101
|
Cytoskeletal and signaling mechanisms of neurite formation. Cell Tissue Res 2014; 359:267-78. [PMID: 25080065 DOI: 10.1007/s00441-014-1955-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 07/01/2014] [Indexed: 10/25/2022]
Abstract
The formation of a neurite, the basis for axons and dendrites, begins with the concerted accumulation and organization of actin and microtubules. Whereas much is known about the proteins that play a role in these processes, because they perform similar functions in axon branching and filopodia formation, much remains to be discovered concerning the interaction of these individual cytoskeletal regulators during neurite formation. Here, we review the literature regarding various models of filopodial formation and the way in which proteins that control actin organization and polymerization induce neurite formation. Although several different regulators of actin polymerization are involved in neurite initiation, redundancy occurs between these regulators, as the effects of the loss of a single regulator can be mitigated by the addition of neurite-promoting substrates and proteins. Similar to actin dynamics, both microtubule stabilizing and destabilizing proteins play a role in neurite initiation. Furthermore, interactions between the actin and microtubule cytoskeleton are required for neurite formation. Several lines of evidence indicate that the interactions between these two components of the cytoskeleton are needed for force generation and for the localization of microtubules at sites of nascent neurites. The general theme that emerges is the existence of several central regulatory pathways on which extracellular cues converge to control and organize both actin and microtubules to induce the formation of neurites.
Collapse
|
102
|
Betapudi V. Life without double-headed non-muscle myosin II motor proteins. Front Chem 2014; 2:45. [PMID: 25072053 PMCID: PMC4083560 DOI: 10.3389/fchem.2014.00045] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 06/19/2014] [Indexed: 11/20/2022] Open
Abstract
Non-muscle myosin II motor proteins (myosin IIA, myosin IIB, and myosin IIC) belong to a class of molecular motor proteins that are known to transduce cellular free-energy into biological work more efficiently than man-made combustion engines. Nature has given a single myosin II motor protein for lower eukaryotes and multiple for mammals but none for plants in order to provide impetus for their life. These specialized nanomachines drive cellular activities necessary for embryogenesis, organogenesis, and immunity. However, these multifunctional myosin II motor proteins are believed to go awry due to unknown reasons and contribute for the onset and progression of many autosomal-dominant disorders, cataract, deafness, infertility, cancer, kidney, neuronal, and inflammatory diseases. Many pathogens like HIV, Dengue, hepatitis C, and Lymphoma viruses as well as Salmonella and Mycobacteria are now known to take hostage of these dedicated myosin II motor proteins for their efficient pathogenesis. Even after four decades since their discovery, we still have a limited knowledge of how these motor proteins drive cell migration and cytokinesis. We need to enrich our current knowledge on these fundamental cellular processes and develop novel therapeutic strategies to fix mutated myosin II motor proteins in pathological conditions. This is the time to think how to relieve the hijacked myosins from pathogens in order to provide a renewed impetus for patients' life. Understanding how to steer these molecular motors in proliferating and differentiating stem cells will improve stem cell based-therapeutics development. Given the plethora of cellular activities non-muscle myosin motor proteins are involved in, their importance is apparent for human life.
Collapse
Affiliation(s)
- Venkaiah Betapudi
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Cleveland, OH, USA ; Department of Physiology and Biophysics, Case Western Reserve University Cleveland, OH, USA
| |
Collapse
|
103
|
Johnson M, East DA, Mulvihill DP. Formins determine the functional properties of actin filaments in yeast. Curr Biol 2014; 24:1525-30. [PMID: 24954052 DOI: 10.1016/j.cub.2014.05.034] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/25/2014] [Accepted: 05/14/2014] [Indexed: 10/25/2022]
Abstract
The actin cytoskeleton executes a broad range of essential functions within a living cell. The dynamic nature of the actin polymer is modulated to facilitate specific cellular processes at discrete locations by actin-binding proteins (ABPs), including the formins and tropomyosins (Tms). Formins nucleate actin polymers, while Tms are conserved dimeric proteins that form polymers along the length of actin filaments. Cells possess different Tm isoforms, each capable of differentially regulating the dynamic and functional properties of the actin polymer. However, the mechanism by which a particular Tm localizes to a specific actin polymer is unknown. Here we show that specific formin family members dictate which Tm isoform will associate with a particular actin filament to modulate its dynamic and functional properties at specific cellular locations. Exchanging the localization of the fission yeast formins For3 and Cdc12 results in an exchange in localizations of Tm forms on actin polymers. This nucleator-driven switch in filament composition is reflected in a switch in actin dynamics, together with a corresponding change in the filament's ability to regulate ABPs and myosin motor activity. These data establish a role for formins in dictating which specific Tm variant will associate with a growing actin filament and therefore specify the functional capacity of the actin filaments that they create.
Collapse
Affiliation(s)
- Matthew Johnson
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Daniel A East
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Daniel P Mulvihill
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| |
Collapse
|
104
|
Barua B, Nagy A, Sellers JR, Hitchcock-DeGregori SE. Regulation of nonmuscle myosin II by tropomyosin. Biochemistry 2014; 53:4015-24. [PMID: 24873380 PMCID: PMC4075986 DOI: 10.1021/bi500162z] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
The
actin cytoskeleton carries out cellular functions, including
division, migration, adhesion, and intracellular transport, that require
a variety of actin binding proteins, including myosins. Our focus
here is on class II nonmuscle myosin isoforms, NMIIA, NMIIB, and NMIIC,
and their regulation by the actin binding protein, tropomyosin. NMII
myosins are localized to different populations of stress fibers and
the contractile ring, structures involved in force generation required
for cell migration, adhesion, and cytokinesis. The stress fibers and
contractile ring that contain NMII myosins also contain tropomyosin.
Four mammalian genes encode more than 40 tropomyosins. Tropomyosins
inhibit or activate actomyosin MgATPase and motility depending on
the myosin and tropomyosin isoform. In vivo, tropomyosins
play a role in cell migration, adhesion, cytokinesis, and NMII isoform
localization in an isoform-specific manner. We postulate that the
isoform-specific tropomyosin localization and effect on NMII isoform
localization reflect modulation of NMII actomyosin kinetics and motile
function. In this study, we compare the ability of different tropomyosin
isoforms to support actin filament motility with NMIIA, NMIIB, and
NMIIC as well as skeletal muscle myosin. Tropomyosins activated, inhibited,
or had no effect on motility depending on the myosin, indicating that
the myosin isoform is the primary determinant of the isoform-specific
effect of tropomyosin on actomyosin regulation. Activation of motility
of nonmuscle tropomyosin–actin filaments by NMII myosin correlates
with an increased Vmax of the myosin MgATPase,
implying a direct effect on the myosin MgATPase, in contrast to the
skeletal tropomyosin–actin filament that has no effect on the Vmax or maximal filament velocity.
Collapse
Affiliation(s)
- Bipasha Barua
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University , Piscataway, New Jersey 08854, United States
| | | | | | | |
Collapse
|
105
|
Stehn JR, Haass NK, Bonello T, Desouza M, Kottyan G, Treutlein H, Zeng J, Nascimento PRBB, Sequeira VB, Butler TL, Allanson M, Fath T, Hill TA, McCluskey A, Schevzov G, Palmer SJ, Hardeman EC, Winlaw D, Reeve VE, Dixon I, Weninger W, Cripe TP, Gunning PW. A novel class of anticancer compounds targets the actin cytoskeleton in tumor cells. Cancer Res 2014; 73:5169-82. [PMID: 23946473 DOI: 10.1158/0008-5472.can-12-4501] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The actin cytoskeleton is a potentially vulnerable property of cancer cells, yet chemotherapeutic targeting attempts have been hampered by unacceptable toxicity. In this study, we have shown that it is possible to disrupt specific actin filament populations by targeting isoforms of tropomyosin, a core component of actin filaments, that are selectively upregulated in cancers. A novel class of anti-tropomyosin compounds has been developed that preferentially disrupts the actin cytoskeleton of tumor cells, impairing both tumor cell motility and viability. Our lead compound, TR100, is effective in vitro and in vivo in reducing tumor cell growth in neuroblastoma and melanoma models. Importantly, TR100 shows no adverse impact on cardiac structure and function, which is the major side effect of current anti-actin drugs. This proof-of-principle study shows that it is possible to target specific actin filament populations fundamental to tumor cell viability based on their tropomyosin isoform composition. This improvement in specificity provides a pathway to the development of a novel class of anti-actin compounds for the potential treatment of a wide variety of cancers.
