101
|
Farbod K, Curci A, Diba M, Zinkevich T, Kentgens APM, Iafisco M, Margiotta N, Leeuwenburgh SCG. Dual-functionalisation of gelatine nanoparticles with an anticancer platinum(ii)–bisphosphonate complex and mineral-binding alendronate. RSC Adv 2016. [DOI: 10.1039/c6ra19915a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mineral-binding gelatine nanoparticles can be loaded with tailored amounts of anticancer molecules, which may benefit the development of bone-seeking carriers for targeted delivery of drugs to treat bone tumours.
Collapse
Affiliation(s)
- Kambiz Farbod
- Department of Biomaterials
- Radboud Institute for Molecular Life Sciences
- Radboud University Medical Center
- 6525 EX Nijmegen
- The Netherlands
| | - Alessandra Curci
- Dipartimento di Chimica
- Università degli Studi di Bari Aldo Moro
- 70125 Bari
- Italy
| | - Mani Diba
- Department of Biomaterials
- Radboud Institute for Molecular Life Sciences
- Radboud University Medical Center
- 6525 EX Nijmegen
- The Netherlands
| | - Tatiana Zinkevich
- Department of Solid State NMR
- Institute for Molecules and Materials
- Radboud University
- 6525 AJ Nijmegen
- The Netherlands
| | - Arno P. M. Kentgens
- Department of Solid State NMR
- Institute for Molecules and Materials
- Radboud University
- 6525 AJ Nijmegen
- The Netherlands
| | - Michele Iafisco
- Institute of Science and Technology for Ceramics (ISTEC)
- National Research Council (CNR)
- 48018 Faenza
- Italy
| | - Nicola Margiotta
- Dipartimento di Chimica
- Università degli Studi di Bari Aldo Moro
- 70125 Bari
- Italy
| | - Sander C. G. Leeuwenburgh
- Department of Biomaterials
- Radboud Institute for Molecular Life Sciences
- Radboud University Medical Center
- 6525 EX Nijmegen
- The Netherlands
| |
Collapse
|
102
|
Gong T, Xie J, Liao J, Zhang T, Lin S, Lin Y. Nanomaterials and bone regeneration. Bone Res 2015; 3:15029. [PMID: 26558141 PMCID: PMC4639780 DOI: 10.1038/boneres.2015.29] [Citation(s) in RCA: 303] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 08/20/2015] [Accepted: 08/26/2015] [Indexed: 02/05/2023] Open
Abstract
The worldwide incidence of bone disorders and conditions has been increasing. Bone is a nanomaterials composed of organic (mainly collagen) and inorganic (mainly nano-hydroxyapatite) components, with a hierarchical structure ranging from nanoscale to macroscale. In consideration of the serious limitation in traditional therapies, nanomaterials provide some new strategy in bone regeneration. Nanostructured scaffolds provide a closer structural support approximation to native bone architecture for the cells and regulate cell proliferation, differentiation, and migration, which results in the formation of functional tissues. In this article, we focused on reviewing the classification and design of nanostructured materials and nanocarrier materials for bone regeneration, their cell interaction properties, and their application in bone tissue engineering and regeneration. Furthermore, some new challenges about the future research on the application of nanomaterials for bone regeneration are described in the conclusion and perspectives part.
Collapse
Affiliation(s)
- Tao Gong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, P.R. China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, P.R. China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, P.R. China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, P.R. China
| | - Shiyu Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, P.R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, P.R. China
| |
Collapse
|
103
|
Yamada M, Hori A, Sugaya S, Yajima Y, Utoh R, Yamato M, Seki M. Cell-sized condensed collagen microparticles for preparing microengineered composite spheroids of primary hepatocytes. LAB ON A CHIP 2015; 15:3941-51. [PMID: 26308935 DOI: 10.1039/c5lc00785b] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The reconstitution of extracellular matrix (ECM) components in three-dimensional (3D) cell culture environments with microscale precision is a challenging issue. ECM microparticles would potentially be useful as solid particulate scaffolds that can be incorporated into 3D cellular constructs, but technologies for transforming ECM proteins into cell-sized stable particles are currently lacking. Here, we describe new processes to produce highly condensed collagen microparticles by means of droplet microfluidics or membrane emulsification. Droplets of an aqueous solution of type I collagen were formed in a continuous phase of polar organic solvent followed by rapid dissolution of water molecules into the continuous phase because the droplets were in a non-equilibrium state. We obtained highly unique, disc-shaped condensed collagen microparticles with a final collagen concentration above 10% and examined factors affecting particle size and morphology. After testing the cell-adhesion properties on the collagen microparticles, composite multicellular spheroids comprising the particles and primary rat hepatocytes were formed using microfabricated hydrogel chambers. We found that the ratio of the cells and particles is critical in terms of improvement of hepatic functions in the composite spheroids. The presented methodology for incorporating particulate-form ECM components in multicellular spheroids would be advantageous because of the biochemical similarity with the microenvironments in vivo.
Collapse
Affiliation(s)
- Masumi Yamada
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| | | | | | | | | | | | | |
Collapse
|
104
|
Bone Regeneration from PLGA Micro-Nanoparticles. BIOMED RESEARCH INTERNATIONAL 2015; 2015:415289. [PMID: 26509156 PMCID: PMC4609778 DOI: 10.1155/2015/415289] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/04/2015] [Indexed: 12/19/2022]
Abstract
Poly-lactic-co-glycolic acid (PLGA) is one of the most widely used synthetic polymers for development of delivery systems for drugs and therapeutic biomolecules and as component of tissue engineering applications. Its properties and versatility allow it to be a reference polymer in manufacturing of nano- and microparticles to encapsulate and deliver a wide variety of hydrophobic and hydrophilic molecules. It additionally facilitates and extends its use to encapsulate biomolecules such as proteins or nucleic acids that can be released in a controlled way. This review focuses on the use of nano/microparticles of PLGA as a delivery system of one of the most commonly used growth factors in bone tissue engineering, the bone morphogenetic protein 2 (BMP2). Thus, all the needed requirements to reach a controlled delivery of BMP2 using PLGA particles as a main component have been examined. The problems and solutions for the adequate development of this system with a great potential in cell differentiation and proliferation processes under a bone regenerative point of view are discussed.
