101
|
Su CJ, Tu MG, Wei LJ, Hsu TT, Kao CT, Chen TH, Huang TH. Calcium Silicate/Chitosan-Coated Electrospun Poly (Lactic Acid) Fibers for Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E501. [PMID: 28772861 PMCID: PMC5459038 DOI: 10.3390/ma10050501] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/02/2017] [Accepted: 05/02/2017] [Indexed: 01/09/2023]
Abstract
Electrospinning technology allows fabrication of nano- or microfibrous fibers with inorganic and organic matrix and it is widely applied in bone tissue engineering as it allows precise control over the shapes and structures of the fibers. Natural bone has an ordered composition of organic fibers with dispersion of inorganic apatite among them. In this study, poly (lactic acid) (PLA) mats were fabricated with electrospinning and coated with chitosan (CH)/calcium silicate (CS) mixer. The microstructure, chemical component, and contact angle of CS/CH-PLA composites were analyzed by scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. In vitro, various CS/CH-coated PLA mats increased the formation of hydroxyapatite on the specimens' surface when soaked in cell cultured medium. During culture, several biological characteristics of the human mesenchymal stem cells (hMSCs) cultured on CS/CH-PLA groups were promoted as compared to those on pure PLA mat. Increased secretion levels of Collagen I and fibronectin were observed in calcium silicate-powder content. Furthermore, with comparison to PLA mats without CS/CH, CS10 and CS15 mats markedly enhanced the proliferation of hMSCs and their osteogenesis properties, which was characterized by osteogenic-related gene expression. These results clearly demonstrated that the biodegradable and electroactive CS/CH-PLA composite mats are an ideal and suitable candidate for bone tissue engineering.
Collapse
Affiliation(s)
- Chu-Jung Su
- Antai Medical Care Cooperation, Antai Tian-Sheng Memorial Hospital, Pingtung City 928, Taiwan.
| | - Ming-Gene Tu
- School of Dentistry, China Medical University, Taichung City 404, Taiwan.
| | - Li-Ju Wei
- 3D Printing Medical Research Center, China Medical University Hospital, China Medical University, Taichung City 404, Taiwan.
| | - Tuan-Ti Hsu
- 3D Printing Medical Research Center, China Medical University Hospital, China Medical University, Taichung City 404, Taiwan.
| | - Chia-Tze Kao
- School of Dentistry, Chung Shan Medical University, Taichung City 404, Taiwan.
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung City 404, Taiwan.
| | - Tsui-Han Chen
- Institute of Oral Science, Chung Shan Medical University, Taichung City 404, Taiwan.
| | - Tsui-Hsien Huang
- School of Dentistry, Chung Shan Medical University, Taichung City 404, Taiwan.
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung City 404, Taiwan.
| |
Collapse
|
102
|
Loskill P, Sezhian T, Tharp K, Lee-Montiel FT, Jeeawoody S, Reese WM, Zushin PJH, Stahl A, Healy KE. WAT-on-a-chip: a physiologically relevant microfluidic system incorporating white adipose tissue. LAB ON A CHIP 2017; 17:1645-1654. [PMID: 28418430 PMCID: PMC5688242 DOI: 10.1039/c6lc01590e] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Organ-on-a-chip systems possess a promising future as drug screening assays and as testbeds for disease modeling in the context of both single-organ systems and multi-organ-chips. Although it comprises approximately one fourth of the body weight of a healthy human, an organ frequently overlooked in this context is white adipose tissue (WAT). WAT-on-a-chip systems are required to create safety profiles of a large number of drugs due to their interactions with adipose tissue and other organs via paracrine signals, fatty acid release, and drug levels through sequestration. We report a WAT-on-a-chip system with a footprint of less than 1 mm2 consisting of a separate media channel and WAT chamber connected via small micropores. Analogous to the in vivo blood circulation, convective transport is thereby confined to the vasculature-like structures and the tissues protected from shear stresses. Numerical and analytical modeling revealed that the flow rates in the WAT chambers are less than 1/100 of the input flow rate. Using optimized injection parameters, we were able to inject pre-adipocytes, which subsequently formed adipose tissue featuring fully functional lipid metabolism. The physiologically relevant microfluidic environment of the WAT-chip supported long term culture of the functional adipose tissue for more than two weeks. Due to its physiological, highly controlled, and computationally predictable character, the system has the potential to be a powerful tool for the study of adipose tissue associated diseases such as obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Peter Loskill
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, California 94720, USA
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, California 94720, USA
| | - Thiagarajan Sezhian
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, California 94720, USA
| | - Kevin Tharp
- Department of Nutritional Sciences & Toxicology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Felipe T. Lee-Montiel
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, California 94720, USA
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, California 94720, USA
| | - Shaheen Jeeawoody
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, California 94720, USA
| | - Willie Mae Reese
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, California 94720, USA
| | - Pete-James H. Zushin
- Department of Nutritional Sciences & Toxicology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Andreas Stahl
- Department of Nutritional Sciences & Toxicology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Kevin E. Healy
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, California 94720, USA
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
103
|
Yurie H, Ikeguchi R, Aoyama T, Kaizawa Y, Tajino J, Ito A, Ohta S, Oda H, Takeuchi H, Akieda S, Tsuji M, Nakayama K, Matsuda S. The efficacy of a scaffold-free Bio 3D conduit developed from human fibroblasts on peripheral nerve regeneration in a rat sciatic nerve model. PLoS One 2017; 12:e0171448. [PMID: 28192527 PMCID: PMC5305253 DOI: 10.1371/journal.pone.0171448] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/02/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Although autologous nerve grafting is the gold standard treatment of peripheral nerve injuries, several alternative methods have been developed, including nerve conduits that use supportive cells. However, the seeding efficacy and viability of supportive cells injected in nerve grafts remain unclear. Here, we focused on a novel completely biological, tissue-engineered, scaffold-free conduit. METHODS We developed six scaffold-free conduits from human normal dermal fibroblasts using a Bio 3D Printer. Twelve adult male rats with immune deficiency underwent mid-thigh-level transection of the right sciatic nerve. The resulting 5-mm nerve gap was bridged using 8-mm Bio 3D conduits (Bio 3D group, n = 6) and silicone tube (silicone group, n = 6). Several assessments were conducted to examine nerve regeneration eight weeks post-surgery. RESULTS Kinematic analysis revealed that the toe angle to the metatarsal bone at the final segment of the swing phase was significantly higher in the Bio 3D group than the silicone group (-35.78 ± 10.68 versus -62.48 ± 6.15, respectively; p < 0.01). Electrophysiological studies revealed significantly higher compound muscle action potential in the Bio 3D group than the silicone group (53.60 ± 26.36% versus 2.93 ± 1.84%; p < 0.01). Histological and morphological studies revealed neural cell expression in all regions of the regenerated nerves and the presence of many well-myelinated axons in the Bio 3D group. The wet muscle weight of the tibialis anterior muscle was significantly higher in the Bio 3D group than the silicone group (0.544 ± 0.063 versus 0.396 ± 0.031, respectively; p < 0.01). CONCLUSIONS We confirmed that scaffold-free Bio 3D conduits composed entirely of fibroblast cells promote nerve regeneration in a rat sciatic nerve model.
Collapse
Affiliation(s)
- Hirofumi Yurie
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryosuke Ikeguchi
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- * E-mail:
| | - Tomoki Aoyama
- Department of Physical Therapy, Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yukitoshi Kaizawa
- Department of Orthopaedic Surgery, Iseikai Yawata Chuo Hospital, Kyoto, Japan
| | - Junichi Tajino
- Department of Physical Therapy, Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akira Ito
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Souichi Ohta
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroki Oda
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hisataka Takeuchi
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | - Koichi Nakayama
- Department of Regenerative Medicine and Biomedical Engineering Faculty of Medicine, Saga University, Saga, Japan
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
104
|
Yang Q, Li J, Xu H, Long S, Li X. Friction of sodium alginate hydrogel scaffold fabricated by 3-D printing. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:459-469. [PMID: 28105891 DOI: 10.1080/09205063.2017.1279532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A rapid prototyping technology, formed by three-dimensional (3-D) printing and then crosslinked by spraying Ca2+ solution, is developed to fabricate a sodium alginate (SA) hydrogel scaffold. The porosity, swelling ratio, and compression modulus of the scaffold are investigated. A friction mechanism is developed by studying the reproducible friction behavior. Our results show that the scaffold can have 3-D structure with a porosity of 52%. The degree of swelling of the SA hydrogel scaffold is 8.5, which is nearly the same as bulk SA hydrogel. SA hydrogel exhibits better compressive resilience than bulk hydrogel despite its lower compressive modulus compared to bulk hydrogel. The SA hydrogel scaffold exhibits a higher frictional force at low sliding velocity (10-6 to 10-3 m/s) compared to bulk SA hydrogel, and they are equal at high sliding velocity (10-2 to 1 m/s). For a small pressure (0.3 kPa), the SA hydrogel scaffold shows good friction reproducibility. In contrast, bulk SA hydrogel shows poor reproducibility with respect to friction behavior. The differences in friction behaviors between the SA hydrogel scaffold and bulk SA hydrogel are related to the structure of the scaffold, which can keep a stable hydrated lubrication layer.
Collapse
Affiliation(s)
- Qian Yang
- a Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-weight Materials and Processing, School of Materials Science and Engineering , Hubei University of Technology , Wuhan , PR China
| | - Jian Li
- a Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-weight Materials and Processing, School of Materials Science and Engineering , Hubei University of Technology , Wuhan , PR China
| | - Heng Xu
- a Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-weight Materials and Processing, School of Materials Science and Engineering , Hubei University of Technology , Wuhan , PR China
| | - Shijun Long
- a Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-weight Materials and Processing, School of Materials Science and Engineering , Hubei University of Technology , Wuhan , PR China
| | - Xuefeng Li
- a Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-weight Materials and Processing, School of Materials Science and Engineering , Hubei University of Technology , Wuhan , PR China
| |
Collapse
|
105
|
Yanez M, Blanchette J, Jabbarzadeh E. Modulation of Inflammatory Response to Implanted Biomaterials Using Natural Compounds. Curr Pharm Des 2017; 23:6347-6357. [PMID: 28521709 PMCID: PMC5681444 DOI: 10.2174/1381612823666170510124348] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 04/17/2017] [Accepted: 04/28/2017] [Indexed: 02/06/2023]
Abstract
Tissue engineering offers a promising strategy to restore injuries resulting from trauma, infection, tumor resection, or other diseases. In spite of significant progress, the field faces a significant bottleneck; the critical need to understand and exploit the interdependencies of tissue healing, angiogenesis, and inflammation. Inherently, the balance of these interacting processes is affected by a number of injury site conditions that represent a departure from physiological environment, including reduced pH, increased concentration of free radicals, hypoglycemia, and hypoxia. Efforts to harness the potential of immune response as a therapeutic strategy to promote tissue repair have led to identification of natural compounds with significant anti-inflammatory properties. This article provides a concise review of the body's inflammatory response to biomaterials and describes the role of oxygen as a physiological cue in this process. We proceed to highlight the potential of natural compounds to mediate inflammatory response and improve host-graft integration. Herein, we discuss the use of natural compounds to map signaling molecules and checkpoints that regulate the cross-linkage of immune response and skeletal repair.
