101
|
Wang K, Zhou XH, Liu D, Li Y, Yao Z, He WM, Liu Y. The uplift of the Hengduan Mountains contributed to the speciation of three Rhododendron species. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
102
|
Xiong Y, Xiong Y, Shu X, Yu Q, Lei X, Li D, Yan J, Bai S, Ma X. Molecular Phylogeography and Intraspecific Divergences in Siberian Wildrye ( Elymus sibiricus L.) Wild Populations in China, Inferred From Chloroplast DNA Sequence and cpSSR Markers. FRONTIERS IN PLANT SCIENCE 2022; 13:862759. [PMID: 35665183 PMCID: PMC9161273 DOI: 10.3389/fpls.2022.862759] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/30/2022] [Indexed: 05/27/2023]
Abstract
A detailed understanding of the distribution and degree of genetic variation within a species is important for determining their evolutionary potential, which in return facilitates the development of efficient conservation strategies aimed at preserving adaptive genetic variation. As an important perennial, cool-season grass in temperate Eurasia, increasing attention has been paid to Siberian wildrye (Elymus sibiricus) due to its excellent ecological utilization value and forage production potential in China, particularly in the Qinghai-Tibet Plateau (QTP) regions. In this study, we applied two chloroplast (cp) genes (matK and rbcL), three cp spacer regions (trnY-GUA∼trnD-GUC, atpH∼atpF, and rps4∼trnT-UGU), and six cpSSR markers to the genetic and phylogenetic analysis of 137 wild E. sibiricus accessions from 23 natural populations that represent the main distribution regions in China. The results show the highest genetic diversity (h = 0.913) and haplotype richness (10 haplotypes) for the QTP population, which indicates QTP as the probable diversity center and geographic origin of E. sibiricus in China. Population divergence was high, indicating a significant phylogeographic structure together with a significantly higher Nst value (Nst > Gst, P < 0.05) at the species level, QTP+XJ (combined populations from QTP and Xinjiang), QTP+NC (combined populations from QTP and North China), and XJ+NC (combined populations from Xinjiang and North China) group levels, respectively. An expansion was revealed in the distributional range of E. sibiricus in China from paleo times up to the recent past, while a dramatic range of contraction was predicted for the near future. The predicted main limiting factor for the further spread of E. sibiricus is an increasing global mean temperature. We recommend that the combination of Es-cpDNA1 and Es-cpDNA3+4+5 can be used as effective markers for phylogenetic analysis and phylogeographical history analysis of E. sibiricus. These findings shed new light on the historical population dynamics of cold-season herbs in the QTP region and the north of China and are of great significance for the future establishment of protection and collection strategies for wild E. sibiricus germplasm.
Collapse
Affiliation(s)
- Yi Xiong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yanli Xiong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xin Shu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qingqing Yu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiong Lei
- Sichuan Academy of Grassland Science, Chengdu, China
| | - Daxu Li
- Sichuan Academy of Grassland Science, Chengdu, China
| | - Jiajun Yan
- Sichuan Academy of Grassland Science, Chengdu, China
| | - Shiqie Bai
- Sichuan Academy of Grassland Science, Chengdu, China
| | - Xiao Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
103
|
Testing Phylogeographic Hypotheses in Mepraia (Hemiptera: Reduviidae) Suggests a Complex Spatio-Temporal Colonization in the Coastal Atacama Desert. INSECTS 2022; 13:insects13050419. [PMID: 35621755 PMCID: PMC9147758 DOI: 10.3390/insects13050419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/04/2022]
Abstract
Simple Summary Mepraia is a blood-sucking bug endemic to Chile and a vector of the parasite that causes Chagas disease. Different colonization routes have been suggested for this bug; therefore, we tested different colonization routes using DNA sequences and bioinformatics approaches to select the most probable route. Our results suggest that, after the split of Triatoma, Mepraia divided into two main groups ~2.1 Mya. The northern group would have speciated between 1.7–1.4 Mya, giving rise to M. parapatrica, M. gajardoi and to a new, still undescribed lineage (Mepraia sp.). The southern group formed M. spinolai ~1.68 Mya. We suggest that Mepraia originated from the north-central Andes due to the last Andes uplift and hyperaridity. The hyperarid cycle would have separated the southern and northern groups. Then, within