101
|
Papatheodorou A, Stein A, Bank M, Sison CP, Gibbs K, Davies P, Bloom O. High-Mobility Group Box 1 (HMGB1) Is Elevated Systemically in Persons with Acute or Chronic Traumatic Spinal Cord Injury. J Neurotrauma 2016; 34:746-754. [PMID: 27673428 DOI: 10.1089/neu.2016.4596] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Inflammation in traumatic spinal cord injury (SCI) has been proposed to promote damage acutely and oppose functional recovery chronically. However, we do not yet understand the signals that initiate or prolong inflammation in persons with SCI. High-Mobility Group Box 1 (HMGB1) is a potent systemic inflammatory cytokine-or damage-associated molecular pattern molecule (DAMP)-studied in a variety of clinical settings. It is elevated in pre-clinical models of traumatic spinal cord injury (SCI), where it promotes secondary injury, and strategies that block HMGB1 improve functional recovery. To investigate the potential translational relevance of these observations, we measured HMGB1 in plasma from adults with acute (≤ 1 week post-SCI, n = 16) or chronic (≥ 1 year post-SCI, n = 47) SCI. Plasma from uninjured persons (n = 51) served as controls for comparison. In persons with acute SCI, average HMGB1 levels were significantly elevated within 0-3 days post-injury (6.00 ± 1.8 ng/mL, mean ± standard error of the mean [SEM]) or 4-7 (6.26 ± 1.3 ng/mL, mean ± SEM), compared with controls (1.26 ± 0.24 ng/mL, mean ± SEM; p ≤ 0.001 and p ≤ 0.01, respectively). In persons with chronic SCI who were injured for 15 ± 1.5 years (mean ± SEM), HMGB1 also was significantly elevated, compared with uninjured persons (3.7 ± 0.69 vs. 1.26 ± 0.24 ng/mL, mean ± SEM; p ≤ 0.0001). Together, these data suggest that HMGB1 may be a common, early, and persistent danger signal promoting inflammation in individuals with SCI.
Collapse
Affiliation(s)
- Angelos Papatheodorou
- 1 Department of Autoimmune and Musculoskeletal Disorders, North Shore University Hospital , Northwell Health, Manhasset, New York
| | - Adam Stein
- 2 Department of Physical Medicine and Rehabilitation, North Shore University Hospital , Northwell Health, Manhasset, New York
| | - Matthew Bank
- 3 Department of Surgery, North Shore University Hospital , Northwell Health, Manhasset, New York
| | - Cristina P Sison
- 4 Department of Molecular Medicine, Hofstra Northwell School of Medicine, North Shore University Hospital , Northwell Health, Manhasset, New York
| | - Katie Gibbs
- 2 Department of Physical Medicine and Rehabilitation, North Shore University Hospital , Northwell Health, Manhasset, New York
| | - Peter Davies
- 5 Litwin-Zucker Research Center for the Study of Alzheimer's Disease, the Feinstein Institute for Medical Research, North Shore University Hospital , Northwell Health, Manhasset, New York
| | - Ona Bloom
- 1 Department of Autoimmune and Musculoskeletal Disorders, North Shore University Hospital , Northwell Health, Manhasset, New York.,2 Department of Physical Medicine and Rehabilitation, North Shore University Hospital , Northwell Health, Manhasset, New York.,4 Department of Molecular Medicine, Hofstra Northwell School of Medicine, North Shore University Hospital , Northwell Health, Manhasset, New York
| |
Collapse
|
102
|
Guo DY, Cao C, Zhang XY, Xiang LX, Shao JZ. Scavenger Receptor SCARA5 Acts as an HMGB1 Recognition Molecule Negatively Involved in HMGB1-Mediated Inflammation in Fish Models. THE JOURNAL OF IMMUNOLOGY 2016; 197:3198-3213. [DOI: 10.4049/jimmunol.1600438] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 08/22/2016] [Indexed: 01/29/2023]
|
103
|