Collapse
Affiliation(s)
- Justine R Stehn
- School of Medical Sciences, University of New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Curthoys NM, Freittag H, Connor A, Desouza M, Brettle M, Poljak A, Hall A, Hardeman E, Schevzov G, Gunning PW, Fath T. Tropomyosins induce neuritogenesis and determine neurite branching patterns in B35 neuroblastoma cells. Mol Cell Neurosci 2013; 58:11-21. [PMID: 24211701 DOI: 10.1016/j.mcn.2013.10.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/21/2013] [Accepted: 10/29/2013] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The actin cytoskeleton is critically involved in the regulation of neurite outgrowth. RESULTS The actin cytoskeleton-associated protein tropomyosin induces neurite outgrowth in B35 neuroblastoma cells and regulates neurite branching in an isoform-dependent manner. CONCLUSIONS Our data indicate that tropomyosins are key regulators of the actin cytoskeleton during neurite outgrowth. SIGNIFICANCE Revealing the molecular machinery that regulates the actin cytoskeleton during neurite outgrowth may provide new therapeutic strategies to promote neurite regeneration after nerve injury. SUMMARY The formation of a branched network of neurites between communicating neurons is required for all higher functions in the nervous system. The dynamics of the actin cytoskeleton is fundamental to morphological changes in cell shape and the establishment of these branched networks. The actin-associated proteins tropomyosins have previously been shown to impact on different aspects of neurite formation. Here we demonstrate that an increased expression of tropomyosins is sufficient to induce the formation of neurites in B35 neuroblastoma cells. Furthermore, our data highlight the functional diversity of different tropomyosin isoforms during neuritogenesis. Tropomyosins differentially impact on the expression levels of the actin filament bundling protein fascin and increase the formation of filopodia along the length of neurites. Our data suggest that tropomyosins are central regulators of actin filament populations which drive distinct aspects of neuronal morphogenesis.
Collapse
Affiliation(s)
- Nikki Margarita Curthoys
- Neurodegeneration and Repair Unit, School of Medical Sciences, The University of New South Wales, Sydney NSW 2052, Australia; Oncology Research Unit, School of Medical Sciences, The University of New South Wales, Sydney NSW 2052, Australia
| | - Hannah Freittag
- Neurodegeneration and Repair Unit, School of Medical Sciences, The University of New South Wales, Sydney NSW 2052, Australia; Neuromuscular and Regenerative Medicine Unit, School of Medical Sciences, The University of New South Wales, Sydney NSW 2052, Australia
| | - Andrea Connor
- Neurodegeneration and Repair Unit, School of Medical Sciences, The University of New South Wales, Sydney NSW 2052, Australia; Oncology Research Unit, School of Medical Sciences, The University of New South Wales, Sydney NSW 2052, Australia
| | - Melissa Desouza
- Neurodegeneration and Repair Unit, School of Medical Sciences, The University of New South Wales, Sydney NSW 2052, Australia; Oncology Research Unit, School of Medical Sciences, The University of New South Wales, Sydney NSW 2052, Australia
| | - Merryn Brettle
- Neurodegeneration and Repair Unit, School of Medical Sciences, The University of New South Wales, Sydney NSW 2052, Australia
| | - Anne Poljak
- Bioanalytical Mass Spectrometry Facility, Bioanalytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Amelia Hall
- Neurodegeneration and Repair Unit, School of Medical Sciences, The University of New South Wales, Sydney NSW 2052, Australia
| | - Edna Hardeman
- Neuromuscular and Regenerative Medicine Unit, School of Medical Sciences, The University of New South Wales, Sydney NSW 2052, Australia
| | - Galina Schevzov
- Oncology Research Unit, School of Medical Sciences, The University of New South Wales, Sydney NSW 2052, Australia
| | - Peter William Gunning
- Oncology Research Unit, School of Medical Sciences, The University of New South Wales, Sydney NSW 2052, Australia
| | - Thomas Fath
- Neurodegeneration and Repair Unit, School of Medical Sciences, The University of New South Wales, Sydney NSW 2052, Australia.
| |
Collapse
|
107
|
Kis-Bicskei N, Vig A, Nyitrai M, Bugyi B, Talián GC. Purification of tropomyosin Br-3 and 5NM1 and characterization of their interactions with actin. Cytoskeleton (Hoboken) 2013; 70:755-65. [PMID: 24124168 DOI: 10.1002/cm.21143] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/17/2013] [Accepted: 09/04/2013] [Indexed: 01/27/2023]
Abstract
Tropomyosins were first identified in neuronal systems in 1973. Although numerous isoforms were found and described since then, many aspects of their function and interactions remained unknown. Tropomyosin isoforms show different sorting pattern in neurogenesis. As one example, TM5NM1/2 is present in developing axons, but it is replaced by TMBr-3 in mature neurons, suggesting that these tropomyosin isoforms contribute differently to the establishment of the functional features of the neuronal actin networks. We developed a method for the efficient purification of TMBr-3 and TM5NM1 as recombinant proteins using bacterial expression system and investigated their interactions with actin. We found that both isoforms bind actin filaments, however, the binding of TM5NM1 was much stronger than that of TMBr-3. TMBr-3 and TM5NM1 modestly affected actin assembly kinetics, in an opposite manner. Consistently with the higher affinity of TM5NM1 it inhibited actin filament disassembly more efficiently than TMBr-3. Similarly to other previously studied tropomyosins TM5NM1 inhibited the Arp2/3 complex-mediated actin assembly. Notably, TMBr-3 did not influence the Arp2/3 complex-mediated polymerization. This is a unique feature of TMBr-3, since so far it is the only known tropomyosin supporting the activity of the Arp2/3 complex, indicating that TMBr-3 may colocalize and work simultaneously with Arp2/3 complex in neuronal cells.
Collapse
|
108
|
Vindin H, Bischof L, Gunning P, Stehn J. Validation of an algorithm to quantify changes in actin cytoskeletal organization. ACTA ACUST UNITED AC 2013; 19:354-68. [PMID: 24019255 DOI: 10.1177/1087057113503494] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The actin cytoskeleton plays an important role in most, if not all, processes necessary for cell survival. Given the fundamental role that the actin cytoskeleton plays in the progression of cancer, it is an ideal target for chemotherapy. Although it is possible to image the actin cytoskeleton in a high-throughput manner, there is currently no validated method to quantify changes in the cytoskeleton in the same capacity, which makes research into its organization and the development of anticytoskeletal drugs difficult. We have validated the use of a linear feature detection algorithm, allowing us to measure changes in actin filament organization. Its ability to quantify changes associated with cytoskeletal disruption will make it a valuable tool in the development of compounds that target the cytoskeleton in cancer. Our results show that this algorithm can quantify cytoskeletal changes in a cell-based system after addition of both well-established and novel anticytoskeletal agents using either fluorescence microscopy or a high-content imaging approach. This novel method gives us the potential to screen compounds in a high-throughput manner for cancer and other diseases in which the cytoskeleton plays a key role.
Collapse
Affiliation(s)
- Howard Vindin
- 1Oncology Research Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
109
|
González Sánchez S, Moñux Ducajú G, Modrego Martín J, Serrano Hernando F, López Farré A. La plaqueta como célula inflamatoria: modificación de la expresión proteica del citoesqueleto y sistema contráctil de la pared vascular. ANGIOLOGIA 2013. [DOI: 10.1016/j.angio.2013.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
110
|
Cytoskeletal tropomyosins: choreographers of actin filament functional diversity. J Muscle Res Cell Motil 2013; 34:261-74. [PMID: 23904035 PMCID: PMC3843815 DOI: 10.1007/s10974-013-9355-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 07/09/2013] [Indexed: 01/12/2023]
Abstract
The actin cytoskeleton plays a central role in many essential cellular processes. Its involvement requires actin filaments to form multiple populations with different structural and therefore functional properties in specific subcellular locations. This diversity is facilitated through the interaction between actin and a number of actin binding proteins. One family of proteins, the tropomyosins, are absolutely essential in regulating actin's ability to form such diverse structures. In this review we integrate studies from different organisms and cell types in an attempt to provide a unifying view of tropomyosin dependent regulation of the actin cytoskeleton.
