101
|
The conformational ensemble of the disordered and aggregation-protective 182–291 region of ataxin-3. Biochim Biophys Acta Gen Subj 2013; 1830:5236-47. [DOI: 10.1016/j.bbagen.2013.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/10/2013] [Accepted: 07/10/2013] [Indexed: 12/23/2022]
|
102
|
Popov P, Ritchie DW, Grudinin S. DockTrina: docking triangular protein trimers. Proteins 2013; 82:34-44. [PMID: 23775700 DOI: 10.1002/prot.24344] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 05/30/2013] [Accepted: 05/31/2013] [Indexed: 11/06/2022]
Abstract
In spite of the abundance of oligomeric proteins within a cell, the structural characterization of protein-protein interactions is still a challenging task. In particular, many of these interactions involve heteromeric complexes, which are relatively difficult to determine experimentally. Hence there is growing interest in using computational techniques to model such complexes. However, assembling large heteromeric complexes computationally is a highly combinatorial problem. Nonetheless the problem can be simplified greatly by considering interactions between protein trimers. After dimers and monomers, triangular trimers (i.e. trimers with pair-wise contacts between all three pairs of proteins) are the most frequently observed quaternary structural motifs according to the three-dimensional (3D) complex database. This article presents DockTrina, a novel protein docking method for modeling the 3D structures of nonsymmetrical triangular trimers. The method takes as input pair-wise contact predictions from a rigid body docking program. It then scans and scores all possible combinations of pairs of monomers using a very fast root mean square deviation test. Finally, it ranks the predictions using a scoring function which combines triples of pair-wise contact terms and a geometric clash penalty term. The overall approach takes less than 2 min per complex on a modern desktop computer. The method is tested and validated using a benchmark set of 220 bound and seven unbound protein trimer structures. DockTrina will be made available at http://nano-d.inrialpes.fr/software/docktrina.
Collapse
Affiliation(s)
- Petr Popov
- NANO-D, INRIA Grenoble-Rhone-Alpes, 38334 Saint Ismier Cedex, Montbonnot, France; Laboratoire Jean Kuntzmann, B.P. 53, 38041 Grenoble Cedex 9, France
| | | | | |
Collapse
|
103
|
Raffaello A, De Stefani D, Sabbadin D, Teardo E, Merli G, Picard A, Checchetto V, Moro S, Szabò I, Rizzuto R. The mitochondrial calcium uniporter is a multimer that can include a dominant-negative pore-forming subunit. EMBO J 2013; 32:2362-76. [PMID: 23900286 DOI: 10.1038/emboj.2013.157] [Citation(s) in RCA: 404] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 06/09/2013] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial calcium uniporter (MCU) channel is responsible for Ruthenium Red-sensitive mitochondrial calcium uptake. Here, we demonstrate MCU oligomerization by immunoprecipitation and Förster resonance energy transfer (FRET) and characterize a novel protein (MCUb) with two predicted transmembrane domains, 50% sequence similarity and a different expression profile from MCU. Based on computational modelling, MCUb includes critical amino-acid substitutions in the pore region and indeed MCUb does not form a calcium-permeable channel in planar lipid bilayers. In HeLa cells, MCUb is inserted into the oligomer and exerts a dominant-negative effect, reducing the [Ca(2+)]mt increases evoked by agonist stimulation. Accordingly, in vitro co-expression of MCUb with MCU drastically reduces the probability of observing channel activity in planar lipid bilayer experiments. These data unveil the structural complexity of MCU and demonstrate a novel regulatory mechanism, based on the inclusion of dominant-negative subunits in a multimeric channel, that underlies the fine control of the physiologically and pathologically relevant process of mitochondrial calcium homeostasis.
Collapse
Affiliation(s)
- Anna Raffaello
- Department of Biomedical Sciences, University of Padua and CNR Neuroscience Institute, Padua, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Sreejith R, Gulati S, Gupta S. Interfacial interactions involved in the biological assembly of Chandipura virus nucleocapsid protein. Virus Genes 2013; 46:535-7. [PMID: 23355071 DOI: 10.1007/s11262-013-0883-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 01/15/2013] [Indexed: 10/27/2022]
Abstract
The biological assembly of Chandipura virus nucleocapsid (N) protein has been modeled and the amino acid residues involved in specific intermolecular interactions among N monomers during oligomerisation have been predicted.
Collapse
Affiliation(s)
- R Sreejith
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida 201 307, UP, India
| | | | | |
Collapse
|
105
|
Shih ESC, Hwang MJ. A critical assessment of information-guided protein-protein docking predictions. Mol Cell Proteomics 2012; 12:679-86. [PMID: 23242549 DOI: 10.1074/mcp.m112.020198] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The structures of protein complexes are increasingly predicted via protein-protein docking (PPD) using ambiguous interaction data to help guide the docking. These data often are incomplete and contain errors and therefore could lead to incorrect docking predictions. In this study, we performed a series of PPD simulations to examine the effects of incompletely and incorrectly assigned interface residues on the success rate of PPD predictions. The results for a widely used PPD benchmark dataset obtained using a new interface information-driven PPD (IPPD) method developed in this work showed that the success rate for an acceptable top-ranked model varied, depending on the information content used, from as high as 95% when contact relationships (though not contact distances) were known for all residues to 78% when only the interface/non-interface state of the residues was known. However, the success rates decreased rapidly to ∼40% when the interface/non-interface state of 20% of the residues was assigned incorrectly, and to less than 5% for a 40% incorrect assignment. Comparisons with results obtained by re-ranking a global search and with those reported for other data-guided PPD methods showed that, in general, IPPD performed better than re-ranking when the information used was more complete and more accurate, but worse when it was not, and that when using bioinformatics-predicted information on interface residues, IPPD and other data-guided PPD methods performed poorly, at a level similar to simulations with a 40% incorrect assignment. These results provide guidelines for using information about interface residues to improve PPD predictions and reveal a bottleneck for such improvement imposed by the low accuracy of current bioinformatic interface residue predictions.
