101
|
Keane TJ, Badylak SF. The host response to allogeneic and xenogeneic biological scaffold materials. J Tissue Eng Regen Med 2014; 9:504-11. [DOI: 10.1002/term.1874] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/09/2013] [Accepted: 01/07/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Timothy J. Keane
- McGowan Institute for Regenerative Medicine; University of Pittsburgh; PA USA
- Department of Bioengineering; University of Pittsburgh; PA USA
| | - Stephen F. Badylak
- McGowan Institute for Regenerative Medicine; University of Pittsburgh; PA USA
- Department of Bioengineering; University of Pittsburgh; PA USA
- Department of Surgery; University of Pittsburgh; Pittsburgh PA USA
| |
Collapse
|
102
|
Badylak SF. Decellularized allogeneic and xenogeneic tissue as a bioscaffold for regenerative medicine: factors that influence the host response. Ann Biomed Eng 2014; 42:1517-27. [PMID: 24402648 DOI: 10.1007/s10439-013-0963-7] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 12/10/2013] [Indexed: 12/11/2022]
Abstract
Biologic scaffold materials composed of mammalian extracellular matrix (ECM) are prepared by decellularization of source tissues harvested from either humans (allogeneic) or a variety of other (xenogeneic) species. These matrix scaffold materials are commonly regulated and used as surgical mesh materials for applications such as ventral hernia repair, musculotendinous tissue reconstruction, dura mater replacement, reconstructive breast surgery, pelvic floor reconstruction, and the treatment of cutaneous ulcers, among others. The clinical results for these applications vary widely for reasons which include characteristics of the source tissue, methods and efficacy of tissue decellularization, and methods of processing/manufacturing. However, the primary determinant of success or failure in the clinical setting is the response of the host to these implanted biologic scaffold materials. It is logical to question why any non-self biologic material, particularly a xenogeneic material, would not elicit an early and aggressive adverse immune response. The present manuscript briefly describes the known mechanisms by which these biologic scaffold materials can facilitate a constructive remodeling response, the known causative factors of an adverse response, and provides a general discussion of the role of the macrophage in determining outcome.
Collapse
Affiliation(s)
- Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA, 15219-3130, USA,
| |
Collapse
|
103
|
Slivka PF, Dearth CL, Keane TJ, Meng FW, Medberry CJ, Riggio RT, Reing JE, Badylak SF. Fractionation of an ECM hydrogel into structural and soluble components reveals distinctive roles in regulating macrophage behavior. Biomater Sci 2014; 2:1521-34. [DOI: 10.1039/c4bm00189c] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Extracellular matrix (ECM) derived from mammalian tissues has been utilized to repair damaged or missing tissue and improve healing outcomes.
Collapse
Affiliation(s)
- P. F. Slivka
- McGowan Institute for Regenerative Medicine
- University of Pittsburgh
- Pittsburgh, USA
| | - C. L. Dearth
- McGowan Institute for Regenerative Medicine
- University of Pittsburgh
- Pittsburgh, USA
- Department of Surgery
- University of Pittsburgh
| | - T. J. Keane
- McGowan Institute for Regenerative Medicine
- University of Pittsburgh
- Pittsburgh, USA
- Department of Bioengineering
- University of Pittsburgh
| | - F. W. Meng
- McGowan Institute for Regenerative Medicine
- University of Pittsburgh
- Pittsburgh, USA
| | - C. J. Medberry
- McGowan Institute for Regenerative Medicine
- University of Pittsburgh
- Pittsburgh, USA
- Department of Bioengineering
- University of Pittsburgh
| | - R. T. Riggio
- McGowan Institute for Regenerative Medicine
- University of Pittsburgh
- Pittsburgh, USA
- Sanford School of Medicine
- University of South Dakota
| | - J. E. Reing
- McGowan Institute for Regenerative Medicine
- University of Pittsburgh
- Pittsburgh, USA
| | - S. F. Badylak
- McGowan Institute for Regenerative Medicine
- University of Pittsburgh
- Pittsburgh, USA
- Department of Surgery
- University of Pittsburgh
| |
Collapse
|
104
|
Corona BT, Ward CL, Baker HB, Walters TJ, Christ GJ. Implantation of in vitro tissue engineered muscle repair constructs and bladder acellular matrices partially restore in vivo skeletal muscle function in a rat model of volumetric muscle loss injury. Tissue Eng Part A 2013; 20:705-15. [PMID: 24066899 DOI: 10.1089/ten.tea.2012.0761] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The frank loss of a large volume of skeletal muscle (i.e., volumetric muscle loss [VML]) can lead to functional debilitation and presents a significant problem to civilian and military medicine. Current clinical treatment for VML involves the use of free muscle flaps and physical rehabilitation; however, neither are effective in promoting regeneration of skeletal muscle to replace the tissue that was lost. Toward this end, skeletal muscle tissue engineering therapies have recently shown great promise in offering an unprecedented treatment option for VML. In the current study, we further extend our recent progress (Machingal et al., 2011, Tissue Eng; Corona et al., 2012, Tissue Eng) in the development of tissue engineered muscle repair (TEMR) constructs (i.e., muscle-derived cells [MDCs] seeded on a bladder acellular matrix (BAM) preconditioned with uniaxial mechanical strain) for the treatment of VML. TEMR constructs were implanted into a VML defect in a tibialis anterior (TA) muscle of Lewis rats and observed up to 12 weeks postinjury. The salient findings of the study were (1) TEMR constructs exhibited a highly variable capacity to restore in vivo function of injured TA muscles, wherein TEMR-positive responders (n=6) promoted an ≈61% improvement, but negative responders (n=7) resulted in no improvement compared to nonrepaired controls, (2) TEMR-positive and -negative responders exhibited differential immune responses that may underlie these variant responses, (3) BAM scaffolds (n=7) without cells promoted an ≈26% functional improvement compared to uninjured muscles, (4) TEMR-positive responders promoted muscle fiber regeneration within the initial defect area, while BAM scaffolds did so only sparingly. These findings indicate that TEMR constructs can improve the in vivo functional capacity of the injured musculature at least, in part, by promoting generation of functional skeletal muscle fibers. In short, the degree of functional recovery observed following TEMR implantation (BAM+MDCs) was 2.3×-fold greater than that observed following implantation of BAM alone. As such, this finding further underscores the potential benefits of including a cellular component in the tissue engineering strategy for VML injury.
Collapse
Affiliation(s)
- Benjamin T Corona
- 1 Wake Forest Institute for Regenerative Medicine, Wake Forest University Baptist Medical Center , Winston Salem, North Carolina
| | | | | | | | | |
Collapse
|
105
|
Turner NJ, Londono R, Dearth CL, Culiat CT, Badylak SF. Human NELL1 protein augments constructive tissue remodeling with biologic scaffolds. Cells Tissues Organs 2013; 198:249-65. [PMID: 24335144 DOI: 10.1159/000356491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2013] [Indexed: 11/19/2022] Open
Abstract
Biologic scaffolds composed of extracellular matrix (ECM) derived from decellularized tissues effectively reprogram key stages of the mammalian response to injury, altering the wound microenvironment from one that promotes scar tissue formation to one that stimulates constructive and functional tissue remodeling. In contrast, engineered scaffolds, composed of purified ECM components such as collagen, lack the complex ultrastructure and composition of intact ECM and may promote wound healing but lack factors that facilitate constructive and functional tissue remodeling. The objective of the present study was to test the hypothesis that addition of NELL1, a signaling protein that controls cell growth and differentiation, enhances the constructive tissue remodeling of a purified collagen scaffold. An abdominal wall defect model in the rat of 1.5-cm(2) partial thickness was used to compare the constructive remodeling of a bovine type I collagen scaffold to a biologic scaffold derived from small intestinal submucosa (SIS)-ECM with and without augmentation with 17 μg NELL1 protein. Samples were evaluated histologically at 14 days and 4 months. The contractile response of the defect site was also evaluated at 4 months. Addition of NELL1 protein improved the constructive remodeling of collagen scaffolds but not SIS-ECM scaffolds. Results showed an increase in the contractile force of the remodeled skeletal muscle and a fast:slow muscle composition similar to native tissue in the collagen-treated group. The already robust remodeling response to SIS-ECM was not enhanced by NELL1 at the dose tested. These findings suggest that NELL1 protein does contribute to the enhanced constructive remodeling of skeletal muscle.
