors represent early manifestations of neurodegenerative pathologies. Therefore, BDNF delivery systems may also help in prospective studies on recovery from long-term COVID-19 neurological complications and be considered as promising systems for personalized treatment of neuronal dysfunctions and prevention or retarding of neurodegenerative disorders.
Collapse
Affiliation(s)
- Yu Wu
- CNRS, Institut Galien Paris-Saclay, Université Paris-Saclay, F-92290 Châtenay-Malabry, France; (Y.W.); (M.R.)
| | - Miora Rakotoarisoa
- CNRS, Institut Galien Paris-Saclay, Université Paris-Saclay, F-92290 Châtenay-Malabry, France; (Y.W.); (M.R.)
| | - Borislav Angelov
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Prague, Czech Republic;
| | - Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, No. 1, Jinlian Road, Longwan District, Wenzhou 325001, China;
| | - Angelina Angelova
- CNRS, Institut Galien Paris-Saclay, Université Paris-Saclay, F-92290 Châtenay-Malabry, France; (Y.W.); (M.R.)
- Correspondence:
| |
Collapse
|
121
|
Urhan E, Karaca Z, Unuvar GK, Gundogan K, Unluhizarci K. Investigation of pituitary functions after acute coronavirus disease 2019. Endocr J 2022; 69:649-658. [PMID: 34987144 DOI: 10.1507/endocrj.ej21-0531] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Although coronavirus disease 2019 (COVID-19) mainly involves the lungs, it also affects many systems. The hypothalamic/pituitary axis is vulnerable to hypoxia, hypercoagulation, endothelial dysfunction and autoimmune changes induced by COVID-19 infection. Given that there is no extensive investigation on this issue, we investigated the pituitary functions three to seven months after acute COVID-19 infection. Forty-three patients after diagnosis of COVID-19 infection and 11 healthy volunteers were included in the study. In addition to the basal pituitary hormone levels, growth hormone (GH) and hypothalamo-pituitary adrenal (HPA) axes were evaluated by glucagon stimulation test (GST) and low-dose adrenocorticotropic hormone (ACTH) stimulation test, respectively. The peak cortisol responses to low-dose ACTH test were insufficient in seven (16.2%) patients. Twenty (46.5%) and four (9.3%) patients had inadequate GH and cortisol responses to GST, respectively. Serum insulin-like growth factor-1 (IGF-1) values were also lower than age and sex-matched references in four (9.3%) patients. The peak GH responses to GST were lower in the patient group when compared to the control group. Other abnormalities were mild thyroid-stimulating hormone elevation in four (9.3%) patients, mild prolactin elevation in two (4.6%) patients and central hypogonadism in four (9.3%) patients. Mean total testosterone values were lower in male patients when compared to male controls; however, the difference was not significant. These findings suggest that COVID-19 infection may affect pituitary functions, particularly the HPA and GH axes. These insufficiencies should be kept in mind in post-COVID follow-up. Long-term data are needed to determine whether these deficiencies are permanent or not.
Collapse
Affiliation(s)
- Emre Urhan
- Department of Endocrinology, Erciyes University Medical School, Kayseri 38039, Turkey
| | - Zuleyha Karaca
- Department of Endocrinology, Erciyes University Medical School, Kayseri 38039, Turkey
| | - Gamze Kalin Unuvar
- Department of Infectious Diseases and Clinical Microbiology, Erciyes University Medical School, Kayseri 38039, Turkey
| | - Kursat Gundogan
- Department of Intensive Care, Erciyes University Medical School, Kayseri 38039, Turkey
| | - Kursad Unluhizarci
- Department of Endocrinology, Erciyes University Medical School, Kayseri 38039, Turkey
| |
Collapse
|
122
|
Arias M, Oliveros H, Lechtig S, Bustos RH. Biologics in COVID-19 So Far: Systematic Review. Pharmaceuticals (Basel) 2022; 15:ph15070783. [PMID: 35890081 PMCID: PMC9321859 DOI: 10.3390/ph15070783] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 12/17/2022] Open
Abstract
This systematic review aimed to reevaluate the available evidence of the use of biologics as treatment candidates for the treatment of severe and advanced COVID-19 disease; what are the rationale for their use, which are the most studied, and what kind of efficacy measures are described? A search through Cochrane, Embase, Pubmed, Medline, medrxiv.org, and Google scholar was performed on the use of biologic interventions in COVID-19/SARS-CoV-2 infection, viral pneumonia, and sepsis, until 11 January 2022. Throughout the research, we identified 4821 records, of which 90 were selected for qualitative analysis. Amongst the results, we identified five popular targets of use: IL6 and IL1 inhibitors, interferons, mesenchymal stem cells treatment, and anti-spike antibodies. None of them offered conclusive evidence of their efficacy with consistency and statistical significance except for some studies with anti-spike antibodies; however, Il6 and IL1 inhibitors as well as interferons show encouraging data in terms of increased survival and favorable clinical course that require further studies with better methodology standardization.
Collapse
Affiliation(s)
- Milton Arias
- Department of Clinical Pharmacology, Evidence-Based Therapeutics Group, Faculty of Medicine, Universidad de La Sabana and Clínica Universidad de La Sabana, Autopista Norte de Bogotá, Chía 140013, Colombia; (M.A.); (S.L.)
| | - Henry Oliveros
- Department of Epidemiology, Health Research Group, Faculty of Medicine, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía 140013, Colombia;
| | - Sharon Lechtig
- Department of Clinical Pharmacology, Evidence-Based Therapeutics Group, Faculty of Medicine, Universidad de La Sabana and Clínica Universidad de La Sabana, Autopista Norte de Bogotá, Chía 140013, Colombia; (M.A.); (S.L.)
| | - Rosa-Helena Bustos
- Department of Clinical Pharmacology, Evidence-Based Therapeutics Group, Faculty of Medicine, Universidad de La Sabana and Clínica Universidad de La Sabana, Autopista Norte de Bogotá, Chía 140013, Colombia; (M.A.); (S.L.)
- Correspondence: ; Tel.: +57-1608615555
| |
Collapse
|
123
|
López-Viñas L, Vega-Villar J, Rocío-Martín E, García-García P, De La Rosa Santiago E, Galván-Román JM, Wix-Ramos R. Diaphragm impairment in patients admitted for severe COVID-19. Eur J Transl Myol 2022; 32. [PMID: 35727218 PMCID: PMC9295177 DOI: 10.4081/ejtm.2022.10460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/10/2022] [Indexed: 12/30/2022] Open
Abstract
Among patients affected by the virus COVID-19, physicians have observed ventilation disorders. It is relevant to assess neurological involvement, including the role of diaphragmatic function. Its possible impairment could be related to the systemic inflammatory response and disease progression that both typify COVID-19 infection. We distinguished two groups (severe group (SG) and mild group (MG)) according to the severity of respiratory symptomatology. We performed neurophysiological and sonography studies to evaluate the diaphragmatic function. Regarding the sonography variables, we identified statistically significant differences in the right mean diaphragmatic thickness along with the expiration, showing 1.56 mm (SEM: 0.11) in the SG vs 1.92 mm (SEM: 0.19) in the MG (p = 0.042). The contractibility of both hemidiaphragms was 15% lower in the severe group, though this difference is not statistically significant. In our examination of the neurophysiological variables, in the amplitude responses, we observed a greater difference between responses from both phrenic nerves as follows: the raw differences in amplitude were 0.40 μV (SEM: 0.14) in the SG vs 0.35 μV (SEM: 0.19) in the MG and the percentage difference was 25.92% (SEM: 7.22) in the SG vs 16.28% (SEM: 4.38%) in the MG. Although diaphragmatic dysfunction is difficult to detect, our combined functional and morphological approach with phrenic electroneurograms and chest ultrasounds could improve diagnostic sensitivity. We suggest that diaphragmatic dysfunction could play a relevant role in respiratory disturbance in hospitalised patients with severe COVID-19.