Collapse
Affiliation(s)
- Edward S C Shih
- ‡Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan
| | | |
Collapse
|
106
|
Kubrycht J, Sigler K, Souček P. Virtual interactomics of proteins from biochemical standpoint. Mol Biol Int 2012; 2012:976385. [PMID: 22928109 PMCID: PMC3423939 DOI: 10.1155/2012/976385] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/18/2012] [Accepted: 05/18/2012] [Indexed: 12/24/2022] Open
Abstract
Virtual interactomics represents a rapidly developing scientific area on the boundary line of bioinformatics and interactomics. Protein-related virtual interactomics then comprises instrumental tools for prediction, simulation, and networking of the majority of interactions important for structural and individual reproduction, differentiation, recognition, signaling, regulation, and metabolic pathways of cells and organisms. Here, we describe the main areas of virtual protein interactomics, that is, structurally based comparative analysis and prediction of functionally important interacting sites, mimotope-assisted and combined epitope prediction, molecular (protein) docking studies, and investigation of protein interaction networks. Detailed information about some interesting methodological approaches and online accessible programs or databases is displayed in our tables. Considerable part of the text deals with the searches for common conserved or functionally convergent protein regions and subgraphs of conserved interaction networks, new outstanding trends and clinically interesting results. In agreement with the presented data and relationships, virtual interactomic tools improve our scientific knowledge, help us to formulate working hypotheses, and they frequently also mediate variously important in silico simulations.
Collapse
Affiliation(s)
- Jaroslav Kubrycht
- Department of Physiology, Second Medical School, Charles University, 150 00 Prague, Czech Republic
| | - Karel Sigler
- Laboratory of Cell Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic
| | - Pavel Souček
- Toxicogenomics Unit, National Institute of Public Health, 100 42 Prague, Czech Republic
| |
Collapse
|
107
|
Venkatraman V, Ritchie DW. Predicting Multi-Component Protein Assemblies Using an Ant Colony Approach. INTERNATIONAL JOURNAL OF SWARM INTELLIGENCE RESEARCH 2012. [DOI: 10.4018/jsir.2012070102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many biological processes are governed by large assemblies of protein molecules. However, it is often very difficult to determine the three-dimensional structures of these assemblies using experimental biophysical techniques. Hence there is a need to develop computational approaches to fill this gap. This article presents an ant colony optimization approach to predict the structure of large multi-component protein complexes. Starting from pair-wise docking predictions, a multi-graph consisting of vertices representing the component proteins and edges representing candidate interactions is constructed. This allows the assembly problem to be expressed in terms of searching for a minimum weight spanning tree. However, because the problem remains highly combinatorial, the search space cannot be enumerated exhaustively and therefore heuristic optimisation techniques must be used. The utility of the ant colony based approach is demonstrated by re-assembling known protein complexes from the Protein Data Bank. The algorithm is able to identify near-native solutions for five of the six cases tested. This demonstrates that the ant colony approach provides a useful way to deal with the highly combinatorial multi-component protein assembly problem.
Collapse
|
108
|
Tung CS, McMahon BH. A structural model of the E. coli PhoB dimer in the transcription initiation complex. BMC STRUCTURAL BIOLOGY 2012; 12:3. [PMID: 22433509 PMCID: PMC3348028 DOI: 10.1186/1472-6807-12-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 03/20/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND There exist > 78,000 proteins and/or nucleic acids structures that were determined experimentally. Only a small portion of these structures corresponds to those of protein complexes. While homology modeling is able to exploit knowledge-based potentials of side-chain rotomers and backbone motifs to infer structures for new proteins, no such general method exists to extend our understanding of protein interaction motifs to novel protein complexes. RESULTS We use a Motif Binding Geometries (MBG) approach, to infer the structure of a protein complex from the database of complexes of homologous proteins taken from other contexts (such as the helix-turn-helix motif binding double stranded DNA), and demonstrate its utility on one of the more important regulatory complexes in biology, that of the RNA polymerase initiating transcription under conditions of phosphate starvation. The modeled PhoB/RNAP/σ-factor/DNA complex is stereo-chemically reasonable, has sufficient interfacial Solvent Excluded Surface Areas (SESAs) to provide adequate binding strength, is physically meaningful for transcription regulation, and is consistent with a variety of known experimental constraints. CONCLUSIONS Based on a straightforward and easy to comprehend concept, "proteins and protein domains that fold similarly could interact similarly", a structural model of the PhoB dimer in the transcription initiation complex has been developed. This approach could be extended to enable structural modeling and prediction of other bio-molecular complexes. Just as models of individual proteins provide insight into molecular recognition, catalytic mechanism, and substrate specificity, models of protein complexes will provide understanding into the combinatorial rules of cellular regulation and signaling.