Collapse
|
111
|
Müller M, Diensthuber RP, Chizhov I, Claus P, Heissler SM, Preller M, Taft MH, Manstein DJ. Distinct functional interactions between actin isoforms and nonsarcomeric myosins. PLoS One 2013; 8:e70636. [PMID: 23923011 PMCID: PMC3724804 DOI: 10.1371/journal.pone.0070636] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 06/26/2013] [Indexed: 02/07/2023] Open
Abstract
Despite their near sequence identity, actin isoforms cannot completely replace each other in vivo and show marked differences in their tissue-specific and subcellular localization. Little is known about isoform-specific differences in their interactions with myosin motors and other actin-binding proteins. Mammalian cytoplasmic β- and γ-actin interact with nonsarcomeric conventional myosins such as the members of the nonmuscle myosin-2 family and myosin-7A. These interactions support a wide range of cellular processes including cytokinesis, maintenance of cell polarity, cell adhesion, migration, and mechano-electrical transduction. To elucidate differences in the ability of isoactins to bind and stimulate the enzymatic activity of individual myosin isoforms, we characterized the interactions of human skeletal muscle α-actin, cytoplasmic β-actin, and cytoplasmic γ-actin with human myosin-7A and nonmuscle myosins-2A, -2B and -2C1. In the case of nonmuscle myosins-2A and -2B, the interaction with either cytoplasmic actin isoform results in 4-fold greater stimulation of myosin ATPase activity than was observed in the presence of α-skeletal muscle actin. Nonmuscle myosin-2C1 is most potently activated by β-actin and myosin-7A by γ-actin. Our results indicate that β- and γ-actin isoforms contribute to the modulation of nonmuscle myosin-2 and myosin-7A activity and thereby to the spatial and temporal regulation of cytoskeletal dynamics. FRET-based analyses show efficient copolymerization abilities for the actin isoforms in vitro. Experiments with hybrid actin filaments show that the extent of actomyosin coupling efficiency can be regulated by the isoform composition of actin filaments.
Collapse
Affiliation(s)
- Mirco Müller
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | | | - Igor Chizhov
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Peter Claus
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
| | - Sarah M. Heissler
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Matthias Preller
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Manuel H. Taft
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Dietmar J. Manstein
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
112
|
Barua B. Periodicities designed in the tropomyosin sequence and structure define its functions. BIOARCHITECTURE 2013; 3:51-6. [PMID: 23887197 DOI: 10.4161/bioa.25616] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tropomyosin is an actin binding protein that regulates actin filament dynamics and its interactions with actin binding proteins such as myosin, tropomodulin, formin, Arp2/3 and ADF-cofilin in most eukaryotic cells. Tropomyosin is the prototypical two-chained, α-helical coiled coil protein that associates end-to-end and binds to both sides of the actin filament. Each tropomyosin molecule spans four to seven actin monomers in the filament, depending on the size of the tropomyosin. Tropomyosins have a periodic heptad repeat sequence that is characteristic of coiled coil proteins as well as additional periodicities required for its interaction with the actin filament, where each periodic repeat interacts with one actin molecule. This review addresses the role of periodic features of the Tm molecule in carrying out its universal functions of binding to the actin filament and its regulation and the specific features that may determine the isoform specificity of tropomyosins.
Collapse
Affiliation(s)
- Bipasha Barua
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Piscataway, NJ, USA.
| |
Collapse
|
113
|
Burridge K, Wittchen ES. The tension mounts: stress fibers as force-generating mechanotransducers. ACTA ACUST UNITED AC 2013; 200:9-19. [PMID: 23295347 PMCID: PMC3542796 DOI: 10.1083/jcb.201210090] [Citation(s) in RCA: 231] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Stress fibers (SFs) are often the most prominent cytoskeletal structures in cells growing in tissue culture. Composed of actin filaments, myosin II, and many other proteins, SFs are force-generating and tension-bearing structures that respond to the surrounding physical environment. New work is shedding light on the mechanosensitive properties of SFs, including that these structures can respond to mechanical tension by rapid reinforcement and that there are mechanisms to repair strain-induced damage. Although SFs are superficially similar in organization to the sarcomeres of striated muscle, there are intriguing differences in their organization and behavior, indicating that much still needs to be learned about these structures.
Collapse
Affiliation(s)
- Keith Burridge
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
114
|
Abstract
Precise orchestration of actin polymer into filaments with distinct characteristics of stability, bundling, and branching underpins cell migration. A key regulator of actin filament specialization is the tropomyosin family of actin-associating proteins. This multi-isoform family of proteins assemble into polymers that lie in the major groove of polymerized actin filaments, which in turn determine the association of molecules that control actin filament organization. This suggests that tropomyosins may be important regulators of actin function during physiological processes dependent on cell migration, such as wound healing. We have therefore analyzed the requirement for tropomyosin isoform expression in a mouse model of cutaneous wound healing. We find that mice in which the 9D exon from the TPM3/γTm tropomyosin gene is deleted (γ9D -/-) exhibit a more rapid wound-healing response 7 days after wounding compared with wild-type mice. Accelerated wound healing was not associated with increased cell proliferation, matrix remodeling, or epidermal abnormalities, but with increased cell migration. Rac GTPase activity and paxillin phosphorylation are elevated in cells from γ9D -/- mice, suggesting the activation of paxillin/Rac signaling. Collectively, our data reveal that tropomyosin isoform expression has an important role in temporal regulation of cell migration during wound healing.
Collapse
|
115
|
Abstract
In order to metastasize away from the primary tumor site and migrate into adjacent tissues, cancer cells will stimulate cellular motility through the regulation of their cytoskeletal structures. Through the coordinated polymerization of actin filaments, these cells will control the geometry of distinct structures, namely lamella, lamellipodia and filopodia, as well as the more recently characterized invadopodia. Because actin binding proteins play fundamental functions in regulating the dynamics of actin polymerization, they have been at the forefront of cancer research. This review focuses on a subset of actin binding proteins involved in the regulation of these cellular structures and protrusions, and presents some general principles summarizing how these proteins may remodel the structure of actin. The main body of this review aims to provide new insights into how the expression of these actin binding proteins is regulated during carcinogenesis and highlights new mechanisms that may be initiated by the metastatic cells to induce aberrant expression of such proteins.
Collapse
Affiliation(s)
- Stephane R Gross
- School of Life and Health Sciences, Aston University, Birmingham, UK.
| |
Collapse
|
116
|
Polachini GM, Sobral LM, Mercante AMC, Paes-Leme AF, Xavier FCA, Henrique T, Guimarães DM, Vidotto A, Fukuyama EE, Góis-Filho JF, Cury PM, Curioni OA, Michaluart Jr P, Silva AMA, Wünsch-Filho V, Nunes FD, Leopoldino AM, Tajara EH. Proteomic approaches identify members of cofilin pathway involved in oral tumorigenesis. PLoS One 2012; 7:e50517. [PMID: 23227181 PMCID: PMC3515627 DOI: 10.1371/journal.pone.0050517] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 10/23/2012] [Indexed: 12/12/2022] Open
Abstract
The prediction of tumor behavior for patients with oral carcinomas remains a challenge for clinicians. The presence of lymph node metastasis is the most important prognostic factor but it is limited in predicting local relapse or survival. This highlights the need for identifying biomarkers that may effectively contribute to prediction of recurrence and tumor spread. In this study, we used one- and two-dimensional gel electrophoresis, mass spectrometry and immunodetection methods to analyze protein expression in oral squamous cell carcinomas. Using a refinement for classifying oral carcinomas in regard to prognosis, we analyzed small but lymph node metastasis-positive versus large, lymph node metastasis-negative tumors in order to contribute to the molecular characterization of subgroups with risk of dissemination. Specific protein patterns favoring metastasis were observed in the “more-aggressive” group defined by the present study. This group displayed upregulation of proteins involved in migration, adhesion, angiogenesis, cell cycle regulation, anti-apoptosis and epithelial to mesenchymal transition, whereas the “less-aggressive” group was engaged in keratinocyte differentiation, epidermis development, inflammation and immune response. Besides the identification of several proteins not yet described as deregulated in oral carcinomas, the present study demonstrated for the first time the role of cofilin-1 in modulating cell invasion in oral carcinomas.