Collapse
Affiliation(s)
- Neill J Turner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pa., USA
| | | | | | | | | |
Collapse
|
106
|
Sicari BM, Dearth CL, Badylak SF. Tissue Engineering and Regenerative Medicine Approaches to Enhance the Functional Response to Skeletal Muscle Injury. Anat Rec (Hoboken) 2013; 297:51-64. [DOI: 10.1002/ar.22794] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Brian M. Sicari
- McGowan Institute for Regenerative Medicine; Pittsburgh Pennsylvania
- Cellular and Molecular Pathology Graduate Program; University of Pittsburgh School of Medicine; Pittsburgh Pennsylvania
| | - Christopher L. Dearth
- McGowan Institute for Regenerative Medicine; Pittsburgh Pennsylvania
- Department of Surgery; University of Pittsburgh School of Medicine; Pittsburgh Pennsylvania
| | - Stephen F. Badylak
- McGowan Institute for Regenerative Medicine; Pittsburgh Pennsylvania
- Department of Surgery; University of Pittsburgh School of Medicine; Pittsburgh Pennsylvania
| |
Collapse
|
107
|
Li MTA, Willett NJ, Uhrig BA, Guldberg RE, Warren GL. Functional analysis of limb recovery following autograft treatment of volumetric muscle loss in the quadriceps femoris. J Biomech 2013; 47:2013-21. [PMID: 24280565 DOI: 10.1016/j.jbiomech.2013.10.057] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/28/2013] [Accepted: 10/31/2013] [Indexed: 10/26/2022]
Abstract
Severe injuries to the extremities often result in muscle trauma and, in some cases, significant volumetric muscle loss (VML). These injuries continue to be challenging to treat, with few available clinical options, a high rate of complications, and often persistent loss of limb function. To facilitate the testing of regenerative strategies for skeletal muscle, we developed a novel quadriceps VML model in the rat, specifically addressing functional recovery of the limb. Our outcome measures included muscle contractility measurements to assess muscle function and gait analysis for evaluation of overall limb function. We also investigated treatment with muscle autografts, whole or minced, to promote regeneration of the defect area. Our defect model resulted in a loss of muscle function, with injured legs generating less than 55% of muscle strength from the contralateral uninjured control legs, even at 4 weeks post-injury. The autograft treatments did not result in significant recovery of muscle function. Measures of static and dynamic gait were significantly decreased in the untreated, empty defect group, indicating a decrease in limb function. Histological sections of the affected muscles showed extensive fibrosis, suggesting that this scarring of the muscle may be in part the cause of the loss of muscle function in this VML model. Taken together, these data are consistent with clinical findings of reduced muscle function in large VML injuries. This new model with quantitative functional outcome measures offers a platform on which to evaluate treatment strategies designed to regenerate muscle tissue volume and restore limb function.
Collapse
Affiliation(s)
- Mon Tzu A Li
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Nick J Willett
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Brent A Uhrig
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Robert E Guldberg
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gordon L Warren
- Department of Physical Therapy, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
108
|
Corona BT, Garg K, Ward CL, McDaniel JS, Walters TJ, Rathbone CR. Autologous minced muscle grafts: a tissue engineering therapy for the volumetric loss of skeletal muscle. Am J Physiol Cell Physiol 2013; 305:C761-75. [DOI: 10.1152/ajpcell.00189.2013] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Volumetric muscle loss (VML) results in a large void deficient in the requisite materials for regeneration for which there is no definitive clinical standard of care. Autologous minced muscle grafts (MG), which contain the essential components for muscle regeneration, may embody an ideal tissue engineering therapy for VML. The purpose of this study was to determine if orthotopic transplantation of MG acutely after VML in the tibialis anterior muscle of male Lewis rats promotes functional tissue regeneration. Herein we report that over the first 16 wk postinjury, MG transplantation 1) promotes remarkable regeneration of innervated muscle fibers within the defect area (i.e., de novo muscle fiber regeneration); 2) reduced evidence of chronic injury in the remaining muscle mass compared with nonrepaired muscles following VML (i.e., transplantation attenuated chronically upregulated transforming growth factor-β1 gene expression and the presence of centrally located nuclei in 30% of fibers observed in nonrepaired muscles); and 3) significantly improves net torque production (i.e., ∼55% of the functional deficit in nonrepaired muscles was restored). Additionally, voluntary wheel running was shown to reduce the heightened accumulation of extracellular matrix deposition observed within the regenerated tissue of MG-repaired sedentary rats 8 wk postinjury (collagen 1% area: sedentary vs. runner, ∼41 vs. 30%), which may have been the result of an augmented inflammatory response [i.e., M1 (CCR7) and M2 (CD163) macrophage expression was significantly greater in runner than sedentary MG-repaired muscles 2 wk postinjury]. These findings support further exploration of autologous minced MGs for the treatment of VML.
Collapse
Affiliation(s)
- B. T. Corona
- Extremity Trauma and Regenerative Medicine Research Program, United States Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - K. Garg
- Extremity Trauma and Regenerative Medicine Research Program, United States Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - C. L. Ward
- Extremity Trauma and Regenerative Medicine Research Program, United States Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - J. S. McDaniel
- Extremity Trauma and Regenerative Medicine Research Program, United States Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - T. J. Walters
- Extremity Trauma and Regenerative Medicine Research Program, United States Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - C. R. Rathbone
- Extremity Trauma and Regenerative Medicine Research Program, United States Army Institute of Surgical Research, Fort Sam Houston, Texas
| |
Collapse
|
109
|
Turner NJ, Keane TJ, Badylak SF. Lessons from developmental biology for regenerative medicine. ACTA ACUST UNITED AC 2013; 99:149-59. [DOI: 10.1002/bdrc.21040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 07/27/2013] [Accepted: 07/27/2013] [Indexed: 12/17/2022]
Affiliation(s)
- Neill J. Turner
- McGowan Institute for Regenerative Medicine; University of Pittsburgh, Pittsburgh, Pennsylvania and Department of Surgery, University of Pittsburgh; Pittsburgh Pennsylvania
| | - Timothy J. Keane
- McGowan Institute for Regenerative Medicine; University of Pittsburgh, Pittsburgh, Pennsylvania and Department of Bioengineering, University of Pittsburgh; Pittsburgh Pennsylvania
| | - Stephen F. Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, and Department of Bioengineering, University of Pittsburgh; Pittsburgh Pennsylvania
| |
Collapse
|
110
|
Chen XK, Walters TJ. Muscle-derived decellularised extracellular matrix improves functional recovery in a rat latissimus dorsi muscle defect model. J Plast Reconstr Aesthet Surg 2013; 66:1750-8. [PMID: 24007646 DOI: 10.1016/j.bjps.2013.07.037] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/17/2013] [Accepted: 07/22/2013] [Indexed: 02/03/2023]
Abstract
PURPOSE Craniofacial maxillary injuries represent nearly 30% of all battlefield wounds, often involving volumetric muscle loss (VML). The physical loss of muscle results in functional deficits and cosmetic disfigurement. Although surgical solutions are limited, advances in biomaterials offer great promise for the restoration of form and function following VML. The primary purpose of this study was to determine whether muscle function could be restored in a novel VML rat model using muscle-derived extracellular matrix (M-ECM). METHODS Ten percent of the mass of the latissimus dorsi (LD) was excised. Three groups were examined: 1) no repair of defect (DEF), 2) repair with M-ECM and 3) sham (all procedures except muscle excision). Four and 8 weeks post-surgery, the isometric contractile properties of the LD were assessed in situ and selected histological properties were evaluated. RESULTS The defect resulted in an initial reduction in peak isometric force (Po) of 30%. At 8 weeks the difference between DEF and sham was 20.5%. At the same time, M-ECM was only 8.4% below sham. Although the histological analysis revealed a narrow, but well-formed band of muscle running along the middle of the M-ECM, it was judged to be too small to account for the observed improvement in muscle force. CONCLUSIONS Repair of VML with M-ECM can dramatically improve muscle function independent of muscle regeneration by providing a physical bridge that accommodates force transmission across the injury site. This method of repair may provide an easily translatable surgical method for selected forms of VML.