Collapse
Affiliation(s)
- Chang-Shung Tung
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | |
Collapse
|
109
|
TSUKAMOTO KOKI, YOSHIKAWA TATSUYA, HOURAI YUICHIRO, FUKUI KAZUHIKO, AKIYAMA YUTAKA. DEVELOPMENT OF AN AFFINITY EVALUATION AND PREDICTION SYSTEM BY USING THE SHAPE COMPLEMENTARITY CHARACTERISTIC BETWEEN PROTEINS. J Bioinform Comput Biol 2011; 6:1133-56. [DOI: 10.1142/s0219720008003904] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 03/25/2008] [Accepted: 04/28/2008] [Indexed: 11/18/2022]
Abstract
A system was developed to evaluate and predict the interaction between protein pairs by using the widely used shape complementarity search method as the algorithm for docking simulations between the proteins. This system, which we call the affinity evaluation and prediction (AEP) system, was used to evaluate the interaction between 20 protein pairs. The system first executes a "round robin" shape complementarity search of the target protein group, and evaluates the interaction of the complex structures obtained by shape complementarity search. These complex structures are selected by using a statistical procedure that we developed called "grouping". At a low prevalence of 5.0%, our AEP system predicted protein–protein interaction with 65.0% recall, 15.1% precision, 80.0% accuracy, and had an area under the curve (AUC) of 0.74. By optimizing the grouping process, our AEP system successfully predicted 13 protein pairs (among 20 pairs) that were biologically significant combinations. Our ultimate goal is to construct an affinity database that will provide crucial information obtained using our AEP system to cell biologists and drug designers.
Collapse
Affiliation(s)
- KOKI TSUKAMOTO
- Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-42 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - TATSUYA YOSHIKAWA
- Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-42 Aomi, Koto-ku, Tokyo 135-0064, Japan
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - YUICHIRO HOURAI
- Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-42 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - KAZUHIKO FUKUI
- Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-42 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - YUTAKA AKIYAMA
- Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-42 Aomi, Koto-ku, Tokyo 135-0064, Japan
| |
Collapse
|
110
|
Melquiond AS, Karaca E, Kastritis PL, Bonvin AM. Next challenges in protein-protein docking: from proteome to interactome and beyond. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2011. [DOI: 10.1002/wcms.91] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
111
|
Wilson MA, Wei C, Bjelkmar P, Wallace BA, Pohorille A. Molecular dynamics simulation of the antiamoebin ion channel: linking structure and conductance. Biophys J 2011; 100:2394-402. [PMID: 21575573 DOI: 10.1016/j.bpj.2011.03.054] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 03/21/2011] [Accepted: 03/24/2011] [Indexed: 11/19/2022] Open
Abstract
Molecular-dynamics simulations were carried out to ascertain which of the potential multimeric forms of the transmembrane peptaibol channel, antiamoebin, is consistent with its measured conductance. Estimates of the conductance obtained through counting ions that cross the channel and by solving the Nernst-Planck equation yield consistent results, indicating that the motion of ions inside the channel can be satisfactorily described as diffusive. The calculated conductance of octameric channels is markedly higher than the conductance measured in single channel recordings, whereas the tetramer appears to be nonconducting. The conductance of the hexamer was estimated to be 115 ± 34 pS and 74 ± 20 pS, at 150 mV and 75 mV, respectively, in satisfactory agreement with the value of 90 pS measured at 75 mV. On this basis, we propose that the antiamoebin channel consists of six monomers. Its pore is large enough to accommodate K⁺ and Cl⁻ with their first solvation shells intact. The free energy barrier encountered by K⁺ is only 2.2 kcal/mol whereas Cl⁻ encounters a substantially higher barrier of nearly 5 kcal/mol. This difference makes the channel selective for cations. Ion crossing events are shown to be uncorrelated and follow Poisson statistics.
Collapse
Affiliation(s)
- Michael A Wilson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, USA
| | | | | | | | | |
Collapse
|
112
|
Mashiach-Farkash E, Nussinov R, Wolfson HJ. SymmRef: a flexible refinement method for symmetric multimers. Proteins 2011; 79:2607-23. [PMID: 21721046 PMCID: PMC3155011 DOI: 10.1002/prot.23082] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 05/02/2011] [Accepted: 05/04/2011] [Indexed: 11/11/2022]
Abstract
Symmetric protein complexes are abundant in the living cell. Predicting their atomic structure can shed light on the mechanism of many important biological processes. Symmetric docking methods aim to predict the structure of these complexes given the unbound structure of a single monomer, or its model. Symmetry constraints reduce the search-space of these methods and make the prediction easier compared to asymmetric protein-protein docking. However, the challenge of modeling the conformational changes that the monomer might undergo is a major obstacle. In this article, we present SymmRef, a novel method for refinement and reranking of symmetric docking solutions. The method models backbone and side-chain movements and optimizes the rigid-body orientations of the monomers. The backbone movements are modeled by normal modes minimization and the conformations of the side-chains are modeled by selecting optimal rotamers. Since solved structures of symmetric multimers show asymmetric side-chain conformations, we do not use symmetry constraints in the side-chain optimization procedure. The refined models are re-ranked according to an energy score. We tested the method on a benchmark of unbound docking challenges. The results show that the method significantly improves the accuracy and the ranking of symmetric rigid docking solutions. SymmRef is available for download at http:// bioinfo3d.cs.tau.ac.il/SymmRef/download.html.