Collapse
Affiliation(s)
- Laura López-Viñas
- Neurophysiology Department, Fundación Jiménez Díaz University Hospital, Madrid.
| | | | | | | | | | | | - Rybel Wix-Ramos
- Neurophysiology Department, La Princesa University Hospital, Madrid.
| |
Collapse
|
124
|
Sahin BE, Celikbilek A, Kocak Y, Hizmali L. Patterns of COVID-19-related headache: A cross-sectional study. Clin Neurol Neurosurg 2022; 219:107339. [PMID: 35753162 PMCID: PMC9192353 DOI: 10.1016/j.clineuro.2022.107339] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Headache is the most common COVID-19-related neurological symptom. We investigated the characteristics of COVID-19-related headache and their relationship with clinical severity in Kırşehir Province, Turkey. METHODS This cross-sectional study prospectively enrolled 226 COVID-19-positive patients who developed headache during acute infection. Demographic data, headache characteristics, and infection symptoms were recorded. The clinical severity of COVID-19 was documented in each participant. RESULT New-onset COVID-19-related headaches lasting 4 days were reported in 164 patients (72.5 %); these were mostly bilaterally or localized to the forehead (58.4 %), pulsating (42.5 %), moderate to severe intensity (30.1 %), with a partial response to paracetamol (23.5 %). The other 62 patients (27.4 %) reported headaches before COVID-19. Their COVID-related headaches were fiery type (p = 0.025), of very severe intensity (p = 0.008), had a holocranial distribution (p = 0.004), and were less response to paracetamol (p = 0.003); the headaches were significantly more frequent after COVID-19 than before COVID-19. Older age, high body mass index, and low education level were significantly higher in the severe group (all p < 0.001). Female sex (p = 0.019) and being a healthcare worker (p < 0.001) were significantly more frequent in mild cases. CONCLUSIONS Bilateral, prolonged, moderate to severe headaches that were analgesic resistant are more frequent in patients with COVID-19 infection. Further study should examine whether the headache characteristics distinguish COVID-19-related headaches from other types, particularly in asymptomatic subjects.
Collapse
Affiliation(s)
- B E Sahin
- Kirsehir Ahi Evran University Faculty of Medicine, Department of Neurology, Kirsehir, Turkey.
| | - A Celikbilek
- Kirsehir Ahi Evran University Faculty of Medicine, Department of Neurology, Kirsehir, Turkey.
| | - Y Kocak
- Kirsehir Ahi Evran University Faculty of Medicine, Department of Neurology, Kirsehir, Turkey.
| | - L Hizmali
- Kirsehir Ahi Evran University Faculty of Medicine, Department of Clinical Microbiology and Infectious Diseases, Kirsehir, Turkey.
| |
Collapse
|
125
|
Thyroid Dysfunction and COVID-19: The Emerging Role of Selenium in This Intermingled Relationship. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116912. [PMID: 35682497 PMCID: PMC9180529 DOI: 10.3390/ijerph19116912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022]
Abstract
COVID-19 represents a worldwide public health emergency, and, beyond the respiratory symptoms characterizing the classic viral disease, growing evidence has highlighted a possible reciprocal relationship between SARS-CoV-2 infection and thyroid dysfunction. The updated data discussed in this review suggests a role of SARS-CoV-2 infection on the thyroid gland, with multiple thyroid pictures described. Conversely, no conclusion can be drawn on the association between pre-existing thyroid disease and increased risk of SARS-CoV-2 infection. In this scenario, selenium (Se), an essential trace element critical for thyroid function and known as an effective agent against viral infections, is emerging as a potential novel therapeutic option for the treatment of COVID-19. Large multicentre cohort studies are required to elucidate the mechanisms underlying thyroid dysfunction during or following recovery from COVID-19, including Se status. Meanwhile, clinical trials should be performed to evaluate whether adequate intake of Se can help address COVID-19 in Se-deficient patients, also avoiding thyroid complications that can contribute to worsening outcomes during infection.
Collapse
|
126
|
Tale of Viruses in Male Infertility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1358:275-323. [PMID: 35641875 DOI: 10.1007/978-3-030-89340-8_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Male infertility is a condition where the males either become sterile or critically infertile. The World Health Organisation assessed that approximately 9% of the couple have fertility issues where the contribution of the male partner was estimated to be 50%. There are several factors that can amalgamate to give rise to male infertility. Among them are lifestyle factors, genetic factors and as well as several environmental factors. The causes of male infertility may be acquired, congenital or sometimes idiopathic. All these factors adversely affect the spermatogenesis process as well as they impart serious threats to male genital organs thus resulting in infertility. Viruses are submicroscopic pathogenic agents that rely on host for their replication and survival. They enter the host cell, hijack the host cell machinery to aid their own replication and exit the cell for a new round of infection. With the growing abundance of different types of viruses and the havoc they have stirred in the form of pandemics, it is very essential to decipher their route of entry inside the human body and understand their diverse functional roles in order to combat them. In this chapter, we will review how viruses invade the male genital system thus in turn leading to detrimental consequence on male fertility. We will discuss the tropism of various viruses in the male genital organs and explore their sexual transmissibility. This chapter will summarise the functional and mechanistic approaches employed by the viruses in inducing oxidative stress inside spermatozoa thus leading to male infertility. Moreover, we will also highlight the various antiviral therapies that have been studied so far in order to ameliorate viral infection in order to combat the harmful consequences leading to male infertility.
Collapse
|
127
|
Valizadeh N, Rudmann E, Solomon IH, Mukerji SS. Mechanisms of Entry Into the Central Nervous System by Neuroinvasive Pathogens. J Neuroophthalmol 2022; 42:163-172. [PMID: 35195546 PMCID: PMC9124664 DOI: 10.1097/wno.0000000000001455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The literature on neurological manifestations, cerebrospinal fluid analyses, and autopsies in patients with COVID-19 continues to grow. The proposed mechanisms for neurological disease in patients with COVID-19 include indirect processes such as inflammation, microvascular injury, and hypoxic-ischemic damage. An alternate hypothesis suggests direct viral entry of SARS-CoV-2 into the brain and cerebrospinal fluid, given varying reports regarding isolation of viral components from these anatomical sites. EVIDENCE ACQUISITION PubMed, Google Scholar databases, and neuroanatomical textbooks were manually searched and reviewed. RESULTS We provide clinical concepts regarding the mechanisms of viral pathogen invasion in the central nervous system (CNS); advances in our mechanistic understanding of CNS invasion in well-known neurotropic pathogens can aid in understanding how viruses evolve strategies to enter brain parenchyma. We also present the structural components of CNS compartments that influence viral entry, focusing on hematogenous and transneuronal spread, and discuss this evidence as it relates to our understanding of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). CONCLUSIONS Although there is a paucity of data supporting direct viral entry of SARS-CoV-2 in humans, increasing our knowledge of the structural components of CNS compartments that block viral entry and pathways exploited by pathogens is fundamental to preparing clinicians and researchers for what to expect when a novel emerging virus with neurological symptoms establishes infection in the CNS, and how to design therapeutics to mitigate such an infection.
Collapse
Affiliation(s)
- Navid Valizadeh
- Division of Neuroimmunology and Neuro-infectious Disease, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- John C Lincoln Hospital, Phoenix, Arizona, USA
| | - Emily Rudmann
- Division of Neuroimmunology and Neuro-infectious Disease, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Isaac H. Solomon
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Shibani S. Mukerji
- Division of Neuroimmunology and Neuro-infectious Disease, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
128
|
Rass V, Beer R, Schiefecker AJ, Lindner A, Kofler M, Ianosi BA, Mahlknecht P, Heim B, Peball M, Carbone F, Limmert V, Kindl P, Putnina L, Fava E, Sahanic S, Sonnweber T, Löscher WN, Wanschitz JV, Zamarian L, Djamshidian A, Tancevski I, Weiss G, Bellmann‐Weiler R, Kiechl S, Seppi K, Loeffler‐Ragg J, Pfausler B, Helbok R. Neurological outcomes 1 year after COVID-19 diagnosis: A prospective longitudinal cohort study. Eur J Neurol 2022; 29:1685-1696. [PMID: 35239247 PMCID: PMC9111823 DOI: 10.1111/ene.15307] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/24/2022] [Accepted: 02/16/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE Neurological sequelae from coronavirus disease 2019 (COVID-19) may persist after recovery from acute infection. Here, the aim was to describe the natural history of neurological manifestations over 1 year after COVID-19. METHODS A prospective, multicentre, longitudinal cohort study in COVID-19 survivors was performed. At a 3-month and 1-year follow-up, patients were assessed for neurological impairments by a neurological examination and a standardized test battery including the assessment of hyposmia (16-item Sniffin' Sticks test), cognitive deficits (Montreal Cognitive Assessment < 26) and mental health (Hospital Anxiety and Depression Scale and Post-traumatic Stress Disorder Checklist 5). RESULTS Eighty-one patients were evaluated 1 year after COVID-19, out of which 76 (94%) patients completed a 3-month and 1-year follow-up. Patients were 54 (47-64) years old and 59% were male. New and persistent neurological disorders were found in 15% (3 months) and 12% (10/81; 1 year). Symptoms at 1-year follow-up were reported by 48/81 (59%) patients, including fatigue (38%), concentration difficulties (25%), forgetfulness (25%), sleep disturbances (22%), myalgia (17%), limb weakness (17%), headache (16%), impaired sensation (16%) and hyposmia (15%). Neurological examination revealed findings in 52/81 (64%) patients without improvement over time (3 months, 61%, p = 0.230) including objective hyposmia (Sniffin' Sticks test <13; 51%). Cognitive deficits were apparent in 18%, whereas signs of depression, anxiety and post-traumatic stress disorders were found in 6%, 29% and 10% respectively 1 year after infection. These mental and cognitive disorders had not improved after the 3-month follow-up (all p > 0.05). CONCLUSION Our data indicate that a significant patient number still suffer from neurological sequelae including neuropsychiatric symptoms 1 year after COVID-19 calling for interdisciplinary management of these patients.
