101
|
Increased Mesenchymal Stem Cell Response and Decreased Staphylococcus aureus Adhesion on Titania Nanotubes without Pharmaceuticals. BIOMED RESEARCH INTERNATIONAL 2015; 2015:172898. [PMID: 26640782 PMCID: PMC4657074 DOI: 10.1155/2015/172898] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/20/2015] [Accepted: 10/20/2015] [Indexed: 12/18/2022]
Abstract
Titanium (Ti) implants with enhanced biocompatibility and antibacterial property are highly desirable and characterized by improved success rates. In this study, titania nanotubes (TNTs) with various tube diameters were fabricated on Ti surfaces through electrochemical anodization at 10, 30, and 60 V (denoted as NT10, NT30, and NT60, resp.). Ti was also investigated and used as a control. NT10 with a diameter of 30 nm could promote the adhesion and proliferation of bone marrow mesenchymal stem cells (BMSCs) without noticeable differentiation. NT30 with a diameter of 100 nm could support the adhesion and proliferation of BMSCs and induce osteogenesis. NT60 with a diameter of 200 nm demonstrated the best ability to promote cell spreading and osteogenic differentiation; however, it clearly impaired cell adhesion and proliferation. As the tube diameter increased, bacterial adhesion on the TNTs decreased and reached the lowest value on NT60. Therefore, NT30 without pharmaceuticals could be used to increase mesenchymal stem cell response and decrease Staphylococcus aureus adhesion and thus should be further studied for improving the efficacy of Ti-based orthopedic implants.
Collapse
|
102
|
Narendrakumar K, Kulkarni M, Addison O, Mazare A, Junkar I, Schmuki P, Sammons R, Iglič A. Adherence of oral streptococci to nanostructured titanium surfaces. Dent Mater 2015; 31:1460-8. [PMID: 26467718 DOI: 10.1016/j.dental.2015.09.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 07/15/2015] [Accepted: 09/21/2015] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Peri-implantitis and peri-mucositis pose a severe threat to the success of dental implants. Current research focuses on the development of surfaces that inhibit biofilm formation while not inferring with tissue integration. This study compared the adherence of two oral bacterial species, Streptococcus sanguinis and Streptococcus mutans to nanostructured titanium surfaces. METHODS The samples included TiO2 nanotubes formed by anodization of titanium foil of 100, 50 and 15nm diameter (NT15, NT50, NT100), a nanoporous (15nm pore diameter) surface and compact TiO2 control. Adherent surviving bacteria were enumerated after 1h in an artificial saliva medium containing bovine mucin. RESULTS Lowest numbers of adherent bacteria of both species were recovered from the original titanium foil and nanoporous surface and highest numbers from the Ti100 nanotubes. Numbers of attached S. sanguinis increased in the order (NT15<NT50<NT100), correlated with increasing percentage of surface fluoride. The lowest adhesion of S. sanguinis and S. mutans on TiO2 nanostructured surfaces was observed for small diameter nanoporous surfaces which coincides with the highest osteoblast adhesion on small diameter nanotubular/nanoporous surfaces shown in previous work. SIGNIFICANCE This study indicates that the adherence of oral streptococci can be modified by titanium anodization and nanotube diameter.
Collapse
Affiliation(s)
- Krunal Narendrakumar
- School of Dentistry, University of Birmingham, St Chad's Queensway, Birmingham B4 6NN, UK
| | - Mukta Kulkarni
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana SI-1000, Slovenia
| | - Owen Addison
- School of Dentistry, University of Birmingham, St Chad's Queensway, Birmingham B4 6NN, UK
| | - Anca Mazare
- Department of Materials Science and Engineering, Chair of Surface Science and Corrosion, University of Erlangen-Nuremberg, WW4-LKO, Erlangen, Germany
| | - Ita Junkar
- Jožef Stefan Institute, Jamova cesta 39, Ljubljana SI-1000, Slovenia
| | - Patrik Schmuki
- Department of Materials Science and Engineering, Chair of Surface Science and Corrosion, University of Erlangen-Nuremberg, WW4-LKO, Erlangen, Germany
| | - Rachel Sammons
- School of Dentistry, University of Birmingham, St Chad's Queensway, Birmingham B4 6NN, UK.
| | - Aleš Iglič
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana SI-1000, Slovenia
| |
Collapse
|
103
|
Hizal F, Zhuk I, Sukhishvili S, Busscher HJ, van der Mei HC, Choi CH. Impact of 3D Hierarchical Nanostructures on the Antibacterial Efficacy of a Bacteria-Triggered Self-Defensive Antibiotic Coating. ACS APPLIED MATERIALS & INTERFACES 2015; 7:20304-20313. [PMID: 26305913 DOI: 10.1021/acsami.5b05947] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Titanium is often applied in implant surgery, but frequently implicated in infections associated with bacterial adhesion and growth on the implant surface. Here, we show that hierarchical nanostructuring of titanium and the subsequent coating of resulting topographical features with a self-defensive, antibacterial layer-by-layer (LbL) film enables a synergistic action of hierarchical nanotopography and localized, bacteria-triggered antibiotic release to dramatically enhance the antibacterial efficiency of surfaces. Although sole nanostructuring of titanium substrates did not significantly affect adhesion and growth of Staphylococcus aureus, the coating of 3D-nanopillared substrates with an ultrathin tannic acid/gentamicin (TA/G) LbL film resulted in a 10-fold reduction of the number of surface-attached bacteria. This effect is attributed to the enlarged surface area of the nanostructured coating available for localized bacteria-triggered release of antibiotics, as well as to the lower bacterial adhesion forces resulting in subsided activation of bacterial antibiotic-defense mechanisms when bacteria land on nanopillar tips. The result shows that a combination of 3D nanostructuring with a bacteria-triggered antibiotic-releasing coating presents a unique way to dramatically enhance antibacterial efficacy of biomaterial implants.
Collapse
Affiliation(s)
- Ferdi Hizal
- Department of Biomedical Engineering (FB40), University of Groningen and University Medical Center Groningen , Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | - Henk J Busscher
- Department of Biomedical Engineering (FB40), University of Groningen and University Medical Center Groningen , Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Henny C van der Mei
- Department of Biomedical Engineering (FB40), University of Groningen and University Medical Center Groningen , Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | |
Collapse
|
104
|
Desrousseaux C, Cueff R, Aumeran C, Garrait G, Mailhot-Jensen B, Traoré O, Sautou V. Fabrication of Acrylonitrile-Butadiene-Styrene Nanostructures with Anodic Alumina Oxide Templates, Characterization and Biofilm Development Test for Staphylococcus epidermidis. PLoS One 2015; 10:e0135632. [PMID: 26284922 PMCID: PMC4540414 DOI: 10.1371/journal.pone.0135632] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/24/2015] [Indexed: 12/22/2022] Open
Abstract
Medical devices can be contaminated by microbial biofilm which causes nosocomial infections. One of the strategies for the prevention of such microbial adhesion is to modify the biomaterials by creating micro or nanofeatures on their surface. This study aimed (1) to nanostructure acrylonitrile-butadiene-styrene (ABS), a polymer composing connectors in perfusion devices, using Anodic Alumina Oxide templates, and to control the reproducibility of this process; (2) to characterize the physico-chemical properties of the nanostructured surfaces such as wettability using captive-bubble contact angle measurement technique; (3) to test the impact of nanostructures on Staphylococcus epidermidis biofilm development. Fabrication of Anodic Alumina Oxide molds was realized by double anodization in oxalic acid. This process was reproducible. The obtained molds present hexagonally arranged 50 nm diameter pores, with a 100 nm interpore distance and a length of 100 nm. Acrylonitrile-butadiene-styrene nanostructures were successfully prepared using a polymer solution and two melt wetting methods. For all methods, the nanopicots were obtained but inside each sample their length was different. One method was selected essentially for industrial purposes and for better reproducibility results. The flat ABS surface presents a slightly hydrophilic character, which remains roughly unchanged after nanostructuration, the increasing apparent wettability observed in that case being explained by roughness effects. Also, the nanostructuration of the polymer surface does not induce any significant effect on Staphylococcus epidermidis adhesion.