Collapse
Affiliation(s)
- Xiaoyu K Chen
- United States Army Institute of Surgical Research, Extremity Trauma and Regenerative Medicine Research Program, San Antonio, TX, USA; Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
| | | |
Collapse
|
111
|
Sawkins M, Bowen W, Dhadda P, Markides H, Sidney L, Taylor A, Rose F, Badylak S, Shakesheff K, White L. Hydrogels derived from demineralized and decellularized bone extracellular matrix. Acta Biomater 2013; 9:7865-73. [PMID: 23624219 PMCID: PMC3711237 DOI: 10.1016/j.actbio.2013.04.029] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 02/08/2023]
Abstract
The extracellular matrix (ECM) of mammalian tissues has been isolated, decellularized and utilized as a scaffold to facilitate the repair and reconstruction of numerous tissues. Recent studies have suggested that superior function and complex tissue formation occurred when ECM scaffolds were derived from site-specific homologous tissues compared with heterologous tissues. The objectives of the present study were to apply a stringent decellularization process to demineralized bone matrix (DBM), prepared from bovine bone, and to characterize the structure and composition of the resulting ECM materials and DBM itself. Additionally, we sought to produce a soluble form of DBM and ECM which could be induced to form a hydrogel. Current clinical delivery of DBM particles for treatment of bone defects requires incorporation of the particles within a carrier liquid. Differences in osteogenic activity, inflammation and nephrotoxicity have been reported with various carrier liquids. The use of hydrogel forms of DBM or ECM may reduce the need for carrier liquids. DBM and ECM hydrogels exhibited sigmoidal gelation kinetics consistent with a nucleation and growth mechanism, with ECM hydrogels characterized by lower storage moduli than the DBM hydrogels. Enhanced proliferation of mouse primary calvarial cells was achieved on ECM hydrogels, compared with collagen type I and DBM hydrogels. These results show that DBM and ECM hydrogels have distinct structural, mechanical and biological properties and have the potential for clinical delivery without the need for carrier liquids.
Collapse
|
112
|
Vielreicher M, Schürmann S, Detsch R, Schmidt MA, Buttgereit A, Boccaccini A, Friedrich O. Taking a deep look: modern microscopy technologies to optimize the design and functionality of biocompatible scaffolds for tissue engineering in regenerative medicine. J R Soc Interface 2013; 10:20130263. [PMID: 23864499 DOI: 10.1098/rsif.2013.0263] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This review focuses on modern nonlinear optical microscopy (NLOM) methods that are increasingly being used in the field of tissue engineering (TE) to image tissue non-invasively and without labelling in depths unreached by conventional microscopy techniques. With NLOM techniques, biomaterial matrices, cultured cells and their produced extracellular matrix may be visualized with high resolution. After introducing classical imaging methodologies such as µCT, MRI, optical coherence tomography, electron microscopy and conventional microscopy two-photon fluorescence (2-PF) and second harmonic generation (SHG) imaging are described in detail (principle, power, limitations) together with their most widely used TE applications. Besides our own cell encapsulation, cell printing and collagen scaffolding systems and their NLOM imaging the most current research articles will be reviewed. These cover imaging of autofluorescence and fluorescence-labelled tissue and biomaterial structures, SHG-based quantitative morphometry of collagen I and other proteins, imaging of vascularization and online monitoring techniques in TE. Finally, some insight is given into state-of-the-art three-photon-based imaging methods (e.g. coherent anti-Stokes Raman scattering, third harmonic generation). This review provides an overview of the powerful and constantly evolving field of multiphoton microscopy, which is a powerful and indispensable tool for the development of artificial tissues in regenerative medicine and which is likely to gain importance also as a means for general diagnostic medical imaging.
Collapse
Affiliation(s)
- M Vielreicher
- Department of Chemical and Biological Engineering, Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nuremberg, Paul-Gordan-Strasse 3, 91052 Erlangen, Germany.
| | | | | | | | | | | | | |
Collapse
|
113
|
Zhu G, Lou W. Regeneration of facial nerve defects with xenogeneic acellular nerve grafts in a rat model. Head Neck 2013; 36:481-6. [PMID: 23729307 DOI: 10.1002/hed.23321] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Because of ease of harvest and low immunogenicity, xenogeneic acellular nerve graft (XANG) may be an alternative to autologous nerve to repair facial nerve defects. METHODS Facial nerve defects of Wistar rats were repaired by XANG, and nerve gap regeneration was investigated by electrophysiological test, horseradish peroxidase (HRP) retrograde tracing and histomorphometric analysis, as compared to autograft. RESULTS Twenty weeks after the grafting, electrophysiology showed that whisker pad muscles responded to the electrical stimuli given at the site proximal to the transplantation in 2 groups. Some HRP-labeled facial motorneurons were located on the facial nucleus of the operated side, and an abundance of myelinated axons were found at the middle of the grafts and obvious motor endplates in the target muscles in 2 groups, although they were inferior to the contralateral side in numbers. CONCLUSION XANG represents an alternative approach for the reconstruction of peripheral facial nerve defects.
Collapse
Affiliation(s)
- Guochen Zhu
- Department of Otolaryngology, Wuxi Second People's Hospital, Affiliated with Nanjing Medical University, Wuxi, Jiangsu, China
| | | |
Collapse
|
114
|
Corona BT, Wu X, Ward CL, McDaniel JS, Rathbone CR, Walters TJ. The promotion of a functional fibrosis in skeletal muscle with volumetric muscle loss injury following the transplantation of muscle-ECM. Biomaterials 2013; 34:3324-35. [DOI: 10.1016/j.biomaterials.2013.01.061] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 01/11/2013] [Indexed: 10/27/2022]
|
115
|
Wu X, Corona BT, Chen X, Walters TJ. A standardized rat model of volumetric muscle loss injury for the development of tissue engineering therapies. Biores Open Access 2013; 1:280-90. [PMID: 23515319 PMCID: PMC3559228 DOI: 10.1089/biores.2012.0271] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Soft tissue injuries involving volumetric muscle loss (VML) are defined as the traumatic or surgical loss of skeletal muscle with resultant functional impairment and represent a challenging clinical problem for both military and civilian medicine. In response, a variety of tissue engineering and regenerative medicine treatments are under preclinical development. A wide variety of animal models are being used, all with critical limitations. The objective of this study was to develop a model of VML that was reproducible and technically uncomplicated to provide a standardized platform for the development of tissue engineering and regenerative medicine solutions to VML repair. A rat model of VML involving excision of ∼20% of the muscle's mass from the superficial portion of the middle third of the tibialis anterior (TA) muscle was developed and was functionally characterized. The contralateral TA muscle served as the uninjured control. Additionally, uninjured age-matched control rats were also tested to determine the effect of VML on the contralateral limb. TA muscles were assessed at 2 and 4 months postinjury. VML muscles weighed 22.7% and 19.5% less than contralateral muscles at 2 and 4 months postinjury, respectively. These differences were accompanied by a reduction in peak isometric tetanic force (Po) of 28.4% and 32.5% at 2 and 4 months. Importantly, Po corrected for differences in body weight and muscle wet weights were similar between contralateral and age-matched control muscles, indicating that VML did not have a significant impact on the contralateral limb. Lastly, repair of the injury with a biological scaffold resulted in rapid vascularization and integration with the wound. The technical simplicity, reliability, and clinical relevance of the VML model developed in this study make it ideal as a standard model for the development of tissue engineering solutions for VML.