Collapse
Affiliation(s)
- Verena Rass
- Department of NeurologyMedical University of InnsbruckInnsbruckAustria
| | - Ronny Beer
- Department of NeurologyMedical University of InnsbruckInnsbruckAustria
| | | | - Anna Lindner
- Department of NeurologyMedical University of InnsbruckInnsbruckAustria
| | - Mario Kofler
- Department of NeurologyMedical University of InnsbruckInnsbruckAustria
| | | | | | - Beatrice Heim
- Department of NeurologyMedical University of InnsbruckInnsbruckAustria
| | - Marina Peball
- Department of NeurologyMedical University of InnsbruckInnsbruckAustria
| | - Federico Carbone
- Department of NeurologyMedical University of InnsbruckInnsbruckAustria
| | - Victoria Limmert
- Department of NeurologyMedical University of InnsbruckInnsbruckAustria
| | - Philipp Kindl
- Department of NeurologyMedical University of InnsbruckInnsbruckAustria
| | - Lauma Putnina
- Department of NeurologyMedical University of InnsbruckInnsbruckAustria
| | - Elena Fava
- Department of NeurologyMedical University of InnsbruckInnsbruckAustria
| | - Sabina Sahanic
- Department of Internal Medicine IIMedical University of InnsbruckInnsbruckAustria
| | - Thomas Sonnweber
- Department of Internal Medicine IIMedical University of InnsbruckInnsbruckAustria
| | | | | | - Laura Zamarian
- Department of NeurologyMedical University of InnsbruckInnsbruckAustria
| | - Atbin Djamshidian
- Department of NeurologyMedical University of InnsbruckInnsbruckAustria
| | - Ivan Tancevski
- Department of Internal Medicine IIMedical University of InnsbruckInnsbruckAustria
| | - Günter Weiss
- Department of Internal Medicine IIMedical University of InnsbruckInnsbruckAustria
| | - Rosa Bellmann‐Weiler
- Department of Internal Medicine IIMedical University of InnsbruckInnsbruckAustria
| | - Stefan Kiechl
- Department of NeurologyMedical University of InnsbruckInnsbruckAustria
| | - Klaus Seppi
- Department of NeurologyMedical University of InnsbruckInnsbruckAustria
| | - Judith Loeffler‐Ragg
- Department of Internal Medicine IIMedical University of InnsbruckInnsbruckAustria
| | - Bettina Pfausler
- Department of NeurologyMedical University of InnsbruckInnsbruckAustria
| | - Raimund Helbok
- Department of NeurologyMedical University of InnsbruckInnsbruckAustria
| |
Collapse
|
129
|
Kuklina EM. T Lymphocytes as Targets for SARS-CoV-2. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:566-576. [PMID: 35790412 PMCID: PMC9201263 DOI: 10.1134/s0006297922060086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 01/11/2023]
Abstract
Despite numerous data on the absence or weak expression of the main functional receptor of SARS-CoV-2 angiotensin-converting enzyme 2 (ACE2) by T cells, it was recently demonstrated that the new coronavirus can efficiently infect T lymphocytes. Here, we analyze the data on the alternative (ACE2-independent) pathways of cell infection, identified T cell subpopulations that serve as the most plausible targets of SARS-CoV-2, discuss the mechanisms of virus-cell interaction, including both infectious and non-infectious pathways of T lymphocyte regulation, and estimate the role of the virus-dependent damage of T lymphocytes in COVID-19 pathogenesis. Particular attention is paid to regulatory T cells as potential targets of SARS-CoV-2, as well as to the possible involvement of exosomes in the sensitivity of peripheral T cells to the virus.
Collapse
Affiliation(s)
- Elena M Kuklina
- Perm Federal Research Center, Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Perm, 614081, Russia.
| |
Collapse
|
130
|
Emekci T, Dündar MA, Kirazlı G, Men Kılınç F, Cengiz DU, Karababa E, İnceoğlu F, Arbağ H. Evaluation of the efferent auditory system in COVID-19 adult patients. Acta Otolaryngol 2022; 142:509-514. [PMID: 35791801 DOI: 10.1080/00016489.2022.2093967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUND The short- and long-term effects of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on the medial olivocochlear reflex and outer hair cells in the cochlea remain largely unclear. AIMS The aim of this study was to investigate the efferent auditory system effects in adult patients with COVID-19. MATERIALS AND METHODS The study included 18-50 years old 44 volunteers: 26 individuals (52 ears) with COVID-19 in the study group and 18 healthy individuals (36 ears) in the control group. Otolaryngological examination, immitancemetric evaluation, distortion product otoacoustic emission (DPOAE), contralateral acoustic stimulation with DPOAE, audiometric evaluation, and high frequency audiometric evaluation were performed in all individuals participating in the study. RESULTS In our study, patients with COVID-19 had significantly lower DPOAE results with or without broadband noise at only 6 kHz frequency and contralateral suppression results at all frequencies compared to healthy individuals. A statistically significant difference was found between the study and control groups according to whether the participants had a response in the high frequency audiometry at 12 and 16 kHz frequencies. CONCLUSIONS COVID-19 affects many systems in the body. As a result of the findings obtained in the present study, it is shown that the auditory efferent system may also be affected.
Collapse
Affiliation(s)
- Tuğba Emekci
- Faculty of Medicine, ENT Clinic, Necmettin Erbakan University, Konya, Turkey
| | - Mehmet Akif Dündar
- Faculty of Medicine, ENT Clinic, Necmettin Erbakan University, Konya, Turkey
| | - Gülce Kirazlı
- Department of Audiology, Faculty of Health Sciences, Ege University, Izmir, Turkey
| | - Fatma Men Kılınç
- Department of Audiology, Faculty of Health Sciences, Hamidiye University of Health Sciences, Istanbul, Turkey
| | - Deniz Uğur Cengiz
- Department of Audiology, Faculty of Health Sciences, Inonu University, Malatya, Turkey
| | - Ercan Karababa
- Department of Audiology, Faculty of Health Sciences, Gülhane University of Health Sciences, Ankara, Turkey
| | - Feyza İnceoğlu
- Department of Biostatistics, Faculty of Medicine, Malatya Turgut Ozal University, Malatya, Turkey
| | - Hamdi Arbağ
- Faculty of Medicine, ENT Clinic, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
131
|
Hammoud H, Bendari A, Bendari T, Bougmiza I. Histopathological Findings in COVID-19 Cases: A Systematic Review. Cureus 2022; 14:e25573. [PMID: 35784976 PMCID: PMC9249248 DOI: 10.7759/cureus.25573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2022] [Indexed: 11/05/2022] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic has turned into one of the most serious public health crises of the last few decades. Although the disease can result in diverse and multiorgan pathologies, very few studies have addressed the postmortem pathological findings of COVID-19 cases. Active autopsy findings amid this pandemic could be an essential tool for diagnosis, surveillance, and research. We aimed to provide a comprehensive picture of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) histopathological features of different body organs through a systematic review of the published literature. A systematic search of electronic databases (PubMed, ScienceDirect, Google Scholar, medRxiv, and bioRxiv) for journal articles of different study designs reporting postmortem pathological findings in COVID-19 cases was performed. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used for conducting the review. A total of 50 articles reporting 430 cases were included in our analysis. Postmortem pathological findings were reported for different body organs: pulmonary system (42 articles), cardiovascular system (23 articles), hepatobiliary system (22 articles), kidney (16 articles), spleen and lymph nodes (12 articles), and central nervous system (seven articles). In lung samples, diffuse alveolar damage (DAD) was the most commonly reported finding in 239 cases (84.4%). Myocardial hypertrophy (87 cases, 51.2%), arteriosclerosis (121 cases, 62%), and steatosis (118 cases, 59.3%) were the most commonly reported pathological findings in the heart, kidney, and the hepatobiliary system respectively. Autopsy examination as an investigation tool could lead to a better understanding of SARS-CoV-2 pathophysiology, diagnosis, and management, subsequently improving patient care.