Collapse
Affiliation(s)
- Maria Yanez
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - James Blanchette
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
| | - Ehsan Jabbarzadeh
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
- Department of Orthopedic Surgery, University of South Carolina School of Medicine, Columbia SC, 29209, USA
| |
Collapse
|
106
|
Three-dimensional ultrastructural analysis of cells in the periodontal ligament using focused ion beam/scanning electron microscope tomography. Sci Rep 2016; 6:39435. [PMID: 27995978 PMCID: PMC5171660 DOI: 10.1038/srep39435] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/21/2016] [Indexed: 01/29/2023] Open
Abstract
The accurate comprehension of normal tissue provides essential data to analyse abnormalities such as disease and regenerative processes. In addition, understanding the proper structure of the target tissue and its microenvironment may facilitate successful novel treatment strategies. Many studies have examined the nature and structure of periodontal ligaments (PDLs); however, the three-dimensional (3D) structure of cells in normal PDLs remains poorly understood. In this study, we used focused ion beam/scanning electron microscope tomography to investigate the whole 3D ultrastructure of PDL cells along with quantitatively analysing their structural properties and ascertaining their orientation to the direction of the collagen fibre. PDL cells were shown to be in contact with each other, forming a widespread mesh-like network between the cementum and the alveolar bone. The volume of the cells in the horizontal fibre area was significantly larger than in other areas, whereas the anisotropy of these cells was lower than in other areas. Furthermore, the orientation of cells to the PDL fibres was not parallel to the PDL fibres in each area. As similar evaluations are recognized as being challenging using conventional two-dimensional methods, these novel 3D findings may contribute necessary knowledge for the comprehensive understanding and analysis of PDLs.
Collapse
|
107
|
Park SH, Jung CS, Min BH. Advances in three-dimensional bioprinting for hard tissue engineering. Tissue Eng Regen Med 2016; 13:622-635. [PMID: 30603444 DOI: 10.1007/s13770-016-0145-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 10/19/2016] [Accepted: 10/24/2016] [Indexed: 12/12/2022] Open
Abstract
The need for organ and tissue regeneration in patients continues to increase because of a scarcity of donors, as well as biocompatibility issues in transplant immune rejection. To address this, scientists have investigated artificial tissues as an alternative to transplantation. Three-dimensional (3D) bioprinting technology is an additive manufacturing method that can be used for the fabrication of 3D functional tissues or organs. This technology promises to replicate the complex architecture of structures in natural tissue. To date, 3D bioprinting strategies have confirmed their potential practice in regenerative medicine to fabricate the transplantable hard tissues, including cartilage and bone. However, 3D bioprinting approaches still have unsolved challenges to realize 3D hard tissues. In this manuscript, the current technical development, challenges, and future prospects of 3D bioprinting for engineering hard tissues are reviewed.
Collapse
Affiliation(s)
- Sang-Hyug Park
- 1Department of Biomedical Engineering, Pukyong National University, Busan, Korea
| | - Chi Sung Jung
- 2Department of Molecular Science & Technology, Ajou University, Suwon, Korea.,3Cell Therapy Center, Ajou University Medical Center, Suwon, Korea
| | - Byoung-Hyun Min
- 2Department of Molecular Science & Technology, Ajou University, Suwon, Korea.,3Cell Therapy Center, Ajou University Medical Center, Suwon, Korea.,4Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Korea.,5Department of Orthopedic Surgery, School of Medicine, Ajou University, 164 World cup-ro, Yeongtong-gu, Suwon, 16499 Korea
| |
Collapse
|
108
|
Immunomodulatory effects of adipose tissue-derived stem cells on elastin scaffold remodeling in diabetes. Tissue Eng Regen Med 2016; 13:701-712. [PMID: 30603451 DOI: 10.1007/s13770-016-0018-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/02/2016] [Accepted: 03/04/2016] [Indexed: 01/11/2023] Open
Abstract
Diabetes is a major risk factor for the progression of vascular disease, contributing to elevated levels of glycoxidation, chronic inflammation and calcification. Tissue engineering emerges as a potential solution for the treatment of vascular diseases however there is a considerable gap in the understanding of how scaffolds and stem cells will perform in patients with diabetes. We hypothesized that adipose tissue-derived stem cells (ASCs) by virtue of their immunosuppressive potential would moderate the diabetes-intensified inflammatory reactions and induce positive construct remodeling. To test this hypothesis, we prepared arterial elastin scaffolds seeded with autologous ASCs and implanted them subdermally in diabetic rats and compared inflammatory markers, macrophage polarization, matrix remodeling, calcification and bone protein expression to control scaffolds implanted with and without cells in nondiabetic rats. ASC-seeded scaffolds exhibited lower levels of CD8+ T-cells and CD68+ pan-macrophages and higher numbers of M2 macrophages, smooth muscle cell-like and fibroblast-like cells. Calcification and osteogenic markers were reduced in ASCseeded scaffolds implanted in non-diabetic rats but remained unchanged in diabetes, unless the scaffolds were first pre-treated with penta-galloyl glucose (PGG), a known anti-oxidative elastin-binding polyphenol. In conclusion, autologous ASC seeding in elastin scaffolds is effective in combating diabetes-related complications. To prevent calcification, the oxidative milieu needs to be reduced by elastin-binding antioxidants such as PGG.
Collapse
|
109
|
Fan J, Guo M, Im CS, Pi-Anfruns J, Cui ZK, Kim S, Wu BM, Aghaloo TL, Lee M. Enhanced Mandibular Bone Repair by Combined Treatment of Bone Morphogenetic Protein 2 and Small-Molecule Phenamil. Tissue Eng Part A 2016; 23:195-207. [PMID: 27771997 DOI: 10.1089/ten.tea.2016.0308] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Growth factor-based therapeutics using bone morphogenetic protein 2 (BMP-2) presents a promising strategy to reconstruct craniofacial bone defects such as mandible. However, clinical applications require supraphysiological BMP doses that often increase inappropriate adipogenesis, resulting in well-documented, cyst-like bone formation. Here we reported a novel complementary strategy to enhance osteogenesis and mandibular bone repair by using small-molecule phenamil that has been shown to be a strong activator of BMP signaling. Phenamil synergistically induced osteogenic differentiation of human bone marrow mesenchymal stem cells with BMP-2 while suppressing their adipogenic differentiation induced by BMP-2 in vitro. The observed pro-osteogenic and antiadipogenic activity of phenamil was mediated by expression of tribbles homolog 3 (Trb3) that enhanced BMP-smad signaling and inhibited expression of peroxisome proliferator-activated receptor gamma (PPARγ), a master regulator of adipogenesis. The synergistic effect of BMP-2+phenamil on bone regeneration was further confirmed in a critical-sized rat mandibular bone defect by implanting polymer scaffolds designed to slowly release the therapeutic molecules. These findings indicate a new complementary osteoinductive strategy to improve clinical efficacy and safety of current BMP-based therapeutics.
Collapse
Affiliation(s)
- Jiabing Fan
- 1 Division of Advanced Prosthodontics, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | - Mian Guo
- 2 Department of Neurosurgery, The 2nd Affiliated Hospital of Harbin Medical University , Harbin, China
| | - Choong Sung Im
- 1 Division of Advanced Prosthodontics, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | - Joan Pi-Anfruns
- 3 Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | - Zhong-Kai Cui
- 1 Division of Advanced Prosthodontics, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | - Soyon Kim
- 4 Department of Bioengineering, University of California , Los Angeles, Los Angeles, California
| | - Benjamin M Wu
- 1 Division of Advanced Prosthodontics, School of Dentistry, University of California , Los Angeles, Los Angeles, California.,4 Department of Bioengineering, University of California , Los Angeles, Los Angeles, California
| | - Tara L Aghaloo
- 3 Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | - Min Lee
- 1 Division of Advanced Prosthodontics, School of Dentistry, University of California , Los Angeles, Los Angeles, California.,4 Department of Bioengineering, University of California , Los Angeles, Los Angeles, California
| |
Collapse
|
110
|
Herring SW, Ochareon P. The Periosteum of the Zygomatic Arch: Vascularization and Growth. Anat Rec (Hoboken) 2016; 299:1661-1670. [DOI: 10.1002/ar.23482] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/05/2016] [Accepted: 04/12/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Susan W. Herring
- Department of Orthodontics; University of Washington; Seattle Washington
| | - Pannee Ochareon
- Department of Anatomy, Faculty of Dentistry; Mahidol University; Bangkok Thailand
| |
Collapse
|
111
|
Di Liddo R, Aguiari P, Barbon S, Bertalot T, Mandoli A, Tasso A, Schrenk S, Iop L, Gandaglia A, Parnigotto PP, Conconi MT, Gerosa G. Nanopatterned acellular valve conduits drive the commitment of blood-derived multipotent cells. Int J Nanomedicine 2016; 11:5041-5055. [PMID: 27789941 PMCID: PMC5068475 DOI: 10.2147/ijn.s115999] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Considerable progress has been made in recent years toward elucidating the correlation among nanoscale topography, mechanical properties, and biological behavior of cardiac valve substitutes. Porcine TriCol scaffolds are promising valve tissue engineering matrices with demonstrated self-repopulation potentiality. In order to define an in vitro model for investigating the influence of extracellular matrix signaling on the growth pattern of colonizing blood-derived cells, we cultured circulating multipotent cells (CMC) on acellular aortic (AVL) and pulmonary (PVL) valve conduits prepared with TriCol method and under no-flow condition. Isolated by our group from Vietnamese pigs before heart valve prosthetic implantation, porcine CMC revealed high proliferative abilities, three-lineage differentiative potential, and distinct hematopoietic/endothelial and mesenchymal properties. Their interaction with valve extracellular matrix nanostructures boosted differential messenger RNA expression pattern and morphologic features on AVL compared to PVL, while promoting on both matrices the commitment to valvular and endothelial cell-like phenotypes. Based on their origin from peripheral blood, porcine CMC are hypothesized in vivo to exert a pivotal role to homeostatically replenish valve cells and contribute to hetero- or allograft colonization. Furthermore, due to their high responsivity to extracellular matrix nanostructure signaling, porcine CMC could be useful for a preliminary evaluation of heart valve prosthetic functionality.