Yang H, Wang H, Levine YA, Gunasekaran MK, Wang Y, Addorisio M, Zhu S, Li W, Li J, de Kleijn DP, Olofsson PS, Warren HS, He M, Al-Abed Y, Roth J, Antoine DJ, Chavan SS, Andersson U, Tracey KJ. Identification of CD163 as an antiinflammatory receptor for HMGB1-haptoglobin complexes. JCI Insight 2016; 1:85375. [PMID: 27294203 DOI: 10.1172/jci.insight.85375] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Secreted by activated cells or passively released by damaged cells, extracellular HMGB1 is a prototypical damage-associated molecular pattern (DAMP) inflammatory mediator. During the course of developing extracorporeal approaches to treating injury and infection, we inadvertently discovered that haptoglobin, the acute phase protein that binds extracellular hemoglobin and targets cellular uptake through CD163, also binds HMGB1. Haptoglobin-HMGB1 complexes elicit the production of antiinflammatory enzymes (heme oxygenase-1) and cytokines (e.g., IL-10) in WT but not in CD163-deficient macrophages. Genetic disruption of haptoglobin or CD163 expression significantly enhances mortality rates in standardized models of intra-abdominal sepsis in mice. Administration of haptoglobin to WT and to haptoglobin gene-deficient animals confers significant protection. These findings reveal a mechanism for haptoglobin modulation of the inflammatory action of HMGB1, with significant implications for developing experimental strategies targeting HMGB1-dependent inflammatory diseases.
Collapse
Affiliation(s)
- Huan Yang
- Laboratories of Biomedical Science and
| | - Haichao Wang
- Emergency Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA
| | | | | | | | | | - Shu Zhu
- Emergency Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Wei Li
- Emergency Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA
| | | | - Dominique Pv de Kleijn
- Laboratory of Cardiovascular Immunology, University Medical Center, Utrecht, Netherlands
| | | | - H Shaw Warren
- Infectious Disease Unit, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | | | | | - Jesse Roth
- Diabetes and Diabetes-related Disorders, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Daniel J Antoine
- MRC Center for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | | | - Ulf Andersson
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | |
Collapse
|
104
|
Wan W, Cao L, Khanabdali R, Kalionis B, Tai X, Xia S. The Emerging Role of HMGB1 in Neuropathic Pain: A Potential Therapeutic Target for Neuroinflammation. J Immunol Res 2016; 2016:6430423. [PMID: 27294160 PMCID: PMC4887637 DOI: 10.1155/2016/6430423] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/26/2016] [Indexed: 02/06/2023] Open
Abstract
Neuropathic pain (NPP) is intolerable, persistent, and specific type of long-term pain. It is considered to be a direct consequence of pathological changes affecting the somatosensory system and can be debilitating for affected patients. Despite recent progress and growing interest in understanding the pathogenesis of the disease, NPP still presents a major diagnostic and therapeutic challenge. High mobility group box 1 (HMGB1) mediates inflammatory and immune reactions in nervous system and emerging evidence reveals that HMGB1 plays an essential role in neuroinflammation through receptors such as Toll-like receptors (TLR), receptor for advanced glycation end products (RAGE), C-X-X motif chemokines receptor 4 (CXCR4), and N-methyl-D-aspartate (NMDA) receptor. In this review, we present evidence from studies that address the role of HMGB1 in NPP. First, we review studies aimed at determining the role of HMGB1 in NPP and discuss the possible mechanisms underlying HMGB1-mediated NPP progression where receptors for HMGB1 are involved. Then we review studies that address HMGB1 as a potential therapeutic target for NPP.
Collapse
Affiliation(s)
- Wenbin Wan
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lan Cao
- State Key Laboratory of Medical Neurobiology, Department of Neurobiology and Institutes of Brain Science, School of Basic Medical Science, Fudan University, Shanghai 200032, China
| | - Ramin Khanabdali
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre and Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, VIC 3052, Australia
| | - Bill Kalionis
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre and Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, VIC 3052, Australia
| | - Xiantao Tai
- School of Acupuncture, Massage and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Shijin Xia
- Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|