Collapse
|
105
|
Utech S, Prodanovic R, Mao AS, Ostafe R, Mooney DJ, Weitz DA. Microfluidic Generation of Monodisperse, Structurally Homogeneous Alginate Microgels for Cell Encapsulation and 3D Cell Culture. Adv Healthc Mater 2015; 4:1628-33. [PMID: 26039892 PMCID: PMC4529809 DOI: 10.1002/adhm.201500021] [Citation(s) in RCA: 230] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/03/2015] [Indexed: 01/01/2023]
Abstract
Monodisperse alginate microgels (10-50 μm) are created via droplet-based microfluidics by a novel crosslinking procedure. Ionic crosslinking of alginate is induced by release of chelated calcium ions. The process separates droplet formation and gelation reaction enabling excellent control over size and homogeneity under mild reaction conditions. Living mesenchymal stem cells are encapsulated and cultured in the generated 3D microenvironments.
Collapse
Affiliation(s)
- Stefanie Utech
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Radivoje Prodanovic
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
- Faculty of Chemistry, University of Belgrade, Studentski trg 12, Belgrade, Serbia
| | - Angelo S. Mao
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Raluca Ostafe
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
- Molecular Biotechnology, Faculty of Biology, RWTH Aachen University, Aachen, Germany
| | - David J. Mooney
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Cambridge, Massachusetts, USA
| | - David A. Weitz
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
106
|
Kim MK, Lee JY, Oh H, Song DW, Kwak HW, Yun H, Um IC, Park YH, Lee KH. Effect of shear viscosity on the preparation of sphere-like silk fibroin microparticles by electrospraying. Int J Biol Macromol 2015; 79:988-95. [DOI: 10.1016/j.ijbiomac.2015.05.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 05/20/2015] [Accepted: 05/22/2015] [Indexed: 01/06/2023]
|
107
|
Walmsley GG, McArdle A, Tevlin R, Momeni A, Atashroo D, Hu MS, Feroze AH, Wong VW, Lorenz PH, Longaker MT, Wan DC. Nanotechnology in bone tissue engineering. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2015; 11:1253-63. [PMID: 25791811 PMCID: PMC4476906 DOI: 10.1016/j.nano.2015.02.013] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 11/23/2014] [Accepted: 02/21/2015] [Indexed: 02/04/2023]
Abstract
Nanotechnology represents a major frontier with potential to significantly advance the field of bone tissue engineering. Current limitations in regenerative strategies include impaired cellular proliferation and differentiation, insufficient mechanical strength of scaffolds, and inadequate production of extrinsic factors necessary for efficient osteogenesis. Here we review several major areas of research in nanotechnology with potential implications in bone regeneration: 1) nanoparticle-based methods for delivery of bioactive molecules, growth factors, and genetic material, 2) nanoparticle-mediated cell labeling and targeting, and 3) nano-based scaffold construction and modification to enhance physicochemical interactions, biocompatibility, mechanical stability, and cellular attachment/survival. As these technologies continue to evolve, ultimate translation to the clinical environment may allow for improved therapeutic outcomes in patients with large bone deficits and osteodegenerative diseases. FROM THE CLINICAL EDITOR Traditionally, the reconstruction of bony defects has relied on the use of bone grafts. With advances in nanotechnology, there has been significant development of synthetic biomaterials. In this article, the authors provided a comprehensive review on current research in nanoparticle-based therapies for bone tissue engineering, which should be useful reading for clinicians as well as researchers in this field.
Collapse
Affiliation(s)
- Graham G Walmsley
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Adrian McArdle
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ruth Tevlin
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Arash Momeni
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - David Atashroo
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael S Hu
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Abdullah H Feroze
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Victor W Wong
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Peter H Lorenz
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Derrick C Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
108
|
Shi M, Zhou Y, Shao J, Chen Z, Song B, Chang J, Wu C, Xiao Y. Stimulation of osteogenesis and angiogenesis of hBMSCs by delivering Si ions and functional drug from mesoporous silica nanospheres. Acta Biomater 2015; 21:178-89. [PMID: 25910640 DOI: 10.1016/j.actbio.2015.04.019] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/20/2015] [Accepted: 04/14/2015] [Indexed: 01/03/2023]
Abstract
Multifunctional bioactive materials with the ability to stimulate osteogenesis and angiogenesis of stem cells play an important role in the regeneration of bone defects. However, how to develop such biomaterials remains a significant challenge. In this study, we prepared mesoporous silica nanospheres (MSNs) with uniform sphere size (∼90 nm) and mesopores (∼2.7 nm), which could release silicon ions (Si) to stimulate the osteogenic differentiation of human bone marrow stromal cells (hBMSCs) via activating their ALP activity, bone-related gene and protein (OCN, RUNX2 and OPN) expression. Hypoxia-inducing therapeutic drug, dimethyloxaloylglycine (DMOG), was effectively loaded in the mesopores of MSNs (D-MSNs). The sustained release of DMOG from D-MSNs could stabilize HIF-1α and further stimulated the angiogenic differentiation of hBMSCs as indicated by the enhanced VEGF secretion and protein expression. Our study revealed that D-MSNs could combine the stimulatory effect on both osteogenic and angiogenic activity of hBMSCs. The potential mechanism of D-MSN-stimulated osteogenesis and angiogenesis was further elucidated by the supplementation of cell culture medium with pure Si ions and DMOG. Considering the easy handling characteristics of nanospheres, the prepared D-MSNs may be applied in the forms of injectable spheres for minimally invasive surgery, or MSNs/polymer composite scaffolds for bone defect repair. The concept of delivering both stimulatory ions and functional drugs may offer a new strategy to construct a multifunctional biomaterial system for bone tissue regeneration.