Collapse
Affiliation(s)
- Rosa Di Liddo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova; Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling ONLUS
| | - Paola Aguiari
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Silvia Barbon
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova; Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling ONLUS
| | - Thomas Bertalot
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova
| | - Amit Mandoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova
| | - Alessia Tasso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova
| | - Sandra Schrenk
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova
| | - Laura Iop
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Alessandro Gandaglia
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Pier Paolo Parnigotto
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling ONLUS
| | - Maria Teresa Conconi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova; Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling ONLUS
| | - Gino Gerosa
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| |
Collapse
|
112
|
Schagemann JC, Rudert N, Taylor ME, Sim S, Quenneville E, Garon M, Klinger M, Buschmann MD, Mittelstaedt H. Bilayer Implants: Electromechanical Assessment of Regenerated Articular Cartilage in a Sheep Model. Cartilage 2016; 7:346-60. [PMID: 27688843 PMCID: PMC5029563 DOI: 10.1177/1947603515623992] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To compare the regenerative capacity of 2 distinct bilayer implants for the restoration of osteochondral defects in a preliminary sheep model. METHODS Critical sized osteochondral defects were treated with a novel biomimetic poly-ε-caprolactone (PCL) implant (Treatment No. 2; n = 6) or a combination of Chondro-Gide and Orthoss (Treatment No. 1; n = 6). At 19 months postoperation, repair tissue (n = 5 each) was analyzed for histology and biochemistry. Electromechanical mappings (Arthro-BST) were performed ex vivo. RESULTS Histological scores, electromechanical quantitative parameter values, dsDNA and sGAG contents measured at the repair sites were statistically lower than those obtained from the contralateral surfaces. Electromechanical mappings and higher dsDNA and sGAG/weight levels indicated better regeneration for Treatment No. 1. However, these differences were not significant. For both treatments, Arthro-BST revealed early signs of degeneration of the cartilage surrounding the repair site. The International Cartilage Repair Society II histological scores of the repair tissue were significantly higher for Treatment No. 1 (10.3 ± 0.38 SE) compared to Treatment No. 2 (8.7 ± 0.45 SE). The parameters cell morphology and vascularization scored highest whereas tidemark formation scored the lowest. CONCLUSION There was cell infiltration and regeneration of bone and cartilage. However, repair was incomplete and fibrocartilaginous. There were no significant differences in the quality of regeneration between the treatments except in some histological scoring categories. The results from Arthro-BST measurements were comparable to traditional invasive/destructive methods of measuring quality of cartilage repair.
Collapse
Affiliation(s)
- Jan C. Schagemann
- University Medical Center Schleswig-Holstein Campus Lübeck, Clinic for Orthopedics and Trauma Surgery, Lübeck, Germany,Mayo Clinic, Orthopedic Surgery, Rochester, MN, USA,Jan C. Schagemann, University Medical Center Schleswig Holstein Campus Lübeck, Clinic for Orthopedics and Trauma Surgery, Ratzeburger Allee 160, 23538 Lübeck, Germany. Email
| | - Nicola Rudert
- University Medical Center Schleswig-Holstein Campus Lübeck, Clinic for Orthopedics and Trauma Surgery, Lübeck, Germany
| | | | - Sotcheadt Sim
- Biomedical and Chemical Engineering, Polytechnique Montreal, Montreal, Canada,Biomomentum Inc., Laval, Quebec, Canada
| | | | | | | | | | - Hagen Mittelstaedt
- University Medical Center Schleswig-Holstein Campus Lübeck, Clinic for Orthopedics and Trauma Surgery, Lübeck, Germany
| |
Collapse
|
113
|
Buno KP, Chen X, Weibel JA, Thiede SN, Garimella SV, Yoder MC, Voytik-Harbin SL. In Vitro Multitissue Interface Model Supports Rapid Vasculogenesis and Mechanistic Study of Vascularization across Tissue Compartments. ACS APPLIED MATERIALS & INTERFACES 2016; 8:21848-60. [PMID: 27136321 PMCID: PMC5007191 DOI: 10.1021/acsami.6b01194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A significant challenge facing tissue engineers is the design and development of complex multitissue systems, including vascularized tissue-tissue interfaces. While conventional in vitro models focus on either vasculogenesis (de novo formation of blood vessels) or angiogenesis (vessels sprouting from existing vessels or endothelial monolayers), successful therapeutic vascularization strategies will likely rely on coordinated integration of both processes. To address this challenge, we developed a novel in vitro multitissue interface model in which human endothelial colony forming cell (ECFC)-encapsulated tissue spheres are embedded within a surrounding tissue microenvironment. This highly reproducible approach exploits biphilic surfaces (nanostructured surfaces with distinct superhydrophobic and hydrophilic regions) to (i) support tissue compartments with user-specified matrix composition and physical properties as well as cell type and density and (ii) introduce boundary conditions that prevent the cell-mediated tissue contraction routinely observed with conventional three-dimensional monodispersion cultures. This multitissue interface model was applied to test the hypothesis that independent control of cell-extracellular matrix (ECM) and cell-cell interactions would affect vascularization within the tissue sphere as well as across the tissue-tissue interface. We found that high-cell-density tissue spheres containing 5 × 10(6) ECFCs/mL exhibit rapid and robust vasculogenesis, forming highly interconnected, stable (as indicated by type IV collagen deposition) vessel networks within only 3 days. Addition of adipose-derived stromal cells (ASCs) in the surrounding tissue further enhanced vasculogenesis within the sphere as well as angiogenic vessel elongation across the tissue-tissue boundary, with both effects being dependent on the ASC density. Overall, results show that the ECFC density and ECFC-ASC crosstalk, in terms of paracrine and mechanophysical signaling, are critical determinants of vascularization within a given tissue compartment and across tissue interfaces. This new in vitro multitissue interface model and the associated mechanistic insights it yields provide guiding principles for the design and optimization of multitissue vascularization strategies for research and clinical applications.
Collapse
Affiliation(s)
- Kevin P. Buno
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xuemei Chen
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Justin A. Weibel
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Stephanie N. Thiede
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Suresh V. Garimella
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mervin C. Yoder
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Sherry L. Voytik-Harbin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana 47907, United States
- Corresponding Author:. Phone: (765) 496-6128. Address: Martin C. Jischke Hall of Biomedical Engineering, Room 3033, 206 South Martin Jischke Drive, West Lafayette, IN 47907-2032, U.S.A
| |
Collapse
|
114
|
Wu Q, Yang B, Hu K, Cao C, Man Y, Wang P. Deriving Osteogenic Cells from Induced Pluripotent Stem Cells for Bone Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2016; 23:1-8. [PMID: 27392674 DOI: 10.1089/ten.teb.2015.0559] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Induced pluripotent stem cells (iPSCs), reprogrammed from adult somatic cells using defined transcription factors, are regarded as a promising cell source for tissue engineering. For the purpose of bone tissue regeneration, efficient in vitro differentiation of iPSCs into downstream cells, such as mesenchymal stem cells (MSCs), osteoblasts, or osteocyte-like cells, before use is necessary to limit undesired tumorogenesis associated with the pluripotency of iPSCs. Until recently numerous techniques on the production of iPSC-derived osteogenic progenitors have been introduced. We reviewed these protocols and provided a perspective on the comparisons of osteogenic potentials of (1) iPSC-derived osteogenic cells produced by different protocols, (2) iPSCs from different somatic origins, and (3) iPSC-derived MSC-like cells and bone marrow stem cells. Finally, we discussed the potential application of the diseased iPSCs for systematic bone disorders.
Collapse
Affiliation(s)
- Qingqing Wu
- 1 State Key Laboratory of Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| | - Bo Yang
- 1 State Key Laboratory of Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| | - Kevin Hu
- 2 University of Maryland Dental School , Baltimore, Maryland
| | - Cong Cao
- 3 Department of Stomatology, China-Japan Friendship Hospital , Beijing, China
| | - Yi Man
- 1 State Key Laboratory of Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| | - Ping Wang
- 1 State Key Laboratory of Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University , Chengdu, China .,2 University of Maryland Dental School , Baltimore, Maryland
| |
Collapse
|
115
|
Dyrna F, Herbst E, Hoberman A, Imhoff AB, Schmitt A. Stem cell procedures in arthroscopic surgery. Eur J Med Res 2016; 21:29. [PMID: 27411303 PMCID: PMC4944463 DOI: 10.1186/s40001-016-0224-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 07/05/2016] [Indexed: 12/13/2022] Open
Abstract
The stem cell as the building block necessary for tissue reparation and homeostasis plays a major role in regenerative medicine. Their unique property of being pluripotent, able to control immune process and even secrete a whole army of anabolic mediators, draws interest. While new arthroscopic procedures and techniques involving stem cells have been established over the last decade with improved outcomes, failures and dissatisfaction still occur. Therefore, there is increasing interest in ways to improve the healing response. MSCs are particularly promising for this task given their regenerative potential. While methods of isolating those cells are no longer poses a challenge, the best way of application is not clear. Several experiments in the realm of basic science and animal models have recently been published, addressing this issue, yet the application in clinical practice has lagged. This review provides an overview addressing the current standing of MSCs in the field of arthroscopic surgery.
Collapse
Affiliation(s)
- Felix Dyrna
- Department of Sports Orthopedics Klinikum rechts der Isar, Technical University, Ismaninger Str. 22, 81675, Munich, Germany
| | - Elmar Herbst
- Department of Sports Orthopedics Klinikum rechts der Isar, Technical University, Ismaninger Str. 22, 81675, Munich, Germany
| | - Alexander Hoberman
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, CT, USA
| | - Andreas B Imhoff
- Department of Sports Orthopedics Klinikum rechts der Isar, Technical University, Ismaninger Str. 22, 81675, Munich, Germany
| | - Andreas Schmitt
- Department of Sports Orthopedics Klinikum rechts der Isar, Technical University, Ismaninger Str. 22, 81675, Munich, Germany.
| |
Collapse
|
116
|
Norris SCP, Tseng P, Kasko AM. Direct Gradient Photolithography of Photodegradable Hydrogels with Patterned Stiffness Control with Submicrometer Resolution. ACS Biomater Sci Eng 2016; 2:1309-1318. [PMID: 33434984 DOI: 10.1021/acsbiomaterials.6b00237] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cell response to matrix mechanics is well-known; however, the ability to spatially pattern matrix stiffness to a high degree of control has been difficult to attain. This study describes the use of maskless photolithography as a flexible process for direct, noncontact gradient patterning of photodegradable hydrogels with custom graphics. Any input gray scale image can be used to directly chart hydrogel cross-link density as a function of spatial position. Hydrogels can be patterned with submicron resolution, with length scales within a single substrate spanning several orders of magnitude. A quantitative relationship between input grayscale image pixel intensity and output gel stiffness is validated, allowing for direct gradient patterning. Such physical gradient hydrogel constructs are rapidly produced in a highly controlled fashion with measured stiffness ranges and length scales that are physiologically relevant. Mesenchymal stem cells cultured on these physical gradients matrices congregate and align orthogonal to the gradient direction along iso-degraded lines. This approach results in a robust and high-throughput platform to answer key questions about cell response in heterogeneous physical environments.