the northern group, colonization would have occurred from the centre to the north and south through corridors influenced by Pleistocene climatic changes. The habitat colonized by the southern clade led to only one species (M. spinolai). Fluctuations in climatic changes probably influenced speciation strongly in this kissing bug in the Atacama Desert. Abstract Mepraia is a genus (Triatominae) endemic to Chile and a vector of Trypanosoma cruzi. Alternative phylogeographic hypotheses have been suggested for Mepraia. We tested different colonization routes hypothesized using mitochondrial sequences and phylogeographic approaches to select the best-supported hypothesis. Our results suggest that, after the split from the sister genus Triatoma at ~4.3 Mya, Mepraia formed two main clades at ~2.1 Mya. The northern clade diverged from Mepraia sp. ~1.7 Mya, giving rise to M. parapatrica and M. gajardoi about ~1.4 Mya. The southern clade originated M. spinolai ~1.68 Mya. We suggest that Mepraia had an origin in the north-central Andes along with orogenic processes, reinforced by hyperaridity during the Pliocene. The hyperarid cycle would have separated the southern and northern clades. Then, in the northern clade, dispersal occurred north and south from the centre through corridors during the Pleistocene Climatic Oscillations. Climate changes may have induced a major speciation process in the Atacama Desert, while the more homogeneous habitat colonized by the southern clade led to only one, but structured, species.
Collapse
|
104
|
Liu T, Chen J, Jiang L, Qiao G. Human‐mediated eco‐evolutionary processes of the herbivorous insect
Hyalopterus arundiniformis
during the Holocene. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Tongyi Liu
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
- College of Life Sciences University of Chinese Academy of Sciences Beijing China
| | - Jing Chen
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Liyun Jiang
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
- College of Life Sciences University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
105
|
Dong Y, Wei X, Qiang T, Liu J, Che P, Qi Y, Zhang B, Liu H. RAD-Seq and Ecological Niche Reveal Genetic Diversity, Phylogeny, and Geographic Distribution of Kadsura interior and Its Closely Related Species. FRONTIERS IN PLANT SCIENCE 2022; 13:857016. [PMID: 35557741 PMCID: PMC9087809 DOI: 10.3389/fpls.2022.857016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
Most plants of Kadsura have economic value and medicinal application. Among them, K. interior and its closely related species have been demonstrated to have definite efficacy. However, the taxonomy and phylogenetic relationship of Kadsura in terms of morphology and commonly used gene regions remain controversial, which adversely affects its rational application. In this study, a total of 107 individuals of K. interior, K. heteroclita, K. longipedunculata, K. oblongifolia, and K. coccinea were studied from the perspectives of genetic diversity, phylogeny, and ecology via single nucleotide polymorphisms (SNPs) developed through restriction site-associated DNA sequencing (RAD-seq). Based on these SNPs, the genetic diversity, phylogenetic reconstruction, and population genetic structure were analyzed. Subsequently, divergence time estimation and differentiation scenario simulation were performed. Meanwhile, according to the species distribution records and bioclimatic variables, the Last Glacial Maximum and current potential distributions of five species were constructed, and the main ecological factors affecting the distribution of different species were extracted. The F ST calculated showed that there was a moderate degree of differentiation among K. heteroclita, K. longipedunculata, and K. oblongifolia, and there was a high degree of genetic differentiation between K. interior and the above species. The phylogenetic tree indicated that each of the species was monophyletic. The results of population genetic structure and divergence scenario simulation and D-statistics showed that there were admixture and gene flow among K. heteroclita, K. longipedunculata, and K. oblongifolia. The results of ecological niche modeling indicated that the distribution areas and the bioclimatic variables affecting the distribution of K. interior and its related species were different. This study explored the differences in the genetic divergence and geographical distribution patterns of K. interior and its related species, clarifying the uniqueness of K. interior compared to its relatives and providing a reference for their rational application in the future.