Collapse
Affiliation(s)
- Camille Desrousseaux
- Clermont Université, Université d’Auvergne, C-BIOSENSS, EA 4676, BP 10448, F-63000 Clermont-Ferrand, France
- Clermont Université, Université Blaise Pascal et Université d’Auvergne, LMGE, UMR CNRS 6023, F-63000 Clermont-Ferrand, France
| | - Régis Cueff
- Clermont Université, Université d’Auvergne, C-BIOSENSS, EA 4676, BP 10448, F-63000 Clermont-Ferrand, France
| | - Claire Aumeran
- Clermont Université, Université Blaise Pascal et Université d’Auvergne, LMGE, UMR CNRS 6023, F-63000 Clermont-Ferrand, France
- CHU Clermont-Ferrand, Service d’Hygiène Hospitalière, F-63003 Clermont-Ferrand, France
| | - Ghislain Garrait
- Clermont Université, Université d’Auvergne, CIDAM, EA 4678, BP 10448, F-63000 Clermont-Ferrand, France
| | - Bénédicte Mailhot-Jensen
- Clermont Université, Université d’Auvergne, C-BIOSENSS, EA 4676, BP 10448, F-63000 Clermont-Ferrand, France
| | - Ousmane Traoré
- Clermont Université, Université Blaise Pascal et Université d’Auvergne, LMGE, UMR CNRS 6023, F-63000 Clermont-Ferrand, France
- CHU Clermont-Ferrand, Service d’Hygiène Hospitalière, F-63003 Clermont-Ferrand, France
| | - Valérie Sautou
- Clermont Université, Université d’Auvergne, C-BIOSENSS, EA 4676, BP 10448, F-63000 Clermont-Ferrand, France
- CHU Clermont-Ferrand, Service Pharmacie, F-63003 Clermont-Ferrand, France
| |
Collapse
|
105
|
Gulati K, Kogawa M, Maher S, Atkins G, Findlay D, Losic D. Titania Nanotubes for Local Drug Delivery from Implant Surfaces. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/978-3-319-20346-1_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
106
|
Antibacterial Effects and Biocompatibility of Titania Nanotubes with Octenidine Dihydrochloride/Poly(lactic-co-glycolic acid). BIOMED RESEARCH INTERNATIONAL 2015; 2015:836939. [PMID: 26090449 PMCID: PMC4452295 DOI: 10.1155/2015/836939] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/11/2015] [Accepted: 03/13/2015] [Indexed: 01/20/2023]
Abstract
Titanium (Ti) implants with long-term antibacterial ability and good biocompatibility are highly desirable materials that can be used to prevent implant-associated infections. In this study, titania nanotubes (TNTs) were synthesized on Ti surfaces through electrochemical anodization. Octenidine dihydrochloride (OCT)/poly(lactic-co-glycolic acid) (PLGA) was infiltrated into TNTs using a simple solvent-casting technique. OCT/PLGA-TNTs demonstrated sustained drug release and maintained the characteristic hollow structures of TNTs. TNTs (200 nm in diameter) alone exhibited slight antibacterial effect and good osteogenic activity but also evidently impaired adhesion and proliferation of bone marrow mesenchymal stem cells (BMSCs). OCT/PLGA-TNTs (100 nm in diameter) supported BMSC adhesion and proliferation and showed good osteogenesis-inducing ability. OCT/PLGA-TNTs also exhibited good long-term antibacterial ability within the observation period of 7 d. The synthesized drug carrier with relatively long-term antibacterial ability and enhanced excellent biocompatibility demonstrated significant potential in bone implant applications.
Collapse
|
107
|
Lewandowska Ż, Piszczek P, Radtke A, Jędrzejewski T, Kozak W, Sadowska B. The evaluation of the impact of titania nanotube covers morphology and crystal phase on their biological properties. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:163. [PMID: 25791457 PMCID: PMC4366560 DOI: 10.1007/s10856-015-5495-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/24/2014] [Indexed: 06/04/2023]
Abstract
The highly ordered titanium dioxide nanotube coatings were produced under various electrochemical conditions on the surface of titanium foil. The anodization voltage changes proved to be a main factor which directly affects the nanotube morphology, structure, and wettability. Moreover we have noticed a significant dependence between the size and crystallinity of TiO2 layers and the adhesion/proliferation of fibroblasts and antimicrobial properties. Cellular functionality were investigated for up to 3 days in culture using a cell viability assay and scanning electron microscopy. In general, results of our studies revealed that fibroblasts adhesion, proliferation, and differentiation on the titania nanotube coatings is clearly higher than on the surface of the pure titanium foil. The formation of crystallic islands in the nanotubes structure induced a significant acceleration in the growth rate of fibroblasts cells by as much as ~200 %. Additionally, some types of TiO2 layers revealed the ability to the reduce of the staphylococcal aggregates/biofilm formation. The nanotube coatings formed during the anodization process using the voltage 4 V proved to be the stronger S. aureus aggregates/biofilm inhibitor in comparison to the uncovered titanium substrate. That accelerated eukaryotic cell growth and anti-biofilm activity is believed to be advantageous for faster cure of dental and orthopaedic patients, and also for a variety of biomedical diagnostic and therapeutic applications. The highly ordered titanium dioxide nanotube coatings were produced under various electrochemical conditions on the surface of titanium foil. The anodization voltage changes proved to be a main factor which directly affects the nanotube morphology, structure, and wettability. Moreover we have noticed a significant dependence between the size and crystallinity of TiO2 layers and the adhesion/proliferation of fibroblasts and antimicrobial properties.
Collapse
Affiliation(s)
- Żaneta Lewandowska
- Department of Inorganic and Coordination Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, ul. Gagarina 7, 87-100, Toruń, Poland,
| | | | | | | | | | | |
Collapse
|
108
|
Mohseni S, Aghayan M, Ghorani-Azam A, Behdani M, Asoodeh A. Evaluation of antibacterial properties of Barium Zirconate Titanate (BZT) nanoparticle. Braz J Microbiol 2015; 45:1393-9. [PMID: 25763046 PMCID: PMC4323315 DOI: 10.1590/s1517-83822014000400033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 06/06/2014] [Indexed: 12/22/2022] Open
Abstract
So far, the antibacterial activity of some organic and inorganic compounds has been studied. Barium zirconate titanate [Ba(ZrxTi₁-x)O₃] (x = 0.05) nanoparticle is an example of inorganic materials. In vitro studies have provided evidence for the antibacterial activity of this nanoparticle. In the current study, the nano-powder was synthesized by sol-gel method. X-ray diffraction showed that the powder was single-phase and had a perovskite structure at the calcination temperature of 1000 °C. Antibacterial activity of the desired nanoparticle was assessed on two gram-positive (Staphylococcus aureus PTCC1431 and Micrococcus luteus PTCC1625) and two gram-negative (Escherichia coli HP101BA 7601c and clinically isolated Klebsiella pneumoniae) bacteria according to Radial Diffusion Assay (RDA). The results showed that the antibacterial activity of BZT nano-powder on both gram-positive and gram-negative bacteria was acceptable. The minimum inhibitory concentration of this nano-powder was determined. The results showed that MIC values for E. coli, K. pneumoniae, M. luteus and S. aureus were about 2.3 μg/mL, 7.3 μg/mL, 3 μg/mL and 12 μg/mL, respectively. Minimum bactericidal concentration (MBC) was also evaluated and showed that the growth of E. coli, K. pneumoniae, M. luteus and S. aureus could be decreased at 2.3, 14, 3 and 18 μg/mL of BZT. Average log reduction in viable bacteria count in time-kill assay ranged between 6 Log₁₀ cfu/mL to zero after 24 h of incubation with BZT nanoparticle.