Collapse
Affiliation(s)
- Sam C P Norris
- Department of Bioengineering, University of California Los Angeles, 410 Westwood Plaza, 5121 Engineering V, Los Angeles, California 90095, United States
| | - Peter Tseng
- Department of Bioengineering, University of California Los Angeles, 410 Westwood Plaza, 5121 Engineering V, Los Angeles, California 90095, United States
| | - Andrea M Kasko
- Department of Bioengineering, University of California Los Angeles, 410 Westwood Plaza, 5121 Engineering V, Los Angeles, California 90095, United States.,California Nanosystems Institute, 570 Westwood Plaza, Los Angeles, California 90095, United States
| |
Collapse
|
117
|
Ansari S, Chen C, Xu X, Annabi N, Zadeh HH, Wu BM, Khademhosseini A, Shi S, Moshaverinia A. Muscle Tissue Engineering Using Gingival Mesenchymal Stem Cells Encapsulated in Alginate Hydrogels Containing Multiple Growth Factors. Ann Biomed Eng 2016; 44:1908-20. [PMID: 27009085 DOI: 10.1007/s10439-016-1594-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 03/14/2016] [Indexed: 12/15/2022]
Abstract
Repair and regeneration of muscle tissue following traumatic injuries or muscle diseases often presents a challenging clinical situation. If a significant amount of tissue is lost the native regenerative potential of skeletal muscle will not be able to grow to fill the defect site completely. Dental-derived mesenchymal stem cells (MSCs) in combination with appropriate scaffold material, present an advantageous alternative therapeutic option for muscle tissue engineering in comparison to current treatment modalities available. To date, there has been no report on application of gingival mesenchymal stem cells (GMSCs) in three-dimensional scaffolds for muscle tissue engineering. The objectives of the current study were to develop an injectable 3D RGD-coupled alginate scaffold with multiple growth factor delivery capacity for encapsulating GMSCs, and to evaluate the capacity of encapsulated GMSCs to differentiate into myogenic tissue in vitro and in vivo where encapsulated GMSCs were transplanted subcutaneously into immunocompromised mice. The results demonstrate that after 4 weeks of differentiation in vitro, GMSCs as well as the positive control human bone marrow mesenchymal stem cells (hBMMSCs) exhibited muscle cell-like morphology with high levels of mRNA expression for gene markers related to muscle regeneration (MyoD, Myf5, and MyoG) via qPCR measurement. Our quantitative PCR analyzes revealed that the stiffness of the RGD-coupled alginate regulates the myogenic differentiation of encapsulated GMSCs. Histological and immunohistochemical/fluorescence staining for protein markers specific for myogenic tissue confirmed muscle regeneration in subcutaneous transplantation in our in vivo animal model. GMSCs showed significantly greater capacity for myogenic regeneration in comparison to hBMMSCs (p < 0.05). Altogether, our findings confirmed that GMSCs encapsulated in RGD-modified alginate hydrogel with multiple growth factor delivery capacity is a promising candidate for muscle tissue engineering.
Collapse
Affiliation(s)
- Sahar Ansari
- Division of Growth and Development, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Chider Chen
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xingtian Xu
- Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Nasim Annabi
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA.,Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Homayoun H Zadeh
- Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Benjamin M Wu
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prothodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Songtao Shi
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alireza Moshaverinia
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prothodontics, School of Dentistry, University of California, Los Angeles, CA, USA.
| |
Collapse
|
118
|
Lee N, Robinson J, Lu H. Biomimetic strategies for engineering composite tissues. Curr Opin Biotechnol 2016; 40:64-74. [PMID: 27010653 DOI: 10.1016/j.copbio.2016.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 02/27/2016] [Accepted: 03/04/2016] [Indexed: 01/22/2023]
Abstract
The formation of multiple tissue types and their integration into composite tissue units presents a frontier challenge in regenerative engineering. Tissue-tissue synchrony is crucial in providing structural support for internal organs and enabling daily activities. This review highlights the state-of-the-art in composite tissue scaffold design, and explores how biomimicry can be strategically applied to avoid over-engineering the scaffold. Given the complexity of biological tissues, determining the most relevant parameters for recapitulating native structure-function relationships through strategic biomimicry will reduce the burden for clinical translation. It is anticipated that these exciting efforts in composite tissue engineering will enable integrative and functional repair of common soft tissue injuries and lay the foundation for total joint or limb regeneration.
Collapse
Affiliation(s)
- Nancy Lee
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| | - Jennifer Robinson
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States; Division of Orthodontics, College of Dental Medicine, Columbia University, New York, NY 10032, United States
| | - Helen Lu
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States.
| |
Collapse
|
119
|
Adipose-Derived Stem Cells for Tissue Engineering and Regenerative Medicine Applications. Stem Cells Int 2016; 2016:6737345. [PMID: 27057174 PMCID: PMC4761677 DOI: 10.1155/2016/6737345] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/02/2016] [Accepted: 01/03/2016] [Indexed: 02/05/2023] Open
Abstract
Adipose-derived stem cells (ASCs) are a mesenchymal stem cell source with properties of self-renewal and multipotential differentiation. Compared to bone marrow-derived stem cells (BMSCs), ASCs can be derived from more sources and are harvested more easily. Three-dimensional (3D) tissue engineering scaffolds are better able to mimic the in vivo cellular microenvironment, which benefits the localization, attachment, proliferation, and differentiation of ASCs. Therefore, tissue-engineered ASCs are recognized as an attractive substitute for tissue and organ transplantation. In this paper, we review the characteristics of ASCs, as well as the biomaterials and tissue engineering methods used to proliferate and differentiate ASCs in a 3D environment. Clinical applications of tissue-engineered ASCs are also discussed to reveal the potential and feasibility of using tissue-engineered ASCs in regenerative medicine.
Collapse
|
120
|
Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 2016; 34:312-9. [PMID: 26878319 DOI: 10.1038/nbt.3413] [Citation(s) in RCA: 1506] [Impact Index Per Article: 167.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/19/2015] [Indexed: 02/07/2023]
Abstract
A challenge for tissue engineering is producing three-dimensional (3D), vascularized cellular constructs of clinically relevant size, shape and structural integrity. We present an integrated tissue-organ printer (ITOP) that can fabricate stable, human-scale tissue constructs of any shape. Mechanical stability is achieved by printing cell-laden hydrogels together with biodegradable polymers in integrated patterns and anchored on sacrificial hydrogels. The correct shape of the tissue construct is achieved by representing clinical imaging data as a computer model of the anatomical defect and translating the model into a program that controls the motions of the printer nozzles, which dispense cells to discrete locations. The incorporation of microchannels into the tissue constructs facilitates diffusion of nutrients to printed cells, thereby overcoming the diffusion limit of 100-200 μm for cell survival in engineered tissues. We demonstrate capabilities of the ITOP by fabricating mandible and calvarial bone, cartilage and skeletal muscle. Future development of the ITOP is being directed to the production of tissues for human applications and to the building of more complex tissues and solid organs.
Collapse
Affiliation(s)
- Hyun-Wook Kang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA
| | - In Kap Ko
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA
| | - Carlos Kengla
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA
| |
Collapse
|
121
|
Choi W, Lee S, Kim SH, Jang JH. Polydopamine Inter-Fiber Networks: New Strategy for Producing Rigid, Sticky, 3D Fluffy Electrospun Fibrous Polycaprolactone Sponges. Macromol Biosci 2016; 16:824-35. [PMID: 26855375 DOI: 10.1002/mabi.201500375] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/11/2016] [Indexed: 11/10/2022]
Abstract
Designing versatile 3D interfaces that can precisely represent a biological environment is a prerequisite for the creation of artificial tissue structures. To this end, electrospun fibrous sponges, precisely mimicking an extracellular matrix and providing highly porous interfaces, have capabilities that can function as versatile physical cues to regenerate various tissues. However, their intrinsic features, such as sheet-like, thin, and weak structures, limit the design of a number of uses in tissue engineering applications. Herein, a highly facile methodology capable of fabricating rigid, sticky, spatially expanded fluffy electrospun fibrous sponges is proposed. A bio-inspired adhesive material, poly(dopamine) (pDA), is employed as a key mediator to provide rigidity and stickiness to the 3D poly(ε-caprolactone) (PCL) fibrous sponges, which are fabricated using a coaxial electrospinning with polystyrene followed by a selective leaching process. The iron ion induced oxidation of dopamine into pDA networks interwoven with PCL fibers results in significant increases in the rigidity of 3D fibrous sponges. Furthermore, the exposure of catecholamine groups on the fiber surfaces promotes the stable attachment of the sponges on wet organ surfaces and triggers the robust immobilization of biomolecules (e.g., proteins and gene vectors), demonstrating their potential for 3D scaffolds as well as drug delivery vehicles. Because fibrous structures are ubiquitous in the human body, these rigid, sticky, 3D fibrous sponges are good candidates for powerful biomaterial systems that functionally mimic a variety of tissue structures.
Collapse
Affiliation(s)
- Wuyong Choi
- Department of Chemical and Biomolecular Engineering, Yonsei University, 120-749, Seoul, Korea
| | - Slgirim Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 120-749, Seoul, Korea
| | - Seung-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 120-749, Seoul, Korea
| | - Jae-Hyung Jang
- Department of Chemical and Biomolecular Engineering, Yonsei University, 120-749, Seoul, Korea
| |
Collapse
|
122
|
Abstract
Biomaterials have played an increasingly prominent role in the success of biomedical devices and in the development of tissue engineering, which seeks to unlock the regenerative potential innate to human tissues/organs in a state of deterioration and to restore or reestablish normal bodily function. Advances in our understanding of regenerative biomaterials and their roles in new tissue formation can potentially open a new frontier in the fast-growing field of regenerative medicine. Taking inspiration from the role and multi-component construction of native extracellular matrices (ECMs) for cell accommodation, the synthetic biomaterials produced today routinely incorporate biologically active components to define an artificial in vivo milieu with complex and dynamic interactions that foster and regulate stem cells, similar to the events occurring in a natural cellular microenvironment. The range and degree of biomaterial sophistication have also dramatically increased as more knowledge has accumulated through materials science, matrix biology and tissue engineering. However, achieving clinical translation and commercial success requires regenerative biomaterials to be not only efficacious and safe but also cost-effective and convenient for use and production. Utilizing biomaterials of human origin as building blocks for therapeutic purposes has provided a facilitated approach that closely mimics the critical aspects of natural tissue with regard to its physical and chemical properties for the orchestration of wound healing and tissue regeneration. In addition to directly using tissue transfers and transplants for repair, new applications of human-derived biomaterials are now focusing on the use of naturally occurring biomacromolecules, decellularized ECM scaffolds and autologous preparations rich in growth factors/non-expanded stem cells to either target acceleration/magnification of the body's own repair capacity or use nature's paradigms to create new tissues for restoration. In particular, there is increasing interest in separating ECMs into simplified functional domains and/or biopolymeric assemblies so that these components/constituents can be discretely exploited and manipulated for the production of bioscaffolds and new biomimetic biomaterials. Here, following an overview of tissue auto-/allo-transplantation, we discuss the recent trends and advances as well as the challenges and future directions in the evolution and application of human-derived biomaterials for reconstructive surgery and tissue engineering. In particular, we focus on an exploration of the structural, mechanical, biochemical and biological information present in native human tissue for bioengineering applications and to provide inspiration for the design of future biomaterials.