Collapse
Affiliation(s)
- Giovana M. Polachini
- Departamento de Biologia Molecular; Faculdade de Medicina (FAMERP), São José do Rio Preto, SP, Brazil
| | - Lays M. Sobral
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas da Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Adriana F. Paes-Leme
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP, Brazil
| | - Flávia C. A. Xavier
- Departamento de Propedêutica e Clínica Integrada, Faculdade de Odontologia da Universidade Federal da Bahia, Salvador,BA, Brazil
| | - Tiago Henrique
- Departamento de Biologia Molecular; Faculdade de Medicina (FAMERP), São José do Rio Preto, SP, Brazil
| | - Douglas M. Guimarães
- Departamento de Estomatologia, Faculdade de Odontologia da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Alessandra Vidotto
- Departamento de Biologia Molecular; Faculdade de Medicina (FAMERP), São José do Rio Preto, SP, Brazil
| | - Erica E. Fukuyama
- Serviço de Cirurgia de Cabeça e Pescoço, Instituto do Câncer Arnaldo Vieira de Carvalho, São Paulo, SP, Brazil
| | - José F. Góis-Filho
- Serviço de Cirurgia de Cabeça e Pescoço, Instituto do Câncer Arnaldo Vieira de Carvalho, São Paulo, SP, Brazil
| | - Patricia M. Cury
- Departamento de Patologia e Medicina Legal, Faculdade de Medicina (FAMERP), São José do Rio Preto, SP, Brazil
| | - Otávio A. Curioni
- Departamento de Cirurgia de Cabeça e Pescoço e Otorrinolaringologia, Hospital Heliópolis, São Paulo, SP, Brazil
| | - Pedro Michaluart Jr
- Divisão de Cirurgia de Cabeça e Pescoço, Departamento de Cirurgia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Adriana M. A. Silva
- Departamento de Produção Vegetal, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Victor Wünsch-Filho
- Departamento de Epidemiologia, Faculdade de Saúde Pública da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Fabio D. Nunes
- Departamento de Estomatologia, Faculdade de Odontologia da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Andréia M. Leopoldino
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas da Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Eloiza H. Tajara
- Departamento de Biologia Molecular; Faculdade de Medicina (FAMERP), São José do Rio Preto, SP, Brazil
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências da Universidade de São Paulo, São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
117
|
Kubo E, Hasanova N, Fatma N, Sasaki H, Singh DP. Elevated tropomyosin expression is associated with epithelial-mesenchymal transition of lens epithelial cells. J Cell Mol Med 2012. [PMID: 23205574 PMCID: PMC3560320 DOI: 10.1111/j.1582-4934.2012.01654.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Injury to lens epithelial cells (LECs) leads to epithelial–mesenchymal transition (EMT) with resultant fibrosis. The tropomyosin (Tpm) family of cytoskeleton proteins is involved in regulating and stabilizing actin microfilaments. Aberrant expression of Tpms leads to abnormal morphological changes with disintegration of epithelial integrity. The EMT of LECs has been proposed as a major cause of posterior capsule opacification (PCO) after cataract surgery. Using in vivo rodent PCO and human cataractous LECs, we demonstrated that the aberrant expression of rat Tpm and human Tpm1α/2β suggested their association in remodelling of the actin cytoskeleton during EMT of LECs. Expression analysis from abnormally growing LECs after lens extraction revealed elevated expression of α-smooth muscle actin (α-SMA), a marker for EMT. Importantly, these cells displayed increased expression of Tpm1α/2β following EMT/PCO formation. Expression of Tpm1α/2β was up-regulated in LECs isolated from cataractous lenses of Shumiya Cataract Rats (SCRs), compared with non-cataractous lenses. Also, LECs from human patients with nuclear cataract and anterior subcapsular fibrosis (ASF) displayed significantly increased expression of Tpm2β mRNA, suggesting that similar signalling invokes the expression of these molecules in LECs of cataractous SCR and human lenses. EMT was observed in LECs overexpressed with Tpm1α/2β, as evidenced by increased expression of α-SMA. These conditions were correlated with remodelling of actin filaments, possibly leading to EMT/PCO and ASF. The present findings may help clarify the condition of the actin cytoskeleton during morphogenetic EMT, and may contribute to development of Tpm-based inhibitors for postponing PCO and cataractogenesis.
Collapse
Affiliation(s)
- Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Kahoku, Ishikawa, Japan.
| | | | | | | | | |
Collapse
|
118
|
Heissler SM, Manstein DJ. Nonmuscle myosin-2: mix and match. Cell Mol Life Sci 2012; 70:1-21. [PMID: 22565821 PMCID: PMC3535348 DOI: 10.1007/s00018-012-1002-9] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 04/16/2012] [Accepted: 04/17/2012] [Indexed: 12/31/2022]
Abstract
Members of the nonmuscle myosin-2 (NM-2) family of actin-based molecular motors catalyze the conversion of chemical energy into directed movement and force thereby acting as central regulatory components of the eukaryotic cytoskeleton. By cyclically interacting with adenosine triphosphate and F-actin, NM-2 isoforms promote cytoskeletal force generation in established cellular processes like cell migration, shape changes, adhesion dynamics, endo- and exo-cytosis, and cytokinesis. Novel functions of the NM-2 family members in autophagy and viral infection are emerging, making NM-2 isoforms regulators of nearly all cellular processes that require the spatiotemporal organization of cytoskeletal scaffolding. Here, we assess current views about the role of NM-2 isoforms in these activities including the tight regulation of NM-2 assembly and activation through phosphorylation and how NM-2-mediated changes in cytoskeletal dynamics and mechanics affect cell physiological functions in health and disease.
Collapse
Affiliation(s)
- Sarah M. Heissler
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Dietmar J. Manstein
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
119
|
Schevzov G, Curthoys NM, Gunning PW, Fath T. Functional diversity of actin cytoskeleton in neurons and its regulation by tropomyosin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 298:33-94. [PMID: 22878104 DOI: 10.1016/b978-0-12-394309-5.00002-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurons comprise functionally, molecularly, and spatially distinct subcellular compartments which include the soma, dendrites, axon, branches, dendritic spines, and growth cones. In this chapter, we detail the remarkable ability of the neuronal cytoskeleton to exquisitely regulate all these cytoplasmic distinct partitions, with particular emphasis on the microfilament system and its plethora of associated proteins. Importance will be given to the family of actin-associated proteins, tropomyosin, in defining distinct actin filament populations. The ability of tropomyosin isoforms to regulate the access of actin-binding proteins to the filaments is believed to define the structural diversity and dynamics of actin filaments and ultimately be responsible for the functional outcome of these filaments.
Collapse
Affiliation(s)
- Galina Schevzov
- Oncology Research Unit, Department of Pharmacology, School of Medical Sciences, University of New South Wales, Kensington, Australia
| | | | | | | |
Collapse
|
120
|
Choi C, Kim D, Kim S, Jeong S, Song E, Helfman DM. From skeletal muscle to cancer: insights learned elucidating the function of tropomyosin. J Struct Biol 2011; 177:63-9. [PMID: 22119848 DOI: 10.1016/j.jsb.2011.11.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 12/17/2022]
Abstract
The tropomyosins (Tms) are a family of actin filament binding proteins that possess a simple dimeric α-helical coiled-coil structure along their entire length. Our knowledge of Tm structure and function has greatly expanded since they were first discovered in skeletal muscle almost 65 years ago. In multicellular organisms they exhibit extensive cell type specific isoform diversity. In this essay we discuss the genetic mechanisms by which this diversity is generated and its significance to actin-based cellular functions.
Collapse
Affiliation(s)
- Cheolwon Choi
- Department of Biological Sciences, Korean Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | | | | | | | | | | |
Collapse
|
121
|
Poukkula M, Kremneva E, Serlachius M, Lappalainen P. Actin-depolymerizing factor homology domain: a conserved fold performing diverse roles in cytoskeletal dynamics. Cytoskeleton (Hoboken) 2011; 68:471-90. [PMID: 21850706 DOI: 10.1002/cm.20530] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 06/29/2011] [Accepted: 08/05/2011] [Indexed: 11/09/2022]
Abstract
Actin filaments form contractile and protrusive structures that play central roles in many processes such as cell migration, morphogenesis, endocytosis, and cytokinesis. During these processes, the dynamics of the actin filaments are precisely regulated by a large array of actin-binding proteins. The actin-depolymerizing factor homology (ADF-H) domain is a structurally conserved protein motif, which promotes cytoskeletal dynamics by interacting with monomeric and/or filamentous actin, and with the Arp2/3 complex. Despite their structural homology, the five classes of ADF-H domain proteins display distinct biochemical activities and cellular roles, only parts of which are currently understood. ADF/cofilin promotes disassembly of aged actin filaments, whereas twinfilin inhibits actin filament assembly via sequestering actin monomers and interacting with filament barbed ends. GMF does not interact with actin, but instead binds Arp2/3 complex and promotes dissociation of Arp2/3-mediated filament branches. Abp1 and drebrin are multidomain proteins that interact with actin filaments and regulate the activities of other proteins during various actin-dependent processes. The exact function of coactosin is currently incompletely understood. In this review article, we discuss the biochemical functions, cellular roles, and regulation of the five groups of ADF-H domain proteins.
Collapse
Affiliation(s)
- Minna Poukkula
- Program in Cell and Molecular Biology, Institute of Biotechnology, University of Helsinki, Finland
| | | | | | | |
Collapse
|
122
|
Abstract
The actin cytoskeleton is indispensable for normal cellular function. In particular, several actin-based structures coordinate cellular motility, a process hijacked by tumor cells in order to facilitate their propagation to distant sites. The actin cytoskeleton, therefore, represents a point for chemotherapeutic intervention. The challenge in disrupting the actin cytoskeleton is in preserving actin-driven contraction of cardiac and skeletal muscle. By targeting actin-binding proteins with altered expression in malignancy, it may be possible to achieve tumor-specific toxicity. A number of actin-binding proteins act cooperatively and synergistically to regulate actin structures required for motility. The actin cytoskeleton is characterized by a significant degree of plasticity. Targeting specific actin-binding proteins for chemotherapy will only be successful if no other compensatory mechanisms exist.