Collapse
Affiliation(s)
- Hamed Hammoud
- Preventive Medicine, Hamad Medical Corporation, Doha, QAT
| | - Ahmed Bendari
- Department of Pathology, Lenox Hill Hospital, New York, USA
| | | | - Iheb Bougmiza
- Community Medicine Residency Program, Primary Health Care Corporation, Doha, QAT
| |
Collapse
|
132
|
Harlow J, Dallner M, Nasheri N. Protective Effect of Food Against Inactivation of Human Coronavirus OC43 by Gastrointestinal Fluids. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:212-216. [PMID: 35320506 PMCID: PMC8941299 DOI: 10.1007/s12560-022-09520-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
The involvement of the gastrointestinal (GI) tract in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection has been reported in multiple studies. Since it has been demonstrated that human intestinal epithelial cells support productive viral replication and that a substantial portion of infected individuals shed the virus in feces, the possibility of fecal-oral and fecal-respiratory modes of transmission have been proposed for SARS-CoV-2. In order to establish viral replication in the intestine, enteric viruses need to retain their infectivity in often low pH gastric fluids, and in intestinal fluids, which contain digestive enzymes and bile salts. In this study, we examined whether human coronaviruses OC43 (HCoV-OC43) can remain infectious in simulated GI fluids that models human fasting-state and fed-state, in the presence or absence of food. We demonstrated that except for fasting-state gastric fluid (pH 1.6), the virus can remain infectious in all other gastrointestinal fluids for 1 h. Furthermore, we demonstrated that presence of food could significantly improve viral survival in gastric fluids. Therefore, this study provides evidence that ingestion with food could protect the virus against inactivation by the GI fluids.
Collapse
Affiliation(s)
- Jennifer Harlow
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Health Canada, Ottawa, ON, Canada
| | - Matthew Dallner
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Health Canada, Ottawa, ON, Canada
| | - Neda Nasheri
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Health Canada, Ottawa, ON, Canada.
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
133
|
Paidas MJ, Sampath N, Schindler EA, Cosio DS, Ndubizu CO, Shamaladevi N, Kwal J, Rodriguez S, Ahmad A, Kenyon NS, Jayakumar AR. Mechanism of Multi-Organ Injury in Experimental COVID-19 and Its Inhibition by a Small Molecule Peptide. Front Pharmacol 2022; 13:864798. [PMID: 35712703 PMCID: PMC9196045 DOI: 10.3389/fphar.2022.864798] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/20/2022] [Indexed: 12/11/2022] Open
Abstract
Severe disease from SARS-CoV-2 infection often progresses to multi-organ failure and results in an increased mortality rate amongst these patients. However, underlying mechanisms of SARS- CoV-2-induced multi-organ failure and subsequent death are still largely unknown. Cytokine storm, increased levels of inflammatory mediators, endothelial dysfunction, coagulation abnormalities, and infiltration of inflammatory cells into the organs contribute to the pathogenesis of COVID-19. One potential consequence of immune/inflammatory events is the acute progression of generalized edema, which may lead to death. We, therefore, examined the involvement of water channels in the development of edema in multiple organs and their contribution to organ dysfunction in a Murine Hepatitis Virus-1 (MHV-1) mouse model of COVID-19. Using this model, we recently reported multi-organ pathological abnormalities and animal death similar to that reported in humans with SARS-CoV-2 infection. We now identified an alteration in protein levels of AQPs 1, 4, 5, and 8 and associated oxidative stress, along with various degrees of tissue edema in multiple organs, which correlate well with animal survival post-MHV-1 infection. Furthermore, our newly created drug (a 15 amino acid synthetic peptide, known as SPIKENET) that was designed to prevent the binding of spike glycoproteins with their receptor(s), angiotensin- converting enzyme 2 (ACE2), and carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) (SARS-CoV-2 and MHV-1, respectively), ameliorated animal death and reversed altered levels of AQPs and oxidative stress post-MHV-1 infection. Collectively, our findings suggest the possible involvement of altered aquaporins and the subsequent edema, likely mediated by the virus-induced inflammatory and oxidative stress response, in the pathogenesis of COVID- 19 and the potential of SPIKENET as a therapeutic option.
Collapse
Affiliation(s)
- Michael J. Paidas
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL, United States
- *Correspondence: Michael J. Paidas, ; Arumugam R. Jayakumar,
| | - Natarajan Sampath
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Emma A. Schindler
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Daniela S. Cosio
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Chima Obianuju Ndubizu
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL, United States
| | | | - Jaclyn Kwal
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Suset Rodriguez
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Anis Ahmad
- Department of Radiation Oncology, Sylvester Cancer Center, University of Miami School of Medicine, Miami, FL, United States
| | - Norma Sue Kenyon
- Microbiology & Immunology and Biomedical Engineering, Diabetes Research Institute, University of Miami, Miami, FL, United States
| | - Arumugam R. Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL, United States
- *Correspondence: Michael J. Paidas, ; Arumugam R. Jayakumar,
| |
Collapse
|
134
|
Illéš R, Chochol J, Džubera A, Chocholová A, Zemková E. COVID-19 Worsens Chronic Lumbosacral Radicular Pain—Case Series Report. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116410. [PMID: 35681993 PMCID: PMC9180125 DOI: 10.3390/ijerph19116410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 01/08/2023]
Abstract
The knowledge of the COVID-19 symptomatology has increased since the beginning of the SARS-CoV-2 pandemic. The symptoms of nervous system involvement have been observed across the spectrum of COVID-19 severity. Reports describing difficulties of nerve roots are rare; the affection of brain and spinal cord by SARS-CoV-2 is of leading interest. Our aim therefore is to describe the radicular pain deterioration in the group of nine chronic lumbosacral radicular syndrome sufferers in acute COVID-19. The intensity of radicular pain was evaluated by the Visual Analogue Scale (VAS). The VAS score in acute infection increased from 5.6 ± 1.1 to 8.0 ± 1.3 (Cohen’s d = 1.99) over the course of COVID-19, indicating dramatic aggravation of pain intensity. However, the VAS score decreased spontaneously to pre-infection levels after 4 weeks of COVID-19 recovery (5.8 ± 1.1). The acute SARS-CoV-2 infection worsened the pre-existing neural root irritation symptomatology, which may be ascribed to SARS-CoV-2 radiculitis of neural roots already compressed by the previous disc herniation. These findings based on clinical observations indicate that the neurotropism of novel coronavirus infection can play an important role in the neural root irritation symptomatology deterioration in patients with chronic pre-existing lumbosacral radicular syndrome.
Collapse
Affiliation(s)
- Róbert Illéš
- Department of Neurosurgery, Slovak Medical University and University Hospital—St. Michael’s Hospital, Satinského 1, 811 08 Bratislava, Slovakia; (R.I.); (A.D.)
- Faculty of Medicine, Slovak Medical University in Bratislava, Limbová 12, 833 03 Bratislava, Slovakia
| | - Juraj Chochol
- Department of Neurosurgery, Slovak Medical University and University Hospital—St. Michael’s Hospital, Satinského 1, 811 08 Bratislava, Slovakia; (R.I.); (A.D.)
- Faculty of Medicine, Slovak Medical University in Bratislava, Limbová 12, 833 03 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-2-3261-2305
| | - Andrej Džubera
- Department of Neurosurgery, Slovak Medical University and University Hospital—St. Michael’s Hospital, Satinského 1, 811 08 Bratislava, Slovakia; (R.I.); (A.D.)
- Faculty of Medicine, Slovak Medical University in Bratislava, Limbová 12, 833 03 Bratislava, Slovakia
| | - Alica Chocholová
- Department of Paediatric Haematology and Oncology, National Institute of Children’s Diseases, Limbova 1, 833 40 Bratislava, Slovakia;
| | - Erika Zemková
- Department of Biological and Medical Sciences, Faculty of Physical Education and Sport, Comenius University in Bratislava, Nábrežie Armádneho Generála Ludvíka Svobodu 9, 814 69 Bratislava, Slovakia;
- Sports Technology Institute, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovičova 3, 812 19 Bratislava, Slovakia
- Faculty of Health Sciences, University of Ss. Cyril and Methodius in Trnava, Rázusova 14, 921 01 Trnava, Slovakia
| |
Collapse
|
135
|
Yavari A, Sharifan Z, Larijani B, Mosadegh Khah A. Central diabetes insipidus secondary to COVID-19 infection: a case report. BMC Endocr Disord 2022; 22:134. [PMID: 35590312 PMCID: PMC9117597 DOI: 10.1186/s12902-022-01048-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 05/10/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Novel coronavirus disease 2019 (COVID-19) mainly affects the lungs, but can involve several other organs. The diagnosis of acute and chronic sequelae is one of the challenges of COVID-19. The current literature proposes that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may involve the hypothalamic-pituitary axis. In this case report, we present a unique case of new-onset central diabetes insipidus secondary to the COVID-19 disease in a 54-year-old woman. CASE PRESENTATION A 54-year-old woman presented with the history of excessive thirst, polyuria, and polydipsia, six weeks after being infected by COVID-19. Laboratory tests revealed low urine osmolarity and increased serum osmolarity, and the patient was diagnosed with central diabetes insipidus. After administration of nasal desmopressin, urinary osmolarity increased, and the patient's symptoms improved. However, to stabilize her condition, desmopressin treatment was required. CONCLUSIONS We reported a unique case of diabetes insipidus in a COVID-19 patient. Central diabetes insipidus may be included in clinical manifestations of the COVID-19, in case of new-onset polyuria and polydipsia following COVID-19 disease. Nevertheless, a causal relationship has not been established between the symptoms of the patient and the SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ali Yavari
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Sharifan
- Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Mosadegh Khah
- Endocrinology Department, AJA University of Medical Science, Tehran, Iran.