Collapse
|
123
|
Li Y, Zheng Z, Cao Z, Zhuang L, Xu Y, Liu X, Xu Y, Gong Y. Enhancing proliferation and osteogenic differentiation of HMSCs on casein/chitosan multilayer films. Colloids Surf B Biointerfaces 2016; 141:397-407. [PMID: 26895501 DOI: 10.1016/j.colsurfb.2016.01.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/02/2016] [Accepted: 01/19/2016] [Indexed: 11/19/2022]
Abstract
Creating a bioactive surface is important in tissue engineering. Inspired by the natural calcium binding property of casein (CA), multilayer films ((CA/CS)n) with chitosan (CS) as polycation were fabricated to enhance biomineralization, cell adhesion and differentiation. LBL self-assembly technique was used and the assembly process was intensively studied based on changes of UV absorbance, zeta potential and water contact angle. The increasing content of chitosan and casein with bilayers was further confirmed with XPS and TOF-SIMS analysis. To improve the biocompatibility, gelatin was surface grafted. In vitro mineralization test demonstrated that multilayer films had more hydroxyapatite crystal deposition. Human mesenchymal stem cells (HMSCs) were seeded onto these films. According to fluorescein diacetate (FDA) and cell cytoskeleton staining, MTT assay, expression of osteogenic marker genes, ALP activity, and calcium deposition quantification, it was found that these multilayer films significantly promoted HMSCs attachment, proliferation and osteogenic differentiation than TCPS control.
Collapse
Affiliation(s)
- Yan Li
- Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Zebin Zheng
- Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Zhinan Cao
- Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Liangting Zhuang
- Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Yong Xu
- Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Xiaozhen Liu
- Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Yue Xu
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, PR China.
| | - Yihong Gong
- Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-sen University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
124
|
Son J, Bae CY, Park JK. Freestanding stacked mesh-like hydrogel sheets enable the creation of complex macroscale cellular scaffolds. Biotechnol J 2016; 11:585-91. [PMID: 26627474 DOI: 10.1002/biot.201500384] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/24/2015] [Accepted: 11/21/2015] [Indexed: 11/10/2022]
Abstract
Hydrogel-based bottom-up tissue engineering depends on assembly of cell-laden modules for complex three-dimensional tissue reconstruction. Though sheet-like hydrogel modules enable rapid and controllable assembly, they have limitations in generating spatial microenvironments and mass transport. Here, we describe a simple method for forming large-scale cell-hydrogel assemblies via stacking cell-embedded mesh-like hydrogel sheets to create complex macroscale cellular scaffolds. Freestanding stacked hydrogel sheets were fabricated for long-term cell culturing applications using a facile stacking process where the micropatterned hydrogel sheets (8.0 mm × 8.7 mm) were aligned using a polydimethylsiloxane drainage well. The stacked hydrogel sheets were precisely aligned so that the openings could facilitate mass transport through the stacked sheets. Despite the relatively large height of the stacked structure (400-700 μm), which is larger than the diffusion limit thickness of 150-200 μm, the freestanding cell-ydrogel assemblies maintained cell viability and exhibited enhanced cellular function compared with single hydrogel sheets. Furthermore, a three-dimensional co-culture system was constructed simply by stacking different cell-containing hydrogel sheets. These results show that stacked hydrogel sheets have significant potential as a macroscale cell-culture and assay platform with complex microenvironments for biologically relevant in vitro tissue-level drug assays and physiological studies.
Collapse
Affiliation(s)
- Jaejung Son
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Chae Yun Bae
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Je-Kyun Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
125
|
Rioja AY, Tiruvannamalai Annamalai R, Paris S, Putnam AJ, Stegemann JP. Endothelial sprouting and network formation in collagen- and fibrin-based modular microbeads. Acta Biomater 2016; 29:33-41. [PMID: 26481042 PMCID: PMC4681647 DOI: 10.1016/j.actbio.2015.10.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/04/2015] [Accepted: 10/15/2015] [Indexed: 12/18/2022]
Abstract
A modular tissue engineering approach may have advantages over current therapies in providing rapid and sustained revascularization of ischemic tissue. In this study, modular protein microbeads were prepared from pure fibrin (FIB) and collagen-fibrin composites (COL-FIB) using a simple water-in-oil emulsification technique. Human endothelial cells and fibroblasts were embedded directly in the microbead matrix. The resulting microbeads were generally spheroidal with a diameter of 100-200μm. Cell viability was high (75-80% viable) in microbeads, but was marginally lower than in bulk hydrogels of corresponding composition (85-90% viable). Cell proliferation was significantly greater in COL-FIB microbeads after two weeks in culture, compared to pure FIB microbeads. Upon embedding of microbeads in a surrounding fibrin hydrogel, endothelial cell networks formed inside the microbead matrix and extended into the surrounding matrix. The number of vessel segments, average segment length, and number of branch points was higher in FIB samples, compared to COL-FIB samples, resulting in significantly longer total vessel networks. Anastomosis of vessel networks from adjacent microbeads was also observed. These studies demonstrate that primitive vessel networks can be formed by modular protein microbeads containing embedded endothelial cells and fibroblasts. Such microbeads may find utility as prevascularized tissue modules that can be delivered minimally invasively as a therapy to restore blood flow to ischemic tissues. STATEMENT OF SIGNIFICANCE Vascularization is critically important for tissue engineering and regenerative medicine, and materials that support and/or promote neovascularization are of value both for translational applications and for mechanistic studies and discovery-based research. Therefore, we fabricated small modular microbeads formulated from pure fibrin (FIB) and collagen-fibrin (COL-FIB) containing endothelial cells and supportive fibroblasts. We explored how cells encapsulated within these materials form microvessel-like networks both within and outside of the microbeads when embedded in larger 3D matrices. FIB microbeads were found to initiate more extensive sprouting into the surrounding ECM in vitro. These results represent an important step towards our goal of developing injectable biomaterial modules containing preformed vascular units that can rapidly restore vascularization to an ischemic tissue in vivo.
Collapse
Affiliation(s)
- Ana Y Rioja
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, United States
| | | | - Spencer Paris
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, United States
| | - Andrew J Putnam
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, United States.
| | - Jan P Stegemann
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, United States.
| |
Collapse
|
126
|
Zafar F, Hinton RB, Moore RA, Baker RS, Bryant R, Narmoneva DA, Taylor MD, Morales DL. Physiological Growth, Remodeling Potential, and Preserved Function of a Novel Bioprosthetic Tricuspid Valve: Tubular Bioprosthesis Made of Small Intestinal Submucosa-Derived Extracellular Matrix. J Am Coll Cardiol 2015; 66:877-88. [PMID: 26293756 DOI: 10.1016/j.jacc.2015.06.1091] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 06/10/2015] [Accepted: 06/12/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND Prosthetic valves currently used in children lack the ability to grow with the patient and often require multiple reoperations. Small intestinal submucosa-derived extracellular matrix (SIS-ECM) has been used successfully as a patch for repair in various tissues, including vessels, valves, and myocardium. OBJECTIVES This study sought to assess the remodeling potential of a tubular tricuspid valve (TV) bioprosthesis made of SIS-ECM by evaluating its growth, structure, and function in a growing ovine model. METHODS A total of 12 3-month-old lambs were studied for a period of 3 or 8 months. SIS-ECM TVs were placed in 8 lambs; conventional bioprosthetic valves and native valves (NV) were studied as controls. All lambs underwent serial echocardiography, measuring annulus diameter and valve and right ventricular function. RESULTS The SIS-ECM valves demonstrated an incremental increase in annular diameter similar to NV. SIS-ECM valve function was normal in 7 of 8; 1 valve had severe regurgitation due to a flail leaflet. Explanted SIS-ECM valves approximated native tissue in gross appearance. Histopathology demonstrated migration of resident mesenchymal cells into the scaffold and trilaminar ECM organization similar to an NV, without inflammation or calcification at 8 months. Ex vivo mechanical testing of SIS-ECM valve tissue showed normalization of the elastic modulus by 8 months. CONCLUSIONS In an ovine model, tubular SIS-ECM TV bioprostheses demonstrate "growth" and a cell-matrix structure similar to mature NVs while maintaining normal valve function. The SIS-ECM valve may provide a novel solution for TV replacement in children and adults.
Collapse
Affiliation(s)
- Farhan Zafar
- Division of Pediatric Cardiothoracic Surgery, The Heart Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio.
| | - Robert B Hinton
- Division of Cardiology, The Heart Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Ryan A Moore
- Division of Cardiology, The Heart Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - R Scott Baker
- Division of Pediatric Cardiothoracic Surgery, The Heart Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Roosevelt Bryant
- Division of Pediatric Cardiothoracic Surgery, The Heart Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Daria A Narmoneva
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio
| | - Michael D Taylor
- Division of Cardiology, The Heart Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - David L Morales
- Division of Pediatric Cardiothoracic Surgery, The Heart Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
127
|
Ahadian S, Sadeghian RB, Salehi S, Ostrovidov S, Bae H, Ramalingam M, Khademhosseini A. Bioconjugated Hydrogels for Tissue Engineering and Regenerative Medicine. Bioconjug Chem 2015; 26:1984-2001. [PMID: 26280942 DOI: 10.1021/acs.bioconjchem.5b00360] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Samad Ahadian
- WPI-Advanced
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Ramin Banan Sadeghian
- WPI-Advanced
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Sahar Salehi
- WPI-Advanced
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Serge Ostrovidov
- WPI-Advanced
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Hojae Bae
- College
of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong,
Kwangjin-gu, Seoul 143-701, Republic of Korea
| | - Murugan Ramalingam
- WPI-Advanced
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
- Centre
for Stem Cell Research, Institute for Stem Cell Biology and Regenerative Medicine, Christian Medical College Campus, Vellore 632002, India
| | - Ali Khademhosseini
- WPI-Advanced
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
- College
of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong,
Kwangjin-gu, Seoul 143-701, Republic of Korea
- Department
of Medicine, Center for Biomedical Engineering, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| |
Collapse
|
128
|
Lachaud CC, Rodriguez-Campins B, Hmadcha A, Soria B. Use of Mesothelial Cells and Biological Matrices for Tissue Engineering of Simple Epithelium Surrogates. Front Bioeng Biotechnol 2015; 3:117. [PMID: 26347862 PMCID: PMC4538307 DOI: 10.3389/fbioe.2015.00117] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 08/03/2015] [Indexed: 12/13/2022] Open
Abstract
Tissue-engineering technologies have progressed rapidly through last decades resulting in the manufacture of quite complex bioartificial tissues with potential use for human organ and tissue regeneration. The manufacture of avascular monolayered tissues such as simple squamous epithelia was initiated a few decades ago and is attracting increasing interest. Their relative morphostructural simplicity makes of their biomimetization a goal, which is currently accessible. The mesothelium is a simple squamous epithelium in nature and is the monolayered tissue lining the walls of large celomic cavities (peritoneal, pericardial, and pleural) and internal organs housed inside. Interestingly, mesothelial cells can be harvested in clinically relevant numbers from several anatomical sources and not less important, they also display high transdifferentiation capacities and are low immunogenic characteristics, which endow these cells with therapeutic interest. Their combination with a suitable scaffold (biocompatible, degradable, and non-immunogenic) may allow the manufacture of tailored serosal membranes biomimetics with potential spanning a wide range of therapeutic applications, principally for the regeneration of simple squamous-like epithelia such as the visceral and parietal mesothelium vascular endothelium and corneal endothelium among others. Herein, we review recent research progresses in mesothelial cells biology and their clinical sources. We make a particular emphasis on reviewing the different types of biological scaffolds suitable for the manufacture of serosal mesothelial membranes biomimetics. Finally, we also review progresses made in mesothelial cells-based therapeutic applications and propose some possible future directions.