Collapse
Affiliation(s)
- Xiaowu Wu
- Extremity Trauma and Regenerative Medicine Research Program, United States Army Institute of Surgical Research , Fort Sam Houston, Texas. ; Department of Surgery, University of Texas Health Science Center , San Antonio, Texas
| | | | | | | |
Collapse
|
116
|
Sicari BM, Agrawal V, Siu BF, Medberry CJ, Dearth CL, Turner NJ, Badylak SF. A murine model of volumetric muscle loss and a regenerative medicine approach for tissue replacement. Tissue Eng Part A 2013; 18:1941-8. [PMID: 22906411 DOI: 10.1089/ten.tea.2012.0475] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Volumetric muscle loss (VML) resulting from traumatic accidents, tumor ablation, or degenerative disease is associated with limited treatment options and high morbidity. The lack of a reliable and reproducible animal model of VML has hindered the development of effective therapeutic strategies. The present study describes a critical-sized excisional defect within the mouse quadriceps muscle that results in an irrecoverable volumetric defect. This model of VML was used to evaluate the efficacy of a surgically placed inductive biologic scaffold material composed of porcine small intestinal submucosa-extracellular matrix (SIS-ECM). The targeted placement of an SIS-ECM scaffold within the defect was associated with constructive tissue remodeling including the formation of site-appropriate skeletal muscle tissue. The present study provides a reproducible animal model with which to study VML and shows the therapeutic potential of a bioscaffold-based regenerative medicine approach to VML.
Collapse
Affiliation(s)
- Brian M Sicari
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
117
|
Decellularized musculofascial extracellular matrix for tissue engineering. Biomaterials 2013; 34:2641-54. [PMID: 23347834 DOI: 10.1016/j.biomaterials.2012.12.048] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 12/31/2012] [Indexed: 11/24/2022]
Abstract
Ideal scaffolds that represent native extracellular matrix (ECM) properties of musculofascial tissues have great importance in musculofascial tissue engineering. However, detailed characterization of musculofascial tissues' ECM (particularly, of fascia) from large animals is still lacking. In this study, we developed a decellularization protocol for processing pig composite musculofascial tissues. Decellularized muscle (D-muscle) and decellularized fascia (D-fascia), which are two important components of decellularized musculofascial extracellular matrix (DMM), were comprehensively characterized. D-muscle and D-fascia retained intact three-dimensional architecture, strong mechanical properties, and bioactivity of compositions such as collagen, laminin, glycosaminoglycan, and vascular endothelial growth factor. D-muscle and D-fascia provided a compatible niche for human adipose-derived stem cell integration and proliferation. Heterotopic and orthotopic implantation of D-muscle and D-fascia in a rodent model further proved their biocompatibility and myogenic properties during the remodeling process. The differing characteristics of D-muscle from D-fascia (e.g. D-muscle's strong pro-angiogenic and pro-myogenic properties vs. D-fascia's strong mechanical properties) indicate different clinical application opportunities of D-muscle vs. D-fascia scaffolds. DMM comprising muscle and fascia ECM as a whole unit can thus provide not only a clinically translatable platform for musculofascial tissue repair and regeneration but also a useful standard for scaffold design in musculofascial tissue engineering.
Collapse
|
118
|
Benders KEM, van Weeren PR, Badylak SF, Saris DBF, Dhert WJA, Malda J. Extracellular matrix scaffolds for cartilage and bone regeneration. Trends Biotechnol 2013; 31:169-76. [PMID: 23298610 DOI: 10.1016/j.tibtech.2012.12.004] [Citation(s) in RCA: 368] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/12/2012] [Accepted: 12/13/2012] [Indexed: 01/10/2023]
Abstract
Regenerative medicine approaches based on decellularized extracellular matrix (ECM) scaffolds and tissues are rapidly expanding. The rationale for using ECM as a natural biomaterial is the presence of bioactive molecules that drive tissue homeostasis and regeneration. Moreover, appropriately prepared ECM is biodegradable and does not elicit adverse immune responses. Successful clinical application of decellularized tissues has been reported in cardiovascular, gastrointestinal, and breast reconstructive surgery. At present, the use of ECM for osteochondral tissue engineering is attracting interest. Recent data underscore the great promise for future application of decellularized ECM for osteochondral repair. This review describes the rationale for using ECM-based approaches for different regenerative purposes and details the application of ECM for cartilage or osteochondral repair.
Collapse
Affiliation(s)
- Kim E M Benders
- Department of Orthopedics, University Medical Center Utrecht, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
119
|
Abstract
We describe an in vivo model system designed to evaluate the host response to implanted biomaterials: The partial thickness rat abdominal wall defect model. The model allows for determination of the temporal and spatial distribution of the cellular and vascular response, the remodeling of the implanted material and surrounding host soft tissue, and the function of the remodeled tissue over time.
Collapse
|
120
|
Medberry CJ, Crapo PM, Siu BF, Carruthers CA, Wolf MT, Nagarkar SP, Agrawal V, Jones KE, Kelly J, Johnson SA, Velankar SS, Watkins SC, Modo M, Badylak SF. Hydrogels derived from central nervous system extracellular matrix. Biomaterials 2012; 34:1033-40. [PMID: 23158935 DOI: 10.1016/j.biomaterials.2012.10.062] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 10/25/2012] [Indexed: 02/07/2023]
Abstract
Biologic scaffolds composed of extracellular matrix (ECM) are commonly used repair devices in preclinical and clinical settings; however the use of these scaffolds for peripheral and central nervous system (CNS) repair has been limited. Biologic scaffolds developed from brain and spinal cord tissue have recently been described, yet the conformation of the harvested ECM limits therapeutic utility. An injectable CNS-ECM derived hydrogel capable of in vivo polymerization and conformation to irregular lesion geometries may aid in tissue reconstruction efforts following complex neurologic trauma. The objectives of the present study were to develop hydrogel forms of brain and spinal cord ECM and compare the resulting biochemical composition, mechanical properties, and neurotrophic potential of a brain derived cell line to a non-CNS-ECM hydrogel, urinary bladder matrix. Results showed distinct differences between compositions of brain ECM, spinal cord ECM, and urinary bladder matrix. The rheologic modulus of spinal cord ECM hydrogel was greater than that of brain ECM and urinary bladder matrix. All ECMs increased the number of cells expressing neurites, but only brain ECM increased neurite length, suggesting a possible tissue-specific effect. All hydrogels promoted three-dimensional uni- or bi-polar neurite outgrowth following 7 days in culture. These results suggest that CNS-ECM hydrogels may provide supportive scaffolding to promote in vivo axonal repair.