| |
Collapse
|
136
|
Almayahi ZK, Raveendran AV, Al Malki R, Safwat A, Al Baloshi M, Abbas A, Al Salami AS, Al Mujaini SM, Al Dhuhli K, Al Mandhari S. Clinical features, laboratory characteristics and risk factors for mortality of COVID-19 patients in a secondary hospital in Oman during the first wave of the SARS-CoV-2 pandemic. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2022; 46:139. [PMID: 35601475 PMCID: PMC9108686 DOI: 10.1186/s42269-022-00825-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/04/2022] [Indexed: 05/12/2023]
Abstract
Background The changing epidemiological profile of the COVID-19 pandemic and the uncertain clinical picture of patients characterise this ongoing and most challenging health event. Objectives To report clinical features, laboratory characteristics, and mortality risk factors among COVID-19 patients admitted to a secondary hospital in Oman. Methods A retrospective study for the first 455 patients admitted with COVID-19 to Rustaq hospital from 12th April, 2020 to 27th September, 2020. A predesigned questionnaire collected data from the hospital medical electronic system. Results The mean age was 42.84 (SD = 19.86) years, and the majority of patients were aged 30 to 59 and 60 or above; 207 (45.5%) and 189 (41.5%), respectively. Male patients constituted approximately two-thirds of the subjects. Fever, dyspnea and cough were the most common presenting symptoms (69%, 66%, and 62%, respectively), while comorbidities with diabetes mellitus and hypertension were 47% and 44%, respectively. Bacterial growth was identified at approximately 10%. Bivariate analysis turned out to be significant with a number of factors. However, multivariate analysis showed significance with patients aged over 60 (OR = 7.15, 95% CI 1.99-25.63), dyspnea (OR = 2.83, 95% CI 1.5-5.33), dyslipidemia (OR = 1.93, 95% CI 1.02-3.66) and being bed-ridden (OR = 5.01, 95% CI 1.73-14.44). Durations from onset of symptoms to admission and respiratory distress were lower among patients who died; p = 0.024 and p = 0.001, respectively. Urea, Troponin and LDH may act as potential diagnostic biomarkers for severity or mortality. Conclusions This study identified groups of patients with a higher risk of mortality, with severe disturbance in the laboratory markers while some could act as potential diagnostic biomarkers.
Collapse
Affiliation(s)
- Zayid K. Almayahi
- Disease Surveillance and Control Department, Ministry of Health, P.O. Box 543, P.C 329 Rustaq, South Batinah Governorate Oman
| | - A. V. Raveendran
- Internal Medicine Department, Bader Al Samaa Hospital, Barka, Oman
| | - Rashid Al Malki
- Disease Surveillance and Control Department, Ministry of Health, P.O. Box 543, P.C 329 Rustaq, South Batinah Governorate Oman
| | - Amira Safwat
- Disease Surveillance and Control Department, Ministry of Health, P.O. Box 543, P.C 329 Rustaq, South Batinah Governorate Oman
| | - Muradjan Al Baloshi
- Disease Surveillance and Control Department, Ministry of Health, P.O. Box 543, P.C 329 Rustaq, South Batinah Governorate Oman
| | - Amal Abbas
- Disease Surveillance and Control Department, Ministry of Health, P.O. Box 543, P.C 329 Rustaq, South Batinah Governorate Oman
| | - Ahmed S. Al Salami
- Laboratory Department, Rustaq Hospital, Ministry of Health, Rustaq, Oman
| | - Sami M. Al Mujaini
- Disease Surveillance and Control Department, Ministry of Health, P.O. Box 543, P.C 329 Rustaq, South Batinah Governorate Oman
| | - Khalid Al Dhuhli
- Disease Surveillance and Control Department, Ministry of Health, P.O. Box 543, P.C 329 Rustaq, South Batinah Governorate Oman
| | - Said Al Mandhari
- Anesthesia Department, Rustaq Hospital, Ministry of Health, Rustaq, Oman
| |
Collapse
|
137
|
Diep PT, Chaudry M, Dixon A, Chaudry F, Kasabri V. Oxytocin, the panacea for long-COVID? a review. Horm Mol Biol Clin Investig 2022; 43:363-371. [DOI: 10.1515/hmbci-2021-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 03/12/2022] [Indexed: 11/15/2022]
Abstract
Abstract
Objectives
In this hypothesis paper we explore the underlying mechanisms for long-COVID and how the oxytocinergic neurones could be infected by SARS-CoV-2 leading to a reduction in plasma oxytocin (OXT). Furthermore, we aim to review the relevance of OXT and hypothalamic function in recovery from long-COVID symptoms and pathology, through exploring the pro-health effects of the OXT neuropeptide.
Methods
A review of published literature was surveyed using Google Scholar and PubMed.
Results
Numerous experimental data can be shown to correlate with OXT and long-COVID symptoms and conditions, thus providing strong circumstantial evidence to support our hypothesis. It is postulated that the reduction in plasma OXT due to acute and post-viral damage to the hypothalamus and oxytocinergic neurones contributes to the variable multi-system, remitting and relapsing nature of long-COVID. The intranasal route of OXT application was determined to be most appropriate and clinically relevant for the restoration of oxytocinergic function post COVID-19 infection.
Conclusions
We believe it is imperative to further investigate whether OXT alleviates the prolonged suffering of patients with long-COVID. Succinctly, OXT may be the much-needed post-pandemic panacea.
Collapse
Affiliation(s)
- Phuoc-Tan Diep
- Department of Pathology , NHS Foundation Trust - University Hospitals of Morecambe Bay , Kendal , UK
| | - Mohammed Chaudry
- Department of Pathology , NHS Foundation Trust - University Hospitals of Morecambe Bay , Kendal , UK
| | - Adam Dixon
- Institute of Psychiatry, Psychology & Neuroscience, King’s College London , London , UK
| | | | - Violet Kasabri
- School of Pharmacy , University of Jordan , Amman , Jordan
| |
Collapse
|
138
|
Ketenci S, Saraçoğlu İ, Duranay R, Elgörmüş ÇS, Aynacıoğlu AŞ. Retrospective analysis of biochemical markers in COVID-19 intensive care unit patients. THE EGYPTIAN JOURNAL OF BRONCHOLOGY 2022. [PMCID: PMC9100315 DOI: 10.1186/s43168-022-00129-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background The aim of the study was to evaluate the presence and effects of hematological and biological parameters in the diagnosis of the disease by performing blood tests on COVID-19 patients admitted to the intensive care unit (ICU). Results Biochemical parameters from the blood samples of 279 patients who were confirmed to have COVID-19 and met the criteria for admission to the ICU were compared between discharged and deceased patients. Multiple logistic regression analysis was performed in terms of mortality and probability of being discharged. The predictive value of serum C-reactive protein (CRP), procalcitonin (PCT), lymphocyte, neutrophil, leucocyte, and platelet (PLT) levels was evaluated by measuring the area under the receiver operating characteristic curve (AUROC). Comparisons made according to deceased and survival patients results revealed that while no statistically significant difference was observed between test groups lymphocyte and platelet-lymphocyte ratio values, statistically significant difference was found between the test groups regarding platelet, leukocyte, neutrophil, PCT, neutrophil-lymphocyte ratio (NLR), and thrombocyte count × neutrophil count/lymphocyte count (SII) values. Conclusions This study showed that biochemical parameters examined are important in determining the prognosis of the disease and may be useful in determining the direction of the treatment process and predicting the risk of discharge or death after the initial evaluation of the patients in the ICU.
Collapse
|
139
|
Ampie L, McGavern DB. Immunological defense of CNS barriers against infections. Immunity 2022; 55:781-799. [PMID: 35545028 PMCID: PMC9087878 DOI: 10.1016/j.immuni.2022.04.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 12/24/2022]
Abstract
Neuroanatomical barriers with physical, chemical, and immunological properties play an essential role in preventing the spread of peripheral infections into the CNS. A failure to contain pathogens within these barriers can result in very serious CNS diseases. CNS barriers are inhabited by an elaborate conglomerate of innate and adaptive immune cells that are highly responsive to environmental challenges. The CNS and its barriers can also be protected by memory T and B cells elicited by prior infection or vaccination. Here, we discuss the different CNS barriers from a developmental, anatomical, and immunological standpoint and summarize our current understanding of how memory cells protect the CNS compartment. We then discuss a contemporary challenge to CNS-barrier system (SARS-CoV-2 infection) and highlight approaches to promote immunological protection of the CNS via vaccination.