Collapse
Affiliation(s)
- Christian Claude Lachaud
- Andalusian Center for Molecular Biology and Regenerative Medicine - Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) , Seville , Spain ; Centro de Investigación en Red sobre Diabetes y Enfermedades Metabólicas (CIBERDEM) , Madrid , Spain
| | - Berta Rodriguez-Campins
- Departamento de I+D, New Biotechnic S.A. , Seville , Spain ; Fundación Andaluza de Investigación y Desarrollo (FAID) , Seville , Spain
| | - Abdelkrim Hmadcha
- Andalusian Center for Molecular Biology and Regenerative Medicine - Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) , Seville , Spain ; Centro de Investigación en Red sobre Diabetes y Enfermedades Metabólicas (CIBERDEM) , Madrid , Spain
| | - Bernat Soria
- Andalusian Center for Molecular Biology and Regenerative Medicine - Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) , Seville , Spain ; Centro de Investigación en Red sobre Diabetes y Enfermedades Metabólicas (CIBERDEM) , Madrid , Spain
| |
Collapse
|
129
|
Osteogenesis of human adipose-derived stem cells on poly(dopamine)-coated electrospun poly(lactic acid) fiber mats. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 58:254-63. [PMID: 26478309 DOI: 10.1016/j.msec.2015.08.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 07/15/2015] [Accepted: 08/08/2015] [Indexed: 12/25/2022]
Abstract
Electrospinning is a versatile technique to generate large quantities of micro- or nano-fibers from a wide variety of shapes and sizes of polymer. The aim of this study is to develop functionalized electrospun nano-fibers and use a mussel-inspired surface coating to regulate adhesion, proliferation and differentiation of human adipose-derived stem cells (hADSCs). We prepared poly(lactic acid) (PLA) fibers coated with polydopamine (PDA). The morphology, chemical composition, and surface properties of PDA/PLA were characterized by SEM and XPS. PDA/PLA modulated hADSCs' responses in several ways. Firstly, adhesion and proliferation of hADSCs cultured on PDA/PLA were significantly enhanced relative to those on PLA. Increased focal adhesion kinase (FAK) and collagen I levels and enhanced cell attachment and cell cycle progression were observed upon an increase in PDA content. In addition, the ALP activity and osteocalcin of hADSCs cultured on PDA/PLA were significantly higher than seen in those cultured on a pure PLA mat. Moreover, hADSCs cultured on PDA/PLA showed up-regulation of the ang-1 and vWF proteins associated with angiogenesis differentiation. Our results demonstrate that the bio-inspired coating synthetic degradable PLA polymer can be used as a simple technique to render the surfaces of synthetic biodegradable fibers, thus enabling them to direct the specific responses of hADSCs.
Collapse
|
130
|
Hou S, Wang X, Park S, Jin X, Ma PX. Rapid Self-Integrating, Injectable Hydrogel for Tissue Complex Regeneration. Adv Healthc Mater 2015; 4:1491-5, 1423. [PMID: 25946414 DOI: 10.1002/adhm.201500093] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/03/2015] [Indexed: 12/28/2022]
Abstract
A novel rapid self-integrating, injectable, and bioerodible hydrogel is developed for bone-cartilage tissue complex regeneration. The hydrogels are able to self-integrate to form various structures, as can be seen after dying some hydrogel disks pink with rodamine. This hydrogel is demonstrated to engineer cartilage-bone complex.
Collapse
Affiliation(s)
- Sen Hou
- Center for Biomedical Engineering and Regenerative Medicine; Frontier Institute of Science and Technology; Xi'an Jiaotong University; Xi'an 710054 China
- Department of Biologic and Materials Sciences; University of Michigan; Ann Arbor MI 48109 USA
| | - Xuefei Wang
- Department of Biologic and Materials Sciences; University of Michigan; Ann Arbor MI 48109 USA
| | - Sean Park
- Department of Biologic and Materials Sciences; University of Michigan; Ann Arbor MI 48109 USA
| | - Xiaobing Jin
- Department of Biologic and Materials Sciences; University of Michigan; Ann Arbor MI 48109 USA
| | - Peter X. Ma
- Center for Biomedical Engineering and Regenerative Medicine; Frontier Institute of Science and Technology; Xi'an Jiaotong University; Xi'an 710054 China
- Department of Biologic and Materials Sciences; University of Michigan; Ann Arbor MI 48109 USA
- Department of Biomedical Engineering; Macromolecular Science and Engineering Center; Department of Materials Science and Engineering; University of Michigan; Ann Arbor MI 48109 USA
| |
Collapse
|
131
|
Yeh CH, Chen YW, Shie MY, Fang HY. Poly(Dopamine)-Assisted Immobilization of Xu Duan on 3D Printed Poly(Lactic Acid) Scaffolds to Up-Regulate Osteogenic and Angiogenic Markers of Bone Marrow Stem Cells. MATERIALS (BASEL, SWITZERLAND) 2015; 8:4299-4315. [PMID: 28793441 PMCID: PMC5455643 DOI: 10.3390/ma8074299] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/25/2015] [Accepted: 07/08/2015] [Indexed: 01/29/2023]
Abstract
Three-dimensional printing is a versatile technique to generate large quantities of a wide variety of shapes and sizes of polymer. The aim of this study is to develop functionalized 3D printed poly(lactic acid) (PLA) scaffolds and use a mussel-inspired surface coating and Xu Duan (XD) immobilization to regulate cell adhesion, proliferation and differentiation of human bone-marrow mesenchymal stem cells (hBMSCs). We prepared PLA scaffolds and coated with polydopamine (PDA). The chemical composition and surface properties of PLA/PDA/XD were characterized by XPS. PLA/PDA/XD controlled hBMSCs' responses in several ways. Firstly, adhesion and proliferation of hBMSCs cultured on PLA/PDA/XD were significantly enhanced relative to those on PLA. In addition, the focal adhesion kinase (FAK) expression of cells was increased and promoted cell attachment depended on the XD content. In osteogenesis assay, the osteogenesis markers of hBMSCs cultured on PLA/PDA/XD were significantly higher than seen in those cultured on a pure PLA/PDA scaffolds. Moreover, hBMSCs cultured on PLA/PDA/XD showed up-regulation of the ang-1 and vWF proteins associated with angiogenic differentiation. Our results demonstrate that the bio-inspired coating synthetic PLA polymer can be used as a simple technique to render the surfaces of synthetic scaffolds active, thus enabling them to direct the specific responses of hBMSCs.
Collapse
Affiliation(s)
- Chia-Hung Yeh
- Printing Medical Research Center, China Medical University Hospital, Taichung City 40447, Taiwan.
| | - Yi-Wen Chen
- Printing Medical Research Center, China Medical University Hospital, Taichung City 40447, Taiwan.
| | - Ming-You Shie
- Printing Medical Research Center, China Medical University Hospital, Taichung City 40447, Taiwan.
| | - Hsin-Yuan Fang
- Printing Medical Research Center, China Medical University Hospital, Taichung City 40447, Taiwan.
- Department of Thoracic Surgery, China Medical University Hospital, Taichung City 40447, Taiwan.
- School of Medicine, College of Medicine, College of Public Health, Taichung City 40447, Taiwan.
| |
Collapse
|
132
|
Rich MH, Lee MK, Marshall N, Clay N, Chen J, Mahmassani Z, Boppart M, Kong H. Water–Hydrogel Binding Affinity Modulates Freeze-Drying-Induced Micropore Architecture and Skeletal Myotube Formation. Biomacromolecules 2015; 16:2255-64. [DOI: 10.1021/acs.biomac.5b00652] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Hyunjoon Kong
- Department
of Chemical Engineering, Soongsil University, Seoul, Korea
| |
Collapse
|
133
|
Wang X, Rijff BL, Khang G. A building-block approach to 3D printing a multichannel, organ-regenerative scaffold. J Tissue Eng Regen Med 2015; 11:1403-1411. [PMID: 26123711 DOI: 10.1002/term.2038] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 02/01/2015] [Accepted: 04/29/2015] [Indexed: 11/07/2022]
Abstract
Multichannel scaffolds, formed by rapid prototyping technologies, retain a high potential for regenerative medicine and the manufacture of complex organs. This study aims to optimize several parameters for producing poly(lactic-co-glycolic acid) (PLGA) scaffolds by a low-temperature, deposition manufacturing, three-dimensional printing (3DP, or rapid prototyping) system. Concentration of the synthetic polymer solution, nozzle speed and extrusion rate were analysed and discussed. Polymer solution with a concentration of 12% w/v was determined as optimal for formation; large deviation of this figure failed to maintain the desired structure. The extrusion rate was also modified for better construct quality. Finally, several solid organ scaffolds, such as the liver, with proper wall thickness and intact contour were printed. This study gives basic instruction to design and fabricate scaffolds with de novo material systems, particularly by showing the approximation of variables for manufacturing multichannel PLGA scaffolds. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Xiaohong Wang
- Centre of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing, People's Republic of China
- State Key Laboratory of Materials Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Boaz Lloyd Rijff
- Centre of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing, People's Republic of China
| | - Gilson Khang
- Department of BIN Fusion Technology and Department of Polymer Nanoscience Technology, Chonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
134
|
Hung BP, Hutton DL, Kozielski KL, Bishop CJ, Naved B, Green JJ, Caplan AI, Gimble JM, Dorafshar AH, Grayson WL. Platelet-Derived Growth Factor BB Enhances Osteogenesis of Adipose-Derived But Not Bone Marrow-Derived Mesenchymal Stromal/Stem Cells. Stem Cells 2015; 33:2773-84. [PMID: 26013357 DOI: 10.1002/stem.2060] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/25/2015] [Accepted: 04/20/2015] [Indexed: 01/22/2023]
Abstract
Tissue engineering using mesenchymal stem cells (MSCs) holds great promise for regenerating critically sized bone defects. While the bone marrow-derived MSC is the most widely studied stromal/stem cell type for this application, its rarity within bone marrow and painful isolation procedure have motivated investigation of alternative cell sources. Adipose-derived stromal/stem cells (ASCs) are more abundant and more easily procured; furthermore, they also possess robust osteogenic potency. While these two cell types are widely considered very similar, there is a growing appreciation of possible innate differences in their biology and response to growth factors. In particular, reports indicate that their osteogenic response to platelet-derived growth factor BB (PDGF-BB) is markedly different: MSCs responded negatively or not at all to PDGF-BB while ASCs exhibited enhanced mineralization in response to physiological concentrations of PDGF-BB. In this study, we directly tested whether a fundamental difference existed between the osteogenic responses of MSCs and ASCs to PDGF-BB. MSCs and ASCs cultured under identical osteogenic conditions responded disparately to 20 ng/ml of PDGF-BB: MSCs exhibited no difference in mineralization while ASCs produced more calcium per cell. siRNA-mediated knockdown of PDGFRβ within ASCs abolished their ability to respond to PDGF-BB. Gene expression was also different; MSCs generally downregulated and ASCs generally upregulated osteogenic genes in response to PDGF-BB. ASCs transduced to produce PDGF-BB resulted in more regenerated bone within a critically sized murine calvarial defect compared to control ASCs, indicating PDGF-BB used specifically in conjunction with ASCs might enhance tissue engineering approaches for bone regeneration.