Collapse
|
109
|
Yu X, Suárez-González D, Khalil AS, Murphy WL. How does the pathophysiological context influence delivery of bone growth factors? Adv Drug Deliv Rev 2015; 84:68-84. [PMID: 25453269 PMCID: PMC4401584 DOI: 10.1016/j.addr.2014.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/29/2014] [Accepted: 10/07/2014] [Indexed: 02/08/2023]
Abstract
"Orthobiologics" represents an important category of therapeutics for the regeneration of bone defects caused by injuries or diseases, and bone growth factors are a particularly rapidly growing sub-category. Clinical application of bone growth factors has accelerated in the last two decades with the introduction of BMPs into clinical bone repair. Optimal use of growth factor-mediated treatments heavily relies on controlled delivery, which can substantially influence the local growth factor dose, release kinetics, and biological activity. The characteristics of the surrounding environment, or "context", during delivery can dictate growth factor loading efficiency, release and biological activity. This review discusses the influence of the surrounding environment on therapeutic delivery of bone growth factors. We specifically focus on pathophysiological components, including soluble components and cells, and how they can actively influence the therapeutic delivery and perhaps efficacy of bone growth factors.
Collapse
Affiliation(s)
- Xiaohua Yu
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Darilis Suárez-González
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Andrew S Khalil
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - William L Murphy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
110
|
Lam J, Lu S, Kasper FK, Mikos AG. Strategies for controlled delivery of biologics for cartilage repair. Adv Drug Deliv Rev 2015; 84:123-34. [PMID: 24993610 DOI: 10.1016/j.addr.2014.06.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/28/2014] [Accepted: 06/24/2014] [Indexed: 01/08/2023]
Abstract
The delivery of biologics is an important component in the treatment of osteoarthritis and the functional restoration of articular cartilage. Numerous factors have been implicated in the cartilage repair process, but the uncontrolled delivery of these factors may not only reduce their full reparative potential but can also cause unwanted morphological effects. It is therefore imperative to consider the type of biologic to be delivered, the method of delivery, and the temporal as well as spatial presentation of the biologic to achieve the desired effect in cartilage repair. Additionally, the delivery of a single factor may not be sufficient in guiding neo-tissue formation, motivating recent research toward the delivery of multiple factors. This review will discuss the roles of various biologics involved in cartilage repair and the different methods of delivery for appropriate healing responses. A number of spatiotemporal strategies will then be emphasized for the controlled delivery of single and multiple bioactive factors in both in vitro and in vivo cartilage tissue engineering applications.
Collapse
Affiliation(s)
- Johnny Lam
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - Steven Lu
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - F Kurtis Kasper
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX, United States; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, United States.
| |
Collapse
|
111
|
Kyle S, Saha S. Nanotechnology for the detection and therapy of stroke. Adv Healthc Mater 2014; 3:1703-20. [PMID: 24692428 DOI: 10.1002/adhm.201400009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Indexed: 01/06/2023]
Abstract
Over the years, nanotechnology has greatly developed, moving from careful design strategies and synthesis of novel nanostructures to producing them for specific medical and biological applications. The use of nanotechnology in diagnostics, drug delivery, and tissue engineering holds great promise for the treatment of stroke in the future. Nanoparticles are employed to monitor grafted cells upon implantation, or to enhance the imagery of the tissue, which is coupled with a noninvasive imaging modality such as magnetic resonance imaging, computed axial tomography or positron emission tomography scan. Contrast imaging agents used can range from iron oxide, perfluorocarbon, cerium oxide or platinum nanoparticles to quantum dots. The use of nanomaterial scaffolds for neuroregeneration is another area of nanomedicine, which involves the creation of an extracellular matrix mimic that not only serves as a structural support but promotes neuronal growth, inhibits glial differentiation, and controls hemostasis. Promisingly, carbon nanotubes can act as scaffolds for stem cell therapy and functionalizing these scaffolds may enhance their therapeutic potential for treatment of stroke. This Progress Report highlights the recent developments in nanotechnology for the detection and therapy of stroke. Recent advances in the use of nanomaterials as tissue engineering scaffolds for neuroregeneration will also be discussed.
Collapse
Affiliation(s)
- Stuart Kyle
- School of Medicine; University of Leeds; Leeds LS2 9JT UK
| | - Sikha Saha
- Division of Cardiovascular and Diabetes Research; Leeds Institute of Genetics; Health and Therapeutics; University of Leeds; Leeds LS2 9JT UK
| |
Collapse
|
112
|
Duarte ARC, Ünal B, Mano JF, Reis RL, Jensen KF. Microfluidic production of perfluorocarbon-alginate core-shell microparticles for ultrasound therapeutic applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:12391-9. [PMID: 25263163 DOI: 10.1021/la502822v] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The fabrication of micrometer-sized core-shell particles for ultrasound-triggered delivery offers a variety of applications in medical research. In this work, we report the design and development of a glass capillary microfluidic system containing three concentric glass capillary tubes for the development of core-shell particles. The setup enables the preparation of perfluorocarbon-alginate core-shell microspheres in a single process, avoiding the requirement for further extensive purification steps. Core-shell microspheres in the range of 110-130 μm are prepared and are demonstrated to be stable up to 21 days upon immersion in calcium chloride solution or water. The mechanical stability of the particles is tested by injecting them through a 23 gauge needle into a polyacrylamide gel to mimic the tissue matrix. The integrity of the particles is maintained after the injection process and is disrupted after ultrasound exposure for 15 min. The results suggest that the perfluorcarbon-alginate microparticles could be a promising system for the delivery of compounds, such as proteins, peptides, and small-molecule drugs in ultrasound-based therapies.
Collapse
Affiliation(s)
- Ana Rita C Duarte
- Department of Chemical Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | | | | | | | | |
Collapse
|
113
|
Lee J, Yun HS. Effect of hydroxyapatite-containing microspheres embedded into three-dimensional magnesium phosphate scaffolds on the controlled release of lysozyme and in vitro biodegradation. Int J Nanomedicine 2014; 9:4177-89. [PMID: 25214782 PMCID: PMC4159369 DOI: 10.2147/ijn.s68143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The functionality of porous three-dimensional (3D) magnesium phosphate (MgP) scaffold was investigated for the development of a novel protein delivery system and biomimetic bone tissue engineering scaffold. This enhancement can be achieved by incorporation of hydroxyapatite (HA)-containing polymeric microspheres (MSs) into a bulk MgP matrix, and a paste-extruding deposition (PED) system. In this work, the amount of MS and HA was precisely controlled when manufacturing MS-embedded MgP (MS/MgP) composite scaffolds. The main influence was researched in terms of in vitro lysozyme-release, in vitro biodegradation, mechanical properties, and in vitro calcification. The controlled release of lysozyme was indicated, while showing graded release patterns according to HA content. The composite scaffolds degraded gradually with MS content and degradation time. Due to the effect of HA inclusion, the higher HA-containing MS/MgP scaffolds could, not only delay the biodegradation process but also, compensate for the possible loss of mechanical properties. In this regard, it is reasonable to confirm the inverse relationship between biodegradation and corresponding compressive properties. In order to encourage bioactivity and osteoconductivity, the MS/MgP composite scaffolds were subjected to simulated body fluid treatment. Calcium deposition was, in turn, improved with increasing MS and HA content over time. This quantitative result was also proved using morphological and elemental analysis. In summary, a significant transformation of a monolithic MgP scaffold was directed toward a multifunctional bone tissue engineering scaffold equipped with controlled protein delivery, biodegradability, and bioactivity.