Collapse
Affiliation(s)
- Leonel Ampie
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Department of Surgical Neurology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
140
|
Wang SC, Zhang F, Zhu H, Yang H, Liu Y, Wang P, Parpura V, Wang YF. Potential of Endogenous Oxytocin in Endocrine Treatment and Prevention of COVID-19. Front Endocrinol (Lausanne) 2022; 13:799521. [PMID: 35592777 PMCID: PMC9110836 DOI: 10.3389/fendo.2022.799521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/14/2022] [Indexed: 01/09/2023] Open
Abstract
Coronavirus disease 2019 or COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a significant threat to the health of human beings. While wearing mask, maintaining social distance and performing self-quarantine can reduce virus spreading passively, vaccination actively enhances immune defense against COVID-19. However, mutations of SARS-CoV-2 and presence of asymptomatic carriers frustrate the effort of completely conquering COVID-19. A strategy that can reduce the susceptibility and thus prevent COVID-19 while blocking viral invasion and pathogenesis independent of viral antigen stability is highly desirable. In the pathogenesis of COVID-19, endocrine disorders have been implicated. Correspondingly, many hormones have been identified to possess therapeutic potential of treating COVID-19, such as estrogen, melatonin, corticosteroids, thyroid hormone and oxytocin. Among them, oxytocin has the potential of both treatment and prevention of COVID-19. This is based on oxytocin promotion of immune-metabolic homeostasis, suppression of inflammation and pre-existing comorbidities, acceleration of damage repair, and reduction of individuals' susceptibility to pathogen infection. Oxytocin may specifically inactivate SARS-COV-2 spike protein and block viral entry into cells via angiotensin-converting enzyme 2 by suppressing serine protease and increasing interferon levels and number of T-lymphocytes. In addition, oxytocin can promote parasympathetic outflow and the secretion of body fluids that could dilute and even inactivate SARS-CoV-2 on the surface of cornea, oral cavity and gastrointestinal tract. What we need to do now is clinical trials. Such trials should fully balance the advantages and disadvantages of oxytocin application, consider the time- and dose-dependency of oxytocin effects, optimize the dosage form and administration approach, combine oxytocin with inhibitors of SARS-CoV-2 replication, apply specific passive immunization, and timely utilize efficient vaccines. Meanwhile, blocking COVID-19 transmission chain and developing other efficient anti-SARS-CoV-2 drugs are also important. In addition, relative to the complex issues with drug applications over a long term, oxytocin can be mobilized through many physiological stimuli, and thus used as a general prevention measure. In this review, we explore the potential of oxytocin for treatment and prevention of COVID-19 and perhaps other similar pathogens.
Collapse
Affiliation(s)
- Stephani C. Wang
- Division of Cardiology, Department of Medicine, University of California-Irvine, Irvine, CA, United States
| | - Fengmin Zhang
- Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Hui Zhu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Haipeng Yang
- Neonatal Division of the Department of Pediatrics, Harbin Medical University The Fourth Affiliated Hospital, Harbin, China
| | - Yang Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Ping Wang
- Department of Genetics, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| |
Collapse
|
141
|
Pergolizzi JV, Raffa RB, Varrassi G, Magnusson P, LeQuang JA, Paladini A, Taylor R, Wollmuth C, Breve F, Chopra M, Nalamasu R, Christo PJ. Potential neurological manifestations of COVID-19: a narrative review. Postgrad Med 2022; 134:395-405. [PMID: 33089707 PMCID: PMC7799377 DOI: 10.1080/00325481.2020.1837503] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/13/2020] [Indexed: 01/08/2023]
Abstract
Neurological manifestations are increasingly reported in a subset of COVID-19 patients. Previous infections related to coronaviruses, namely Severe Acute Respiratory Syndrome (SARS) and Middle Eastern Respiratory Syndrome (MERS) also appeared to have neurological effects on some patients. The viruses associated with COVID-19 like that of SARS enters the body via the ACE-2 receptors in the central nervous system, which causes the body to balance an immune response against potential damage to nonrenewable cells. A few rare cases of neurological sequelae of SARS and MERS have been reported. A growing body of evidence is accumulating that COVID-19, particularly in severe cases, may have neurological consequences although respiratory symptoms nearly always develop prior to neurological ones. Patients with preexisting neurological conditions may be at elevated risk for COVID-19-associated neurological symptoms. Neurological reports in COVID-19 patients have described encephalopathy, Guillain-Barré syndrome, myopathy, neuromuscular disorders, encephalitis, cephalgia, delirium, critical illness polyneuropathy, and others. Treating neurological symptoms can pose clinical challenges as drugs that suppress immune response may be contraindicated in COVID-19 patients. It is possible that in some COVID-19 patients, neurological symptoms are being overlooked or misinterpreted. To date, neurological manifestations of COVID-19 have been described largely within the disease trajectory and the long-term effects of such manifestations remain unknown.
Collapse
Affiliation(s)
| | - Robert B. Raffa
- Temple University School of Pharmacy, Temple University, Philadelphia, PA, USA
- University of Arizona College of Pharmacy, Tucson, AZ, USA
| | | | - Peter Magnusson
- Centre for Research and Development, Region Gävleborg/Uppsala University, Gävle, Sweden
- Department of Medicine, Cardiology Research Unit, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | - Frank Breve
- NEMA Research, Inc., Naples, FL, USA
- Department of Pharmacy Practice, Temple University School of Pharmacy, Philadelphia, PA, USA
| | | | - Rohit Nalamasu
- Department of Physical Medicine and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, USA
| | - Paul J. Christo
- Division of Pain Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
142
|
Lyra E Silva NM, Barros-Aragão FGQ, De Felice FG, Ferreira ST. Inflammation at the crossroads of COVID-19, cognitive deficits and depression. Neuropharmacology 2022; 209:109023. [PMID: 35257690 PMCID: PMC8894741 DOI: 10.1016/j.neuropharm.2022.109023] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Natalia M Lyra E Silva
- Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada; Department of Psychiatry, Queen's University, Kingston, ON, Canada.
| | - Fernanda G Q Barros-Aragão
- D'OR Institute for Research & Education, RJ, Brazil; Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, RJ, Brazil.
| | - Fernanda G De Felice
- Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada; Department of Psychiatry, Queen's University, Kingston, ON, Canada; D'OR Institute for Research & Education, RJ, Brazil; Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, RJ, Brazil
| | - Sergio T Ferreira
- D'OR Institute for Research & Education, RJ, Brazil; Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, RJ, Brazil; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, RJ, Brazil
| |
Collapse
|
143
|
Wu M, Hu T, Zhu P, Nasser MI, Shen J, Sun F, He Q, Zhao M. Kidney organoids as a promising tool in nephrology. Genes Dis 2022; 9:585-597. [PMID: 35782972 PMCID: PMC9243316 DOI: 10.1016/j.gendis.2021.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 11/29/2022] Open
Abstract
Kidney disease has become a global public health problem affecting over 750 million people worldwide and imposing a heavy economic burden on patients. The complex architecture of the human kidney makes it very difficult to study the pathophysiology of renal diseases in vitro and to develop effective therapeutic options for patients. Even though cell lines and animal models have enriched our understanding, they fail to recapitulate key aspects of human kidney development and renal disease at cellular and functional levels. Organoids can be derived from either pluripotent stem cells or adult stem cells by strictly regulating key signalling pathways. Today, these self-differentiated organoids represent a promising technology to further understand the human kidney, one of the most complex organs, in an unprecedented way. The newly established protocols improved by organ-on-chip and coculture with immune cells will push kidney organoids towards the next generation. Herein, we focus on recent achievements in the application of kidney organoids in disease modelling, nephrotoxic testing, precision medicine, biobanking, and regenerative therapy, followed by discussions of novel strategies to improve their utility for biomedical research. The applications we discuss may help to provide new ideas in clinical fields.
Collapse
|
144
|
Crivelli L, Palmer K, Calandri I, Guekht A, Beghi E, Carroll W, Frontera J, García-Azorín D, Westenberg E, Winkler AS, Mangialasche F, Allegri RF, Kivipelto M. Changes in cognitive functioning after COVID-19: A systematic review and meta-analysis. Alzheimers Dement 2022; 18:1047-1066. [PMID: 35297561 PMCID: PMC9073922 DOI: 10.1002/alz.12644] [Citation(s) in RCA: 204] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 02/06/2023]
Abstract
Introduction We conducted a systematic review and meta‐analysis of the cognitive effects of coronavirus disease 2019 (COVID‐19) in adults with no prior history of cognitive impairment. Methods Searches in Medline/Web of Science/Embase from January 1, 2020, to December 13, 2021, were performed following Preferred Reporting Items for Systematic Reviews and Meta‐Analyses (PRISMA) guidelines. A meta‐analysis of the Montreal Cognitive Assessment (MoCA) total score comparing recovered COVID‐19 and healthy controls was performed. Results Oof 6202 articles, 27 studies with 2049 individuals were included (mean age = 56.05 years, evaluation time ranged from the acute phase to 7 months post‐infection). Impairment in executive functions, attention, and memory were found in post‐COVID‐19 patients. The meta‐analysis was performed with a subgroup of 290 individuals and showed a difference in MoCA score between post‐COVID‐19 patients versus controls (mean difference = −0.94, 95% confidence interval [CI] −1.59, −0.29; P = .0049). Discussion Patients recovered from COVID‐19 have lower general cognition compared to healthy controls up to 7 months post‐infection.