Collapse
Affiliation(s)
- Yuqing Dong
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xueping Wei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Tingyan Qiang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jiushi Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Peng Che
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yaodong Qi
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Bengang Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Haitao Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
106
|
Lyman RA, Edwards CE. Revisiting the comparative phylogeography of unglaciated eastern North America: 15 years of patterns and progress. Ecol Evol 2022; 12:e8827. [PMID: 35475178 PMCID: PMC9019306 DOI: 10.1002/ece3.8827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/28/2022] Open
Abstract
In a landmark comparative phylogeographic study, “Comparative phylogeography of unglaciated eastern North America,” Soltis et al. (Molecular Ecology, 2006, 15, 4261) identified geographic discontinuities in genetic variation shared across taxa occupying unglaciated eastern North America and proposed several common biogeographical discontinuities related to past climate fluctuations and geographic barriers. Since 2006, researchers have published many phylogeographical studies and achieved many advances in genotyping and analytical techniques; however, it is unknown how this work has changed our understanding of the factors shaping the phylogeography of eastern North American taxa. We analyzed 184 phylogeographical studies of eastern North American taxa published between 2007 and 2019 to evaluate: (1) the taxonomic focus of studies and whether a previously detected taxonomic bias towards studies focused on vertebrates has changed over time, (2) the extent to which studies have adopted genotyping technologies that improve the resolution of genetic groups (i.e., NGS DNA sequencing) and analytical approaches that facilitate hypothesis‐testing (i.e., divergence time estimation and niche modeling), and (3) whether new studies support the hypothesized biogeographic discontinuities proposed by Soltis et al. (Molecular Ecology, 2006, 15, 4261) or instead support new, previously undetected discontinuities. We observed little change in taxonomic focus over time, with studies still biased toward vertebrates. Although many technological and analytical advances became available during the period, uptake was slow and they were employed in only a small proportion of studies. We found variable support for previously identified discontinuities and identified one new recurrent discontinuity. However, the limited resolution and taxonomic breadth of many studies hindered our ability to clarify the most important climatological or geographical factors affecting taxa in the region. Broadening the taxonomic focus to include more non‐vertebrate taxa, employing technologies that improve genetic resolution, and using analytical approaches that improve hypothesis testing are necessary to strengthen our inference of the forces shaping the phylogeography of eastern North America.
Collapse
Affiliation(s)
- Rachel Ann Lyman
- Ecology, Evolution, and Population Biology Program Washington University in St. Louis St. Louis Missouri USA
- Center for Conservation and Sustainable Development Missouri Botanical Garden St. Louis Missouri USA
| | - Christine E. Edwards
- Center for Conservation and Sustainable Development Missouri Botanical Garden St. Louis Missouri USA
| |
Collapse
|
107
|
A genetic analysis of grey squirrel (Sciurus carolinensis) populations in Ireland. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02782-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractThe grey squirrel (Sciurus carolinensis) is an invasive rodent in Ireland that has had detrimental impacts on the native Irish red squirrel (S. vulgaris) as well as on silviculture. This invasive species spread rapidly throughout Ireland, but in recent years appears to be declining in certain areas of the country. This study analysed the genetic profile of grey squirrel populations in Ireland to gain insight into their introduction, evolutionary history in Ireland, and vulnerability to management strategies. The genetic diversity and population structure of eight grey squirrel populations in Ireland was assessed using 11 species-specific microsatellite loci, and was compared to a small population from Tennessee, U.S.A., part of the native range of the grey squirrel. This is the first time these microsatellite markers developed specifically for grey squirrels have been used to study the species in Ireland. We found low to moderate genetic diversity overall across Irish populations as well as the presence of inbreeding. One population in particular, (in Co. Kildare), was differentiated from all other populations, which could indicate genetic isolation between Irish populations or a secondary introduction of S. carolinensis to Ireland.