Collapse
Affiliation(s)
- Jongman Lee
- Powder and Ceramics Division, Korea Institute of Materials Science, Changwon, Republic of Korea
| | - Hui-suk Yun
- Powder and Ceramics Division, Korea Institute of Materials Science, Changwon, Republic of Korea
| |
Collapse
|
114
|
Xu F, Yin M, Wu Y, Ding H, Song F, Wang J. Effects of drying methods on the preparation of dexamethasone-loaded chitosan microspheres. Biomed Mater 2014; 9:055003. [PMID: 25135351 DOI: 10.1088/1748-6041/9/5/055003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The purpose of this study was to investigate the effects of drying methods on the preparation of dexamethasone- (Dex-) loaded chitosan microspheres. Two drying methods, namely, air drying and freeze drying, were adopted. The physical properties of the beads were first investigated and then the loading and release of Dex were characterized. Finally, the bioactivity of released Dex was evaluated. The data showed that, compared with freeze-dried beads, air-dried beads were denser and smaller, and had lower swelling ratios, slower degradation rate and greater Rockwell hardness. In terms of drug delivery, air-dried beads had lower encapsulation efficiency and a slower release rate of Dex. Regarding bioactivity, both groups prompted cell differentiation without significant differences. However, Dex released from freeze-dried beads inhibited cell proliferation, while Dex released from air-dried beads did not. Based on these results, we conclude that incorporation of Dex enhanced the osteogenic potential of chitosan microspheres and drying methods did affect the physical properties of the chitosan microspheres, which further influenced the drug loading and release. At the moment, the air-drying method is more appropriate to prepare Dex-loaded chitosan microspheres.
Collapse
Affiliation(s)
- Fei Xu
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China. Hubei-MOST KLOS & KLOBM, School and Hospital of Stomatology, Wuhan University, 430079, People's Republic of China
| | | | | | | | | | | |
Collapse
|
115
|
Effects of bio-functionalizing surface treatments on the mechanical behavior of open porous titanium biomaterials. J Mech Behav Biomed Mater 2014; 36:109-19. [DOI: 10.1016/j.jmbbm.2014.04.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 04/14/2014] [Accepted: 04/20/2014] [Indexed: 02/04/2023]
|
116
|
Huang CL, Lee WL, Loo JS. Drug-eluting scaffolds for bone and cartilage regeneration. Drug Discov Today 2014; 19:714-24. [DOI: 10.1016/j.drudis.2013.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/16/2013] [Accepted: 11/06/2013] [Indexed: 12/19/2022]
|
117
|
Lee J, Yun HS. Hydroxyapatite-containing gelatin/chitosan microspheres for controlled release of lysozyme and enhanced cytocompatibility. J Mater Chem B 2014; 2:1255-1263. [DOI: 10.1039/c3tb21553a] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
118
|
Wang H, Bongio M, Farbod K, Nijhuis AWG, van den Beucken J, Boerman OC, van Hest JCM, Li Y, Jansen JA, Leeuwenburgh SCG. Development of injectable organic/inorganic colloidal composite gels made of self-assembling gelatin nanospheres and calcium phosphate nanocrystals. Acta Biomater 2014; 10:508-19. [PMID: 24012604 DOI: 10.1016/j.actbio.2013.08.036] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/26/2013] [Accepted: 08/28/2013] [Indexed: 12/20/2022]
Abstract
Colloidal gels are a particularly attractive class of hydrogels for applications in regenerative medicine, and allow for a "bottom-up" fabrication of multi-functional biomaterials by employing micro- or nanoscale particles as building blocks to assemble into shape-specific bulk scaffolds. So far, however, the synthesis of colloidal composite gels composed of both organic and inorganic particles has hardly been investigated. The current study has focused on the development of injectable colloidal organic-inorganic composite gels using calcium phosphate (CaP) nanoparticles and gelatin (Gel) nanospheres as building blocks. These novel Gel-CaP colloidal composite gels exhibited a strongly enhanced gel elasticity, shear-thinning and self-healing behavior, and gel stability at high ionic strengths, while chemical - potentially cytotoxic - functionalizations were not necessary to introduce sufficiently strong cohesive interactions. Moreover, it was shown in vitro that osteoconductive CaP nanoparticles can be used as an additional tool to reduce the degradation rate of otherwise fast-degradable gelatin nanospheres and fine-tune the control over the release of growth factors. Finally, it was shown that these colloidal composite gels support attachment, spreading and proliferation of cultured stem cells. Based on these results, it can be concluded that proof-of-principle has been obtained for the design of novel advanced composite materials made of nanoscale particulate building blocks which exhibit great potential for use in regenerative medicine.