Collapse
|
121
|
Callanan A, Davis NF, Walsh MT, McGloughlin TM. Mechanical characterisation of unidirectional and cross-directional multilayered urinary bladder matrix (UBM) scaffolds. Med Eng Phys 2012; 34:1368-74. [DOI: 10.1016/j.medengphy.2012.06.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 06/20/2012] [Accepted: 06/28/2012] [Indexed: 10/28/2022]
|
122
|
Grasman JM, Page RL, Dominko T, Pins GD. Crosslinking strategies facilitate tunable structural properties of fibrin microthreads. Acta Biomater 2012; 8:4020-30. [PMID: 22824528 DOI: 10.1016/j.actbio.2012.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 07/11/2012] [Accepted: 07/16/2012] [Indexed: 10/28/2022]
Abstract
A significant challenge in the design of biomimetic scaffolds is combining morphologic, mechanical, and biochemical cues into a single construct to promote tissue regeneration. In this study, we analyzed the effects of different crosslinking conditions on fibrin biopolymer microthreads to create morphologic scaffolds with tunable mechanical properties that are designed for directional cell guidance. Fibrin microthreads were crosslinked using carbodiimides in either acidic or neutral buffer, and the mechanical, structural, and biochemical responses of the microthreads were investigated. Crosslinking in the presence of acidic buffer (EDCa) created microthreads that had significantly higher tensile strengths and moduli than all other microthreads, and failed at lower strains than all other microthreads. Microthreads crosslinked in neutral buffer (EDCn) were also significantly stronger and stiffer than uncrosslinked threads and were comparable to contracting muscle in stiffness. Swelling ratios of crosslinked microthreads were significantly different from each other and uncrosslinked controls, suggesting a difference in the internal organization and compaction of the microthreads. Using an in vitro degradation assay, we observed that EDCn microthreads degraded within 24h, six times slower than uncrosslinked control threads, but EDCa microthreads did not show any significant indication of degradation within the 7-day assay period. Microthreads with higher stiffnesses supported significantly increased attachment of C2C12 cells, as well as increases in cell proliferation without a decrease in cell viability. Taken together, these data demonstrate the ability to create microthreads with tunable mechanical and structural properties that differentially direct cellular functions. Ultimately, we anticipate that we can strategically exploit these properties to promote site-specific tissue regeneration.
Collapse
|
123
|
Wolf MT, Daly KA, Brennan-Pierce EP, Johnson SA, Carruthers CA, D'Amore A, Nagarkar SP, Velankar SS, Badylak SF. A hydrogel derived from decellularized dermal extracellular matrix. Biomaterials 2012; 33:7028-38. [PMID: 22789723 DOI: 10.1016/j.biomaterials.2012.06.051] [Citation(s) in RCA: 337] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 06/22/2012] [Indexed: 12/22/2022]
Abstract
The ECM of mammalian tissues has been used as a scaffold to facilitate the repair and reconstruction of numerous tissues. Such scaffolds are prepared in many forms including sheets, powders, and hydrogels. ECM hydrogels provide advantages such as injectability, the ability to fill an irregularly shaped space, and the inherent bioactivity of native matrix. However, material properties of ECM hydrogels and the effect of these properties upon cell behavior are neither well understood nor controlled. The objective of this study was to prepare and determine the structure, mechanics, and the cell response in vitro and in vivo of ECM hydrogels prepared from decellularized porcine dermis and urinary bladder tissues. Dermal ECM hydrogels were characterized by a more dense fiber architecture and greater mechanical integrity than urinary bladder ECM hydrogels, and showed a dose dependent increase in mechanical properties with ECM concentration. In vitro, dermal ECM hydrogels supported greater C2C12 myoblast fusion, and less fibroblast infiltration and less fibroblast mediated hydrogel contraction than urinary bladder ECM hydrogels. Both hydrogels were rapidly infiltrated by host cells, primarily macrophages, when implanted in a rat abdominal wall defect. Both ECM hydrogels degraded by 35 days in vivo, but UBM hydrogels degraded more quickly, and with greater amounts of myogenesis than dermal ECM. These results show that ECM hydrogel properties can be varied and partially controlled by the scaffold tissue source, and that these properties can markedly affect cell behavior.
Collapse
Affiliation(s)
- Matthew T Wolf
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Corona BT, Machingal MA, Criswell T, Vadhavkar M, Dannahower AC, Bergman C, Zhao W, Christ GJ. Further development of a tissue engineered muscle repair construct in vitro for enhanced functional recovery following implantation in vivo in a murine model of volumetric muscle loss injury. Tissue Eng Part A 2012; 18:1213-28. [PMID: 22439962 DOI: 10.1089/ten.tea.2011.0614] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Volumetric muscle loss (VML) can result from trauma and surgery in civilian and military populations, resulting in irrecoverable functional and cosmetic deficits that cannot be effectively treated with current therapies. Previous work evaluated a bioreactor-based tissue engineering approach in which muscle derived cells (MDCs) were seeded onto bladder acellular matrices (BAM) and mechanically preconditioned. This first generation tissue engineered muscle repair (TEMR) construct exhibited a largely differentiated cellular morphology consisting primarily of myotubes, and moreover, significantly improved functional recovery within 2 months of implantation in a murine latissimus dorsi (LD) muscle with a surgically created VML injury. The present report extends these initial observations to further document the importance of the cellular phenotype and composition of the TEMR construct in vitro to the functional recovery observed following implantation in vivo. To this end, three distinct TEMR constructs were created by seeding MDCs onto BAM as follows: (1) a short-term cellular proliferation of MDCs to generate primarily myoblasts without bioreactor preconditioning (TEMR-1SP), (2) a prolonged cellular differentiation and maturation period that included bioreactor preconditioning (TEMR-1SPD; identical to the first generation TEMR construct), and (3) similar treatment as TEMR-1SPD but with a second application of MDCs during bioreactor preconditioning (TEMR-2SPD); simulating aspects of "exercise" in vitro. Assessment of maximal tetanic force generation on retrieved LD muscles in vitro revealed that TEMR-1SP and TEMR-1SPD constructs promoted either an accelerated (i.e., 1 month) or a prolonged (i.e., 2 month postinjury) functional recovery, respectively, of similar magnitude. Meanwhile, TEMR-2SPD constructs promoted both an accelerated and prolonged functional recovery, resulting in twice the magnitude of functional recovery of either TEMR-1SP or TEMR-1SPD constructs. Histological and molecular analyses indicated that TEMR constructs mediated functional recovery via regeneration of functional muscle fibers either at the interface of the construct and the native tissue or within the BAM scaffolding independent of the native tissue. Taken together these findings are encouraging for the further development and clinical application of TEMR constructs as a VML injury treatment.
Collapse
Affiliation(s)
- Benjamin T Corona
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Baptist Medical Center, Winston-Salem, North Carolina, USA
| | | | | | | | | | | | | | | |
Collapse
|
125
|
The effect of source animal age upon the in vivo remodeling characteristics of an extracellular matrix scaffold. Biomaterials 2012; 33:5524-33. [PMID: 22575834 DOI: 10.1016/j.biomaterials.2012.04.017] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 04/07/2012] [Indexed: 12/22/2022]
Abstract
Biologic scaffolds composed of mammalian extracellular matrix (ECM) are routinely used for the repair and reconstruction of injured or missing tissues in a variety of pre-clinical and clinical applications. However, the structural and functional outcomes have varied considerably. An important variable of xenogeneic biologic scaffolds is the age of the animal from which the ECM is derived. The present study compared the in vivo host response and remodeling outcomes of biologic scaffolds composed of small intestinal submucosa (SIS)-ECM harvested from pigs that differed only in age. Results showed that there are distinct differences in the remodeling characteristics as a consequence of source animal age. Scaffolds derived from younger animals were associated with a more constructive, site appropriate, tissue remodeling response than scaffolds derived from older animals. Furthermore, the constructive remodeling response was associated with a dominant M2 macrophage response.