Collapse
|
123
|
Schevzov G, Whittaker SP, Fath T, Lin JJ, Gunning PW. Tropomyosin isoforms and reagents. BIOARCHITECTURE 2011; 1:135-164. [PMID: 22069507 DOI: 10.4161/bioa.1.4.17897] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 08/18/2011] [Accepted: 08/26/2011] [Indexed: 12/29/2022]
Abstract
Tropomyosins are rod-like dimers which form head-to-tail polymers along the length of actin filaments and regulate the access of actin binding proteins to the filaments.1 The diversity of tropomyosin isoforms, over 40 in mammals, and their role in an increasing number of biological processes presents a challenge both to experienced researchers and those new to this field. The increased appreciation that the role of these isoforms expands beyond that of simply stabilizing actin filaments has lead to a surge of reagents and techniques to study their function and mechanisms of action. This report is designed to provide a basic guide to the genes and proteins and the availability of reagents which allow effective study of this family of proteins. We highlight the value of combining multiple techniques to better evaluate the function of different tm isoforms and discuss the limitations of selected reagents. Brief background material is included to demystify some of the unfortunate complexity regarding this multi-gene family of proteins including the unconventional nomenclature of the isoforms and the evolutionary relationships of isoforms between species. Additionally, we present step-by-step detailed experimental protocols used in our laboratory to assist new comers to the field and experts alike.
Collapse
Affiliation(s)
- Galina Schevzov
- Oncology Research Unit; School of Medical Sciences; The University of New South Wales; Sydney, NSW Australia
| | | | | | | | | |
Collapse
|
124
|
Hubert T, Perdu S, Vandekerckhove J, Gettemans J. γ-Tubulin localizes at actin-based membrane protrusions and inhibits formation of stress-fibers. Biochem Biophys Res Commun 2011; 408:248-52. [DOI: 10.1016/j.bbrc.2011.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 04/01/2011] [Indexed: 01/06/2023]
|
125
|
A Molecular Pathway for Myosin II Recruitment to Stress Fibers. Curr Biol 2011; 21:539-50. [DOI: 10.1016/j.cub.2011.03.007] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 02/02/2011] [Accepted: 03/02/2011] [Indexed: 11/17/2022]
|
126
|
|
127
|
Lees JG, Bach CTT, O'Neill GM. Interior decoration: tropomyosin in actin dynamics and cell migration. Cell Adh Migr 2011; 5:181-6. [PMID: 21173575 DOI: 10.4161/cam.5.2.14438] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cell migration and invasion requires the precise temporal and spatial orchestration of a variety of biological processes. Filaments of polymerized actin are critical players in these diverse processes, including the regulation of cell anchorage points (both cell-cell and cell-extracellular matrix), the uptake and delivery of molecules via endocytic pathways and the generation of force for both membrane protrusion and retraction. How the actin filaments are specialized for each of these discrete functions is yet to be comprehensively elucidated. The cytoskeletal tropomyosins are a family of actin associating proteins that form head-to-tail polymers which lay in the major groove of polymerized actin filaments. In the present review we summarize the emerging isoform-specific functions of tropomyosins in cell migration and invasion and discuss their potential roles in the specialization of actin filaments for the diverse cellular processes that together regulate cell migration and invasion.
Collapse
Affiliation(s)
- Justin G Lees
- Children's Cancer Research Unit, Kids Research Institute, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | | | | |
Collapse
|
128
|
Lassing I, Hillberg L, Höglund AS, Karlsson R, Schutt C, Lindberg U. Tropomyosin is a tetramer under physiological salt conditions. Cytoskeleton (Hoboken) 2010; 67:599-607. [PMID: 20658558 DOI: 10.1002/cm.20470] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tropomyosin (TM) is a coiled-coil dimer of alpha-helical peptides, which self associates in a head- to-tail fashion along actin polymers, conferring stability to the microfilaments and serving a regulatory function in acto-myosin driven force generation. While the major amount of TM is associated with filaments also in non-muscle cells, it was recently reported that there are isoform-specific pools of TM multimers (not associated with F-actin), which appear to be utilized during actin polymerization and reformed during depolymerization. To determine the size of these multimers, skeletal muscle TM was studied under different salt conditions using gel-filtration and sucrose gradient sedimentation, and compared with purified non-muscle TM 1 and 5, as well as with TM present in non-muscle cell extracts and skeletal muscle TM added to such extracts. Under physiological salt conditions TM appears as a single homogenous peak with the Stokes radius 8.2 nm and the molecular weight (mw) 130,000. The corresponding values for TM 5 are 7.7 nm and 104,000, respectively. This equals four peptides, implying that native TM is a tetramer in physiological salt. It is therefore concluded that the TM multimers are tetramers.
Collapse
Affiliation(s)
- Ingrid Lassing
- Department of Cell Biology, The Wenner-Gren Institute, Stockholm University, Sweden.
| | | | | | | | | | | |
Collapse
|
129
|
The actin-associating protein Tm5NM1 blocks mesenchymal motility without transition to amoeboid motility. Oncogene 2010; 30:1241-51. [PMID: 21076470 DOI: 10.1038/onc.2010.516] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cell migration is an integral component of metastatic disease. The ability of cells to transit between mesenchymal and amoeboid modes of migration has complicated the development of successful therapies designed to target cell migration as a means of inhibiting metastasis. Therefore, investigations of the mechanisms that regulate cell migration and render cells stationary are necessary. Tropomyosins are actin-associating proteins that regulate the activity of several effectors of actin filament dynamics. Previously, we have shown that the tropomyosin isoform Tm5NM1 stabilizes actin filaments and inhibits cell migration in a two-dimensional culture system. Here, we show that Tm5NM1 inhibits the mesenchymal migration of multiple cell lines in an isoform-specific manner. Tm5NM1 stimulates the downregulation of Src kinase activity and a rounded or elliptical morphology in three-dimensional collagen gels, and cells have dramatically reduced capacity to form pseudopodia. Importantly, we find that Tm5NM1 inhibits both the mesenchymal to amoeboid and amoeboid to mesenchymal transitions. Collectively, our data suggest that mimicking the action of Tm5NM1 overexpression represents an approach for effectively inhibiting the mesenchymal mode of migration.
Collapse
|
130
|
Creed SJ, Desouza M, Bamburg JR, Gunning P, Stehn J. Tropomyosin isoform 3 promotes the formation of filopodia by regulating the recruitment of actin-binding proteins to actin filaments. Exp Cell Res 2010; 317:249-61. [PMID: 21036167 DOI: 10.1016/j.yexcr.2010.10.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 10/18/2010] [Accepted: 10/24/2010] [Indexed: 01/14/2023]
Abstract
Tropomyosins are believed to function in part by stabilizing actin filaments. However, accumulating evidence suggests that fundamental differences in function exist between tropomyosin isoforms, which contributes to the formation of functionally distinct filament populations. We investigated the functions of the high-molecular-weight isoform Tm3 and examined the molecular properties of Tm3-containing actin filament populations. Overexpression of the Tm3 isoform specifically induced the formation of filopodia and changes in actin solubility. We observed alterations in actin-binding protein recruitment to filaments, co-incident with changes in expression levels, which can account for this functional outcome. Tm3-associated filaments recruit active actin depolymerizing factor and are bundled into filopodia by fascin, which is both up-regulated and preferentially associated with Tm3-containing filaments in the Tm3 overexpressing cells. This study provides further insight into the isoform-specific roles of different tropomyosin isoforms. We conclude that variation in the tropomyosin isoform composition of microfilaments provides a mechanism to generate functionally distinct filament populations.