Collapse
Affiliation(s)
- Simin Mohseni
- Department of molecular biologyAhar branchIslamic Azad UniversityAharIranDepartment of molecular biology, Ahar branch, Islamic Azad University, Ahar, Iran.
| | - Mahdi Aghayan
- Department of Physics and Electro-CeramicFaculty of SciencesFerdowsi University of MashhadMashhadIranDepartment of Physics and Electro-Ceramic, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Adel Ghorani-Azam
- Medical Toxicology Research CenterSchool of MedicineMashhad University of Medical SciencesMashhadIranMedical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Behdani
- Department of Physics and Electro-CeramicFaculty of SciencesFerdowsi University of MashhadMashhadIranDepartment of Physics and Electro-Ceramic, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Ahmad Asoodeh
- Department of Chemistry and BiochemistryFaculty of SciencesFerdowsi University of MashhadMashhadIranDepartment of Chemistry and Biochemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
109
|
Kulkarni M, Mazare A, Gongadze E, Perutkova Š, Kralj-Iglič V, Milošev I, Schmuki P, Mozetič M. Titanium nanostructures for biomedical applications. NANOTECHNOLOGY 2015; 26:062002. [PMID: 25611515 DOI: 10.1088/0957-4484/26/6/062002] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Titanium and titanium alloys exhibit a unique combination of strength and biocompatibility, which enables their use in medical applications and accounts for their extensive use as implant materials in the last 50 years. Currently, a large amount of research is being carried out in order to determine the optimal surface topography for use in bioapplications, and thus the emphasis is on nanotechnology for biomedical applications. It was recently shown that titanium implants with rough surface topography and free energy increase osteoblast adhesion, maturation and subsequent bone formation. Furthermore, the adhesion of different cell lines to the surface of titanium implants is influenced by the surface characteristics of titanium; namely topography, charge distribution and chemistry. The present review article focuses on the specific nanotopography of titanium, i.e. titanium dioxide (TiO2) nanotubes, using a simple electrochemical anodisation method of the metallic substrate and other processes such as the hydrothermal or sol-gel template. One key advantage of using TiO2 nanotubes in cell interactions is based on the fact that TiO2 nanotube morphology is correlated with cell adhesion, spreading, growth and differentiation of mesenchymal stem cells, which were shown to be maximally induced on smaller diameter nanotubes (15 nm), but hindered on larger diameter (100 nm) tubes, leading to cell death and apoptosis. Research has supported the significance of nanotopography (TiO2 nanotube diameter) in cell adhesion and cell growth, and suggests that the mechanics of focal adhesion formation are similar among different cell types. As such, the present review will focus on perhaps the most spectacular and surprising one-dimensional structures and their unique biomedical applications for increased osseointegration, protein interaction and antibacterial properties.
Collapse
Affiliation(s)
- M Kulkarni
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana SI-1000, Slovenia. Department of Materials Science and Engineering, Chair of Surface Science and Corrosion, University of Erlangen-Nuremberg, WW4-LKO, Erlangen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Jin L, Guo W, Xue P, Gao H, Zhao M, Zheng C, Zhang Y, Han D. Quantitative assay for the colonization ability of heterogeneous bacteria on controlled nanopillar structures. NANOTECHNOLOGY 2015; 26:055702. [PMID: 25581320 DOI: 10.1088/0957-4484/26/5/055702] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The colonization ability of bacteria on biomaterial surfaces is influenced by the morphology of the bacteria and the nanotopography of the biomaterial. However, interactions between the bacterial morphology and nanotopography of biomaterials have not yet been completely elucidated. In this article, we quantitatively characterized the bacterial morphology to illuminate the integrated effects of polyethylene terephthalate (PET) nanopillar arrays on the colonization of bacteria cells with different shapes. Our results demonstrated that the interaction between interpillar spacing and the diameter of the bacterial cells impacted the number of bacterial cells that adhered to different PET substrates. The interpillar spacing of nanopillar arrays promotes bacterial adhesion in a definite range (<50 nm). However, further increasing the interpillar spacing inhibited the adhesion of bacteria to the nanopillar arrays. Moreover, the interpillar spacing also influenced the morphologies of adherent bacterial cells on the PET nanopillar arrays, which consequently facilitated bacterial adhesion to the nanopillar arrays. Our findings enhance the understanding of interactions between controlled nanotopography and bacterial colonization and provide an appropriate parameter for the design of antibacterial materials with nanotopography.
Collapse
Affiliation(s)
- Lin Jin
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China. National Center for Nanoscience and Technology, Beijing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Amrani S, Atwal A, Variola F. Modulating the elution of antibiotics from nanospongy titanium surfaces with a pH-sensitive coating. RSC Adv 2015. [DOI: 10.1039/c5ra18296d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fraction of vancomycin eluted at 3 different pHs from bare nanospongy titanium (left) and from nanospongy titanium coated with uncross-linked (center, CH:PEG) and cross-linked (right, CH:PEG + GEN) chitosan–poly(ethylene glycol.
Collapse
Affiliation(s)
- Selya Amrani
- Department of Mechanical Engineering
- University of Ottawa
- Canada
| | - Aman Atwal
- Department of Mechanical Engineering
- University of Ottawa
- Canada
- Department of Biopharmaceutical Sciences
- University of Ottawa
| | - Fabio Variola
- Department of Mechanical Engineering
- University of Ottawa
- Canada
- Department of Physics
- University of Ottawa
| |
Collapse
|
112
|
Shi X, Xu Q, Tian A, Tian Y, Xue X, Sun H, Yang H, Dong C. Antibacterial activities of TiO2 nanotubes on Porphyromonas gingivalis. RSC Adv 2015. [DOI: 10.1039/c5ra00804b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The potential impacts of TiO2 nanotubes on Porphyromonas gingivalis growth and drug resistance were investigated. TiO2 nanotubes antibacterial performance can be manipulated with the photocatalytic activity as well as the geometry characteristic.
Collapse
Affiliation(s)
- Xiaoguo Shi
- College of Materials and Metallurgy
- Northeastern University
- Shenyang 110819
- China
| | - Quan Xu
- State Key Laboratory of Heavy Oil Processing
- Institute of New Energy
- China University of Petroleum
- Beijing 102249
- China
| | - Ang Tian
- College of Materials and Metallurgy
- Northeastern University
- Shenyang 110819
- China
| | - Yulou Tian
- School of Stomatology
- Hospital of Stomatology
- China Medical University
- Shenyang 110001
- China
| | - Xiangxin Xue
- College of Materials and Metallurgy
- Northeastern University
- Shenyang 110819
- China
| | - Hongjing Sun
- School of Stomatology
- Hospital of Stomatology
- China Medical University
- Shenyang 110001
- China
| | - He Yang
- College of Materials and Metallurgy
- Northeastern University
- Shenyang 110819
- China
| | - Chenbo Dong
- Department of Civil and Environmental Engineering
- Rice University
- Houston
- USA
| |
Collapse
|
113
|
Salou L, Hoornaert A, Louarn G, Layrolle P. Enhanced osseointegration of titanium implants with nanostructured surfaces: an experimental study in rabbits. Acta Biomater 2015; 11:494-502. [PMID: 25449926 DOI: 10.1016/j.actbio.2014.10.017] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/15/2014] [Accepted: 10/15/2014] [Indexed: 01/11/2023]
Abstract
Titanium and its alloys are commonly used for dental implants because of their good mechanical properties and biocompatibility. The surface properties of titanium implants are key factors for rapid and stable bone tissue integration. Micro-rough surfaces are commonly prepared by grit-blasting and acid-etching. However, proteins and cells interact with implant surfaces in the nanometer range. The aim of this study was to compare the osseointegration of machined (MA), standard alumina grit-blasted and acid-etched (MICRO) and nanostructured (NANO) implants in rabbit femurs. The MICRO surface exhibited typical random cavities with an average roughness of 1.5 μm, while the NANO surface consisted of a regular array of titanium oxide nanotubes 37±11 nm in diameter and 160 nm thick. The MA and NANO surfaces had a similar average roughness of 0.5 μm. The three groups of implants were inserted into the femoral condyles of New Zealand White rabbits. After 4 weeks, the pull-out test gave higher values for the NANO than for the other groups. Histology corroborated a direct apposition of bone tissue on to the NANO surface. Both the bone-to-implant contact and bone growth values were higher for the NANO than for the other implant surfaces. Overall, this study shows that the nanostructured surface improved the osseointegration of titanium implants and may be an alternative to conventional grit-blasted and acid-etched surface treatments.