Collapse
Affiliation(s)
- Huanan Wang
- Department of Biomaterials, Radboud University Nijmegen Medical Center, 6525 EX Nijmegen, The Netherlands; Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, 610064 Chengdu, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Wise JK, Alford AI, Goldstein SA, Stegemann JP. Comparison of uncultured marrow mononuclear cells and culture-expanded mesenchymal stem cells in 3D collagen-chitosan microbeads for orthopedic tissue engineering. Tissue Eng Part A 2013; 20:210-24. [PMID: 23879621 DOI: 10.1089/ten.tea.2013.0151] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Stem cell-based therapies have shown promise in enhancing repair of bone and cartilage. Marrow-derived mesenchymal stem cells (MSC) are typically expanded in vitro to increase cell number, but this process is lengthy, costly, and there is a risk of contamination and altered cellular properties. Potential advantages of using fresh uncultured bone marrow mononuclear cells (BMMC) include heterotypic cell and paracrine interactions between MSC and other marrow-derived cells including hematopoietic, endothelial, and other progenitor cells. In the present study, we compared the osteogenic and chondrogenic potential of freshly isolated BMMC to that of cultured-expanded MSC, when encapsulated in three-dimensional (3D) collagen-chitosan microbeads. The effect of low and high oxygen tension on cell function and differentiation into orthopedic lineages was also examined. Freshly isolated rat BMMC (25 × 10(6) cells/mL, containing an estimated 5 × 10(4) MSC/mL) or purified and culture-expanded rat bone marrow-derived MSC (2 × 10(5) cells/mL) were added to a 65-35 wt% collagen-chitosan hydrogel mixture and fabricated into 3D microbeads by emulsification and thermal gelation. Microbeads were cultured in control MSC growth media in either 20% O2 (normoxia) or 5% O2 (hypoxia) for an initial 3 days, and then in control, osteogenic, or chondrogenic media for an additional 21 days. Microbead preparations were evaluated for viability, total DNA content, calcium deposition, and osteocalcin and sulfated glycosaminoglycan expression, and they were examined histologically. Hypoxia enhanced initial progenitor cell survival in fresh BMMC-microbeads, but it did not enhance osteogenic potential. Fresh uncultured BMMC-microbeads showed a similar degree of osteogenesis as culture-expanded MSC-microbeads, even though they initially contained only 1/10th the number of MSC. Chondrogenic differentiation was not strongly supported in any of the microbead formulations. This study demonstrates the microbead-based approach to culturing and delivering cells for tissue regeneration, and suggests that fresh BMMC may be an alternative to using culture-expanded MSC for bone tissue engineering.
Collapse
Affiliation(s)
- Joel K Wise
- 1 Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan
| | | | | | | |
Collapse
|
120
|
Farbod K, Nejadnik MR, Jansen JA, Leeuwenburgh SCG. Interactions between inorganic and organic phases in bone tissue as a source of inspiration for design of novel nanocomposites. TISSUE ENGINEERING PART B-REVIEWS 2013; 20:173-88. [PMID: 23902258 DOI: 10.1089/ten.teb.2013.0221] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mimicking the nanostructure of bone and understanding the interactions between the nanoscale inorganic and organic components of the extracellular bone matrix are crucial for the design of biomaterials with structural properties and a functionality similar to the natural bone tissue. Generally, these interactions involve anionic and/or cationic functional groups as present in the organic matrix, which exhibit a strong affinity for either calcium or phosphate ions from the mineral phase of bone. This study reviews the interactions between the mineral and organic extracellular matrix components in bone tissue as a source of inspiration for the design of novel nanocomposites. After providing a brief description of the various structural levels of bone and its main constituents, a concise overview is presented on the process of bone mineralization as well as the interactions between calcium phosphate (CaP) nanocrystals and the organic matrix of bone tissue. Bioinspired synthetic approaches for obtaining nanocomposites are subsequently addressed, with specific focus on chemical groups that have affinity for CaPs or are involved in stimulating and controlling mineral formation, that is, anionic functional groups, including carboxyl, phosphate, sulfate, hydroxyl, and catechol groups.
Collapse
Affiliation(s)
- Kambiz Farbod
- Department of Biomaterials, Radboud University Nijmegen Medical Centre , Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
121
|
van der Stok J, Wang H, Amin Yavari S, Siebelt M, Sandker M, Waarsing JH, Verhaar JAN, Jahr H, Zadpoor AA, Leeuwenburgh SCG, Weinans H. Enhanced bone regeneration of cortical segmental bone defects using porous titanium scaffolds incorporated with colloidal gelatin gels for time- and dose-controlled delivery of dual growth factors. Tissue Eng Part A 2013; 19:2605-14. [PMID: 23822814 DOI: 10.1089/ten.tea.2013.0181] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Porous titanium scaffolds are a promising class of biomaterials for grafting large bone defects, because titanium provides sufficient mechanical support, whereas its porous structure allows bone ingrowth resulting in good osseointegration. To reinforce porous titanium scaffolds with biological cues that enhance and continue bone regeneration, scaffolds can be incorporated with bioactive gels for time- and dose-controlled delivery of multiple growth factors (GFs). In this study, critical femoral bone defects in rats were grafted with porous titanium scaffolds incorporated with nanostructured colloidal gelatin gels. Gels were loaded with bone morphogenetic protein-2 (BMP-2, 3 μg), fibroblast growth factor-2 (FGF-2, 0.6 μg), BMP-2, and FGF-2 (BMP-2/FGF-2, ratio 5:1) or were left unloaded. GF delivery was controlled by fine tuning the crosslinking density of oppositely charged nanospheres. Grafted femurs were evaluated using in vivo and ex vivo micro-CT, histology, and three-point bending tests. All porous titanium scaffolds containing GF-loaded gels accelerated and enhanced bone regeneration: BMP-2 gels gave an early increase (0-4 weeks), and FGF-2 gels gave a late increase (8-12 weeks). Interestingly, stimulatory effects of 0.6 μg FGF-2 were similar to a fivefold higher dose of BMP-2 (3 μg). BMP-2/FGF-2 gels gave more bone outside the porous titanium scaffolds than gels with only BMP-2 or FGF-2, resulted in bridging of most defects and showed superior bone-implant integrity in three-point bending tests. In conclusion, incorporation of nanostructured colloidal gelatin gels capable of time- and dose-controlled delivery of BMP-2 and FGF-2 in porous titanium scaffolds is a promising strategy to enhance and continue bone regeneration of large bone defects.