Collapse
|
126
|
Daly KA, Liu S, Agrawal V, Brown BN, Huber A, Johnson SA, Reing J, Sicari B, Wolf M, Zhang X, Badylak SF. The host response to endotoxin-contaminated dermal matrix. Tissue Eng Part A 2012; 18:1293-303. [PMID: 22416916 DOI: 10.1089/ten.tea.2011.0597] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Biologic scaffold materials composed of extracellular matrix (ECM) have been shown to promote the formation of site-specific, functional, host tissue following placement in a number of preclinical and clinical studies. Endotoxin contamination of biomaterials is thought to result in deleterious immune responses that may affect the remodeling outcome when present in significant quantities. However, the exact amount of endotoxin contamination within or upon an ECM-based biologic scaffold that is required to elicit adverse effects in recipients is currently unknown. The present study examined the in vitro and in vivo effects of endotoxin contamination within an ECM scaffold derived from porcine dermis upon the host immune response and the downstream ability of the scaffold material to promote constructive tissue remodeling. Test articles with endotoxin values that exceed the current U.S. Food and Drug Administration (FDA) limit had similar or decreased immune responses both in vitro and in vivo when compared with devices that were below the current FDA limit. Dermal matrices spiked with large doses of endotoxin (100 ng/mL), equivalent to 10-20 times the FDA limit, elicited a robust immune response in vitro. However, by 35 days postimplantation, no difference in tissue remodeling was detected, regardless of the amount of endotoxin present within the material. These results suggest that current endotoxin standards may fall well below levels that induce an adverse acute proinflammatory response and associated long-term deleterious effects upon tissue remodeling outcomes.
Collapse
Affiliation(s)
- Kerry A Daly
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta Biomater 2012; 8:978-87. [PMID: 22166681 DOI: 10.1016/j.actbio.2011.11.031] [Citation(s) in RCA: 551] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 11/23/2011] [Accepted: 11/24/2011] [Indexed: 12/14/2022]
Abstract
Macrophages have been classified as having plastic phenotypes which exist along a spectrum between M1 (classically activated; pro-inflammatory) and M2 (alternatively activated; regulatory, homeostatic). To date, the effects of polarization towards an M1 or M2 phenotype have been studied largely in the context of response to pathogen or cancer. Recently, M1 and M2 macrophages have been shown to play distinct roles in tissue remodeling following injury. In the present study, the M1/M2 paradigm was utilized to examine the role of macrophages in the remodeling process following implantation of 14 biologically derived surgical mesh materials in the rat abdominal wall. In situ polarization of macrophages responding to the materials was examined and correlated to a quantitative measure of the observed tissue remodeling response to determine whether macrophage polarization is an accurate predictor of the ability of a biologic scaffold to promote constructive tissue remodeling. Additionally the ability of M1 and M2 macrophages to differentially recruit progenitor-like cells in vitro, which are commonly observed to participate in the remodeling of those ECM scaffolds which have a positive clinical outcome, was examined as a possible mechanism underlying the differences in the observed remodeling responses. The results of the present study show that there is a strong correlation between the early macrophage response to implanted materials and the outcome of tissue remodeling. Increased numbers of M2 macrophages and higher ratios of M2:M1 macrophages within the site of remodeling at 14 days were associated with more positive remodeling outcomes (r(2)=0.525-0.686, p<0.05). Further, the results of the present study suggest that the constructive remodeling outcome may be due to the recruitment and survival of different cell populations to the sites of remodeling associated with materials that elicit an M1 vs. M2 response. Both M2 and M0 macrophage conditioned media were shown to have higher chemotactic activities than media conditioned by M1 macrophages (p<0.05). A more thorough understanding of these issues will logically influence the design of next generation biomaterials and the development of regenerative medicine strategies for the formation of functional host tissues.
Collapse
|
128
|
Brown BN, Chung WL, Almarza AJ, Pavlick MD, Reppas SN, Ochs MW, Russell AJ, Badylak SF. Inductive, scaffold-based, regenerative medicine approach to reconstruction of the temporomandibular joint disk. J Oral Maxillofac Surg 2012; 70:2656-68. [PMID: 22365981 DOI: 10.1016/j.joms.2011.12.030] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 12/22/2011] [Accepted: 12/23/2011] [Indexed: 01/22/2023]
Abstract
PURPOSE A device composed of extracellular matrix (ECM) was investigated as an inductive template in vivo for reconstruction of the temporomandibular joint (TMJ) disk after discectomy. MATERIALS AND METHODS A scaffold material composed of porcine-derived ECM was configured to mimic the shape and size of the TMJ. This device was implanted in a canine model of bilateral TMJ discectomy. After discectomy, 1 side was repaired with an ECM scaffold material and the contralateral side was left empty as a control. At 6 months after implantation, the joint space was opened, the joints were evaluated for signs of gross pathologic degenerative changes, and newly formed tissue was excised for histologic, biochemical, and biomechanical analysis. RESULTS The results showed that implantation of an initially acellular material supported the formation of site-appropriate, functional host tissue that resembled that of the native TMJ disk. Furthermore, this prevented gross degenerative changes in the temporal fossa and mandibular condyle. No tissue formation and mild to severe gross pathologic changes were observed in the contralateral controls. CONCLUSIONS These results suggest that an ECM-based bioscaffold could represent an off-the-shelf solution for TMJ disk replacement.
Collapse
Affiliation(s)
- Bryan N Brown
- Department of Bioengineering and McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | | | | | | | | | | | | | | |
Collapse
|
129
|
Crapo PM, Medberry CJ, Reing JE, Tottey S, van der Merwe Y, Jones KE, Badylak SF. Biologic scaffolds composed of central nervous system extracellular matrix. Biomaterials 2012; 33:3539-47. [PMID: 22341938 DOI: 10.1016/j.biomaterials.2012.01.044] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 01/25/2012] [Indexed: 10/14/2022]
Abstract
Acellular biologic scaffolds are commonly used to facilitate the constructive remodeling of three of the four traditional tissue types: connective, epithelial, and muscle tissues. However, the application of extracellular matrix (ECM) scaffolds to neural tissue has been limited, particularly in the central nervous system (CNS) where intrinsic regenerative potential is low. The ability of decellularized liver, lung, muscle, and other tissues to support tissue-specific cell phenotype and function suggests that CNS-derived biologic scaffolds may help to overcome barriers to mammalian CNS repair. A method was developed to create CNS ECM scaffolds from porcine optic nerve, spinal cord, and brain, with decellularization verified against established criteria. CNS ECM scaffolds retained neurosupportive proteins and growth factors and, when tested with the PC12 cell line in vitro, were cytocompatible and stimulated proliferation, migration, and differentiation. Urinary bladder ECM (a non-CNS ECM scaffold) was also cytocompatible and stimulated PC12 proliferation but inhibited migration rather than acting as a chemoattractant over the same concentration range while inducing greater rates of PC12 differentiation compared to CNS ECM. These results suggest that CNS ECM may provide tissue-specific advantages in CNS regenerative medicine applications and that ECM scaffolds in general may aid functional recovery after CNS injury.
Collapse
Affiliation(s)
- Peter M Crapo
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | | | | | | | | | | | | |
Collapse
|
130
|
Wolf MT, Daly KA, Reing JE, Badylak SF. Biologic scaffold composed of skeletal muscle extracellular matrix. Biomaterials 2012; 33:2916-25. [PMID: 22264525 DOI: 10.1016/j.biomaterials.2011.12.055] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 12/31/2011] [Indexed: 11/25/2022]
Abstract
Biologic scaffolds prepared from the extracellular matrix (ECM) of decellularized mammalian tissues have been shown to facilitate constructive remodeling in injured tissues such as skeletal muscle, the esophagus, and lower urinary tract, among others. The ECM of every tissue has a unique composition and structure that likely has direct effects on the host response and it is plausible that ECM harvested from a given tissue would provide distinct advantages over ECM harvested from nonhomologous tissues. For example, a tissue specific muscle ECM scaffold may be more suitable for constructive remodeling of skeletal muscle than non-homologous ECM tissue sources. The present study describes an enzymatic and chemical decellularization process for isolating skeletal muscle ECM scaffolds using established decellularization criteria and characterized the structure and chemical composition of the resulting ECM. The results were compared to those from a non-muscle ECM derived from small intestine (SIS). Muscle ECM was shown to contain growth factors, glycosaminoglycans, and basement membrane structural proteins which differed from those present in SIS. Myogenic cells survived and proliferated on muscle ECM scaffolds in vitro, and when implanted in a rat abdominal wall injury model in vivo was shown to induce a constructive remodeling response associated with scaffold degradation and myogenesis in the implant area; however, the remodeling outcome did not differ from that induced by SIS by 35 days post surgery. These results suggest that superior tissue remodeling outcomes are not universally dependent upon homologous tissue derived ECM scaffold materials.