Collapse
Affiliation(s)
- Laëtitia Salou
- Inserm UMR957, Laboratory of Pathophysiology of Bone Resorption, Faculty of Medicine, University of Nantes, Nantes, France; CNRS-Institute of Materials, University of Nantes, Nantes, France; Biomedical Tissues, Nantes, France
| | - Alain Hoornaert
- CHU Nantes, Faculty of Dental Surgery, University of Nantes, Nantes, France
| | | | - Pierre Layrolle
- CNRS-Institute of Materials, University of Nantes, Nantes, France.
| |
Collapse
|
114
|
Abstract
Recent progress in surface science, nanotechnology and biophysics has cast new light on the correlation between the physicochemical properties of biomaterials and the resulting biological response. One experimental tool that promises to generate an increasingly more sophisticated knowledge of how proteins, cells and bacteria interact with nanostructured surfaces is the atomic force microscope (AFM). This unique instrument permits to close in on interfacial events at the scale at which they occur, the nanoscale. This perspective covers recent developments in the exploitation of the AFM, and suggests insights on future opportunities that can arise from the exploitation of this powerful technique.
Collapse
Affiliation(s)
- Fabio Variola
- Faculty of Engineering, Department of Mechanical Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
115
|
Lü WL, Wang N, Gao P, Li CY, Zhao HS, Zhang ZT. Effects of anodic titanium dioxide nanotubes of different diameters on macrophage secretion and expression of cytokines and chemokines. Cell Prolif 2014; 48:95-104. [PMID: 25521217 DOI: 10.1111/cpr.12149] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 08/21/2014] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES To investigate effects of TiO2 nanotubes of different diameters on J744A.1 macrophage behaviour, secretion and expression of pro-inflammatory cytokines and chemokines. MATERIALS AND METHODS Macrophage-like J744A.1 cells were cultured on three types of Ti surface: mechanically polished titanium plus 30 and 80 nm TiO2 nanotube surfaces, for 4, 24 and 48 h. Macrophage adhesion and proliferation were assessed using CCK-8 assay. Levels of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) and chemokines (MCP-1 and MIP-1α) secreted into the supernatant were measured using the Cytometric Bead Arrays kit. TNF-α, MCP-1 and MIP-1α gene expression were quantitatively analysed by real-time PCR. RESULTS These show that TiO2 nanotube surfaces, especially of 80 nm TiO2 nanotube, benefited macrophage adhesion and proliferation, and reduced protein secretion and mRNA expression of TNF-α, MCP-1 and MIP-1α. IL-1β and IL-6 were undetectable on all the surfaces at all times. CONCLUSIONS TiO2 nanotube surfaces, especially of 80 nm TiO2 nanotube, reduced inflammatory response in vitro, which might be part of a basis for rapid osseointegration in implants with TiO2 nanotube surfaces in animal studies.
Collapse
Affiliation(s)
- W L Lü
- School of Stomatology, Capital Medical University, Beijing, 100050, China; Hospital and School of Stomatology, Tianjin Medical University, Tianjin, 300070, China
| | | | | | | | | | | |
Collapse
|
116
|
Losic D, Aw MS, Santos A, Gulati K, Bariana M. Titania nanotube arrays for local drug delivery: recent advances and perspectives. Expert Opin Drug Deliv 2014; 12:103-27. [DOI: 10.1517/17425247.2014.945418] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
117
|
Qian S, Qiao Y, Liu X. Selective biofunctional modification of titanium implants for osteogenic and antibacterial applications. J Mater Chem B 2014; 2:7475-7487. [DOI: 10.1039/c4tb00973h] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
118
|
Lee K, Mazare A, Schmuki P. One-dimensional titanium dioxide nanomaterials: nanotubes. Chem Rev 2014; 114:9385-454. [PMID: 25121734 DOI: 10.1021/cr500061m] [Citation(s) in RCA: 520] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Kiyoung Lee
- Department of Materials Science WW4-LKO, University of Erlangen-Nuremberg , Martensstrasse 7, 91058 Erlangen, Germany
| | | | | |
Collapse
|
119
|
Ni S, Li C, Ni S, Chen T, Webster TJ. Understanding improved osteoblast behavior on select nanoporous anodic alumina. Int J Nanomedicine 2014; 9:3325-34. [PMID: 25045263 PMCID: PMC4099197 DOI: 10.2147/ijn.s60346] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The aim of this study was to prepare different sized porous anodic alumina (PAA) and examine preosteoblast (MC3T3-E1) attachment and proliferation on such nanoporous surfaces. In this study, PAA with tunable pore sizes (25 nm, 50 nm, and 75 nm) were fabricated by a two-step anodizing procedure in oxalic acid. The surface morphology and elemental composition of PAA were characterized by field emission scanning electron microscopy and X-ray photoelectron spectroscopy analysis. The nanopore arrays on all of the PAA samples were highly regular. X-ray photoelectron spectroscopy analysis suggested that the chemistry of PAA and flat aluminum surfaces were similar. However, contact angles were significantly greater on all of the PAA compared to flat aluminum substrates, which consequently altered protein adsorption profiles. The attachment and proliferation of preosteoblasts were determined for up to 7 days in culture using field emission scanning electron microscopy and a Cell Counting Kit-8. Results showed that nanoporous surfaces did not enhance initial preosteoblast attachment, whereas preosteoblast proliferation dramatically increased when the PAA pore size was either 50 nm or 75 nm compared to all other samples (P<0.05). Thus, this study showed that one can alter surface energy of aluminum by modifying surface nano-roughness alone (and not changing chemistry) through an anodization process to improve osteoblast density, and, thus, should be further studied as a bioactive interface for orthopedic applications.
Collapse
Affiliation(s)
- Siyu Ni
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, People's Republic of China
| | - Changyan Li
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, People's Republic of China
| | - Shirong Ni
- Department of Pathophysiology, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Ting Chen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, People's Republic of China
| | - Thomas J Webster
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, USA ; Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
120
|
Ketabchi A, Weck A, Variola F. Influence of oxidative nanopatterning and anodization on the fatigue resistance of commercially pure titanium and Ti–6Al–4V. J Biomed Mater Res B Appl Biomater 2014; 103:563-71. [DOI: 10.1002/jbm.b.33227] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 03/31/2014] [Accepted: 05/22/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Amirhossein Ketabchi
- Department of Mechanical EngineeringUniversity of OttawaOttawa Ontario CanadaK1N 6N5
| | - Arnaud Weck
- Department of Mechanical EngineeringUniversity of OttawaOttawa Ontario CanadaK1N 6N5
- Department of PhysicsUniversity of OttawaOttawa Ontario CanadaK1N 6N5
| | - Fabio Variola
- Department of Mechanical EngineeringUniversity of OttawaOttawa Ontario CanadaK1N 6N5
- Department of PhysicsUniversity of OttawaOttawa Ontario CanadaK1N 6N5
| |
Collapse
|
121
|
Variola F, Zalzal SF, Leduc A, Barbeau J, Nanci A. Oxidative nanopatterning of titanium generates mesoporous surfaces with antimicrobial properties. Int J Nanomedicine 2014; 9:2319-25. [PMID: 24872694 PMCID: PMC4026557 DOI: 10.2147/ijn.s61333] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Mesoporous surfaces generated by oxidative nanopatterning have the capacity to selectively regulate cell behavior, but their impact on microorganisms has not yet been explored. The main objective of this study was to test the effects of such surfaces on the adherence of two common bacteria and one yeast strain that are responsible for nosocomial infections in clinical settings and biomedical applications. In addition, because surface characteristics are known to affect bacterial adhesion, we further characterized the physicochemical properties of the mesoporous surfaces. Focused ion beam (FIB) was used to generate ultrathin sections for elemental analysis by energy-dispersive X-ray spectroscopy (EDS), nanobeam electron diffraction (NBED), and high-angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) imaging. The adherence of Staphylococcus aureus, Escherichia coli and Candida albicans onto titanium disks with mesoporous and polished surfaces was compared. Disks with the two surfaces side-by-side were also used for direct visual comparison. Qualitative and quantitative results from this study indicate that bacterial adhesion is significantly hindered by the mesoporous surface. In addition, we provide evidence that it alters structural parameters of C. albicans that determine its invasiveness potential, suggesting that microorganisms can sense and respond to the mesoporous surface. Our findings demonstrate the efficiency of a simple chemical oxidative treatment in generating nanotextured surfaces with antimicrobial capacity with potential applications in the implant manufacturing industry and hospital setting.