Collapse
Affiliation(s)
- Lucia Crivelli
- Department of Cognitive Neurology, Fleni, Buenos Aires, Argentina
| | - Katie Palmer
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,FINGERS Brain Health Institute, Stockholm, Sweden
| | - Ismael Calandri
- Department of Cognitive Neurology, Fleni, Buenos Aires, Argentina
| | - Alla Guekht
- Moscow Research and Clinical Center for Neuropsychiatry, Russia, and Pirogov Russian National Research University, Moscow, Russia
| | - Ettore Beghi
- Department of Neuroscience, Instituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - William Carroll
- Department of Neurology, Sir Charles Gairdner Hospital and Center for Neuromuscular and Neurological Disorders Perron Institute, Perth, Western Australia, Australia
| | - Jennifer Frontera
- Department of Neurology, NYU Grossman School of Medicine, New York, New York, USA
| | - David García-Azorín
- Department of Neurology, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Erica Westenberg
- Department of Neurology, Center for Global Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Andrea Sylvia Winkler
- Department of Neurology, Center for Global Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany and Centre for Global Health, Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Francesca Mangialasche
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,FINGERS Brain Health Institute, Stockholm, Sweden
| | - Ricardo F Allegri
- Department of Cognitive Neurology, Fleni, Buenos Aires, Argentina.,Department of Neurosciences, Universidad de la Costa, Barranquilla, Colombia
| | - Miia Kivipelto
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,FINGERS Brain Health Institute, Stockholm, Sweden.,Medical Unit Aging, Karolinska University Hospital, Stockholm, Sweden.,Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, United Kingdom.,Institute of Public Health and Clinical Nutrition and Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
145
|
Farzi R, Aghbash PS, Eslami N, Azadi A, Shamekh A, Hemmat N, Entezari-Maleki T, Baghi HB. The role of antigen-presenting cells in the pathogenesis of COVID-19. Pathol Res Pract 2022; 233:153848. [PMID: 35338971 PMCID: PMC8941975 DOI: 10.1016/j.prp.2022.153848] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023]
Abstract
Coronavirus Disease 2019 (COVID-19) is one of the three lethal coronavirus outbreaks in the recent two decades and a serious threat to global health all over the world. The principal feature of the COVID-19 infection is the so-called "cytokine storm" exaggerated molecular response to virus distribution, which plays massive tissue and organ injury roles. Immunological treatments, including monoclonal antibodies and vaccines, have been suggested as the main approaches in treating and preventing this disease. Therefore, a proper investigation of the roles of antigen-presenting cells (APCs) in the aforementioned immunological responses appears essential. The present review will provide detailed information about APCs' role in the infection and pathogenesis of SARS-CoV-2 and the effect of monoclonal antibodies in diagnosis and treatment.
Collapse
Affiliation(s)
- Rana Farzi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Shiri Aghbash
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Eslami
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezou Azadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shamekh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taher Entezari-Maleki
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
146
|
Reis D, Sartoretto SC, Calasans‐Maia MD, Louro RS, Moraschini V. Long‐term prevalence of taste and olfactory dysfunction in COVID‐19 patients: A cross‐sectional study. Oral Dis 2022; 28 Suppl 2:2516-2521. [PMID: 35491426 PMCID: PMC9348405 DOI: 10.1111/odi.14231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/07/2022] [Accepted: 04/25/2022] [Indexed: 11/27/2022]
Abstract
Objectives The objectives of the study were to investigate the long‐term prevalence of taste disorder (TD) and olfactory disorder (OD) and associated risk factors in the non‐hospitalized southeastern Brazil population of COVID‐19 patients. Methods This cross‐sectional open survey evaluated possible long‐term OD and TD in non‐hospitalized patients who had been diagnosed with COVID‐19 for more than 30 days, through an online self‐report questionnaire. Demographic data, comorbidities, symptoms, and the intensity of OD and TD at the time of diagnosis and at the time of completing the questionnaire were evaluated. Results Three hundred five responses were included. The reported prevalence of OD and TD was 72.9% and 67.4%, respectively, in the moment of diagnosis; after a mean follow‐up period of 179 days, 45% and 50% still had some degree of the symptoms. There was a positive correlation between age and the high prevalence of OD (p = 0.02). However, there was no correlation between age and TD (p = 0.961) and weight in relation to OD/TD (p = 0.500 and p = 0.636, respectively). Conclusion This study observed a high long‐term prevalence of OD and TD associated with COVID‐19, with a low recovery rate during the study period. There was a positive association between older participants and the prevalence of OD.
Collapse
Affiliation(s)
- Daiana Reis
- Department of Dental Research School of Dentistry Veiga de Almeida University Rio de Janeiro Brazil
| | - Suelen Cristina Sartoretto
- Department of Oral Surgery School of Dentistry Fluminense Federal University Niterói, Rio de Janeiro Brazil
| | | | - Rafael Seabra Louro
- Department of Oral Surgery School of Dentistry Fluminense Federal University Niterói, Rio de Janeiro Brazil
| | - Vittorio Moraschini
- Department of Dental Research School of Dentistry Veiga de Almeida University Rio de Janeiro Brazil
- Department of Oral Surgery School of Dentistry Fluminense Federal University Niterói, Rio de Janeiro Brazil
| |
Collapse
|
147
|
Abstract
Although the number of SARS-CoV-2 new cases may be declining due to the implementation of the vaccine in the USA, there is a rising cohort of people with long-term effects from the virus. These long-term effects include loss of taste, heart palpitations, and chronic pain syndromes. In this commentary, we assess the current literature to appraise the knowledge of long-term COVID-19 effects related to long-term pain syndromes including testicular pain, headache, chronic pain, and chest pain.
Collapse
Affiliation(s)
- Kenneth Fiala
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin, 600 Highland Avenue, Madison, WI, B6/319 CSC53792-3272, USA
| | - Joshua Martens
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin, 600 Highland Avenue, Madison, WI, B6/319 CSC53792-3272, USA
| | - Alaa Abd-Elsayed
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin, 600 Highland Avenue, Madison, WI, B6/319 CSC53792-3272, USA.
| |
Collapse
|
148
|
Park GC, Lee HW, Kim JM, Han JM, Kim HI, Shin SC, Cheon YI, Sung ES, Lee M, Lee JC, Shin DM, Lee BJ. ACE2 and TMPRSS2 Immunolocalization and COVID-19-Related Thyroid Disorder. BIOLOGY 2022; 11:697. [PMID: 35625425 PMCID: PMC9138641 DOI: 10.3390/biology11050697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022]
Abstract
Thyroid dysfunction has been reported to be an extrapulmonary symptom of COVID-19. It is important to identify the tissue subset that expresses angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2), which are essential for host infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in order to understand the viral pathogenesis of COVID-19-related thyroid dysfunction. We investigated the expression and distribution of ACE2- and TMPRSS2-expressing cells in the thyroid gland. RT-PCR and Western blotting were performed on human thyroid follicular cells (Nthy-ori3-1) and rat thyroid tissues to detect the expression levels of ACE and TMPRSS2 mRNA and proteins. We also analyzed the expression patterns of ACE2 and TMPRSS2 in 9 Sprague-Dawley rats and 15 human thyroid tissues, including 5 normal, 5 with Hashimoto's thyroiditis, and 5 with Graves' disease, by immunohistochemistry (IHC) and immunofluorescence. Both ACE2 and TMPRSS2 mRNAs and proteins were detected in the thyroid tissue. However, ACE2 and TMPRSS2 proteins were not expressed in thyroid follicular cells. In IHC, ACE2 and TMPRSS2 were not stained in the follicular cells. No cells co-expressed ACE2 and TMPRSS2. ACE2 was expressed in pericytes between follicles, and TMPRSS2 was mainly stained in the colloid inside the follicle. There was no difference in expression between the normal thyroid, Hashimoto's thyroiditis, and Graves' disease. SARS-CoV-2 does not directly invade the thyroid follicular cells. Whether SARS-CoV-2 infection of pericytes can affect COVID-19-related thyroid dysfunction warrants further study.