Collapse
|
108
|
Sapkota S, Boggess SL, Trigiano RN, Klingeman WE, Hadziabdic D, Coyle DR, Nowicki M. Microsatellite Loci Reveal High Genetic Diversity, Mutation, and Migration Rates as Invasion Drivers of Callery Pear ( Pyrus calleryana) in the Southeastern United States. Front Genet 2022; 13:861398. [PMID: 35480304 PMCID: PMC9037086 DOI: 10.3389/fgene.2022.861398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/07/2022] [Indexed: 11/19/2022] Open
Abstract
Pyrus calleryana Decne. (Callery pear) is a deciduous tree native to China, Japan, Korea, and Taiwan. It is a popular ornamental tree in the United States (US) with early spring blooms and vibrant fall color. There are at least 26 cultivars of P. calleryana available in the US of which "Bradford" is the most well-known. Open-pollinated P. calleryana escapees are becoming one of the most common invasive tree species in the eastern United States. Developing better management practices for invasive P. calleryana requires detailed knowledge about reproductive biology and genetic diversity of the species, however, little is currently known about genetic variability within those open-pollinated populations. We investigated genetic diversity and population structure of non-cultivated, escaped P. calleryana populations within a ∼177 km radius in the southeastern United States. Because P. calleryana exhibits a range of morphological variation with great evolutionary potential, we hypothesized that a high genetic diversity would be manifested among escaped P. calleryana. Using 15 previously developed microsatellite loci, we genotyped 180 open-pollinated P. calleryana individuals that were collected across six naturally occurring sites in Tennessee, Georgia, and South Carolina, United States. Our results demonstrated the presence of a population structure with high genetic diversity, high gene flow, and high genetic differentiation between individuals across collection sites. Our results revealed that P. calleryana populations had differentiated shortly after the introduction to the US, most likely from specimens imported from Asia, consistent with historical records and our prior findings. The high invasive potential of the species is perhaps best underscored by transformation of P. calleryana specimens introduced from Asia into escape populations at continental scale across the United States. Our data also provided novel insight into potential issues that could be problematic for the future as P. calleryana may pose a potential threat to the economy, ecology, and native biodiversity in invaded areas.
Collapse
Affiliation(s)
- Shiwani Sapkota
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States
| | - Sarah L. Boggess
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States
| | - Robert N. Trigiano
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States
| | - William E. Klingeman
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
| | - Denita Hadziabdic
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States
| | - David R. Coyle
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC, United States
| | - Marcin Nowicki
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
109
|
Brazier T, Cherif E, Martin JF, Gilles A, Blanchet S, Zhao Y, Combe M, McCairns RJS, Gozlan RE. The influence of native populations’ genetic history on the reconstruction of invasion routes: the case of a highly invasive aquatic species. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02787-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
110
|
Conservation genetics of Firmiana major, a threatened tree species with potential for afforestation of hot, arid climates. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
111
|
Chimura K, Akita S, Iwasaki T, Nagano AJ, Shimada S. Phylogeography of a canopy-forming kelp, Eisenia bicyclis (Laminariales, Phaeophyceae), based on a genome-wide sequencing analysis. JOURNAL OF PHYCOLOGY 2022; 58:318-329. [PMID: 35000198 DOI: 10.1111/jpy.13233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Analyses of phylogeographic patterns and genetic diversity provide fundamental information for the management and conservation of species. However, little is published about these patterns in Japanese kelp species. In this study, we conducted phylogeographic analyses of a canopy-forming kelp, Eisenia bicyclis, based on genome-wide SNPs identified by ddRAD-seq. We obtained 1,299 SNPs for 76 samples from nine localities across the distribution. STRUCTURE, NeighborNet, and discriminant analysis of principal components consistently showed high genetic differentiation among the Eastern Pacific, Central Pacific, and Sea of Japan coastal regions. Relatively strong gene flow was detected only within populations in the Eastern Pacific and in the Sea of Japan. Genetic diversity and genetic uniqueness were high in the Central Pacific and low in the Sea of Japan. These results suggest that there were at least three independent refugia corresponding to the three regions during the Last Glacial Maximum (LGM). Furthermore, relatively larger populations in the Central Pacific and smaller populations in the Sea of Japan have been maintained in the demographic history from before the LGM to the present. These phylogeographic histories were supported by an Approximate Bayesian Computation analysis. From a conservation genetics perspective, the loss of southern populations in the Central Pacific would greatly reduce the total genetic diversity of the species. Southern populations in the Sea of Japan, which have relatively low genetic diversity, may be highly vulnerable to environmental change, such as heat waves and increased feeding. Therefore, careful monitoring and conservation are needed in the two regions.