Collapse
Affiliation(s)
- Fabio Variola
- Faculty of Engineering, Department of Mechanical Engineering, Ottawa, ON, Canada ; Faculty of Science, Department of Physics, University of Ottawa, Ottawa, ON, Canada
| | | | - Annie Leduc
- Faculty of Dental Medicine, Université de Montréal, Montreal, QC, Canada
| | - Jean Barbeau
- Faculty of Dental Medicine, Université de Montréal, Montreal, QC, Canada
| | - Antonio Nanci
- Faculty of Dental Medicine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
122
|
Hamlekhan A, Butt A, Patel S, Royhman D, Takoudis C, Sukotjo C, Yuan J, Jursich G, Mathew MT, Hendrickson W, Virdi A, Shokuhfar T. Fabrication of anti-aging TiO2 nanotubes on biomedical Ti alloys. PLoS One 2014; 9:e96213. [PMID: 24788345 PMCID: PMC4008568 DOI: 10.1371/journal.pone.0096213] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/04/2014] [Indexed: 11/30/2022] Open
Abstract
The primary objective of this study was to fabricate a TiO2 nanotubular surface, which could maintain hydrophilicity over time (resist aging). In order to achieve non-aging hydrophilic surfaces, anodization and annealing conditions were optimized. This is the first study to show that anodization and annealing condition affect the stability of surface hydrophilicity. Our results indicate that maintenance of hydrophilicity of the obtained TiO2 nanotubes was affected by anodization voltage and annealing temperature. Annealing sharply decreased the water contact angle (WCA) of the as-synthesized TiO2 nanotubular surface, which was correlated to improved hydrophilicity. TiO2 nanotubular surfaces are transformed to hydrophilic surfaces after annealing, regardless of annealing and anodization conditions; however, WCA measurements during aging demonstrate that surface hydrophilicity of non-anodized and 20 V anodized samples decreased after only 11 days of aging, while the 60 V anodized samples maintained their hydrophilicity over the same time period. The nanotubes obtained by 60 V anodization followed by 600 °C annealing maintained their hydrophilicity significantly longer than nanotubes which were obtained by 60 V anodization followed by 300 °C annealing.
Collapse
Affiliation(s)
- Azhang Hamlekhan
- Department of Mechanical Engineering–Engineering Mechanics, Multi-Scale Technologies Institute, Michigan Technological University, Houghton, Michigan, United States of America
| | - Arman Butt
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Sweetu Patel
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Dmitry Royhman
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Christos Takoudis
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Cortino Sukotjo
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Judy Yuan
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Gregory Jursich
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Mathew T. Mathew
- Department of Orthopedics, Rush University Medical Center, Chicago, Illinois, United States of America
| | - William Hendrickson
- Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Amarjit Virdi
- Department of Anatomy and Cell Biology, Orthopedic Surgery, Rush University, Chicago, Illinois, United States of America
| | - Tolou Shokuhfar
- Department of Mechanical Engineering–Engineering Mechanics, Multi-Scale Technologies Institute, Michigan Technological University, Houghton, Michigan, United States of America
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
123
|
Mathew D, Bhardwaj G, Wang Q, Sun L, Ercan B, Geetha M, Webster TJ. Decreased Staphylococcus aureus and increased osteoblast density on nanostructured electrophoretic-deposited hydroxyapatite on titanium without the use of pharmaceuticals. Int J Nanomedicine 2014; 9:1775-81. [PMID: 24748789 PMCID: PMC3986289 DOI: 10.2147/ijn.s55733] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Plasma-spray deposition of hydroxyapatite on titanium (Ti) has proven to be a suboptimal solution to improve orthopedic-implant success rates, as demonstrated by the increasing number of orthopedic revision surgeries due to infection, implant loosening, and a myriad of other reasons. This could be in part due to the high heat involved during plasma-spray deposition, which significantly increases hydroxyapatite crystal growth into the nonbiologically inspired micron regime. There has been a push to create nanotopographies on implant surfaces to mimic the physiological nanostructure of native bone and, thus, improve osteoblast (bone-forming cell) functions and inhibit bacteria functions. Among the several techniques that have been adopted to develop nanocoatings, electrophoretic deposition (EPD) is an attractive, versatile, and effective material-processing technique. OBJECTIVE The in vitro study reported here aimed to determine for the first time bacteria responses to hydroxyapatite coated on Ti via EPD. RESULTS There were six and three times more osteoblasts on the electrophoretic-deposited hydroxyapatite on Ti compared with Ti (control) and plasma-spray-deposited hydroxyapatite on Ti after 5 days of culture, respectively. Impressively, there were 2.9 and 31.7 times less Staphylococcus aureus on electrophoretic-deposited hydroxyapatite on Ti compared with Ti (control) and plasma-spray-deposited hydroxyapatite on Ti after 18 hours of culture, respectively. CONCLUSION Compared with uncoated Ti and plasma-sprayed hydroxyapatite coated on Ti, the results provided significant promise for the use of EPD to improve bone-cell density and be used as an antibacterial coating without resorting to the use of antibiotics.
Collapse
Affiliation(s)
- Dennis Mathew
- Department of Biomedical Engineering, VIT University, Vellore, Tamil Nadu, India
| | - Garima Bhardwaj
- Department of Biomedical Engineering, VIT University, Vellore, Tamil Nadu, India ; Centre for Biomaterials Science and Technology, School of Mechanical and Building Sciences, VIT University, Vellore, Tamil Nadu, India
| | - Qi Wang
- Department of Chemical Engineering and Program in Bioengineering, Northeastern University, Boston, MA, USA
| | - Linlin Sun
- Department of Chemical Engineering and Program in Bioengineering, Northeastern University, Boston, MA, USA
| | - Batur Ercan
- Department of Chemical Engineering and Program in Bioengineering, Northeastern University, Boston, MA, USA
| | - Manisavagam Geetha
- Department of Biomedical Engineering, VIT University, Vellore, Tamil Nadu, India
| | - Thomas J Webster
- Department of Chemical Engineering and Program in Bioengineering, Northeastern University, Boston, MA, USA ; Center of Excellence for Advanced Materials Research, University of King Abdulaziz, Jeddah, Saudi Arabia
| |
Collapse
|
124
|
Elizabeth E, Baranwal G, Krishnan AG, Menon D, Nair M. ZnO nanoparticle incorporated nanostructured metallic titanium for increased mesenchymal stem cell response and antibacterial activity. NANOTECHNOLOGY 2014; 25:115101. [PMID: 24561517 DOI: 10.1088/0957-4484/25/11/115101] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Recent trends in titanium implants are towards the development of nanoscale topographies that mimic the nanoscale properties of bone tissue. Although the nanosurface promotes the integration of osteoblast cells, infection related problems can also occur, leading to implant failure. Therefore it is imperative to reduce bacterial adhesion on an implant surface, either with or without the use of drugs/antibacterial agents. Herein, we have investigated two different aspects of Ti surfaces in inhibiting bacterial adhesion and concurrently promoting mammalian cell adhesion. These include (i) the type of nanoscale topography (Titania nanotube (TNT) and Titania nanoleaf (TNL)) and (ii) the presence of an antibacterial agent like zinc oxide nanoparticles (ZnOnp) on Ti nanosurfaces. To address this, periodically arranged TNT (80-120 nm) and non-periodically arranged TNL surfaces were generated by the anodization and hydrothermal techniques respectively, and incorporated with ZnOnp of different concentrations (375 μM, 750 μM, 1.125 mM and 1.5 mM). Interestingly, TNL surfaces decreased the adherence of staphylococcus aureus while increasing the adhesion and viability of human osteosarcoma MG63 cell line and human mesenchymal stem cells, even in the absence of ZnOnp. In contrast, TNT surfaces exhibited an increased bacterial and mammalian cell adhesion. The influence of ZnOnp on these surfaces in altering the bacterial and cell adhesion was found to be concentration dependent, with an optimal range of 375-750 μM. Above 750 μM, although bacterial adhesion was reduced, cellular viability was considerably affected. Thus our study helps us to infer that nanoscale topography by itself or its combination with an optimal concentration of antibacterial ZnOnp would provide a differential cell behavior and thereby a desirable biological response, facilitating the long term success of an implant.