Collapse
Affiliation(s)
- Efrat Mashiach-Farkash
- Blavatnik School of Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ruth Nussinov
- Basic Research Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, NCI - Frederick, Frederick, MD 21702, USA
- Department of Human Genetics and Molecular Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Haim J. Wolfson
- Blavatnik School of Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
113
|
A model of BmK CT in inhibiting glioma cell migration via matrix metalloproteinase-2 from experimental and molecular dynamics simulation study. Biotechnol Lett 2011; 33:1309-17. [DOI: 10.1007/s10529-011-0587-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 03/04/2011] [Indexed: 10/18/2022]
|
114
|
Demerdash ONA, Buyan A, Mitchell JC. ReplicOpter: a replicate optimizer for flexible docking. Proteins 2011; 78:3156-65. [PMID: 20715288 DOI: 10.1002/prot.22811] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We present a computationally efficient method for flexible refinement of docking predictions that reflects observed motions within a protein's structural class. Using structural homologs, we derive deformation models that capture likely motions. The models or "replicates" typically align along a rigid core, with a handful of flexible loops, linkers and tails. A few replicates can generate a much larger number of conformers, by exchanging each flexible region independently of the others. In this way, 10 replicates of a protein having 6 flexible regions can be used to generate a million conformations of a molecule. While this has obvious advantages in terms of sampling, the cost of assessing energies at every conformer is prohibitive, particularly when both molecules are flexible. Our approach addresses this combinatorial explosion, using key assumptions to compress the sampling by many orders of magnitude. ReplicOpter can perform hierarchical clustering from a list of rigid docking predictions and find nearby structures to any promising cluster representatives. These predicted complexes can then be refined and rescored. ReplicOpter's scoring function includes a Lennard-Jones potential softened using the Anderson-Chandler-Weeks decomposition, a desolvation term derived from the Atomic Contact Energy function, Coulombic electrostatics, hydrogen bonding, and terms to model pi-pi and pi-cation interactions. ReplicOpter has performed well on several recent CAPRI systems. We are presently benchmarking ReplicOpter on the complete docking benchmark set to fully establish its utility in refining rigid docking predictions and identifying near-native solutions.
Collapse
|
115
|
Lasker K, Sali A, Wolfson HJ. Determining macromolecular assembly structures by molecular docking and fitting into an electron density map. Proteins 2011; 78:3205-11. [PMID: 20827723 DOI: 10.1002/prot.22845] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Structural models of macromolecular assemblies are instrumental for gaining a mechanistic understanding of cellular processes. Determining these structures is a major challenge for experimental techniques, such as X-ray crystallography, NMR spectroscopy and electron microscopy (EM). Thus, computational modeling techniques, including molecular docking, are required. The development of most molecular docking methods has so far been focused on modeling of binary complexes. We have recently introduced the MultiFit method for modeling the structure of a multisubunit complex by simultaneously optimizing the fit of the model into an EM density map of the entire complex and the shape complementarity between interacting subunits. Here, we report algorithmic advances of the MultiFit method that result in an efficient and accurate assembly of the input subunits into their density map. The successful predictions and the increasing number of complexes being characterized by EM suggests that the CAPRI challenge could be extended to include docking-based modeling of macromolecular assemblies guided by EM.
Collapse
Affiliation(s)
- Keren Lasker
- Raymond and Beverly Sackler Faculty of Exact Sciences, Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
116
|
Abstract
In CAPRI rounds 13-19, we submitted models that are of acceptable or higher quality for 6 of the total of 13 targets. This success builds on our record in previous CAPRI rounds. The docking problem can be divided into two steps. In the first, translational/rotational and conformational space is searched to generate a pool of docked poses; the success of this search step is measured by whether near-native poses are included in the pool. In the second step, the pool is selected for near-native poses. In our previous assessment of CAPRI results, we suggested that the search problem is largely solved; a remaining problem is to select near-native poses. Our work in these new rounds of CAPRI was guided by this assessment. To solve the selection problem, we used an assortment of criteria on the interfaces of candidate poses. In one extreme, represented by T29, with very little known interface information, our criterion for top models was based on interface prediction. Poses in which the predicted interface residues occurred in interfaces were selected. Our model 1 for T29 was of medium quality. In the other extreme, represented by T40, with reliably known interface information, our selection was solely based on such information. Nine of the ten models submitted for T40 were of high (3 models), medium (4 models), and acceptable (2 models) quality. Our strategy of mixing predicted and known interface information appears to be widely applicable for the selection of near-native poses.
Collapse
Affiliation(s)
- Sanbo Qin
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, USA
| | | |
Collapse
|
117
|
Stein A, Mosca R, Aloy P. Three-dimensional modeling of protein interactions and complexes is going 'omics. Curr Opin Struct Biol 2011; 21:200-8. [PMID: 21320770 DOI: 10.1016/j.sbi.2011.01.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/11/2011] [Accepted: 01/13/2011] [Indexed: 10/18/2022]
Abstract
High-throughput interaction discovery initiatives have revealed the existence of hundreds of multiprotein complexes whose functions are regulated through thousands of protein-protein interactions (PPIs). However, the structural details of these interactions, often necessary to understand their function, are only available for a tiny fraction, and the experimental difficulties surrounding complex structure determination make computational modeling techniques paramount. In this manuscript, we critically review some of the most recent developments in the field of structural bioinformatics applied to the modeling of protein interactions and complexes, from large macromolecular machines to domain-domain and peptide-mediated interactions. In particular, we place a special emphasis on those methods that can be applied in a proteome-wide manner, and discuss how they will help in the ultimate objective of building 3D interactome networks.
Collapse
Affiliation(s)
- Amelie Stein
- Institute for Research in Biomedicine (IRB Barcelona), Joint IRB-BSC Program in Computational Biology, c/Baldiri i Reixac 10-12, 08028 Barcelona, Spain
| | | | | |
Collapse
|
118
|
Hwang H, Vreven T, Pierce BG, Hung JH, Weng Z. Performance of ZDOCK and ZRANK in CAPRI rounds 13-19. Proteins 2010; 78:3104-10. [PMID: 20936681 PMCID: PMC3936321 DOI: 10.1002/prot.22764] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We report the performance of the ZDOCK and ZRANK algorithms in CAPRI rounds 13-19 and introduce a novel measure atom contact frequency (ACF). To compute ACF, we identify the residues that most often make contact with the binding partner in the complete set of ZDOCK predictions for each target. We used ACF to predict the interface of the proteins, which, in combination with the biological data available in the literature, is a valuable addition to our docking pipeline. Furthermore, we incorporated a straightforward and efficient clustering algorithm with two purposes: (1) to determine clusters of similar docking poses (corresponding to energy funnels) and (2) to remove redundancies from the final set of predictions. With these new developments, we achieved at least one acceptable prediction for targets 29 and 36, at least one medium-quality prediction for targets 41 and 42, and at least one high-quality prediction for targets 37 and 40; thus, we succeeded for six out of a total of 12 targets.