Collapse
Affiliation(s)
- Sarah J Creed
- Oncology Research Unit, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | | | | | | | | |
Collapse
|
131
|
Differential Regulation of Unconventional Fission Yeast Myosins via the Actin Track. Curr Biol 2010; 20:1423-31. [DOI: 10.1016/j.cub.2010.07.026] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 07/13/2010] [Accepted: 07/14/2010] [Indexed: 11/23/2022]
|
132
|
New aspects of tropomyosin-regulated neuritogenesis revealed by the deletion of Tm5NM1 and 2. Eur J Cell Biol 2010; 89:489-98. [DOI: 10.1016/j.ejcb.2009.11.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 10/30/2009] [Accepted: 11/09/2009] [Indexed: 01/13/2023] Open
|
133
|
Mesenchymal migration as a therapeutic target in glioblastoma. JOURNAL OF ONCOLOGY 2010; 2010:430142. [PMID: 20652056 PMCID: PMC2905941 DOI: 10.1155/2010/430142] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 04/28/2010] [Indexed: 12/29/2022]
Abstract
Extensive infiltration of the surrounding healthy brain tissue is a cardinal feature of glioblastomas, highly lethal brain tumors. Deep infiltration by the glioblastoma cells renders complete surgical excision difficult and contemporary adjuvant therapies have had little impact on long-term survival. Thus, deep infiltration and resistance to irradiation and chemotherapy remain a major cause of patient mortality. Modern therapies specifically targeted to this unique aspect of glioblastoma cell biology hold significant promise to substantially improve survival rates for glioblastoma patients. In the present paper, we focus on the role of adhesion signaling molecules and the actin cytoskeleton in the mesenchymal mode of motility that characterizes invading glioblastoma cells. We then review current approaches to targeting these elements of the glioblastoma cell migration machinery and discuss other aspects of cell migration that may improve the treatment of infiltrating glioblastoma.
Collapse
|
134
|
Modulation of actin filament dynamics by actin-binding proteins residing in lamellipodia. Eur J Cell Biol 2010; 89:402-13. [DOI: 10.1016/j.ejcb.2009.10.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 09/24/2009] [Accepted: 10/01/2009] [Indexed: 11/19/2022] Open
|
135
|
Bach CTT, Schevzov G, Bryce NS, Gunning PW, O'Neill GM. Tropomyosin isoform modulation of focal adhesion structure and cell migration. Cell Adh Migr 2010; 4:226-34. [PMID: 20305380 DOI: 10.4161/cam.4.2.10888] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Orderly cell migration is essential for embryonic development, efficient wound healing and a functioning immune system and the dysregulation of this process leads to a number of pathologies. The speed and direction of cell migration is critically dependent on the structural organization of focal adhesions in the cell. While it is well established that contractile forces derived from the acto-myosin filaments control the structure and growth of focal adhesions, how this may be modulated to give different outcomes for speed and persistence is not well understood. The tropomyosin family of actin-associating proteins are emerging as important modulators of the contractile nature of associated actin filaments. The multiple non-muscle tropomyosin isoforms are differentially expressed between tissues and across development and are thought to be major regulators of actin filament functional specialization. In the present study we have investigated the effects of two splice variant isoforms from the same alpha-tropomyosin gene, TmBr1 and TmBr3, on focal adhesion structure and parameters of cell migration. These isoforms are normally switched on in neuronal cells during differentiation and we find that exogenous expression of the two isoforms in undifferentiated neuronal cells has discrete effects on cell migration parameters. While both isoforms cause reduced focal adhesion size and cell migration speed, they differentially effect actin filament phenotypes and migration persistence. Our data suggests that differential expression of tropomyosin isoforms may coordinate acto-myosin contractility and focal adhesion structure to modulate cell speed and persistence.
Collapse
Affiliation(s)
- Cuc T T Bach
- Focal Adhesion Biology, Kids Research Institute, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | | | | | | | | |
Collapse
|
136
|
Polymorphisms in the tropomyosin TPM1 short isoform promoter alter gene expression and are associated with increased risk of metabolic syndrome. Am J Hypertens 2010; 23:399-404. [PMID: 20075843 DOI: 10.1038/ajh.2009.278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Inflammation contributes to the development of atherosclerotic lesions in the metabolic syndrome. Tropomyosin isoform expression is altered in this disease and has a role in inflammatory cell plasticity, motility, and insulin sensitivity. We determined the frequency of haplotype carriage of three single-nucleotide polymorphisms (SNPs) in the short isoform promoter of the TPM1 gene in 300 normal controls and 500 metabolic syndrome patients. The effect of each haplotype on tropomyosin gene expression was assessed. METHODS PCR-restriction fragment length polymorphism assays were developed for each polymorphism. Promoter activity was measured using luciferase assays in the insulin-sensitive human embryonic kidney (HEK) 293 and the monocyte THP-1 lines. RESULTS The SNPs -111(T/C), -426(T/C), and -491(A/G), relative to the TPM1 short isoform transcription start site, occurred in haplotypes ATT, GCT, GTT, and GTC, and were in strong linkage disequilibrium. ATT had a frequency of 66%. The presence of -491G, which conforms to a predicted binding site for transcription factor AML-1, caused a decrease in gene expression of 24% in the HEK 293 cells. In the THP-1 cells, haplotypes GTC and GTT gave 24% lower expression, whereas haplotype GCT gave expression at wild-type levels. The carriage of a -491G allele gave an odds ratio of 1.4 (95% CI 1.02-1.8) for the metabolic syndrome (P < 0.03). CONCLUSIONS A polymorphism in the TPM1 short isoform promoter region is predicted to alter transcription factor binding, alters gene expression and is associated with the metabolic syndrome. This could affect inflammatory cells and cytoskeleton-mediated insulin signaling.
Collapse
|
137
|
Olk S, Zoidl G, Dermietzel R. Connexins, cell motility, and the cytoskeleton. ACTA ACUST UNITED AC 2010; 66:1000-16. [PMID: 19544403 DOI: 10.1002/cm.20404] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Connexins (Cx) comprise a family of transmembrane proteins, which form intercellular channels between plasma membranes of two adjoining cells, commonly known as gap junctions. Recent reports revealed that Cx proteins interact with diverse cellular components to form a multiprotein complex, which has been termed "Nexus". Potential interaction partners include proteins such as cytoskeletal proteins, scaffolding proteins, protein kinases and phosphatases. These interactions allow correct subcellular localization of Cxs and functional regulation of gap junction-mediated intercellular communication. Evidence is accruing that Cxs might have channel-independent functions, which potentially include regulation of cell migration, cell polarization and growth control. In the current review, we summarize recent knowledge on Cx interactions with cytoskeletal proteins and highlight some aspects of their role in cellular motility.
Collapse
Affiliation(s)
- Stephan Olk
- Department of Neuroanatomy and Molecular Brain Research, Ruhr-University Bochum, Bochum, Germany
| | | | | |
Collapse
|
138
|
Olk S, Turchinovich A, Grzendowski M, Stühler K, Meyer HE, Zoidl G, Dermietzel R. Proteomic analysis of astroglial connexin43 silencing uncovers a cytoskeletal platform involved in process formation and migration. Glia 2010; 58:494-505. [PMID: 19795503 DOI: 10.1002/glia.20942] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Connexin43 (Cx43) is the most abundant gap junction protein of the brain, where it is predominantly expressed in astrocytes. Recent studies imply a role of Cx43 in the regulation of important cellular processes, including migration, proliferation, and shape formation. These processes are assumed to be reflected by the proteome of the Cx43 expressing cells. To analyze the influence of Cx43 on the astrocytic proteome, we used RNA interference to downregulate the expression of this connexin in cultures of mouse astrocytes. We applied difference gel electrophoresis (DIGE) to compare silenced astrocytes with control cells. The differential proteome analysis revealed 15 significantly regulated proteins (between 1.2- and 1.6-fold), of which six are known to belong to a group of cytoskeletal proteins involved in cortical platform formation. Astrocytes treated with Cx43 small interfering (si)RNA showed an increased expression of the cytoskeletal proteins: actin, tropomyosin, microtubule-associated protein RP/EB1, transgelin, and GFAP, and a decreased expression of cofilin-1. Quantitative immunocytochemistry and Western blotting revealed similar results showing an upregulation of actin, tubulin, tropomyosin, EB1, transgelin and GFAP, and a downregulation of Ser-3-phosphorylated cofilin. Furthermore, Cx43 silencing led to phenotypical changes in cell morphology, migratory activity, and cell adhesion. Our results provide mechanistic clues for an understanding of Cx43 interaction with cellular motor activities such as migration and process formation in astrocytes.