Collapse
Affiliation(s)
- Elmy Elizabeth
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Science and Research Center Campus, Amrita Vishwa Vidyapeetham University, Cochin, Kerala 682041, India
| | | | | | | | | |
Collapse
|
125
|
Ni S, Sun L, Ercan B, Liu L, Ziemer K, Webster TJ. A mechanism for the enhanced attachment and proliferation of fibroblasts on anodized 316L stainless steel with nano-pit arrays. J Biomed Mater Res B Appl Biomater 2014; 102:1297-303. [DOI: 10.1002/jbm.b.33127] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/24/2014] [Accepted: 02/10/2014] [Indexed: 01/31/2023]
Affiliation(s)
- Siyu Ni
- College of Chemistry, Chemical Engineering and Biotechnology; Donghua University; Shanghai 201620 China
- Department of Chemical Engineering, College of Engineering; Northeastern University; Boston Massachusetts
| | - Linlin Sun
- Department of Chemical Engineering, College of Engineering; Northeastern University; Boston Massachusetts
| | - Batur Ercan
- Department of Chemical Engineering, College of Engineering; Northeastern University; Boston Massachusetts
| | - Luting Liu
- Department of Chemical Engineering, College of Engineering; Northeastern University; Boston Massachusetts
| | - Katherine Ziemer
- Department of Chemical Engineering, College of Engineering; Northeastern University; Boston Massachusetts
| | - Thomas J. Webster
- Department of Chemical Engineering, College of Engineering; Northeastern University; Boston Massachusetts
- Center of Excellence for Advanced Materials Research; King Abdulaziz University; Jeddah 21589 Saudi Arabia
| |
Collapse
|
126
|
Lin WT, Tan HL, Duan ZL, Yue B, Ma R, He G, Tang TT. Inhibited bacterial biofilm formation and improved osteogenic activity on gentamicin-loaded titania nanotubes with various diameters. Int J Nanomedicine 2014; 9:1215-30. [PMID: 24634583 PMCID: PMC3952900 DOI: 10.2147/ijn.s57875] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Titania nanotubes loaded with antibiotics can deliver a high concentration of antibiotics locally at a specific site, thereby providing a promising strategy to prevent implant-associated infections. In this study we have fabricated titania nanotubes with various diameters (80, 120, 160, and 200 nm) and 200 nm length via electrochemical anodization. These nanotubes were loaded with 2 mg of gentamicin using a lyophilization method and vacuum drying. A standard strain, Staphylococcus epidermidis (American Type Culture Collection 35984), and two clinical isolates, S. aureus 376 and S. epidermidis 389, were selected to investigate the anti-infective ability of the gentamicin-loaded nanotubes (NT-G). Flat titanium (FlatTi) and nanotubes with no drug loading (NT) were also investigated and compared. We found that NT-G could significantly inhibit bacterial adhesion and biofilm formation compared to FlatTi or NT, and the NT-G with 160 nm and 200 nm diameters had stronger antibacterial activity because of the extended drug release time of NT-G with larger diameters. The NT also exhibited greater antibacterial ability than the FlatTi, while nanotubes with 80 nm or 120 nm diameters had better effects. Furthermore, human marrow derived mesenchymal stem cells were used to evaluate the effect of nanotubular topographies on the osteogenic differentiation of mesenchymal stem cells. Our results showed that NT-G and NT, especially those with 80 nm diameters, significantly promoted cell attachment, proliferation, spreading, and osteogenic differentiation when compared to FlatTi, and there was no significant difference between NT-G and NT with the same diameter. Therefore, nanotube modification and gentamicin loading can significantly improve the antibacterial ability and osteogenic activity of orthopedic implants.
Collapse
Affiliation(s)
- Wen-tao Lin
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Hong-lue Tan
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zhao-ling Duan
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Bing Yue
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Rui Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Guo He
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ting-ting Tang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
127
|
Svensson S, Forsberg M, Hulander M, Vazirisani F, Palmquist A, Lausmaa J, Thomsen P, Trobos M. Role of nanostructured gold surfaces on monocyte activation and Staphylococcus epidermidis biofilm formation. Int J Nanomedicine 2014; 9:775-94. [PMID: 24550671 PMCID: PMC3925225 DOI: 10.2147/ijn.s51465] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The role of material surface properties in the direct interaction with bacteria and the indirect route via host defense cells is not fully understood. Recently, it was suggested that nanostructured implant surfaces possess antimicrobial properties. In the current study, the adhesion and biofilm formation of Staphylococcus epidermidis and human monocyte adhesion and activation were studied separately and in coculture in different in vitro models using smooth gold and well-defined nanostructured gold surfaces. Two polystyrene surfaces were used as controls in the monocyte experiments. Fluorescent viability staining demonstrated a reduction in the viability of S. epidermidis close to the nanostructured gold surface, whereas the smooth gold correlated with more live biofilm. The results were supported by scanning electron microscopy observations, showing higher biofilm tower formations and more mature biofilms on smooth gold compared with nanostructured gold. Unstimulated monocytes on the different substrates demonstrated low activation, reduced gene expression of pro- and anti-inflammatory cytokines, and low cytokine secretion. In contrast, stimulation with opsonized zymosan or opsonized live S. epidermidis for 1 hour significantly increased the production of reactive oxygen species, the gene expression of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and IL-10, as well as the secretion of TNF-α, demonstrating the ability of the cells to elicit a response and actively phagocytose prey. In addition, cells cultured on the smooth gold and the nanostructured gold displayed a different adhesion pattern and a more rapid oxidative burst than those cultured on polystyrene upon stimulation. We conclude that S. epidermidis decreased its viability initially when adhering to nanostructured surfaces compared with smooth gold surfaces, especially in the bacterial cell layers closest to the surface. In contrast, material surface properties neither strongly promoted nor attenuated the activity of monocytes when exposed to zymosan particles or S. epidermidis.