Collapse
Affiliation(s)
- Matthew T Wolf
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
131
|
Bible E, Dell'Acqua F, Solanky B, Balducci A, Crapo PM, Badylak SF, Ahrens ET, Modo M. Non-invasive imaging of transplanted human neural stem cells and ECM scaffold remodeling in the stroke-damaged rat brain by (19)F- and diffusion-MRI. Biomaterials 2012; 33:2858-71. [PMID: 22244696 DOI: 10.1016/j.biomaterials.2011.12.033] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 12/19/2011] [Indexed: 12/23/2022]
Abstract
Transplantation of human neural stem cells (hNSCs) is emerging as a viable treatment for stroke related brain injury. However, intraparenchymal grafts do not regenerate lost tissue, but rather integrate into the host parenchyma without significantly affecting the lesion cavity. Providing a structural support for the delivered cells appears important for cell based therapeutic approaches. The non-invasive monitoring of therapeutic methods would provide valuable information regarding therapeutic strategies but remains a challenge. Labeling transplanted cells with metal-based (1)H-magnetic resonance imaging (MRI) contrast agents affects the visualization of the lesion cavity. Herein, we demonstrate that a (19)F-MRI contrast agent can adequately monitor the distribution of transplanted cells, whilst allowing an evaluation of the lesion cavity and the formation of new tissue on (1)H-MRI scans. Twenty percent of cells labeled with the (19)F agent were of host origin, potentially reflecting the re-uptake of label from dead transplanted cells. Both T(2)- and diffusion-weighted MRI scans indicated that transplantation of hNSCs suspended in a gel form of a xenogeneic extracellular matrix (ECM) bioscaffold resulted in uniformly distributed cells throughout the lesion cavity. However, diffusion MRI indicated that the injected materials did not yet establish diffusion barriers (i.e. cellular network, fiber tracts) normally found within striatal tissue. The ECM bioscaffold therefore provides an important support to hNSCs for the creation of de novo tissue and multi-nuclei MRI represents an adept method for the visualization of some aspects of this process. However, significant developments of both the transplantation paradigm, as well as regenerative imaging, are required to successfully create new tissue in the lesion cavity and to monitor this process non-invasively.
Collapse
Affiliation(s)
- Ellen Bible
- Kings College London, Institute of Psychiatry, Department of Neuroscience, London SE5 9NU, UK
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Milner DJ, Cameron JA. Muscle repair and regeneration: stem cells, scaffolds, and the contributions of skeletal muscle to amphibian limb regeneration. Curr Top Microbiol Immunol 2012; 367:133-59. [PMID: 23224711 DOI: 10.1007/82_2012_292] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skeletal muscle possesses a robust innate capability for repair of tissue damage. Natural repair of muscle damage is a stepwise process that requires the coordinated activity of a number of cell types, including infiltrating macrophages, resident myogenic and non-myogenic stem cells, and connective tissue fibroblasts. Despite the proficiency of this intrinsic repair capability, severe injuries that result in significant loss of muscle tissue overwhelm the innate repair process and require intervention if muscle function is to be restored. Recent advances in stem cell biology, regenerative medicine, and materials science have led to attempts at developing tissue engineering-based methods for repairing severe muscle defects. Muscle tissue also plays a role in the ability of tailed amphibians to regenerate amputated limbs through epimorphic regeneration. Muscle contributes adult stem cells to the amphibian regeneration blastema, but it can also contribute blastemal cells through the dedifferentiation of multinucleate myofibers into mononuclear precursors. This fascinating plasticity and its contributions to limb regeneration have prompted researchers to investigate the potential for mammalian muscle to undergo dedifferentiation. Several works have shown that mammalian myotubes can be fragmented into mononuclear cells and induced to re-enter the cell cycle, but mature myofibers are resistant to fragmentation. However, recent works suggest that there may be a path to inducing fragmentation of mature myofibers into proliferative multipotent cells with the potential for use in muscle tissue engineering and regenerative therapies.
Collapse
Affiliation(s)
- Derek J Milner
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL, USA.
| | | |
Collapse
|
133
|
Turner NJ, Badylak JS, Weber DJ, Badylak SF. Biologic scaffold remodeling in a dog model of complex musculoskeletal injury. J Surg Res 2011; 176:490-502. [PMID: 22341350 DOI: 10.1016/j.jss.2011.11.1029] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 11/08/2011] [Accepted: 11/23/2011] [Indexed: 02/03/2023]
Abstract
BACKGROUND Current treatment principles for muscle injuries with volumetric loss have been largely derived from empirical observations. Differences in severity or anatomic location have determinant effects on the tissue remodeling outcome. Biologic scaffolds composed of extracellular matrix (ECM) have been successfully used to restore vascularized, innervated, and contractile skeletal muscle in animal models but limited anatomic locations have been evaluated. The aim of this study was to determine the ability of a xenogeneic ECM scaffold to restore functional skeletal muscle in a canine model of a complex quadriceps injury involving bone, tendon, and muscle. MATERIALS AND METHODS Sixteen dogs were subjected to unilateral resection of the distal third of the vastus lateralis and medial half of the distal third of the vastus medialis muscles including the proximal half of their associated quadriceps tendon. This defect was replaced with a biologic scaffold composed of small intestinal submucosa extracellular matrix (SIS-ECM) and the remodeling response was evaluated at 1, 2, 3, and 6 mo (N = 4 per group). RESULTS The initial remodeling process followed a similar pattern to other studies of ECM-mediated muscle repair with rapid vascularization and migration of myoblasts into the defect site. However, over time the remodeling response resulted in the formation of dense collagenous tissue with islands of muscle in the segments of the scaffold not in contact with bone, and foci of bone and cartilage in the segments that were adjacent to the underlying bone. CONCLUSIONS SIS-ECM was not successful at restoring functional muscle tissue in this model. However, the results also suggest that SIS-ECM may have potential to promote integration of soft and boney tissues when implanted in close apposition to bone.
Collapse
Affiliation(s)
- Neill J Turner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA.
| | | | | | | |
Collapse
|
134
|
Keane TJ, Londono R, Turner NJ, Badylak SF. Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials 2011; 33:1771-81. [PMID: 22137126 DOI: 10.1016/j.biomaterials.2011.10.054] [Citation(s) in RCA: 434] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 10/20/2011] [Indexed: 11/17/2022]
Abstract
Biologic scaffold materials composed of extracellular matrix (ECM) are routinely used for a variety of clinical applications. Despite known variations in tissue remodeling outcomes, quantitative criteria by which decellularization can be assessed were only recently described and as a result, the amount of retained cellular material varies widely among commercial products. The objective of this study was to evaluate the consequences of ineffective decellularization on the host response. Three different methods of decellularization were used to decellularize porcine small intestinal ECM (SIS-ECM). The amount of cell remnants was quantified by the amount and fragmentation of DNA within the scaffold materials. The M1/M2 phenotypic polarization profile of macrophages, activated in response to these ECM scaffolds, was assessed in vitro and in vivo using a rodent model of body wall repair. The results show that, in vitro, more aggressive decellularization is associated with a shift in macrophage phenotype predominance from M1 to M2. While this shift was not quantitatively apparent in vivo, notable differences were found in the distribution of M1 vs. M2 macrophages within the various scaffolds. A clear association between macrophage phenotype and remodeling outcome exists and effective decellularization remains an important component in the processing of ECM-based scaffolds.