Collapse
Affiliation(s)
- Kanako Chimura
- Humanities and Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyoku, Tokyo, 112-8610, Japan
| | - Shingo Akita
- Natural Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyoku, Tokyo, 112-8610, Japan
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido, 041-8611, Japan
| | - Takaya Iwasaki
- Natural Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyoku, Tokyo, 112-8610, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Yokotani 1-5, Seta Ohe-cho, Otsu, Shiga, 520-2194, Japan
- Institute for Advanced Biosciences, Keio University, 403-1 Nipponkoku, Daihouji, Tsuruoka, Yamagata, 997-0017, Japan
| | - Satoshi Shimada
- Natural Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyoku, Tokyo, 112-8610, Japan
| |
Collapse
|
112
|
Lott MJ, Wright BR, Neaves LE, Frankham GJ, Dennison S, Eldridge MDB, Potter S, Alquezar-Planas DE, Hogg CJ, Belov K, Johnson RN. Future-proofing the koala: synergising genomic and environmental data for effective species management. Mol Ecol 2022; 31:3035-3055. [PMID: 35344635 DOI: 10.1111/mec.16446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/19/2022] [Accepted: 03/04/2022] [Indexed: 11/30/2022]
Abstract
Climatic and evolutionary processes are inextricably linked to conservation. Avoiding extinction in rapidly changing environments often depends upon a species' capacity to adapt in the face of extreme selective pressures. Here, we employed exon capture and high-throughput next-generation sequencing to investigate the mechanisms underlying population structure and adaptive genetic variation in the koala (Phascolarctos cinereus), an iconic Australian marsupial that represents a unique conservation challenge because it is not uniformly threatened across its range. An examination of 250 specimens representing 91 wild source locations revealed that five major genetic clusters currently exist on a continental scale. The initial divergence of these clusters appears to have been concordant with the Mid-Brunhes Transition (∼ 430-300 kya), a major climatic reorganization that increased the amplitude of Pleistocene glacial-interglacial cycles. While signatures of polygenic selection and environmental adaptation were detected, strong evidence for repeated, climate-associated range contractions and demographic bottleneck events suggests that geographically isolated refugia may have played a more significant role in the survival of the koala through the Pleistocene glaciation than in situ adaptation. Consequently, the conservation of genome-wide genetic variation must be aligned with the protection of core koala habitat to increase the resilience of threatened populations to accelerating anthropogenic threats. Finally, we propose that the five major genetic clusters identified in this study should be accounted for in future koala conservation efforts (e.g. guiding translocations), as existing management divisions in the states of Queensland and New South Wales do not reflect historic or contemporary population structure.