Collapse
Affiliation(s)
- Sara Svensson
- Department of Biomaterials, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden ; BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| | - Magnus Forsberg
- Department of Biomaterials, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden ; BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| | - Mats Hulander
- Department of Biomaterials, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden ; BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| | - Forugh Vazirisani
- Department of Biomaterials, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden ; BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| | - Anders Palmquist
- Department of Biomaterials, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden ; BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| | - Jukka Lausmaa
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden ; SP Technical Research Institute of Sweden, Borås, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden ; BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| | - Margarita Trobos
- Department of Biomaterials, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden ; BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| |
Collapse
|
128
|
Taylor EN, Kummer KM, Dyondi D, Webster TJ, Banerjee R. Multi-scale strategy to eradicate Pseudomonas aeruginosa on surfaces using solid lipid nanoparticles loaded with free fatty acids. NANOSCALE 2014; 6:825-832. [PMID: 24264141 DOI: 10.1039/c3nr04270g] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Infections are both frequent and costly in hospitals around the world, leading to longer hospital stays, overuse of antibiotics, and excessive costs to the healthcare system. Moreover, antibiotic resistant organisms, such as Pseudomonas aeruginosa are increasing in frequency, leading to 1.7 million infections per year in USA hospitals, and 99,000 deaths, both due to the evolution of antibiotic resistance and the formation of biofilms on medical devices. In particular, respiratory infections are costly, deadly to 4.5 million persons per year worldwide, and can spread to the lungs through the placement of endotracheal tubing. In this study, towards a reduction in infections, solid lipid nanoparticles were formulated from free fatty acids, or natural lipophilic constituents found in tissues of the body. A strategy was developed to target infections by producing coatings made of non-toxic chemistries lauric acid and oleic acid delivered by core-shell solid lipid nanoparticles that act against bacteria by multiple mechanisms at the nanoscale, including disruption of bacteria leading to DNA release, and reducing the adhesion of dead bacteria to ~1%. This is the first such study to explore an anti-infection surface relying on these multi-tier strategies at the nanoscale.
Collapse
Affiliation(s)
- Erik N Taylor
- Chemical Engineering Department, Northeastern University, Boston, MA-02115, USA.
| | | | | | | | | |
Collapse
|
129
|
Hu X, Neoh KG, Zhang J, Kang ET. Bacterial and osteoblast behavior on titanium, cobalt-chromium alloy and stainless steel treated with alkali and heat: a comparative study for potential orthopedic applications. J Colloid Interface Sci 2013; 417:410-9. [PMID: 24407704 DOI: 10.1016/j.jcis.2013.11.062] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/23/2013] [Accepted: 11/25/2013] [Indexed: 01/14/2023]
Abstract
HYPOTHESIS Anatase-modified titanium (Ti) substrates have been found to possess antibacterial properties in the absence of ultraviolet irradiation, but the mechanism is not known. We hypothesize that this is due to the bactericidal effects of reactive oxygen species (ROS) generated by the surface anatase. EXPERIMENTS Alkali and heat treatment was used to form anatase on Ti surface. The generation of ROS, and the behavior of bacteria and osteoblasts on the anatase-modified Ti were investigated. Cobalt-chrome (Co-Cr) alloys and stainless steel (SS) were similarly treated with alkali and heat, and their surface properties and effects on bacteria and osteoblasts were compared with the results obtained with Ti. FINDINGS The anatase-functionalized Ti substrates demonstrated significant bactericidal effects and promoted apoptosis in osteoblasts, likely a result of ROS generated by the anatase. The alkali and heat-treated Co-Cr and SS substrates also reduced bacterial adhesion but were not bactericidal. This effect is likely due to an increase in hydrophilicity of the surfaces, and no significant ROS were generated by the alkali and heat-treated Co-Cr and SS substrates. The treated Co-Cr and SS substrates did not induce significant apoptosis in osteoblasts, and thus with these properties, they may be promising for orthopedic applications.
Collapse
Affiliation(s)
- Xuefeng Hu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge 117576, Singapore.
| | - Koon Gee Neoh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge 117576, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Kent Ridge 117576, Singapore.
| | - Jieyu Zhang
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Kent Ridge 117576, Singapore.
| | - En-Tang Kang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge 117576, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Kent Ridge 117576, Singapore.
| |
Collapse
|
130
|
Zhang H, Sun Y, Tian A, Xue XX, Wang L, Alquhali A, Bai X. Improved antibacterial activity and biocompatibility on vancomycin-loaded TiO2 nanotubes: in vivo and in vitro studies. Int J Nanomedicine 2013; 8:4379-89. [PMID: 24403827 PMCID: PMC3883425 DOI: 10.2147/ijn.s53221] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The goal for current orthopedic implant research is to design implants that have not only good biocompatibility but also antibacterial properties. TiO2 nanotubes (NTs) were fabricated on the titanium surface through electrochemical anodization, which added new properties, such as enhanced biocompatibility and potential utility as drug nanoreservoirs. The aim of the present study was to investigate the antibacterial properties and biocompatibility of NTs loaded with vancomycin (NT-V), both in vitro and in vivo. Staphylococcus aureus was used to study the antibacterial properties of the NT-V. There were three study groups: the commercially pure titanium (Cp-Ti) group, the NT group (nonloaded vancomycin), and the NT-V group. We compared NT-V biocompatibility and antibacterial efficacy with those of the NT and Cp-Ti groups. Compared with Cp-Ti, NT-V showed good antibacterial effect both in vitro and in vivo. Although the NTs reduced the surface bacterial adhesion in vitro, implant infection still developed in in vivo studies. Furthermore, the results also revealed that both NTs and NT-V showed good biocompatibility. Therefore, the NTs loaded with antibiotic might be potentially used for future orthopedic implants.
Collapse
Affiliation(s)
- Hangzhou Zhang
- Department of Sports Medicine and Joint Surgery, First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yu Sun
- Department of Sports Medicine and Joint Surgery, First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Ang Tian
- School of Materials and Metallurgy, Northeastern University, Shenyang, People's Republic of China
| | - Xiang Xin Xue
- School of Materials and Metallurgy, Northeastern University, Shenyang, People's Republic of China
| | - Lin Wang
- Department of Sports Medicine and Joint Surgery, First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Ali Alquhali
- Department of Sports Medicine and Joint Surgery, First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xizhuang Bai
- Department of Sports Medicine and Joint Surgery, First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
131
|
Desrousseaux C, Sautou V, Descamps S, Traoré O. Modification of the surfaces of medical devices to prevent microbial adhesion and biofilm formation. J Hosp Infect 2013; 85:87-93. [PMID: 24007718 DOI: 10.1016/j.jhin.2013.06.015] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 06/27/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND The development of devices with surfaces that have an effect against microbial adhesion or viability is a promising approach to the prevention of device-related infections. AIM To review the strategies used to design devices with surfaces able to limit microbial adhesion and/or growth. METHODS A PubMed search of the published literature. FINDINGS One strategy is to design medical devices with a biocidal agent. Biocides can be incorporated into the materials or coated or covalently bonded, resulting either in release of the biocide or in contact killing without release of the biocide. The use of biocides in medical devices is debated because of the risk of bacterial resistance and potential toxicity. Another strategy is to modify the chemical or physical surface properties of the materials to prevent microbial adhesion, a complex phenomenon that also depends directly on microbial biological structure and the environment. Anti-adhesive chemical surface modifications mostly target the hydrophobicity features of the materials. Topographical modifications are focused on roughness and nanostructures, whose size and spatial organization are controlled. The most effective physical parameters to reduce bacterial adhesion remain to be determined and could depend on shape and other bacterial characteristics. CONCLUSIONS A prevention strategy based on reducing microbial attachment rather than on releasing a biocide is promising. Evidence of the clinical efficacy of these surface-modified devices is lacking. Additional studies are needed to determine which physical features have the greatest potential for reducing adhesion and to assess the usefulness of antimicrobial coatings other than antibiotics.