Collapse
Affiliation(s)
- Johan van der Stok
- 1 Orthopaedic Research Laboratory, Department of Orthopaedics, Erasmus University Rotterdam Medical Centre , Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Santo VE, Gomes ME, Mano JF, Reis RL. Controlled release strategies for bone, cartilage, and osteochondral engineering--Part I: recapitulation of native tissue healing and variables for the design of delivery systems. TISSUE ENGINEERING. PART B, REVIEWS 2013; 19:308-26. [PMID: 23268651 PMCID: PMC3690094 DOI: 10.1089/ten.teb.2012.0138] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 12/11/2012] [Indexed: 12/12/2022]
Abstract
The potential of growth factors to stimulate tissue healing through the enhancement of cell proliferation, migration, and differentiation is undeniable. However, critical parameters on the design of adequate carriers, such as uncontrolled spatiotemporal presence of bioactive factors, inadequate release profiles, and supraphysiological dosages of growth factors, have impaired the translation of these systems onto clinical practice. This review describes the healing cascades for bone, cartilage, and osteochondral interface, highlighting the role of specific growth factors for triggering the reactions leading to tissue regeneration. Critical criteria on the design of carriers for controlled release of bioactive factors are also reported, focusing on the need to provide a spatiotemporal control over the delivery and presentation of these molecules.
Collapse
Affiliation(s)
- Vítor E. Santo
- 3Bs Research Group—Biomaterials, Biodegradables, and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuela E. Gomes
- 3Bs Research Group—Biomaterials, Biodegradables, and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João F. Mano
- 3Bs Research Group—Biomaterials, Biodegradables, and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3Bs Research Group—Biomaterials, Biodegradables, and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
123
|
Wilhelm S, Hirsch T, Patterson WM, Scheucher E, Mayr T, Wolfbeis OS. Multicolor upconversion nanoparticles for protein conjugation. Am J Cancer Res 2013; 3:239-48. [PMID: 23606910 PMCID: PMC3630524 DOI: 10.7150/thno.5113] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 09/23/2012] [Indexed: 11/24/2022] Open
Abstract
We describe the preparation of monodisperse, lanthanide-doped hexagonal-phase NaYF4 upconverting luminescent nanoparticles for protein conjugation. Their core was coated with a silica shell which then was modified with a poly(ethylene glycol) spacer and N-hydroxysuccinimide ester groups. The nanoparticles were characterized by transmission electron microscopy, Raman spectroscopy, X-ray diffraction, and dynamic light scattering. The N-hydroxysuccinimide ester functionalization renders them highly reactive towards amine nucleophiles (e.g., proteins). We show that such particles can be conjugated to proteins. The protein-reactive UCLNPs and their conjugates to streptavidin and bovine serum albumin display multicolor emissions upon 980-nm continuous wave laser excitation. Surface plasmon resonance studies were carried out to prove bioconjugation and to compare the affinity of the particles for proteins immobilized on a thin gold film.
Collapse
|
124
|
Culpepper BK, Morris DS, Prevelige PE, Bellis SL. Engineering nanocages with polyglutamate domains for coupling to hydroxyapatite biomaterials and allograft bone. Biomaterials 2013; 34:2455-62. [PMID: 23312905 DOI: 10.1016/j.biomaterials.2012.12.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 12/22/2012] [Indexed: 02/01/2023]
Abstract
Hydroxyapatite (HA) is the principal constituent of bone mineral, and synthetic HA is widely used as a biomaterial for bone repair. Previous work has shown that polyglutamate domains bind selectively to HA and that these domains can be utilized to couple bioactive peptides onto many different HA-containing materials. In the current study we have adapted this technology to engineer polyglutamate domains into cargo-loaded nanocage structures derived from the P22 bacteriophage. P22 nanocages have demonstrated significant potential as a drug delivery system due to their stability, large capacity for loading with a diversity of proteins and other types of cargo, and ability to resist degradation by proteases. Site-directed mutagenesis was used to modify the primary coding sequence of the P22 coat protein to incorporate glutamate-rich regions. Relative to wild-type P22, the polyglutamate-modified nanocages (E2-P22) exhibited increased binding to ceramic HA disks, particulate HA and allograft bone. Furthermore, E2-P22 binding was HA selective, as evidenced by negligible binding of the nanocages to non-HA materials including polystyrene, agarose, and polycaprolactone (PCL). Taken together these results establish a new mechanism for the directed coupling of nanocage drug delivery systems to a variety of HA-containing materials commonly used in diverse bone therapies.
Collapse
Affiliation(s)
- Bonnie K Culpepper
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
125
|
McMahon RE, Wang L, Skoracki R, Mathur AB. Development of nanomaterials for bone repair and regeneration. J Biomed Mater Res B Appl Biomater 2012; 101:387-97. [DOI: 10.1002/jbm.b.32823] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 07/31/2012] [Accepted: 08/05/2012] [Indexed: 11/05/2022]
|
126
|
Wang H, Zou Q, Boerman OC, Nijhuis AWG, Jansen JA, Li Y, Leeuwenburgh SCG. Combined delivery of BMP-2 and bFGF from nanostructured colloidal gelatin gels and its effect on bone regeneration in vivo. J Control Release 2012; 166:172-81. [PMID: 23266450 DOI: 10.1016/j.jconrel.2012.12.015] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/03/2012] [Accepted: 12/10/2012] [Indexed: 12/13/2022]
Abstract
During the process of bone regeneration, a multitude of morphogenetic signaling factors regulate cellular behavior and ultimately tissue response. These factors are presented to cells under strong spatial and temporal control, which stresses the relevance of controlled delivery of multiple growth factors for bone tissue regeneration. This demand for biomimetic delivery has prompted the development of a novel generation of biomaterials that is capable of delivering multiple growth factors in a controlled manner. Therefore, the current study has exploited the strong capacity of colloidal gels solely made of oppositely charged gelatin nanospheres to obtain controlled release of angiogenic and osteogenic growth factors. The release kinetics of dual delivery of osteogenic bone morphogenetic protein-2 (BMP-2) and angiogenic basic fibroblast growth factor (bFGF) were investigated in vitro by radiolabeling the respective growth factors and monitoring their release in vitro. Furthermore, the effect of single or dual delivery of BMP-2 and bFGF on bone regeneration was evaluated in vivo using a rat femoral condyle defect model. The in vitro results confirmed that the delivery kinetics of BMP-2 and/or bFGF are more dependent on the degree of crosslinking than on the type of gelatin. Sequential release characterized by rapid release of angiogenic bFGF and more sustained release of BMP-2 was obtained by loading bFGF onto cationic nanospheres of low crosslinking density and BMP-2 onto anionic nanospheres of high crosslinking density. The in vivo study demonstrated the biocompatibility and biodegradability of bare colloidal gelatin gels, and did not show any adverse effects on the process of bone healing after 4 week of implantation since the volumes of new bone formation were comparable to empty control defects. An obvious stimulatory effect on bone regeneration was observed for the colloidal gels loaded with BMP-2, whereas bFGF-loaded colloidal gelatin gels did not influence the rate of bone regeneration. In contrast, the combined delivery of BMP-2 and bFGF resulted into an inhibitory effect on osteogenesis under the current experimental conditions. Summarizing, the current study proved that nanostructured colloidal gelatin gels are suitable carriers for programmed and sustained release of multiple therapeutic proteins for tissue regeneration.