Collapse
Affiliation(s)
- Stephan Olk
- Department of Neuroanatomy and Molecular Brain Research, Ruhr-University Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
139
|
Irimia M, Maeso I, Gunning PW, Garcia-Fernàndez J, Roy SW. Internal and external paralogy in the evolution of tropomyosin genes in metazoans. Mol Biol Evol 2010; 27:1504-17. [PMID: 20147436 DOI: 10.1093/molbev/msq018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nature contains a tremendous diversity of forms both at the organismal and genomic levels. This diversity motivates the twin central questions of molecular evolution: what are the molecular mechanisms of adaptation, and what are the functional consequences of genomic diversity. We report a 22-species comparative analysis of tropomyosin (PPM) genes, which exist in a variety of forms and are implicated in the emergence of a wealth of cellular functions, including the novel muscle functions integral to the functional diversification of bilateral animals. TPM genes encode either or both of long-form [284 amino acid (aa)] and short-form (approximately 248 aa) proteins. Consistent with a role of TPM diversification in the origins and radiation of bilaterians, we find evidence that the muscle-specific long-form protein arose in proximal bilaterian ancestors (the bilaterian 'stem'). Duplication of the 5' end of the gene led to alternative promoters encoding long- and short-form transcripts with distinct functions. This dual-function gene then underwent strikingly parallel evolution in different bilaterian lineages. In each case, recurrent tandem exon duplication and mutually exclusive alternative splicing of the duplicates, with further association between these alternatively spliced exons along the gene, led to long- and short-form-specific exons, allowing for gradual emergence of alternative "internal paralogs" within the same gene. We term these Mutually exclusively Alternatively spliced Tandemly duplicated Exon sets "MATEs". This emergence of internal paralogs in various bilaterians has employed every single TPM exon in at least one lineage and reaches striking levels of divergence with up to 77% of long- and short-form transcripts being transcribed from different genomic regions. Interestingly, in some lineages, these internal alternatively spliced paralogs have subsequently been "externalized" by full gene duplication and reciprocal retention/loss of the two transcript isoforms, a particularly clear case of evolution by subfunctionalization. This parallel evolution of TPM genes in diverse metazoans attests to common selective forces driving divergence of different gene transcripts and represents a striking case of emergence of evolutionary novelty by alternative splicing.
Collapse
Affiliation(s)
- Manuel Irimia
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
140
|
ADF/cofilin: a functional node in cell biology. Trends Cell Biol 2010; 20:187-95. [PMID: 20133134 DOI: 10.1016/j.tcb.2010.01.001] [Citation(s) in RCA: 561] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 12/22/2009] [Accepted: 01/05/2010] [Indexed: 12/12/2022]
Abstract
Recent findings have significantly expanded our understanding of the regulation of actin-depolymerizing factor (ADF)/cofilin proteins and the profound multifaceted impact that these well-established regulators of actin dynamics have on cell biology. In this review we discuss new aspects of previously documented regulation, such as phosphorylation, but also cover novel recently established modes of regulation and functions of ADF (also known as destrin)/cofilin. We now understand that their activity responds to a vast array of inputs far greater than previously appreciated and that these proteins not only feed back to the crucially important dynamics of actin, but also to apoptosis cascades, phospholipid metabolism, and gene expression. We argue that this ability to respond to physiological changes by modulating those same changes makes the ADF/cofilin protein family a homeostatic regulator or 'functional node' in cell biology.
Collapse
|
141
|
Stark BC, Sladewski TE, Pollard LW, Lord M. Tropomyosin and myosin-II cellular levels promote actomyosin ring assembly in fission yeast. Mol Biol Cell 2010; 21:989-1000. [PMID: 20110347 PMCID: PMC2836979 DOI: 10.1091/mbc.e09-10-0852] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A combination of in vivo and in vitro approaches were used to show how tropomyosin and myosin-II contribute to contractile ring assembly in fission yeast. Ring assembly is sensitive to changes in the cellular levels of myosin-II, and tropomyosin works to maximize myosin-II motor function during this process by stabilizing actomyosin interactions. Myosin-II (Myo2p) and tropomyosin are essential for contractile ring formation and cytokinesis in fission yeast. Here we used a combination of in vivo and in vitro approaches to understand how these proteins function at contractile rings. We find that ring assembly is delayed in Myo2p motor and tropomyosin mutants, but occurs prematurely in cells engineered to express two copies of myo2. Thus, the timing of ring assembly responds to changes in Myo2p cellular levels and motor activity, and the emergence of tropomyosin-bound actin filaments. Doubling Myo2p levels suppresses defects in ring assembly associated with a tropomyosin mutant, suggesting a role for tropomyosin in maximizing Myo2p function. Correspondingly, tropomyosin increases Myo2p actin affinity and ATPase activity and promotes Myo2p-driven actin filament gliding in motility assays. Tropomyosin achieves this by favoring the strong actin-bound state of Myo2p. This mode of regulation reflects a role for tropomyosin in specifying and stabilizing actomyosin interactions, which facilitates contractile ring assembly in the fission yeast system.
Collapse
Affiliation(s)
- Benjamin C Stark
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
142
|
Watanabe N. Inside view of cell locomotion through single-molecule: fast F-/G-actin cycle and G-actin regulation of polymer restoration. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:62-83. [PMID: 20075609 PMCID: PMC3417570 DOI: 10.2183/pjab.86.62] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 11/09/2009] [Indexed: 05/28/2023]
Abstract
The actin cytoskeleton drives cell locomotion and tissue remodeling. The invention of live-cell fluorescence single-molecule imaging opened a window for direct viewing of the actin remodeling processes in the cell. Since then, a number of unanticipated molecular functions have been revealed. One is the mechanism of F-actin network breakdown. In lamellipodia, one third of newly polymerized F-actin disassembles within 10 seconds. This fast F-actin turnover is facilitated by the filament severing/disrupting activity involving cofilin and AIP1. Astoundingly fast dissociation kinetics of the barbed end interactors including capping protein suggests that F-actin turnover might proceed through repetitive disruption/reassembly of the filament near the barbed end. The picture of actin polymerization is also being revealed. At the leading edge of the cell, Arp2/3 complex is highly activated in a narrow edge region. In contrast, mDia1 and its related Formin homology proteins display a long-distance directional molecular movement using their processive actin capping ability. Recently, these two independently-developed projects converged into a discovery of the spatiotemporal coupling between mDia1-mediated filament nucleation and actin disassembly. Presumably, the local concentration fluctuation of G-actin regulates the actin nucleation efficiency of specific actin nucleators including mDia1. Pharmacological perturbation and quantitative molecular behavior analysis synergize to reveal hidden molecular linkages in the actin turnover cycle and cell signaling.
Collapse
Affiliation(s)
- Naoki Watanabe
- Department of Pharmacology, Kyoto University Faculty of Medicine, Yoshida Konoe-cho, Sakyo-ku, Kyoto, Japan.
| |
Collapse
|
143
|
Wang CLA, Coluccio LM. New insights into the regulation of the actin cytoskeleton by tropomyosin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 281:91-128. [PMID: 20460184 PMCID: PMC2923581 DOI: 10.1016/s1937-6448(10)81003-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The actin cytoskeleton is regulated by a variety of actin-binding proteins including those constituting the tropomyosin family. Tropomyosins are coiled-coil dimers that bind along the length of actin filaments. In muscles, tropomyosin regulates the interaction of actin-containing thin filaments with myosin-containing thick filaments to allow contraction. In nonmuscle cells where multiple tropomyosin isoforms are expressed, tropomyosins participate in a number of cellular events involving the cytoskeleton. This chapter reviews the current state of the literature regarding tropomyosin structure and function and discusses the evidence that tropomyosins play a role in regulating actin assembly.
Collapse
|
144
|
Alternatively spliced N-terminal exons in tropomyosin isoforms do not act as autonomous targeting signals. J Struct Biol 2009; 170:286-93. [PMID: 20026406 DOI: 10.1016/j.jsb.2009.12.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 12/16/2009] [Accepted: 12/16/2009] [Indexed: 01/14/2023]
Abstract
Tropomyosin (Tm) polymerises head-to-tail to form a continuous polymer located in the major groove of the actin filament. Multiple Tm isoforms are generated by alternative splicing of four genes, and individual isoforms show specific localisation patterns in many cell types, and can have differing effects on the actin cytoskeleton. Fluorescently-tagged Tm isoforms and mutants were expressed in C2C12 cells to investigate the mechanisms of alternative localisation of high molecular weight (HMW) and low molecular weight (LMW) Tms. Fluorescently-tagged Tm constructs show similar localisation to endogenous Tms as observed by antibodies, with the HMW Tm3 relatively diminished at the periphery of cells compared to LMW isoforms Tm5b or Tm5NM1. Tm3 and Tm5b only differ in their N-terminal exons, but these N-terminal exons do not independently direct localisation within the cell, as chimeric mutants Tm3-Tm5NM1 and Tm5b-Tm5NM1 show an increased peripheral localisation similar to Tm5NM1. The lower abundance of Tm3 at the periphery of the cell is not a result of different protein dynamics, as Tm3 and Tm5b show similar recovery after photobleaching. The relative exclusion of Tm3 from the periphery of cells does, however, require interaction with the actin filament, as mutants with truncations at either the N-terminus or the C-terminus are unable to localise to actin stress fibres, and are present in the most peripheral regions of the cell. We conclude that it is the entire Tm molecule which is the unit of sorting, and that the alternatively spliced N-terminal exons do not act as autonomous targeting signals.