Collapse
Affiliation(s)
- C Desrousseaux
- Clermont Université, Université d'Auvergne, C-BIOSENSS, Clermont-Ferrand, France; LMGE «Laboratoire Micro-organismes: Génome et Environnement», Clermont Université, Université Blaise Pascal et Université d'Auvergne, Clermont-Ferrand, France
| | | | | | | |
Collapse
|
132
|
Aminedi R, Wadhwa G, Das N, Pal B. Shape-dependent bactericidal activity of TiO2 for the killing of Gram-negative bacteria Agrobacterium tumefaciens under UV torch irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:6521-30. [PMID: 23608987 DOI: 10.1007/s11356-013-1717-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 04/03/2013] [Indexed: 06/02/2023]
Abstract
This paper demonstrated the relative bactericidal activity of photoirradiated (6W-UV Torch, λ > 340 nm and intensity = 0.64 mW/cm(2)) P25-TiO2 nanoparticles, nanorods, and nanotubes for the killing of Gram-negative bacterium Agrobacterium tumefaciens LBA4404 for the first time. TiO2 nanorod (anatase) with length of 70-100 nm and diameter of 10-12 nm, and TiO2 nanotube with length of 90-110 nm and diameter of 9-11 nm were prepared from P-25 Degussa TiO2 (size, 30-50 nm) by hydrothermal method and compared their biocidal activity both in aqueous slurry and thin films. The mode of bacterial cell decomposition was analyzed through transmission electron microscopy (TEM), Fourier transform-infrared (FT-IR), and K(+) ion leakage. The antimicrobial activity of photoirradiated TiO2 of different shapes was found to be in the order P25-TiO2 > nanorod > nanotube which is reverse to their specific surface area as 54 < 79 < 176 m(2) g(-1), evidencing that the highest activity of P25-TiO2 nanoparticles is not due to surface area as their crystal structure and surface morphology are entirely different. TiO2 thin films always exhibited less photoactivity as compared to its aqueous suspension under similar conditions of cell viability test. The changes in the bacterial surface morphology by UV-irradiated P25-TiO2 nanoparticles was examined by TEM, oxidative degradation of cell components such as proteins, carbohydrates, phospholipids, nucleic acids by FT-IR spectral analysis, and K(+) ion leakage (2.5 ppm as compared to 0.4 ppm for control culture) as a measure of loss in cell membrane permeability.
Collapse
Affiliation(s)
- Raghavendra Aminedi
- Department of Biotechnology and Environmental Sciences, Thapar University, Patiala, 147004, India
| | | | | | | |
Collapse
|
133
|
Crear J, Kummer KM, Webster TJ. Decreased cervical cancer cell adhesion on nanotubular titanium for the treatment of cervical cancer. Int J Nanomedicine 2013; 8:995-1001. [PMID: 23493522 PMCID: PMC3593771 DOI: 10.2147/ijn.s38500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cervical cancer can be treated by surgical resection, chemotherapy, and/or radiation. Titanium biomaterials have been suggested as a tool to help in the local delivery of chemotherapeutic agents and/or radiation to cervical cancer sites. However, current titanium medical devices used for treating cervical cancer do not by themselves possess any anticancer properties; such devices act as carriers for pharmaceutical agents or radiation sources and may even allow for the growth of cancer cells. Based on studies, which have demonstrated decreased lung, breast, and bone cancer cell functions on nanostructured compared to nanosmooth polymers, the objective of the present in vitro study was to modify titanium to possess nanotubular surface features and determine cervical cancer cell adhesion after 4 hours. Here, titanium was anodized to possess nanotubular surface features. Results demonstrated the ability to decrease cervical cancer cell adhesion by about a half on nanotubular compared to currently used nanosmooth titanium (without the use of chemotherapeutics or radiation), opening up numerous possibilities for the use of nanotubular titanium in local drug delivery or radiation treatment of cervical cancer.
Collapse
Affiliation(s)
- Jara Crear
- School of Engineering, Brown University, Providence, RI, USA
| | | | | |
Collapse
|
134
|
Kummer KM, Taylor EN, Durmas NG, Tarquinio KM, Ercan B, Webster TJ. Effects of different sterilization techniques and varying anodized TiO₂ nanotube dimensions on bacteria growth. J Biomed Mater Res B Appl Biomater 2013; 101:677-88. [PMID: 23359494 DOI: 10.1002/jbm.b.32870] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 10/23/2012] [Accepted: 10/29/2012] [Indexed: 12/19/2022]
Abstract
Infection of titanium (Ti)-based orthopedic implants is a growing problem due to the ability of bacteria to develop a resistance to today's antibiotics. As an attempt to develop a new strategy to combat bacteria functions, Ti was anodized in the present study to possess different diameters of nanotubes. It is reported here for the first time that Ti anodized to possess 20 nm tubes then followed by heat treatment to remove fluorine deposited from the HF anodization electrolyte solution significantly reduced both S. aureus and S. epidermidis growth compared to unanodized Ti controls. It was further found that the sterilization method used for both anodized nanotubular Ti and conventional Ti played an important role in the degree of bacteria growth on these substrates. Overall, UV light and ethanol sterilized samples decreased bacteria growth, while autoclaving resulted in the highest amount of bacteria growth. In summary, this study indicated that through a simple and inexpensive process, Ti can be anodized to possess 20 nm tubes that no matter how sterilized (UV light, ethanol soaking, or autoclaving) reduces bacteria growth and, thus, shows great promise as an antibacterial implant material.
Collapse
Affiliation(s)
- Kim M Kummer
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | | | | | |
Collapse
|
135
|
Crawford RJ, Webb HK, Truong VK, Hasan J, Ivanova EP. Surface topographical factors influencing bacterial attachment. Adv Colloid Interface Sci 2012; 179-182:142-9. [PMID: 22841530 DOI: 10.1016/j.cis.2012.06.015] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 06/13/2012] [Accepted: 06/28/2012] [Indexed: 12/17/2022]
Abstract
Substratum surface roughness is known to be one of the key factors in determining the extent of bacterial colonization. Understanding the way by which the substratum topography, especially at the nanoscale, mediates bacterial attachment remains ambiguous at best, despite the volume of work available on the topic. This is because the vast majority of bacterial attachment studies do not perform comprehensive topographical characterization analyses, and typically consider roughness parameters that describe only one aspect of the surface topography. The most commonly reported surface roughness parameters are average and root mean square (RMS) roughness (R(a) and R(q) respectively), which are both measures of the typical height variation of the surface. They offer no insights into the spatial distribution or shape of the surface features. Here, a brief overview of the current state of research on topography-mediated bacterial adhesion is presented, as well as an outline of the suite of roughness characterization parameters that are available for the comprehensive description of the surface architecture of a substratum. Finally, a set of topographical parameters is proposed as a new standard for surface roughness characterization in bacterial adhesion studies to improve the likelihood of identifying direct relationships between substratum topography and the extent of bacterial adhesion.
Collapse
Affiliation(s)
- Russell J Crawford
- Faculty of Life and Social Sciences, Swinburne University of Technology, Hawthorn, VIC, Australia.
| | | | | | | | | |
Collapse
|
136
|
Local drug delivery to the bone by drug-releasing implants: perspectives of nano-engineered titania nanotube arrays. Ther Deliv 2012; 3:857-73. [PMID: 22900467 DOI: 10.4155/tde.12.66] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Titania nanotube (TNT) arrays fabricated by electrochemical anodization of titanium are currently one of the most attractive nanomaterials due to their remarkable properties. In this review, we highlight recent research activities that are focused on the application of the TNT arrays for local drug delivery, specifically for addressing problems associated with orthopedic implants. The advantages of drug-releasing implants based on TNT arrays for local delivery of therapeutics in bone related to these challenging problems including inflammation, infection and osseointegration are discussed. An overview of recent research to advance the drug-releasing performance of TNT arrays and the potential of their future applications and development are presented.
Collapse
|
137
|
Tran N, Tran PA. Nanomaterial-based treatments for medical device-associated infections. Chemphyschem 2012; 13:2481-94. [PMID: 22517627 DOI: 10.1002/cphc.201200091] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 03/30/2012] [Indexed: 11/07/2022]
Abstract
Bacterial infections remain one of the biggest concerns to our society. Conventional antibiotic treatments showed little effect on the increasing number of antibiotic-resistant bacteria. Advances in synthetic chemistry and nanotechnology have resulted in a new class of nanometer-scale materials with distinguished properties and great potential to be an alternative for antibiotics. In this Minireview, we address the current situation of medical-device-associated infections and the emerging opportunities for antibacterial nanomaterials in preventing these complications. Several important antimicrobial nanomaterials emergent from advances in synthesis chemistry are introduced and their bactericidal mechanisms are analyzed. In addition, concerns regarding the biocompatibility of such materials are also addressed.
Collapse
Affiliation(s)
- Nhiem Tran
- Department of Orthopaedics, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI 02903, USA.
| | | |
Collapse
|