Collapse
Affiliation(s)
- Howook Hwang
- Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
119
|
Han SJ, Hu J, Pierce B, Weng Z, Renne R. Mutational analysis of the latency-associated nuclear antigen DNA-binding domain of Kaposi's sarcoma-associated herpesvirus reveals structural conservation among gammaherpesvirus origin-binding proteins. J Gen Virol 2010; 91:2203-15. [PMID: 20484563 PMCID: PMC3066550 DOI: 10.1099/vir.0.020958-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The latency-associated nuclear antigen (LANA) of Kaposi's sarcoma-associated herpesvirus functions as an origin-binding protein (OBP) and transcriptional regulator. LANA binds the terminal repeats via the C-terminal DNA-binding domain (DBD) to support latent DNA replication. To date, the structure of LANA has not been solved. Sequence alignments among OBPs of gammaherpesviruses have revealed that the C terminus of LANA is structurally related to EBNA1, the OBP of Epstein-Barr virus. Based on secondary structure predictions for LANA(DBD) and published structures of EBNA1(DBD), this study used bioinformatics tools to model a putative structure for LANA(DBD) bound to DNA. To validate the predicted model, 38 mutants targeting the most conserved motifs, namely three alpha-helices and a conserved proline loop, were constructed and functionally tested. In agreement with data for EBNA1, residues in helices 1 and 2 mainly contributed to sequence-specific DNA binding and replication activity, whilst mutations in helix 3 affected replication activity and multimer formation. Additionally, several mutants were isolated with discordant phenotypes, which may aid further studies into LANA function. In summary, these data suggest that the secondary and tertiary structures of LANA and EBNA1 DBDs are conserved and are critical for (i) sequence-specific DNA binding, (ii) multimer formation, (iii) LANA-dependent transcriptional repression, and (iv) DNA replication.
Collapse
Affiliation(s)
- Soo-Jin Han
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610-3633, USA
| | | | | | | | | |
Collapse
|
120
|
Karaca E, Melquiond ASJ, de Vries SJ, Kastritis PL, Bonvin AMJJ. Building macromolecular assemblies by information-driven docking: introducing the HADDOCK multibody docking server. Mol Cell Proteomics 2010; 9:1784-94. [PMID: 20305088 PMCID: PMC2938057 DOI: 10.1074/mcp.m000051-mcp201] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Over the last years, large scale proteomics studies have generated a wealth of information of biomolecular complexes. Adding the structural dimension to the resulting interactomes represents a major challenge that classical structural experimental methods alone will have difficulties to confront. To meet this challenge, complementary modeling techniques such as docking are thus needed. Among the current docking methods, HADDOCK (High Ambiguity-Driven DOCKing) distinguishes itself from others by the use of experimental and/or bioinformatics data to drive the modeling process and has shown a strong performance in the critical assessment of prediction of interactions (CAPRI), a blind experiment for the prediction of interactions. Although most docking programs are limited to binary complexes, HADDOCK can deal with multiple molecules (up to six), a capability that will be required to build large macromolecular assemblies. We present here a novel web interface of HADDOCK that allows the user to dock up to six biomolecules simultaneously. This interface allows the inclusion of a large variety of both experimental and/or bioinformatics data and supports several types of cyclic and dihedral symmetries in the docking of multibody assemblies. The server was tested on a benchmark of six cases, containing five symmetric homo-oligomeric protein complexes and one symmetric protein-DNA complex. Our results reveal that, in the presence of either bioinformatics and/or experimental data, HADDOCK shows an excellent performance: in all cases, HADDOCK was able to generate good to high quality solutions and ranked them at the top, demonstrating its ability to model symmetric multicomponent assemblies. Docking methods can thus play an important role in adding the structural dimension to interactomes. However, although the current docking methodologies were successful for a vast range of cases, considering the variety and complexity of macromolecular assemblies, inclusion of some kind of experimental information (e.g. from mass spectrometry, nuclear magnetic resonance, cryoelectron microscopy, etc.) will remain highly desirable to obtain reliable results.
Collapse
Affiliation(s)
- Ezgi Karaca
- Bijvoet Center for Biomolecular Research, Science Faculty, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
121
|
Abstract
The quaternary structure (QS) of a protein is determined by measuring its molecular weight in solution. The data have to be extracted from the literature, and they may be missing even for proteins that have a crystal structure reported in the Protein Data Bank (PDB). The PDB and other databases derived from it report QS information that either was obtained from the depositors or is based on an analysis of the contacts between polypeptide chains in the crystal, and this frequently differs from the QS determined in solution.The QS of a protein can be predicted from its sequence using either homology or threading methods. However, a majority of the proteins with less than 30% sequence identity have different QSs. A model of the QS can also be derived by docking the subunits when their 3D structure is independently known, but the model is likely to be incorrect if large conformation changes take place when the oligomer assembles.