Collapse
Affiliation(s)
- Matthew J Lott
- Australian Museum Research Institute, Australian Museum, 1 William Street, 2010, New South Wales, Australia
| | - Belinda R Wright
- Australian Museum Research Institute, Australian Museum, 1 William Street, 2010, New South Wales, Australia.,School of Life and Environmental Sciences, the University of Sydney, 2006, New South Wales, Australia.,Sydney School of Veterinary Sciences, Faculty of Science, the University of Sydney, 2006, New South Wales, Australia
| | - Linda E Neaves
- Australian Museum Research Institute, Australian Museum, 1 William Street, 2010, New South Wales, Australia.,Fenner School of Environment and Society, the Australian National University, Canberra, Australian Capital Territory, 2600, Australia
| | - Greta J Frankham
- Australian Museum Research Institute, Australian Museum, 1 William Street, 2010, New South Wales, Australia
| | - Siobhan Dennison
- Australian Museum Research Institute, Australian Museum, 1 William Street, 2010, New South Wales, Australia
| | - Mark D B Eldridge
- Australian Museum Research Institute, Australian Museum, 1 William Street, 2010, New South Wales, Australia
| | - Sally Potter
- Australian Museum Research Institute, Australian Museum, 1 William Street, 2010, New South Wales, Australia.,Division of Ecology & Evolution, Research School of Biology, the Australian National University, Australian Capital Territory, Canberra, 2600, Australia
| | - David E Alquezar-Planas
- Australian Museum Research Institute, Australian Museum, 1 William Street, 2010, New South Wales, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, the University of Sydney, 2006, New South Wales, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, the University of Sydney, 2006, New South Wales, Australia
| | - Rebecca N Johnson
- Australian Museum Research Institute, Australian Museum, 1 William Street, 2010, New South Wales, Australia.,National Museum of Natural History, District of Columbia, Washington, 20560, United States
| |
Collapse
|
113
|
Cortes‐Miranda J, Véliz D, Flores‐Prado L, Sallaberry M, Vega‐Retter C. Genetic diversity and origin of a fish population recently colonizing a reservoir: The case of
Basilichthys microlepidotus
, central Chile. POPUL ECOL 2022. [DOI: 10.1002/1438-390x.12118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jorge Cortes‐Miranda
- Departamento de Ciencias Ecológicas, Facultad de Ciencias Universidad de Chile Santiago Chile
| | - David Véliz
- Departamento de Ciencias Ecológicas, Facultad de Ciencias Universidad de Chile Santiago Chile
| | - Luis Flores‐Prado
- Instituto de Entomología Universidad Metropolitana de Ciencias de la Educación Santiago Chile
| | - Michel Sallaberry
- Departamento de Ciencias Ecológicas, Facultad de Ciencias Universidad de Chile Santiago Chile
| | - Caren Vega‐Retter
- Departamento de Ciencias Ecológicas, Facultad de Ciencias Universidad de Chile Santiago Chile
| |
Collapse
|
114
|
Rodríguez-Rodríguez P, Fernández de Castro AG, Pérez de Paz PL, Curbelo L, Palomares Á, Mesa R, Acevedo A, Sosa PA. Evolution and conservation genetics of an insular hemiparasitic plant lineage at the limit of survival: the case of Thesium sect. Kunkeliella in the Canary Islands. AMERICAN JOURNAL OF BOTANY 2022; 109:419-436. [PMID: 35289923 PMCID: PMC9415105 DOI: 10.1002/ajb2.1830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
PREMISE The diversification of island flora has been widely studied. However, the role of environmental niches in insular radiation processes has been less investigated. We combined population genetic analyses with species distribution modelling to clarify the genetic relationships, diversification patterns, species niche requirements, and conservation of Thesium sect. Kunkeliella, a clade of rare hemiparasitic plants endemic to the Canaries. METHODS We studied the three extant Thesium species and a new taxon from La Palma Island. We developed 12 microsatellites and performed population genetic analysis and studied the demographic history of the group. To evaluate the role of niche conservatism in the diversification of the group, we performed species distribution modelling (ESM) with four algorithms. RESULTS All species presented moderate genetic diversity values for rare endemics. Thesium canariense (Gran Canaria) showed high differentiation, whereas T. subsucculentum, T. retamoides (Tenerife), and La Palma populations are closely related. The lineage may have undergone a recent diversification with colonization proceeding east to west, with T. canariense as sister to the others. We detected a climatic niche shift, as taxa showed different distributions across the temperature gradient. There is enough evidence to describe La Palma populations as a new species. CONCLUSIONS We characterized the evolutionary history of Thesium sect. Kunkeliella by integrating genetic and ecological assessments. Our results indicate that this clade has undergone a recent radiation process with niche differentiation among species. The results increase our knowledge about insular radiations and will inform the conservation management of the study species.