Collapse
Affiliation(s)
- Gi-Cheol Park
- Department of Otolaryngology—Head and Neck Surgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Korea; (G.-C.P.); (D.-M.S.)
| | - Hyoun-Wook Lee
- Department of Pathology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Korea;
| | - Ji-Min Kim
- Department of Otorhinolaryngology—Head and Neck Surgery, Pusan National University Hospital, Biomedical Research Institute, College of Medicine, Pusan National University, Busan 49241, Korea; (J.-M.K.); (S.-C.S.); (Y.-i.C.)
| | - Ji-Min Han
- Department of Medicine, Division of Endocrinology and Metabolism, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Korea; (J.-M.H.); (H.-I.K.)
| | - Hye-In Kim
- Department of Medicine, Division of Endocrinology and Metabolism, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Korea; (J.-M.H.); (H.-I.K.)
| | - Sung-Chan Shin
- Department of Otorhinolaryngology—Head and Neck Surgery, Pusan National University Hospital, Biomedical Research Institute, College of Medicine, Pusan National University, Busan 49241, Korea; (J.-M.K.); (S.-C.S.); (Y.-i.C.)
| | - Yong-il Cheon
- Department of Otorhinolaryngology—Head and Neck Surgery, Pusan National University Hospital, Biomedical Research Institute, College of Medicine, Pusan National University, Busan 49241, Korea; (J.-M.K.); (S.-C.S.); (Y.-i.C.)
| | - Eui-Suk Sung
- Department of Otorhinolaryngology—Head and Neck Surgery, Pusan National University Yangsan Hospital, Biomedical Research Institute, College of Medicine, Pusan National University, Yangsan 50612, Korea; (E.-S.S.); (M.L.); (J.-C.L.)
| | - Minhyung Lee
- Department of Otorhinolaryngology—Head and Neck Surgery, Pusan National University Yangsan Hospital, Biomedical Research Institute, College of Medicine, Pusan National University, Yangsan 50612, Korea; (E.-S.S.); (M.L.); (J.-C.L.)
| | - Jin-Choon Lee
- Department of Otorhinolaryngology—Head and Neck Surgery, Pusan National University Yangsan Hospital, Biomedical Research Institute, College of Medicine, Pusan National University, Yangsan 50612, Korea; (E.-S.S.); (M.L.); (J.-C.L.)
| | - Dong-Min Shin
- Department of Otolaryngology—Head and Neck Surgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Korea; (G.-C.P.); (D.-M.S.)
| | - Byung-Joo Lee
- Department of Otorhinolaryngology—Head and Neck Surgery, Pusan National University Hospital, Biomedical Research Institute, College of Medicine, Pusan National University, Busan 49241, Korea; (J.-M.K.); (S.-C.S.); (Y.-i.C.)
| |
Collapse
|
149
|
Effects and Causes of Detraining in Athletes Due to COVID-19: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095400. [PMID: 35564795 PMCID: PMC9102934 DOI: 10.3390/ijerph19095400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/23/2022]
Abstract
Several aspects of systemic alterations caused by the SARS-CoV-2 virus and the resultant COVID-19 disease have been currently explored in the general population. However, very little is known about these particular aspects in sportsmen and sportswomen. We believe that the most important element to take into account is the neuromuscular aspect, due to the implications that this system entails in motion execution and coordination. In this context, deficient neuromuscular control when performing dynamic actions can be an important risk factor for injury. Therefore, data in this review refer mainly to problems derived in the short term from athletes who have suffered this pathology, taking into account that COVID-19 is a very new disease and the presented data are still not conclusive. The review addresses two key aspects: performance alteration and the return to regular professional physical activity. COVID-19 causes metabolic-respiratory, muscular, cardiac, and neurological alterations that are accompanied by a situation of stress. All of these have a clear influence on performance but at the same time in the strategy of returning to optimal conditions to train and compete again after infection. From the clinical evidence, the resumption of physical training and sports activity should be carried out progressively, both in terms of time and intensity.
Collapse
|
150
|
Temerozo JR, Fintelman-Rodrigues N, Dos Santos MC, Hottz ED, Sacramento CQ, de Paula Dias da Silva A, Mandacaru SC, Dos Santos Moraes EC, Trugilho MRO, Gesto JSM, Ferreira MA, Saraiva FB, Palhinha L, Martins-Gonçalves R, Azevedo-Quintanilha IG, Abrantes JL, Righy C, Kurtz P, Jiang H, Tan H, Morel C, Bou-Habib DC, Bozza FA, Bozza PT, Souza TML. Human endogenous retrovirus K in the respiratory tract is associated with COVID-19 physiopathology. MICROBIOME 2022; 10:65. [PMID: 35459226 PMCID: PMC9024070 DOI: 10.1186/s40168-022-01260-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/15/2022] [Indexed: 05/04/2023]
Abstract
BACKGROUND Critically ill 2019 coronavirus disease (COVID-19) patients under invasive mechanical ventilation (IMV) are 10 to 40 times more likely to die than the general population. Although progression from mild to severe COVID-19 has been associated with hypoxia, uncontrolled inflammation, and coagulopathy, the mechanisms involved in the progression to severity are poorly understood. METHODS The virome of tracheal aspirates (TA) from 25 COVID-19 patients under IMV was assessed through unbiased RNA sequencing (RNA-seq), and correlation analyses were conducted using available clinical data. Unbiased sequences from nasopharyngeal swabs (NS) from mild cases and TA from non-COVID patients were included in our study for further comparisons. RESULTS We found higher levels and differential expression of human endogenous retrovirus K (HERV-K) genes in TA from critically ill and deceased patients when comparing nasopharyngeal swabs from mild cases to TA from non-COVID patients. In critically ill patients, higher HERV-K levels were associated with early mortality (within 14 days of diagnosis) in the intensive care unit. Increased HERV-K expression in deceased patients was associated with IL-17-related inflammation, monocyte activation, and an increased consumption of clotting/fibrinolysis factors. Moreover, increased HERV-K expression was detected in human primary monocytes from healthy donors after experimental SARS-CoV-2 infection in vitro. CONCLUSION Our data implicate the levels of HERV-K transcripts in the physiopathology of COVID-19 in the respiratory tract of patients under invasive mechanical ventilation. Video abstract.
Collapse
Affiliation(s)
- Jairo R Temerozo
- Laboratory on Thymus Research, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
- National Institute for Science and Technology on Neuroimmunomodulation (INCT/NIM), Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
- Center for Technological Development in Health (CDTS), National Institute for Science and Technology on Innovation on Disease Of Neglected Poppulations (INCT/IDPN), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Natalia Fintelman-Rodrigues
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
- Center for Technological Development in Health (CDTS), National Institute for Science and Technology on Innovation on Disease Of Neglected Poppulations (INCT/IDPN), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Monique Cristina Dos Santos
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Eugenio D Hottz
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
- Laboratory of Immunothrombosis, Department of Biochemistry, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
| | - Carolina Q Sacramento
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
- Center for Technological Development in Health (CDTS), National Institute for Science and Technology on Innovation on Disease Of Neglected Poppulations (INCT/IDPN), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Aline de Paula Dias da Silva
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
- Center for Technological Development in Health (CDTS), National Institute for Science and Technology on Innovation on Disease Of Neglected Poppulations (INCT/IDPN), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Samuel Coelho Mandacaru
- Center for Technological Development in Health (CDTS), National Institute for Science and Technology on Innovation on Disease Of Neglected Poppulations (INCT/IDPN), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
- Laboratory of Toxinology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Emilly Caroline Dos Santos Moraes
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
- Laboratory of Toxinology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Monique R O Trugilho
- Center for Technological Development in Health (CDTS), National Institute for Science and Technology on Innovation on Disease Of Neglected Poppulations (INCT/IDPN), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
- Laboratory of Toxinology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - João S M Gesto
- Center for Technological Development in Health (CDTS), National Institute for Science and Technology on Innovation on Disease Of Neglected Poppulations (INCT/IDPN), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Marcelo Alves Ferreira
- Center for Technological Development in Health (CDTS), National Institute for Science and Technology on Innovation on Disease Of Neglected Poppulations (INCT/IDPN), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Felipe Betoni Saraiva
- Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Lohanna Palhinha
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Remy Martins-Gonçalves
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | | | - Juliana L Abrantes
- Instituto de Ciências Biomédicas, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Cássia Righy
- Paulo Niemeyer State Brain Institute (IECPN), Rio de Janeiro, RJ, Brazil
- Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Pedro Kurtz
- Paulo Niemeyer State Brain Institute (IECPN), Rio de Janeiro, RJ, Brazil
- D'Or Institute for Research and Education, Rio de Janeiro, RJ, Brazil
| | - Hui Jiang
- MGI Tech Co. Ltd, Building No.11, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
| | - Hongdong Tan
- MGI Tech Co. Ltd, Building No.11, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
| | - Carlos Morel
- Center for Technological Development in Health (CDTS), National Institute for Science and Technology on Innovation on Disease Of Neglected Poppulations (INCT/IDPN), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Dumith Chequer Bou-Habib
- Laboratory on Thymus Research, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
- National Institute for Science and Technology on Neuroimmunomodulation (INCT/NIM), Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Fernando A Bozza
- Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
- D'Or Institute for Research and Education, Rio de Janeiro, RJ, Brazil
| | - Patrícia T Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Thiago Moreno L Souza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil.
- Center for Technological Development in Health (CDTS), National Institute for Science and Technology on Innovation on Disease Of Neglected Poppulations (INCT/IDPN), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|