Collapse
Affiliation(s)
- Anne Poupon
- Yeast Structural Genomics, IBBMC UMR 8619 CNRS, Université Paris-Sud, Orsay, France
| | | |
Collapse
|
122
|
Tsukamoto K, Yoshikawa T, Yokota K, Hourai Y, Fukui K. The development of an affinity evaluation and prediction system by using protein-protein docking simulations and parameter tuning. Adv Appl Bioinform Chem 2009; 2:1-15. [PMID: 21918611 PMCID: PMC3169950 DOI: 10.2147/aabc.s3646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A system was developed to evaluate and predict the interaction between protein pairs by using the widely used shape complementarity search method as the algorithm for docking simulations between the proteins. We used this system, which we call the affinity evaluation and prediction (AEP) system, to evaluate the interaction between 20 protein pairs. The system first executes a “round robin” shape complementarity search of the target protein group, and evaluates the interaction between the complex structures obtained by the search. These complex structures are selected by using a statistical procedure that we developed called ‘grouping’. At a prevalence of 5.0%, our AEP system predicted protein–protein interactions with a 50.0% recall, 55.6% precision, 95.5% accuracy, and an F-measure of 0.526. By optimizing the grouping process, our AEP system successfully predicted 10 protein pairs (among 20 pairs) that were biologically relevant combinations. Our ultimate goal is to construct an affinity database that will provide cell biologists and drug designers with crucial information obtained using our AEP system.
Collapse
Affiliation(s)
- Koki Tsukamoto
- Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIS T), Koto-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
123
|
Abstract
AbstractProtein–protein recognition plays an essential role in structure and function. Specific non-covalent interactions stabilize the structure of macromolecular assemblies, exemplified in this review by oligomeric proteins and the capsids of icosahedral viruses. They also allow proteins to form complexes that have a very wide range of stability and lifetimes and are involved in all cellular processes. We present some of the structure-based computational methods that have been developed to characterize the quaternary structure of oligomeric proteins and other molecular assemblies and analyze the properties of the interfaces between the subunits. We compare the size, the chemical and amino acid compositions and the atomic packing of the subunit interfaces of protein–protein complexes, oligomeric proteins, viral capsids and protein–nucleic acid complexes. These biologically significant interfaces are generally close-packed, whereas the non-specific interfaces between molecules in protein crystals are loosely packed, an observation that gives a structural basis to specific recognition. A distinction is made within each interface between a core that contains buried atoms and a solvent accessible rim. The core and the rim differ in their amino acid composition and their conservation in evolution, and the distinction helps correlating the structural data with the results of site-directed mutagenesis and in vitro studies of self-assembly.
Collapse
|
124
|
Komazin-Meredith G, Petrella RJ, Santos WL, Filman DJ, Hogle JM, Verdine GL, Karplus M, Coen DM. The human cytomegalovirus UL44 C clamp wraps around DNA. Structure 2008; 16:1214-25. [PMID: 18682223 PMCID: PMC2878485 DOI: 10.1016/j.str.2008.05.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 05/02/2008] [Accepted: 05/07/2008] [Indexed: 02/02/2023]
Abstract
Processivity factors tether the catalytic subunits of DNA polymerases to DNA so that continuous synthesis of long DNA strands is possible. The human cytomegalovirus DNA polymerase subunit UL44 forms a C clamp-shaped dimer intermediate in structure between monomeric herpes simplex virus UL42, which binds DNA directly via a basic surface, and the trimeric sliding clamp PCNA, which encircles DNA. To investigate how UL44 interacts with DNA, calculations were performed in which a 12 bp DNA oligonucleotide was docked to UL44. The calculations suggested that UL44 encircles DNA, which interacts with basic residues both within the cavity of the C clamp and in flexible loops of UL44 that complete the "circle." The results of mutational and crosslinking studies were consistent with this model. Thus, UL44 is a "hybrid" of UL42 and PCNA: its structure is intermediate between the two and its mode of interaction with DNA has elements of both.
Collapse
Affiliation(s)
- Gloria Komazin-Meredith
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Robert J. Petrella
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Webster L. Santos
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - David J. Filman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - James M. Hogle
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Gregory L. Verdine
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Martin Karplus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Laboratoire de Chimie Biophysique, ISIS, Université Louis Pasteur, 67000 Strasbourg, France
| | - Donald M. Coen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
125
|
Casciari D, Dell’Orco D, Fanelli F. Homodimerization of Neurotensin 1 Receptor Involves Helices 1, 2, and 4: Insights from Quaternary Structure Predictions and Dimerization Free Energy Estimations. J Chem Inf Model 2008; 48:1669-78. [DOI: 10.1021/ci800048d] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Daniele Casciari
- Department of Chemistry and Dulbecco Telethon Institute (DTI), University of Modena e Reggio Emilia, Via Campi 183, 41100 Modena, Italy
| | - Daniele Dell’Orco
- Department of Chemistry and Dulbecco Telethon Institute (DTI), University of Modena e Reggio Emilia, Via Campi 183, 41100 Modena, Italy
| | - Francesca Fanelli
- Department of Chemistry and Dulbecco Telethon Institute (DTI), University of Modena e Reggio Emilia, Via Campi 183, 41100 Modena, Italy
| |
Collapse
|
126
|
Abstract
Protein-protein docking is the computational prediction of protein complex structure given the individually solved component protein structures. It is an important means for understanding the physicochemical forces that underlie macromolecular interactions and a valuable tool for modeling protein complex structures. Here, we report an overview of protein-protein docking with specific emphasis on our Fast Fourier Transform-based rigid-body docking program ZDOCK, which is consistently rated as one of the most accurate docking programs in the Critical Assessment of Predicted Interactions (CAPRI), a series of community-wide blind tests. We also investigate ZDOCK's performance on a non-redundant protein complex benchmark. Finally, we perform regression analysis to better understand the strengths and weaknesses of ZDOCK and to suggest areas of future development for protein-docking algorithms in general.