Collapse
Affiliation(s)
- Priscila Rodríguez-Rodríguez
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (IUNAT), Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira, 35017 Las Palmas de Gran Canaria, Canary Islands, Spain
| | | | - Pedro Luis Pérez de Paz
- Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de La Laguna, 38071 La Laguna, Canary Islands, Spain
| | - Leticia Curbelo
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (IUNAT), Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira, 35017 Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Ángel Palomares
- Parque Nacional de la Caldera de Taburiente. Carretera de Padrón, 47. 38750 El Paso (La Palma), Canary Islands, Spain
| | - Ricardo Mesa
- Calle Francisco Bermúdez 6, 38500 Güímar. Santa Cruz de Tenerife, Canary Islands, Spain
| | - Aurelio Acevedo
- Calle Barrial de Abajo N13A, 38750 El Paso, La Palma, Canary Islands, Spain
| | - Pedro A Sosa
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (IUNAT), Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira, 35017 Las Palmas de Gran Canaria, Canary Islands, Spain
| |
Collapse
|
115
|
Guo R, Zhang YH, Zhang HJ, Landis JB, Zhang X, Wang HC, Yao XH. Molecular phylogeography and species distribution modelling evidence of 'oceanic' adaptation for Actinidia eriantha with a refugium along the oceanic-continental gradient in a biodiversity hotspot. BMC PLANT BIOLOGY 2022; 22:89. [PMID: 35227218 PMCID: PMC8883688 DOI: 10.1186/s12870-022-03464-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Refugia is considered to be critical for maintaining biodiversity; while discerning the type and pattern of refugia is pivotal for our understanding of evolutionary processes in the context of conservation. Interglacial and glacial refugia have been studied throughout subtropical China. However, studies on refugia along the oceanic-continental gradient have largely been ignored. We used a liana Actinidia eriantha, which occurs across the eastern moist evergreen broad-leaved forests of subtropical China, as a case study to test hypotheses of refugia along the oceanic-continental gradient and 'oceanic' adaptation. RESULTS The phylogeographic pattern of A. eriantha was explored using a combination of three cpDNA markers and 38 nuclear microsatellite loci, Species distribution modelling and dispersal corridors analysis. Our data showed intermediate levels of genetic diversity [haplotype diversity (hT) = 0.498; unbiased expected heterozygosity (UHE) = 0.510] both at the species and population level. Microsatellite loci revealed five clusters largely corresponding to geographic regions. Coalescent time of cpDNA lineages was dated to the middle Pliocene (ca. 4.03 Ma). Both geographic distance and climate difference have important roles for intraspecific divergence of the species. The Zhejiang-Fujian Hilly Region was demonstrated to be a refugium along the oceanic-continental gradient of the species and fit the 'refugia in refugia' pattern. Species distribution modelling analysis indicated that Precipitation of Coldest Quarter (importance of 44%), Temperature Seasonality (29%) and Mean Temperature of Wettest Quarter (25%) contributed the most to model development. By checking the isolines in the three climate layers, we found that A. eriantha prefer higher precipitation during the coldest quarter, lower seasonal temperature difference and lower mean temperature during the wettest quarter, which correspond to 'oceanic' adaptation. Actinidia eriantha expanded to its western distribution range along the dispersal corridor repeatedly during the glacial periods. CONCLUSIONS Overall, our results provide integrated evidence demonstrating that the Zhejiang-Fujian Hilly Region is a refugium along the oceanic-continental gradient of Actinidia eriantha in subtropical China and that speciation is attributed to 'oceanic' adaptation. This study gives a deeper understanding of the refugia in subtropical China and will contribute to the conservation and utilization of kiwifruit wild resources in the context of climate change.
Collapse
Affiliation(s)
- Rui Guo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- Center of Conservation Biology, Core Botanical Gardens, The Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Plant Sciences, University of Cambridge, Tennis Court Road, Cambridge, CB2 3EA, UK
| | - Yong-Hua Zhang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Hua-Jie Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- Center of Conservation Biology, Core Botanical Gardens, The Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Jacob B Landis
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, 14853, USA
- BTI Computational Biology Center, Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Xu Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- Center of Conservation Biology, Core Botanical Gardens, The Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Heng-Chang Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- Center of Conservation Biology, Core Botanical Gardens, The Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Xiao-Hong Yao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan, 430074, Hubei, China.