Collapse
Affiliation(s)
- Huanan Wang
- Department of Biomaterials, Radboud University Nijmegen Medical Center, 6525 EX Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
127
|
Solorio LD, Vieregge EL, Dhami CD, Alsberg E. High-density cell systems incorporating polymer microspheres as microenvironmental regulators in engineered cartilage tissues. TISSUE ENGINEERING PART B-REVIEWS 2012; 19:209-20. [PMID: 23126333 DOI: 10.1089/ten.teb.2012.0252] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To address the significant clinical need for tissue-engineered therapies for the repair and regeneration of articular cartilage, many systems have recently been developed using bioactive polymer microspheres as regulators of the chondrogenic microenvironment within high-density cell cultures. In this review, we highlight various densely cellular systems utilizing polymer microspheres as three-dimensional (3D) structural elements within developing engineered cartilage tissue, carriers for cell expansion and delivery, vehicles for spatiotemporally controlled growth factor delivery, and directors of cell behavior via regulation of cell-biomaterial interactions. The diverse systems described herein represent a shift from the more traditional tissue engineering approach of combining cells and growth factors within a biomaterial scaffold, to the design of modular systems that rely on the assembly of cells and bioactive polymer microspheres as building blocks to guide the creation of articular cartilage. Cell-based assembly of 3D microsphere-incorporated structures represents a promising avenue for the future of tissue engineering.
Collapse
Affiliation(s)
- Loran D Solorio
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
128
|
Bagheri-Khoulenjani S, Mirzadeh H, Etrati-Khosroshahi M, Shokrgozar MA. Particle size modeling and morphology study of chitosan/gelatin/nanohydroxyapatite nanocomposite microspheres for bone tissue engineering. J Biomed Mater Res A 2012. [PMID: 23184337 DOI: 10.1002/jbm.a.34481] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study, nanocomposite microspheres based on chitosan/gelatin/nanohydroxyapatite were fabricated, and effects of the nanohydroxyapatite/biopolymer (chitosan/gelatin) weight ratio (nHA/P), stirring rate, chitosan concentration and biopolymer concentration on the particle size, and morphology of nanocomposite microspheres were investigated. Particle size of microspheres was modeled by design of experiments using the surface response method. Particle size, morphology of microspheres, and distribution of nanoparticles within the composite microspheres were evaluated using an optical microscope, scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. X-ray diffraction and Fourier transform infrared spectroscopy were applied to study the physical and chemical characteristics of microspheres. Results showed that by modulating the nHA/P ratio, chitosan concentration, polymer concentration, and stirring rate, it is possible to fabricate microspheres in wide rages of particle size (5-150 μm). Analysis of variance confirmed that the modified quadratic model can be used to predict the particle size of nanocomposite microspheres within the design space. SEM studies showed that microspheres with different compositions had totally different morphologies from dense morphologies to porous ones. TEM images demonstrated that nanoparticles were distributed uniformly within the polymeric matrix. MTT assay and cell culture studies showed that microspheres with different compositions possessed good biocompatibility. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2013.
Collapse
|
129
|
Iafisco M, Palazzo B, Ito T, Otsuka M, Senna M, Delgado-Lopez JM, Gomez-Morales J, Tampieri A, Prat M, Rimondini L. Preparation of core-shell poly(L-lactic) acid-nanocrystalline apatite hollow microspheres for bone repairing applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:2659-2669. [PMID: 22864504 DOI: 10.1007/s10856-012-4732-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 07/23/2012] [Indexed: 06/01/2023]
Abstract
In this paper, hybrid inorganic-organic core-shell hollow microspheres, made of poly(L-lactic acid) (PLLA) and biomimetic nano apatites (HA), were prepared from biodegradable and biocompatible substances, suitable for bone tissue applications. Preparation is started from Pickering emulsification, i.e., solid particle-stabilized emulsions in the absence of any molecular surfactant, where solid particles adsorbed to an oil-water interface. Stable oil-in-water emulsions were produced using biomimetic 20 nm sized HA nanocrystals as particulate emulsifier and a dichloromethane (CH(2)Cl(2)) solution of PLLA as oil phase. Hybrid hollow PLLA microspheres at three different HA nanocrystals surface coverage, ranging from 10 to 50 μm, were produced. The resulting materials were completely characterized with spectroscopic, calorimetric and microscopic techniques and the cytocompatibility was established by indirect contact tests with both fibroblasts and osteoblasts and direct contact with these latter. They displayed a high level of cytocompatibility and thus represent promising materials for drug delivery systems, cell carriers and scaffolds for regeneration of bone useful in the treatment of orthopaedic, maxillofacial and dental fields.