Collapse
Affiliation(s)
- Ben P Hung
- Department of Biomedical Engineering.,Translational Tissue Engineering Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daphne L Hutton
- Department of Biomedical Engineering.,Translational Tissue Engineering Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kristen L Kozielski
- Department of Biomedical Engineering.,Translational Tissue Engineering Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Corey J Bishop
- Department of Biomedical Engineering.,Translational Tissue Engineering Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bilal Naved
- Fischell Department of Biomedical Engineering, University of Maryland, College Park, Maryland, USA
| | - Jordan J Green
- Department of Biomedical Engineering.,Translational Tissue Engineering Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Arnold I Caplan
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jeffrey M Gimble
- Department of Medicine and Surgery, Tulane University, New Orleans, Louisiana, USA
| | - Amir H Dorafshar
- Department of Plastic Surgery, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Warren L Grayson
- Department of Biomedical Engineering.,Translational Tissue Engineering Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Materials Science & Engineering, The Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland, USA
| |
Collapse
|
135
|
Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 56:165-73. [PMID: 26249577 DOI: 10.1016/j.msec.2015.06.028] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 02/17/2015] [Accepted: 06/13/2015] [Indexed: 11/21/2022]
Abstract
3D printing is a versatile technique to generate large quantities of a wide variety of shapes and sizes of polymer. The aim of this study is to develop functionalized 3D printed poly(lactic acid) (PLA) scaffolds and use a mussel-inspired surface coating to regulate cell adhesion, proliferation and differentiation of human adipose-derived stem cells (hADSCs). We prepared PLA 3D scaffolds coated with polydopamine (PDA). The chemical composition and surface properties of PDA/PLA were characterized by XPS. PDA/PLA modulated hADSCs' responses in several ways. Firstly, adhesion and proliferation, and cell cycle of hADSCs cultured on PDA/PLA were significantly enhanced relative to those on PLA. In addition, the collagen I secreted from cells was increased and promoted cell attachment and cell cycle progression were depended on the PDA content. In osteogenesis assay, the ALP activity and osteocalcin of hADSCs cultured on PDA/PLA were significantly higher than seen in those cultured on pure PLA scaffolds. Moreover, hADSCs cultured on PDA/PLA showed up-regulation of the ang-1 and vWF proteins associated with angiogenic differentiation. Our results demonstrate that the bio-inspired coating synthetic PLA polymer can be used as a simple technique to render the surfaces of synthetic scaffolds active, thus enabling them to direct the specific responses of hADSCs.
Collapse
|
136
|
Hou GZ, Xu F, Li WJ, Zhu XM, Song XH, Zhan YL. Expression of bone morphogenetic protein 2 in rabbit radial defect site with different lengths. Int J Clin Exp Med 2015; 8:9229-9238. [PMID: 26309580 PMCID: PMC4537957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 06/10/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND It has been studied that the distribution of bone morphogenetic protein 2 is regular under bone defect situation. OBJECTIVE To observe the expression of bone morphogenetic protein 2 in rabbit radial defect site with different lengths. METHODS Forty-eight New Zealand rabbits were divided into two groups randomly. 0.5 cm bone defect and 3.0 cm bone defect were made by wire saw at the middle part of radius bone after anaesthesia. RESULTS AND CONCLUSIONS Western blot results showed that in the 0.5 cm bone defect group, the expression of bone morphogenetic protein 2 of the tissues in the bone defect site was increased gradually at 1, 3, 4 weeks after operation, and the expression in each defect group was increased when compared with that immediately after injury (P<0.05). In the 3.0 cm bone defect group, the expression of bone morphogenetic protein 2 of tissues in bone defect site was increased gradually and reached to its peak at 3 weeks after the operation (P<0.05). The peak value in the 3.0 cm bone defect group was significantly higher than that in 0.5 cm bone defect group (P<0.05). The peak value was maintained in high level. The comparison of bone callus formation showed that the bone callus formation of 3.0 cm bone defect group was less than that of the 0.5 cm bone defect group at 3 and 4 weeks after operation (P<0.05). The results indicate that expression of the bone morphogenetic protein 2 in 3.0 cm bone defect site is increased significantly, but the expression level cannot make the bone defect heal itself.
Collapse
Affiliation(s)
- Guo-Zhu Hou
- Department of Emergency, General Hospital of Pingmei Shenma Medical GroupPingdingshan, Henan, China
| | - Feng Xu
- Department of Orthopaedics, The Fifth Hospital of Wuhan, The Second Hospital Affiliated of Jianghan UniversityWuhan, Hubei, China
| | - Wen-Ju Li
- Department of Pain Treatment, The First Affiliated Hospital of Xinjiang Medical UniversityUrumuqi, Xinjiang, China
| | - Xiao-Meng Zhu
- Department of Traumatology, Xinjiang Production and Construction CorpsUrumuqi, Xinjiang, China
| | - Xing-Hua Song
- Department of Orthopaedics, The First Affiliated Hospital of Xinjiang Medical UniversityUrumuqi, Xinjiang, China
| | - Yu-Lin Zhan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghai, China
| |
Collapse
|
137
|
Tan Y, Hoon S, Guerette PA, Wei W, Ghadban A, Hao C, Miserez A, Waite JH. Infiltration of chitin by protein coacervates defines the squid beak mechanical gradient. Nat Chem Biol 2015; 11:488-95. [PMID: 26053298 DOI: 10.1038/nchembio.1833] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 04/13/2015] [Indexed: 11/09/2022]
Abstract
The beak of the jumbo squid Dosidicus gigas is a fascinating example of how seamlessly nature builds with mechanically mismatched materials. A 200-fold stiffness gradient begins in the hydrated chitin of the soft beak base and gradually increases to maximum stiffness in the dehydrated distal rostrum. Here, we combined RNA-Seq and proteomics to show that the beak contains two protein families. One family consists of chitin-binding proteins (DgCBPs) that physically join chitin chains, whereas the other family comprises highly modular histidine-rich proteins (DgHBPs). We propose that DgHBPs play multiple key roles during beak bioprocessing, first by forming concentrated coacervate solutions that diffuse into the DgCBP-chitin scaffold, and second by inducing crosslinking via an abundant GHG sequence motif. These processes generate spatially controlled desolvation, resulting in the impressive biomechanical gradient. Our findings provide novel molecular-scale strategies for designing functional gradient materials.
Collapse
Affiliation(s)
- YerPeng Tan
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, California, USA
| | - Shawn Hoon
- 1] Molecular Engineering Lab, Biomedical Sciences Institutes, Agency for Science, Technology and Research (A*STAR), Singapore. [2] School of Biological Sciences, Nanyang Technological University, Singapore
| | - Paul A Guerette
- 1] Energy Research Institute at Nanyang Technological University (ERI@N), Nanyang Technological University, Singapore. [2] Biological &Biomimetic Material Laboratory, School of Materials Science &Engineering, Nanyang Technological University, Singapore
| | - Wei Wei
- Materials Research Laboratory, University of California, Santa Barbara, California, USA
| | - Ali Ghadban
- Biological &Biomimetic Material Laboratory, School of Materials Science &Engineering, Nanyang Technological University, Singapore
| | - Cai Hao
- Biological &Biomimetic Material Laboratory, School of Materials Science &Engineering, Nanyang Technological University, Singapore
| | - Ali Miserez
- 1] School of Biological Sciences, Nanyang Technological University, Singapore. [2] Biological &Biomimetic Material Laboratory, School of Materials Science &Engineering, Nanyang Technological University, Singapore
| | - J Herbert Waite
- 1] Biomolecular Science and Engineering Program, University of California, Santa Barbara, California, USA. [2] Materials Research Laboratory, University of California, Santa Barbara, California, USA. [3] Department of Molecular Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| |
Collapse
|
138
|
Screen HRC, Berk DE, Kadler KE, Ramirez F, Young MF. Tendon functional extracellular matrix. J Orthop Res 2015; 33:793-9. [PMID: 25640030 PMCID: PMC4507431 DOI: 10.1002/jor.22818] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 12/13/2014] [Indexed: 02/06/2023]
Abstract
This article is one of a series, summarizing views expressed at the Orthopaedic Research Society New Frontiers in Tendon Research Conference. This particular article reviews the three workshops held under the "Functional Extracellular Matrix" stream. The workshops focused on the roles of the tendon extracellular matrix, such as performing the mechanical functions of tendon, creating the local cell environment, and providing cellular cues. Tendon is a complex network of matrix and cells, and its biological functions are influenced by widely varying extrinsic and intrinsic factors such as age, nutrition, exercise levels, and biomechanics. Consequently, tendon adapts dynamically during development, aging, and injury. The workshop discussions identified research directions associated with understanding cell-matrix interactions to be of prime importance for developing novel strategies to target tendon healing or repair.
Collapse
Affiliation(s)
- Hazel R C Screen
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom
| | | | | | | | | |
Collapse
|
139
|
Cuadros TR, Erices AA, Aguilera JM. Porous matrix of calcium alginate/gelatin with enhanced properties as scaffold for cell culture. J Mech Behav Biomed Mater 2015; 46:331-42. [DOI: 10.1016/j.jmbbm.2014.08.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/20/2014] [Accepted: 08/27/2014] [Indexed: 10/24/2022]
|
140
|
Madry H, Cucchiarini M. Tissue-engineering strategies to repair joint tissue in osteoarthritis: nonviral gene-transfer approaches. Curr Rheumatol Rep 2015; 16:450. [PMID: 25182678 DOI: 10.1007/s11926-014-0450-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Loss of articular cartilage is a common clinical consequence of osteoarthritis (OA). In the past decade, substantial progress in tissue engineering, nonviral gene transfer, and cell transplantation have provided the scientific foundation for generating cartilaginous constructs from genetically modified cells. Combining tissue engineering with overexpression of therapeutic genes enables immediate filling of a cartilage defect with an engineered construct that actively supports chondrogenesis. Several pioneering studies have proved that spatially defined nonviral overexpression of growth-factor genes in constructs of solid biomaterials or hydrogels is advantageous compared with gene transfer or scaffold alone, both in vitro and in vivo. Notably, these investigations were performed in models of focal cartilage defects, because advanced cartilage-repair strategies based on the principles of tissue engineering have not advanced sufficiently to enable resurfacing of extensively degraded cartilage as therapy for OA. These studies serve as prototypes for future technological developments, because they raise the possibility that cartilage constructs engineered from genetically modified chondrocytes providing autocrine and paracrine stimuli could similarly compensate for the loss of articular cartilage in OA. Because cartilage-tissue-engineering strategies are already used in the clinic, combining tissue engineering and nonviral gene transfer could prove a powerful approach to treat OA.