Collapse
|
127
|
Abstract
Docking of unbound protein structures into a complex has gained significant progress in recent years, but nonetheless still poses a great challenge. We have pursued a holistic approach to docking which brings together effective methods at different stages. First, protein-protein interaction sites are predicted or obtained from experimental studies in the literature. Interface prediction/experimental data are then used to guide the generation of docked poses or to rank docked poses generated from an unbiased search. Finally, selected models are refined by lengthy molecular dynamics (MD) simulations in explicit water. For CAPRI target T27, we used information on interaction sites as input to drive docking and as a filter to rank docked poses. Lead candidates were then clustered according to RMSD among them. From the clustering, 10 models were selected and subject to refinement by MD simulations. Our Model 7 is rated number one among all submissions according to L_rmsd. Six of our other submissions are rated acceptable. As scorer, eight of our submissions are rated acceptable.
Collapse
Affiliation(s)
- Sanbo Qin
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, USA
| | | |
Collapse
|
128
|
Wiehe K, Pierce B, Tong WW, Hwang H, Mintseris J, Weng Z. The performance of ZDOCK and ZRANK in rounds 6-11 of CAPRI. Proteins 2008; 69:719-25. [PMID: 17803212 DOI: 10.1002/prot.21747] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We present an evaluation of our protein-protein docking approach using the ZDOCK and ZRANK algorithms, in combination with structural clustering and filtering, utilizing biological data in Rounds 6-11 of the CAPRI docking experiment. We achieved at least one prediction of acceptable accuracy for five of six targets submitted. In addition, two targets resulted in medium-accuracy predictions. In the new scoring portion of the CAPRI exercise, we were able to attain at least one acceptable prediction for the three targets submitted and achieved three medium-accuracy predictions for Target 26. Scoring was performed using ZRANK, a new algorithm for reranking initial-stage docking predictions using a weighted energy function and no structural refinement. Here we outline a practical and successful docking strategy, given limited prior biological knowledge of the complex to be predicted.
Collapse
Affiliation(s)
- Kevin Wiehe
- Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
129
|
Abstract
Structural comparisons between bacteriophage PRD1 and adenovirus have revealed an evolutionary relationship that has contributed significantly to current ideas on virus phylogeny. However, the structural organization of the receptor-binding spike complex and how the different symmetry mismatches are mediated between the spike-complex proteins are not clear. We determined the architecture of the PRD1 spike complex by using electron microscopy and three-dimensional image reconstruction of a series of PRD1 mutants. We constructed an atomic model for the full-length P5 spike protein by using comparative modeling. P5 was shown to be bound directly to the penton base protein P31. P5 and the receptor-binding protein P2 form two separate spikes, interacting with each other near the capsid shell. P5, with a tumor necrosis factor-like head domain, may have been responsible for host recognition before capture of the current receptor-binding protein P2.
Collapse
Affiliation(s)
- Juha T. Huiskonen
- Department of Biological and Environmental Sciences, Institute of Biotechnology, P.O. Box 65 (Viikinkaani 1), University of Helsinki, FI-0014, Helsinki, Finland
| | - Violeta Manole
- Department of Biological and Environmental Sciences, Institute of Biotechnology, P.O. Box 65 (Viikinkaani 1), University of Helsinki, FI-0014, Helsinki, Finland
| | - Sarah J. Butcher
- Department of Biological and Environmental Sciences, Institute of Biotechnology, P.O. Box 65 (Viikinkaani 1), University of Helsinki, FI-0014, Helsinki, Finland
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
130
|
Structure Prediction of Protein Complexes. COMPUTATIONAL METHODS FOR PROTEIN STRUCTURE PREDICTION AND MODELING 2007. [DOI: 10.1007/978-0-387-68825-1_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
131
|
Potluri S, Yan AK, Chou JJ, Donald BR, Bailey-Kellogg C. Structure determination of symmetric homo-oligomers by a complete search of symmetry configuration space, using NMR restraints and van der Waals packing. Proteins 2006; 65:203-19. [PMID: 16897780 DOI: 10.1002/prot.21091] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Structural studies of symmetric homo-oligomers provide mechanistic insights into their roles in essential biological processes, including cell signaling and cellular regulation. This paper presents a novel algorithm for homo-oligomeric structure determination, given the subunit structure, that is both complete, in that it evaluates all possible conformations, and data-driven, in that it evaluates conformations separately for consistency with experimental data and for quality of packing. Completeness ensures that the algorithm does not miss the native conformation, and being data-driven enables it to assess the structural precision possible from data alone. Our algorithm performs a branch-and-bound search in the symmetry configuration space, the space of symmetry axis parameters (positions and orientations) defining all possible C(n) homo-oligomeric complexes for a given subunit structure. It eliminates those symmetry axes inconsistent with intersubunit nuclear Overhauser effect (NOE) distance restraints and then identifies conformations representing any consistent, well-packed structure to within a user-defined similarity level. For the human phospholamban pentamer in dodecylphosphocholine micelles, using the structure of one subunit determined from a subset of the experimental NMR data, our algorithm identifies a diverse set of complex structures consistent with the nine intersubunit NOE restraints. The distribution of determined structures provides an objective characterization of structural uncertainty: backbone RMSD to the previously determined structure ranges from 1.07 to 8.85 A, and variance in backbone atomic coordinates is an average of 12.32 A(2). Incorporating vdW packing reduces structural diversity to a maximum backbone RMSD of 6.24 A and an average backbone variance of 6.80 A(2). By comparing data consistency and packing quality under different assumptions of oligomeric number, our algorithm identifies the pentamer as the most likely oligomeric state of phospholamban, demonstrating that it is possible to determine the oligomeric number directly from NMR data. Additional tests on a number of homo-oligomers, from dimer to heptamer, similarly demonstrate the power of our method to provide unbiased determination and evaluation of homo-oligomeric complex structures.