Collapse
Affiliation(s)
- Michele Iafisco
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, Novara, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Renth AN, Detamore MS. Leveraging "raw materials" as building blocks and bioactive signals in regenerative medicine. TISSUE ENGINEERING. PART B, REVIEWS 2012; 18:341-62. [PMID: 22462759 PMCID: PMC3458620 DOI: 10.1089/ten.teb.2012.0080] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 03/28/2012] [Indexed: 01/15/2023]
Abstract
Components found within the extracellular matrix (ECM) have emerged as an essential subset of biomaterials for tissue engineering scaffolds. Collagen, glycosaminoglycans, bioceramics, and ECM-based matrices are the main categories of "raw materials" used in a wide variety of tissue engineering strategies. The advantages of raw materials include their inherent ability to create a microenvironment that contains physical, chemical, and mechanical cues similar to native tissue, which prove unmatched by synthetic biomaterials alone. Moreover, these raw materials provide a head start in the regeneration of tissues by providing building blocks to be bioresorbed and incorporated into the tissue as opposed to being biodegraded into waste products and removed. This article reviews the strategies and applications of employing raw materials as components of tissue engineering constructs. Utilizing raw materials holds the potential to provide both a scaffold and a signal, perhaps even without the addition of exogenous growth factors or cytokines. Raw materials contain endogenous proteins that may also help to improve the translational success of tissue engineering solutions to progress from laboratory bench to clinical therapies. Traditionally, the tissue engineering triad has included cells, signals, and materials. Whether raw materials represent their own new paradigm or are categorized as a bridge between signals and materials, it is clear that they have emerged as a leading strategy in regenerative medicine. The common use of raw materials in commercial products as well as their growing presence in the research community speak to their potential. However, there has heretofore not been a coordinated or organized effort to classify these approaches, and as such we recommend that the use of raw materials be introduced into the collective consciousness of our field as a recognized classification of regenerative medicine strategies.
Collapse
Affiliation(s)
- Amanda N. Renth
- Bioengineering Program, University of Kansas, Lawrence, Kansas
| | - Michael S. Detamore
- Bioengineering Program, University of Kansas, Lawrence, Kansas
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas
| |
Collapse
|
131
|
Wang H, Boerman OC, Sariibrahimoglu K, Li Y, Jansen JA, Leeuwenburgh SCG. Comparison of micro- vs. nanostructured colloidal gelatin gels for sustained delivery of osteogenic proteins: Bone morphogenetic protein-2 and alkaline phosphatase. Biomaterials 2012; 33:8695-703. [PMID: 22922022 DOI: 10.1016/j.biomaterials.2012.08.024] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 08/11/2012] [Indexed: 01/26/2023]
Abstract
Colloidal gels have recently emerged as a promising new class of materials for regenerative medicine by employing micro- and nanospheres as building blocks to assemble into integral scaffolds. To this end, physically crosslinked particulate networks are formed that are injectable yet cohesive. By varying the physicochemical properties of different particle populations, the suitability of colloidal gels for programmed delivery of multiple therapeutic proteins is superior over conventional monolithic gels that lack this strong capacity for controlled drug release. Colloidal gels made of biodegradable polymer micro- or nanospheres have been widely investigated over the past few years, but a direct comparison between micro- vs. nanostructured colloidal gels has not been made yet. Therefore, the current study has compared the viscoelastic properties and capacity for drug release of colloidal gels made of oppositely charged gelatin microspheres vs. nanospheres. Viscoelastic properties of the colloidal gelatin gels were characterized by rheology and simple injectability tests, and in vitro release of two selected osteogenic proteins (i.e. bone morphogenetic protein-2 (BMP-2) and alkaline phosphatase (ALP)) from the colloidal gelatin gels was evaluated using radiolabeled BMP-2 and ALP. Nanostructured colloidal gelatin gels displayed superior viscoelastic properties over microsphere-based gels in terms of elasticity, injectability, structural integrity, and self-healing behavior upon severe network destruction. In contrast, microstructured colloidal gelatin gels exhibited poor gel strength and integrity, unfavorable injectability, and did not recover after shearing, resulting from the poor gel cohesion due to insufficiently strong interparticle forces. Regarding the capacity for drug delivery, sustained growth factor (BMP-2) release was obtained for both micro- and nanosphere-based gels, the kinetics of which were mainly depending on the particle size of gelatin spheres with the same crosslinking density. Therefore, the optimal gelatin carrier for drug delivery in terms of particle size and crosslinking density still needs to be established for specific clinical indications that require either short-term or long-term release. It can be concluded that nanostructured colloidal gelatin gels show great potential for sustained delivery of therapeutic proteins, whereas microstructured colloidal gelatin gels are not sufficiently cohesive as injectables for biomedical applications.
Collapse
Affiliation(s)
- Huanan Wang
- Department of Biomaterials, Radboud University Nijmegen Medical Centre, 6525 EX Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
132
|
Pramanik S, Pingguan-Murphy B, Abu Osman NA. Progress of key strategies in development of electrospun scaffolds: bone tissue. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2012; 13:043002. [PMID: 27877500 PMCID: PMC5090556 DOI: 10.1088/1468-6996/13/4/043002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 06/26/2012] [Indexed: 05/31/2023]
Abstract
There has been unprecedented development in tissue engineering (TE) over the last few years owing to its potential applications, particularly in bone reconstruction or regeneration. In this article, we illustrate several advantages and disadvantages of different approaches to the design of electrospun TE scaffolds. We also review the major benefits of electrospun fibers for three-dimensional scaffolds in hard connective TE applications and identify the key strategies that can improve the mechanical properties of scaffolds for bone TE applications. A few interesting results of recent investigations have been explained for future trends in TE scaffold research.
Collapse
Affiliation(s)
- Sumit Pramanik
- Department of Biomedical Engineering, Faculty of Engineering, Centre for Applied Biomechanics, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | | | | |
Collapse
|
133
|
Santo VE, Gomes ME, Mano JF, Reis RL. From nano- to macro-scale: nanotechnology approaches for spatially controlled delivery of bioactive factors for bone and cartilage engineering. Nanomedicine (Lond) 2012; 7:1045-66. [DOI: 10.2217/nnm.12.78] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The field of biomaterials has advanced towards the molecular and nanoscale design of bioactive systems for tissue engineering, regenerative medicine and drug delivery. Spatial cues are displayed in the 3D extracellular matrix and can include signaling gradients, such as those observed during chemotaxis. Architectures range from the nanometer to the centimeter length scales as exemplified by extracellular matrix fibers, cells and macroscopic shapes. The main focus of this review is the application of a biomimetic approach by the combination of architectural cues, obtained through the application of micro- and nanofabrication techniques, with the ability to sequester and release growth factors and other bioactive agents in a spatiotemporal controlled manner for bone and cartilage engineering.
Collapse
Affiliation(s)
- Vítor E Santo
- 3B’s Research Group - Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
| | - Manuela E Gomes
- 3B’s Research Group - Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
| | - João F Mano
- 3B’s Research Group - Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
| | - Rui L Reis
- 3B’s Research Group - Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
| |
Collapse
|