Collapse
Affiliation(s)
- Timothy J Keane
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | | | | | | |
Collapse
|
135
|
Perniconi B, Costa A, Aulino P, Teodori L, Adamo S, Coletti D. The pro-myogenic environment provided by whole organ scale acellular scaffolds from skeletal muscle. Biomaterials 2011; 32:7870-82. [PMID: 21802724 DOI: 10.1016/j.biomaterials.2011.07.016] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 07/05/2011] [Indexed: 11/26/2022]
Abstract
In the pursuit of a transplantable construct for the replacement of large skeletal muscle defects arising from traumatic or pathological conditions, several attempts have been made to obtain a highly oriented, vascularized and functional skeletal muscle. Acellular scaffolds derived from organ decellularization are promising, widely used biomaterials for tissue engineering. However, the acellular skeletal muscle extra cellular matrix (ECM) has been poorly characterized in terms of production, storage and host-donor interactions. We have produced acellular scaffolds at the whole organ scale from various skeletal muscles explanted from mice. The acellular scaffolds conserve chemical and architectural features of the tissue of origin, including the vascular bed. Scaffolds can be sterilely stored for weeks at +4°C or +37°C in tissue culture grade conditions. When transplanted in wt mice, the grafts are stable for several weeks, whilst being colonized by inflammatory and stem cells. We demonstrate that the acellular scaffold per se represents a pro-myogenic environment supporting de novo formation of muscle fibers, likely derived from host cells with myogenic potential. Myogenesis within the implant is enhanced by immunosuppressive treatment. Our work highlights the fundamental role of this niche in tissue engineering application and unveils the clinical potential of allografts based on decellularized tissue for regenerative medicine.
Collapse
Affiliation(s)
- Barbara Perniconi
- Sapienza University of Rome, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Histology & Medical Embryology Section, 00161 Rome, Italy
| | | | | | | | | | | |
Collapse
|
136
|
Machingal MA, Corona BT, Walters TJ, Kesireddy V, Koval CN, Dannahower A, Zhao W, Yoo JJ, Christ GJ. A tissue-engineered muscle repair construct for functional restoration of an irrecoverable muscle injury in a murine model. Tissue Eng Part A 2011; 17:2291-303. [PMID: 21548710 DOI: 10.1089/ten.tea.2010.0682] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There are no effective clinical treatments for volumetric muscle loss (VML) resulting from traumatic injury, tumor excision, or other degenerative diseases of skeletal muscle. The goal of this study was to develop and characterize a more clinically relevant tissue-engineered muscle repair (TE-MR) construct for functional restoration of a VML injury in the mouse lattissimus dorsi (LD) muscle. To this end, TE-MR constructs developed by seeding rat myoblasts on porcine bladder acellular matrix were preconditioned in a bioreactor for 1 week and implanted in nude mice at the site of a VML injury created by excising 50% of the native LD. Two months postinjury and implantation of TE-MR, maximal tetanic force was ∼72% of that observed in native LD muscle. In contrast, injured LD muscles that were not repaired, or were repaired with scaffold alone, produced only ∼50% of native LD muscle force after 2 months. Histological analyses of LD tissue retrieved 2 months after implantation demonstrated remodeling of the TE-MR construct as well as the presence of desmin-positive myofibers, blood vessels, and neurovascular bundles within the TE-MR construct. Overall, these encouraging initial observations document significant functional recovery within 2 months of implantation of TE-MR constructs and provide clear proof of concept for the applicability of this technology in a murine VML injury model.
Collapse
Affiliation(s)
- Masood A Machingal
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Baptist Medical Center, Winston Salem, NC 27157, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Turner NJ, Badylak SF. Regeneration of skeletal muscle. Cell Tissue Res 2011; 347:759-74. [PMID: 21667167 DOI: 10.1007/s00441-011-1185-7] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 04/20/2011] [Indexed: 01/12/2023]
Abstract
Skeletal muscle has a robust capacity for regeneration following injury. However, few if any effective therapeutic options for volumetric muscle loss are available. Autologous muscle grafts or muscle transposition represent possible salvage procedures for the restoration of mass and function but these approaches have limited success and are plagued by associated donor site morbidity. Cell-based therapies are in their infancy and, to date, have largely focused on hereditary disorders such as Duchenne muscular dystrophy. An unequivocal need exists for regenerative medicine strategies that can enhance or induce de novo formation of functional skeletal muscle as a treatment for congenital absence or traumatic loss of tissue. In this review, the three stages of skeletal muscle regeneration and the potential pitfalls in the development of regenerative medicine strategies for the restoration of functional skeletal muscle in situ are discussed.
Collapse
Affiliation(s)
- Neill J Turner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Bridgeside Point 2, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | | |
Collapse
|
138
|
Caves JM, Cui W, Wen J, Kumar VA, Haller CA, Chaikof EL. Elastin-like protein matrix reinforced with collagen microfibers for soft tissue repair. Biomaterials 2011; 32:5371-9. [PMID: 21550111 DOI: 10.1016/j.biomaterials.2011.04.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 04/05/2011] [Indexed: 10/18/2022]
Abstract
Artificial composites designed to mimic the structure and properties of native extracellular matrix may lead to acellular materials for soft tissue repair and replacement, which display mechanical strength, stiffness, and resilience resembling native tissue. We describe the fabrication of thin lamellae consisting of continuous collagen microfiber embedded at controlled orientations and densities in a recombinant elastin-like protein polymer matrix. Multilamellar stacking affords flexible, protein-based composite sheets whose properties are dependent upon both the elastomeric matrix and collagen content and organization. Sheets are produced with properties that range over 13-fold in elongation to break (23-314%), six-fold in Young's modulus (5.3-33.1 MPa), and more than two-fold in tensile strength (1.85-4.08 MPa), exceeding that of a number of native human tissues, including urinary bladder, pulmonary artery, and aorta. A sheet approximating the mechanical response of human abdominal wall fascia is investigated as a fascial substitute for ventral hernia repair. Protein-based composite patches prevent hernia recurrence in Wistar rats over an 8-week period with new tissue formation and sustained structural integrity.
Collapse
Affiliation(s)
- Jeffrey M Caves
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, 110 Francis Street, Boston, MA 02215, USA
| | | | | | | | | | | |
Collapse
|
139
|
Daly KA, Wolf M, Johnson SA, Badylak SF. A rabbit model of peripheral compartment syndrome with associated rhabdomyolysis and a regenerative medicine approach for treatment. Tissue Eng Part C Methods 2011; 17:631-40. [PMID: 21361746 DOI: 10.1089/ten.tec.2010.0699] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Peripheral compartment syndrome (PCS) has a complex etiology, with limited treatment options and high patient morbidity. Animal models of PCS have been hampered by differences in cross-species anatomy, physiology, and the relative rarity of the naturally occurring syndrome in animals. In the present study, the combination of saline infusion with intermittent crushing of skeletal muscle consistently caused increased intracompartmental pressure, hypocalemia, and hypercreatinine-phophokinasemia, signs diagnostic of PCS. This method was used to evaluate both the standard PCS treatment, specifically a fasciotomy, and a regenerative medicine approach for treatment-consisting of a fasciotomy with local administration of a biologic scaffold material composed of porcine small intestinal submucosa extracellular matrix (SIS-ECM). The use of this SIS-ECM scaffold in conjunction with a fasciotomy was associated with myogenesis and constructive tissue remodeling in the SIS-ECM-treated animals. At 1 and 3 months after treatment innervated muscle tissue was present at the site of injury. No myogenesis was present in the fasciotomy only treated animals. RAM11+ macrophages, which are associated with constructive tissue remodeling, were present within the injury site in the SIS-ECM-treated animals at 1 month. The present study provides a reproducible animal model with which to study PCS, and shows the potential of a regenerative medicine approach to PCS treatment.
Collapse
Affiliation(s)
- Kerry A Daly
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pennsylvania 15219, USA
| | | | | | | |
Collapse
|