Collapse
Affiliation(s)
- Shobha Potluri
- Department of Computer Science, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | | | | | | | |
Collapse
|
132
|
Casciari D, Seeber M, Fanelli F. Quaternary structure predictions of transmembrane proteins starting from the monomer: a docking-based approach. BMC Bioinformatics 2006; 7:340. [PMID: 16836758 PMCID: PMC1590055 DOI: 10.1186/1471-2105-7-340] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Accepted: 07/12/2006] [Indexed: 12/03/2022] Open
Abstract
Background We introduce a computational protocol for effective predictions of the supramolecular organization of integral transmembrane proteins, starting from the monomer. Despite the demonstrated constitutive and functional importance of supramolecular assemblies of transmembrane subunits or proteins, effective tools for structure predictions of such assemblies are still lacking. Our computational approach consists in rigid-body docking samplings, starting from the docking of two identical copies of a given monomer. Each docking run is followed by membrane topology filtering and cluster analysis. Prediction of the native oligomer is therefore accomplished by a number of progressive growing steps, each made of one docking run, filtering and cluster analysis. With this approach, knowledge about the oligomerization status of the protein is required neither for improving sampling nor for the filtering step. Furthermore, there are no size-limitations in the systems under study, which are not limited to the transmembrane domains but include also the water-soluble portions. Results Benchmarks of the approach were done on ten homo-oligomeric membrane proteins with known quaternary structure. For all these systems, predictions led to native-like quaternary structures, i.e. with Cα-RMSDs lower than 2.5 Å from the native oligomer, regardless of the resolution of the structural models. Conclusion Collectively, the results of this study emphasize the effectiveness of the prediction protocol that will be extensively challenged in quaternary structure predictions of other integral membrane proteins.
Collapse
Affiliation(s)
- D Casciari
- Department of Chemistry, Dulbecco Telethon Institute (DTI), University of Modena e Reggio Emilia, Via Campi 183, 41100 Modena, Italy
| | - M Seeber
- Department of Chemistry, Dulbecco Telethon Institute (DTI), University of Modena e Reggio Emilia, Via Campi 183, 41100 Modena, Italy
| | - F Fanelli
- Department of Chemistry, Dulbecco Telethon Institute (DTI), University of Modena e Reggio Emilia, Via Campi 183, 41100 Modena, Italy
| |
Collapse
|
133
|
Wiehe K, Pierce B, Mintseris J, Tong WW, Anderson R, Chen R, Weng Z. ZDOCK and RDOCK performance in CAPRI rounds 3, 4, and 5. Proteins 2006; 60:207-13. [PMID: 15981263 DOI: 10.1002/prot.20559] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We present an evaluation of the results of our ZDOCK and RDOCK algorithms in Rounds 3, 4, and 5 of the protein docking challenge CAPRI. ZDOCK is a Fast Fourier Transform (FFT)-based, initial-stage rigid-body docking algorithm, and RDOCK is an energy minimization algorithm for refining and reranking ZDOCK results. Of the 9 targets for which we submitted predictions, we attained at least acceptable accuracy for 7, at least medium accuracy for 6, and high accuracy for 3. These results are evidence that ZDOCK in combination with RDOCK is capable of making accurate predictions on a diverse set of protein complexes.
Collapse
Affiliation(s)
- Kevin Wiehe
- Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | |
Collapse
|
134
|
Méndez R, Leplae R, Lensink MF, Wodak SJ. Assessment of CAPRI predictions in rounds 3-5 shows progress in docking procedures. Proteins 2006; 60:150-69. [PMID: 15981261 DOI: 10.1002/prot.20551] [Citation(s) in RCA: 269] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The current status of docking procedures for predicting protein-protein interactions starting from their three-dimensional (3D) structure is reassessed by evaluating blind predictions, performed during 2003-2004 as part of Rounds 3-5 of the community-wide experiment on Critical Assessment of PRedicted Interactions (CAPRI). Ten newly determined structures of protein-protein complexes were used as targets for these rounds. They comprised 2 enzyme-inhibitor complexes, 2 antigen-antibody complexes, 2 complexes involved in cellular signaling, 2 homo-oligomers, and a complex between 2 components of the bacterial cellulosome. For most targets, the predictors were given the experimental structures of 1 unbound and 1 bound component, with the latter in a random orientation. For some, the structure of the free component was derived from that of a related protein, requiring the use of homology modeling. In some of the targets, significant differences in conformation were displayed between the bound and unbound components, representing a major challenge for the docking procedures. For 1 target, predictions could not go to completion. In total, 1866 predictions submitted by 30 groups were evaluated. Over one-third of these groups applied completely novel docking algorithms and scoring functions, with several of them specifically addressing the challenge of dealing with side-chain and backbone flexibility. The quality of the predicted interactions was evaluated by comparison to the experimental structures of the targets, made available for the evaluation, using the well-agreed-upon criteria used previously. Twenty-four groups, which for the first time included an automatic Web server, produced predictions ranking from acceptable to highly accurate for all targets, including those where the structures of the bound and unbound forms differed substantially. These results and a brief survey of the methods used by participants of CAPRI Rounds 3-5 suggest that genuine progress in the performance of docking methods is being achieved, with CAPRI acting as the catalyst.
Collapse
Affiliation(s)
- Raúl Méndez
- Service de Conformation de Macromolécules Biologiques et Bioinformatique, Centre de Biologie Structurale et Bioinformatique, Université Libre de Bruxelles, Bruxelles, Belgium
| | | | | | | |
Collapse
|