Collapse
Affiliation(s)
- Henning Madry
- Center of Experimental Orthopaedics and Department of Orthopaedic Surgery, Saarland University, 66421, Homburg, Germany,
| | | |
Collapse
|
141
|
Kim J, McBride S, Donovan A, Darr A, Magno MHR, Hollinger JO. Tyrosine-derived polycarbonate scaffolds for bone regeneration in a rabbit radius critical-size defect model. Biomed Mater 2015; 10:035001. [DOI: 10.1088/1748-6041/10/3/035001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
142
|
Bhattacharjee M, Coburn J, Centola M, Murab S, Barbero A, Kaplan DL, Martin I, Ghosh S. Tissue engineering strategies to study cartilage development, degeneration and regeneration. Adv Drug Deliv Rev 2015; 84:107-22. [PMID: 25174307 DOI: 10.1016/j.addr.2014.08.010] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/01/2014] [Accepted: 08/20/2014] [Indexed: 01/09/2023]
Abstract
Cartilage tissue engineering has primarily focused on the generation of grafts to repair cartilage defects due to traumatic injury and disease. However engineered cartilage tissues have also a strong scientific value as advanced 3D culture models. Here we first describe key aspects of embryonic chondrogenesis and possible cell sources/culture systems for in vitro cartilage generation. We then review how a tissue engineering approach has been and could be further exploited to investigate different aspects of cartilage development and degeneration. The generated knowledge is expected to inform new cartilage regeneration strategies, beyond a classical tissue engineering paradigm.
Collapse
|
143
|
Leijten J, Chai Y, Papantoniou I, Geris L, Schrooten J, Luyten F. Cell based advanced therapeutic medicinal products for bone repair: Keep it simple? Adv Drug Deliv Rev 2015; 84:30-44. [PMID: 25451134 DOI: 10.1016/j.addr.2014.10.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 09/18/2014] [Accepted: 10/20/2014] [Indexed: 02/08/2023]
Abstract
The development of cell based advanced therapeutic medicinal products (ATMPs) for bone repair has been expected to revolutionize the health care system for the clinical treatment of bone defects. Despite this great promise, the clinical outcomes of the few cell based ATMPs that have been translated into clinical treatments have been far from impressive. In part, the clinical outcomes have been hampered because of the simplicity of the first wave of products. In response the field has set-out and amassed a plethora of complexities to alleviate the simplicity induced limitations. Many of these potential second wave products have remained "stuck" in the development pipeline. This is due to a number of reasons including the lack of a regulatory framework that has been evolving in the last years and the shortage of enabling technologies for industrial manufacturing to deal with these novel complexities. In this review, we reflect on the current ATMPs and give special attention to novel approaches that are able to provide complexity to ATMPs in a straightforward manner. Moreover, we discuss the potential tools able to produce or predict 'goldilocks' ATMPs, which are neither too simple nor too complex.
Collapse
|
144
|
A review of: Application of synthetic scaffold in tissue engineering heart valves. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 48:556-65. [DOI: 10.1016/j.msec.2014.12.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 08/26/2014] [Accepted: 12/05/2014] [Indexed: 01/28/2023]
|
145
|
Park S, Seawright A, Park S, Craig Dutton J, Grinnell F, Han B. Preservation of tissue microstructure and functionality during freezing by modulation of cytoskeletal structure. J Mech Behav Biomed Mater 2015; 45:32-44. [PMID: 25679482 DOI: 10.1016/j.jmbbm.2015.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 01/13/2015] [Accepted: 01/16/2015] [Indexed: 02/06/2023]
Abstract
Cryopreservation is one of the key enabling technologies for tissue engineering and regenerative medicine, which can provide reliable long-term storage of engineered tissues (ETs) without losing their functionality. However, it is still extremely difficult to design and develop cryopreservation protocols guaranteeing the post-thaw tissue functionality. One of the major challenges in cryopreservation is associated with the difficulty of identifying effective and less toxic cryoprotective agents (CPAs) to guarantee the post-thaw tissue functionality. In this study, thus, a hypothesis was tested that the modulation of the cytoskeletal structure of cells embedded in the extracellular matrix (ECM) can mitigate the freezing-induced changes of the functionality and can reduce the amount of CPA necessary to preserve the functionality of ETs during cryopreservation. In order to test this hypothesis, we prepared dermal equivalents by seeding fibroblasts in type I collagen matrices resulting in three different cytoskeletal structures. These ETs were exposed to various freeze/thaw (F/T) conditions with and without CPAs. The freezing-induced cell-fluid-matrix interactions and subsequent functional properties of the ETs were assessed. The results showed that the cytoskeletal structure and the use of CPA were strongly correlated to the preservation of the post-thaw functional properties. As the cytoskeletal structure became stronger via stress fiber formation, the ET's functionality was preserved better. It also reduced the necessary CPA concentration to preserve the post-thaw functionality. However, if the extent of the freezing-induced cell-fluid-matrix interaction was too excessive, the cytoskeletal structure was completely destroyed and the beneficial effects became minimal.
Collapse
Affiliation(s)
- Seungman Park
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Angela Seawright
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Sinwook Park
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - J Craig Dutton
- Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Frederick Grinnell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
146
|
Lin L, Gao H, Dong Y. Bone regeneration using a freeze-dried 3D gradient-structured scaffold incorporating OIC-A006-loaded PLGA microspheres based on β-TCP/PLGA. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:5327. [PMID: 25577209 DOI: 10.1007/s10856-014-5327-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/20/2014] [Indexed: 06/04/2023]
Abstract
To reveal the latent capacity of the growth factor-like low-molecular-weight material OIC-A006 in tissue regeneration, it is essential to design a porous scaffold in order to concurrently accommodate cells and drug release in a controlled manner. Consequently, we fabricated poly (L-lactide-co-glycolide) (PLGA)-based microspheres with an OIC-A006-loaded gradient-structured β-TCP/PLGA scaffold by freeze-drying which could then be used for drug delivery and bone regeneration. The OIC-A006-loaded β-TCP/PLGA scaffold consisted of two parts which loaded different doses of OIC-A006 (6.25 μM, outside; 12.5 μM, inside). The porosity, compressive strength, SEM, degradation, and cumulative amount of drug release in vitro were characterized. Furthermore, we confirmed the incorporation of OIC-A006 into the PLGA-based microspheres within the scaffolds using UV-spectrophotometry, and the amount of drug remaining in the scaffold was maintained by 10 % for up to 28 days. The drug release was slower in the normal-structured drug-loaded scaffold. The OIC-A006 released action from the OIC-A006-loaded β-TCP/PLGA scaffold with ideal therapeutic prospects in tissue regeneration. In vitro cell culture results showed that this gradient-structured composite scaffold can induce the adhesion and proliferation of rat bone marrow stromal cells towards osteoblasts. These results showed that the newly developed OIC-A006-loaded scaffolds with gradient structure can be potentially applied to bone regeneration in clinical applications.
Collapse
Affiliation(s)
- Liulan Lin
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai, 200444, People's Republic of China
| | | | | |
Collapse
|
147
|
Munro B, Becker S, Uth MF, Preußer N, Herwig H. Fabrication and Characterization of Deformable Porous Matrices with Controlled Pore Characteristics. Transp Porous Media 2014. [DOI: 10.1007/s11242-014-0426-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
148
|
Engineering complex orthopaedic tissues via strategic biomimicry. Ann Biomed Eng 2014; 43:697-717. [PMID: 25465616 DOI: 10.1007/s10439-014-1190-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 11/13/2014] [Indexed: 12/13/2022]
Abstract
The primary current challenge in regenerative engineering resides in the simultaneous formation of more than one type of tissue, as well as their functional assembly into complex tissues or organ systems. Tissue-tissue synchrony is especially important in the musculoskeletal system, wherein overall organ function is enabled by the seamless integration of bone with soft tissues such as ligament, tendon, or cartilage, as well as the integration of muscle with tendon. Therefore, in lieu of a traditional single-tissue system (e.g., bone, ligament), composite tissue scaffold designs for the regeneration of functional connective tissue units (e.g., bone-ligament-bone) are being actively investigated. Closely related is the effort to re-establish tissue-tissue interfaces, which is essential for joining these tissue building blocks and facilitating host integration. Much of the research at the forefront of the field has centered on bioinspired stratified or gradient scaffold designs which aim to recapitulate the structural and compositional inhomogeneity inherent across distinct tissue regions. As such, given the complexity of these musculoskeletal tissue units, the key question is how to identify the most relevant parameters for recapitulating the native structure-function relationships in the scaffold design. Therefore, the focus of this review, in addition to presenting the state-of-the-art in complex scaffold design, is to explore how strategic biomimicry can be applied in engineering tissue connectivity. The objective of strategic biomimicry is to avoid over-engineering by establishing what needs to be learned from nature and defining the essential matrix characteristics that must be reproduced in scaffold design. Application of this engineering strategy for the regeneration of the most common musculoskeletal tissue units (e.g., bone-ligament-bone, muscle-tendon-bone, cartilage-bone) will be discussed in this review. It is anticipated that these exciting efforts will enable integrative and functional repair of soft tissue injuries, and moreover, lay the foundation for the development of composite tissue systems and ultimately, total limb or joint regeneration.
Collapse
|
149
|
Gabutti M, Draper-Rodi J. Osteopathic decapitation: Why do we consider the head differently from the rest of the body? New perspectives for an evidence-informed osteopathic approach to the head. INT J OSTEOPATH MED 2014. [DOI: 10.1016/j.ijosm.2014.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
150
|
Fishero BA, Kohli N, Das A, Christophel JJ, Cui Q. Current concepts of bone tissue engineering for craniofacial bone defect repair. Craniomaxillofac Trauma Reconstr 2014; 8:23-30. [PMID: 25709750 DOI: 10.1055/s-0034-1393724] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 02/28/2014] [Indexed: 12/17/2022] Open
Abstract
Craniofacial fractures and bony defects are common causes of morbidity and contribute to increasing health care costs. Successful regeneration of bone requires the concomitant processes of osteogenesis and neovascularization. Current methods of repair and reconstruction include rigid fixation, grafting, and free tissue transfer. However, these methods carry innate complications, including plate extrusion, nonunion, graft/flap failure, and donor site morbidity. Recent research efforts have focused on using stem cells and synthetic scaffolds to heal critical-sized bone defects similar to those sustained from traumatic injury or ablative oncologic surgery. Growth factors can be used to augment both osteogenesis and neovascularization across these defects. Many different growth factor delivery techniques and scaffold compositions have been explored yet none have emerged as the universally accepted standard. In this review, we will discuss the recent literature regarding the use of stem cells, growth factors, and synthetic scaffolds as alternative methods of craniofacial fracture repair.
Collapse
Affiliation(s)
- Brian Alan Fishero
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Virginia, Charlottesville, Virginia
| | - Nikita Kohli
- Department of Otolaryngology-Head and Neck Surgery, SUNY Downstate Medical Center, Brooklyn, New York
| | - Anusuya Das
- Orthopaedic Surgery Research Center, University of Virginia, Charlottesville, Virginia
| | - John Jared Christophel
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Virginia, Charlottesville, Virginia
| | - Quanjun Cui
- Department of Orthopaedic Surgery, School of Medicine, University of Virginia, Charlottesville, Virginia
| |
Collapse
|