Collapse
|
145
|
Kee AJ, Gunning PW, Hardeman EC. Diverse roles of the actin cytoskeleton in striated muscle. J Muscle Res Cell Motil 2009; 30:187-97. [PMID: 19997772 DOI: 10.1007/s10974-009-9193-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 11/24/2009] [Indexed: 12/14/2022]
Abstract
In addition to the highly specialized contractile apparatus, it is becoming increasingly clear that there is an extensive actin cytoskeleton which underpins a wide range of functions in striated muscle. Isoforms of cytoskeletal actin and actin-associated proteins (non-muscle myosins, cytoskeletal tropomyosins, and cytoskeletal alpha-actinins) have been detected in a number of regions of striated muscle: the sub-sarcolemmal costamere, the Z-disc and the T-tubule/sarcoplasmic reticulum membranes. As the only known function of these proteins is through association with actin filaments, their presence in striated muscles indicates that there are spatially and functionally distinct cytoskeletal actin filament systems in these tissues. These filaments are likely to have important roles in mechanical support, ion channel function, myofibrillogenenous and vesicle trafficking.
Collapse
Affiliation(s)
- Anthony J Kee
- Department of Anatomy, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | | |
Collapse
|
146
|
Kubo E, Hasanova N, Tanaka Y, Fatma N, Takamura Y, Singh DP, Akagi Y. Protein expression profiling of lens epithelial cells from Prdx6-depleted mice and their vulnerability to UV radiation exposure. Am J Physiol Cell Physiol 2009; 298:C342-54. [PMID: 19889963 DOI: 10.1152/ajpcell.00336.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Oxidative stress is one of the causative factors in progression and etiology of age-related cataract. Peroxiredoxin 6 (Prdx6), a savior for cells from internal or external environmental stresses, plays a role in cellular signaling by detoxifying reactive oxygen species (ROS) and thereby controlling gene regulation. Using targeted inactivation of the Prdx6 gene, we show that Prdx6-deficient lens epithelial cells (LECs) are more vulnerable to UV-triggered cell death, a major cause of skin disorders including cataractogenesis, and these cells display abnormal protein profiles. PRDX6-depleted LECs showed phenotypic changes and formed lentoid body, a characteristic of terminal cell differentiation and epithelial-mesenchymal transition. Prdx6(-/-) LECs exposed to UV-B showed higher ROS expression and were prone to apoptosis compared with wild-type LECs, underscoring a protective role for Prdx6. Comparative proteomic analysis using fluorescence-based difference gel electrophoresis along with mass spectrometry and database searching revealed a total of 13 proteins that were differentially expressed in Prdx6(-/-) cells. Six proteins were upregulated, whereas expression of seven proteins was decreased compared with Prdx6(+/+) LECs. Among the cytoskeleton-associated proteins that were highly expressed in Prdx6-deficient LECs was tropomyosin (Tm)2beta. Protein blot and real-time PCR validated dramatic increase of Tm2beta and Tm1alpha expression in these cells. Importantly, Prdx6(+/+) LECs showed a similar pattern of Tm2beta protein expression after transforming growth factor (TGF)-beta or H(2)O(2) treatment. An extrinsic supply of PRDX6 could restore Tm2beta expression, demonstrating that PRDX6 may attenuate adverse signaling in cells and thereby maintain cellular homeostasis. Exploring redox-proteomics (Prdx6(-/-)) and characterization and identification of abnormally expressed proteins and their attenuation by PRDX6 delivery should provide a basis for development of novel therapeutic interventions to postpone ROS-mediated abnormal signaling deleterious to cells or tissues.
Collapse
Affiliation(s)
- Eri Kubo
- Department of Ophthalmology, Faculty of Medical Science, University of Fukui, 23-3 Shimoaiduki, Matsuoka, Eiheiji, Yoshida-gun, Fukui 910-1193, Japan.
| | | | | | | | | | | | | |
Collapse
|
147
|
Kee AJ, Gunning PW, Hardeman EC. A cytoskeletal tropomyosin can compromise the structural integrity of skeletal muscle. ACTA ACUST UNITED AC 2009; 66:710-20. [PMID: 19530183 DOI: 10.1002/cm.20400] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We have identified a number of extra-sarcomeric actin filaments defined by cytoskeletal tropomyosin (Tm) isoforms. Expression of a cytoskeletal Tm (Tm3) not normally present in skeletal muscle in a transgenic mouse resulted in muscular dystrophy. In the present report we show that muscle pathology in this mouse is late onset (between 2 and 6 months of age) and is predominately in the back and paraspinal muscles. In the Tm3 mice, Evans blue dye uptake in muscle and serum levels of creatine kinase were markedly increased following downhill exercise, and the force drop following a series of lengthening contractions in isolated muscles (extensor digitorum longus) was also significantly increased in these mice. These results demonstrate that expression of an inappropriate Tm in skeletal muscle results in increased susceptibility to contraction-induced damage. The extra-sarcomeric actin cytoskeleton therefore may have an important role in protecting the muscle from contractile stress.
Collapse
Affiliation(s)
- Anthony J Kee
- Department of Anatomy, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | | | | |
Collapse
|
148
|
O'Neill GM. The coordination between actin filaments and adhesion in mesenchymal migration. Cell Adh Migr 2009; 3:355-7. [PMID: 19684475 DOI: 10.4161/cam.3.4.9468] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal cell motility is characterized by a polarized distribution of actin filaments, with a network of short branched actin filaments at the leading edge, and polymers of actin filaments arranged into distinct classes of actin stress fibers behind the leading edge. Importantly, the distinct actin filaments are characteristically associated with discrete adhesion structures and both the adhesions and the actin filaments are co-ordinately regulated during cell migration. While it has long been known that these macromolecular structures are intimately linked in cells, precisely how they are co-ordinately regulated is presently unknown. Live imaging data now suggests that the focal adhesions may act as sites of actin polymerization resulting in the generation of tension-bearing actin bundles of actin filaments (stress fibers). Moreover, a picture is emerging to suggest that the tropomyosin family of proteins that can determine actin filament dynamics may also play a key role in determining the transition between adhesion states. Molecules such as the tropomyosins are therefore tantalizing candidates to orchestrate the coordination of actin and adhesion dynamics during mesenchymal cell migration.
Collapse
Affiliation(s)
- Geraldine M O'Neill
- Focal Adhesion Biology Group, Oncology Research Unit, The Kids Research Institute at the Children's Hospital at Westmead, Westmead, NSW, Australia.
| |
Collapse
|
149
|
Gunning P. Introduction and historical perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 644:1-5. [PMID: 19209809 DOI: 10.1007/978-0-387-85766-4_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Tropomyosin is a coiled coil dimer which forms a polymer along the major groove of the majority of actin filaments. It is therefore one of the two primary components of the actin filament. Our understanding of the biological function of tropomyosin has been driven almost entirely by its role in striated muscle. This reflects both its original discovery as part of the thin filament in skeletal muscle and its pivotal role in regulating muscle contraction. In contrast, its role in the function of the cytoskeleton of all cells has been poorly understood due, at least in part, to the technical challenge of deciphering the function of a large number of isoforms. This book has brought together many of the leading researchers who have defined the function of tropomyosin in both normal and pathological conditions. Each author brings their own perspective in a series of stand alone reviews of the areas of tropomyosin research they have played a major role in defining.
Collapse
Affiliation(s)
- Peter Gunning
- Oncology Research Unit, Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
150
|
Tropomyosin isoform expression regulates the transition of adhesions to determine cell speed and direction. Mol Cell Biol 2009; 29:1506-14. [PMID: 19124607 DOI: 10.1128/mcb.00857-08] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The balance of transition between distinct adhesion types contributes to the regulation of mesenchymal cell migration, and the characteristic association of adhesions with actin filaments led us to question the role of actin filament-associating proteins in the transition between adhesive states. Tropomyosin isoform association with actin filaments imparts distinct filament structures, and we have thus investigated the role for tropomyosins in determining the formation of distinct adhesion structures. Using combinations of overexpression, knockdown, and knockout approaches, we establish that Tm5NM1 preferentially stabilizes focal adhesions and drives the transition to fibrillar adhesions via stabilization of actin filaments. Moreover, our data suggest that the expression of Tm5NM1 is a critical determinant of paxillin phosphorylation, a signaling event that is necessary for focal adhesion disassembly. Thus, we propose that Tm5NM1 can regulate the feedback loop between focal adhesion disassembly and focal complex formation at the leading edge that is required for productive and directed cell movement.
Collapse
|