- Center of Conservation Biology, Core Botanical Gardens, The Chinese Academy of Sciences, Wuhan, 430074, Hubei, China.
| |
Collapse
|
116
|
Tsykun T, Prospero S, Schoebel CN, Rea A, Burgess TI. Global invasion history of the emerging plant pathogen Phytophthora multivora. BMC Genomics 2022; 23:153. [PMID: 35193502 PMCID: PMC8862219 DOI: 10.1186/s12864-022-08363-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/03/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND global trade in living plants and plant material has significantly increased the geographic distribution of many plant pathogens. As a consequence, several pathogens have been first found and described in their introduced range where they may cause severe damage on naïve host species. Knowing the center of origin and the pathways of spread of a pathogen is of importance for several reasons, including identifying natural enemies and reducing further spread. Several Phytophthora species are well-known invasive pathogens of natural ecosystems, including Phytophthora multivora. Following the description of P. multivora from dying native vegetation in Australia in 2009, the species was subsequently found to be common in South Africa where it does not cause any remarkable disease. There are now reports of P. multivora from many other countries worldwide, but not as a commonly encountered species in natural environments. RESULTS a global collection of 335 isolates from North America, Europe, Africa, Australia, the Canary Islands, and New Zealand was used to unravel the worldwide invasion history of P. multivora, using 10 microsatellite markers for all isolates and sequence data from five loci from 94 representative isolates. Our population genetic analysis revealed an extremely low heterozygosity, significant non-random association of loci and substantial genotypic diversity suggesting the spread of P. multivora readily by both asexual and sexual propagules. The P. multivora populations in South Africa, Australia, and New Zealand show the most complex genetic structure, are well established and evolutionary older than those in Europe, North America and the Canary Islands. CONCLUSIONS according to the conducted analyses, the world invasion of P. multivora most likely commenced from South Africa, which can be considered the center of origin of the species. The pathogen was then introduced to Australia, which acted as bridgehead population for Europe and North America. Our study highlights a complex global invasion pattern of P. multivora, including both direct introductions from the native population and secondary spread/introductions from bridgehead populations.
Collapse
Affiliation(s)
- Tetyana Tsykun
- Diversity and Evolution, Department Ecology and Evolution, Goethe-University Frankfurt am Main, Institute of Ecology, Max-von-Laue Str. 13, DE-60438, Frankfurt am Main, Germany.
- Senckenberg Biodiversity and Climate Research Centre SBiK-F, Georg-Voigt Str. 14-16, DE-60325, Frankfurt am Main, Germany.
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland.
| | - Simone Prospero
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Corine N Schoebel
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Alexander Rea
- Department of Diagnostic Genomics, PathWest Laboratory Medicine Western Australia, Nedlands, Western Australia, Australia
- Phytophthora Science and Management, Harry Butler Institute, Murdoch, Perth, Australia
| | - Treena I Burgess
- Phytophthora Science and Management, Harry Butler Institute, Murdoch, Perth, Australia
- Forestry and Agriculture Biotechnology Institute, University of Pretoria, Pretoria, 0002, South Africa
| |
Collapse
|
117
|
Elnour MAB, Gloria-Soria A, Azrag RS, Alkhaibari AM, Powell JR, Salim B. Population Genetic Analysis of Aedes aegypti Mosquitoes From Sudan Revealed Recent Independent Colonization Events by the Two Subspecies. Front Genet 2022; 13:825652. [PMID: 35251133 PMCID: PMC8889412 DOI: 10.3389/fgene.2022.825652] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Increases in arbovirus outbreaks in Sudan are vectored by Aedes aegypti, raising the medical importance of this mosquito. We genotyped 12 microsatellite loci in four populations of Ae. aegypti from Sudan, two from the East and two from the West, and analyzed them together with a previously published database of 31 worldwide populations to infer population structure and investigate the demographic history of this species in Sudan. Our results revealed the presence of two genetically distinct subspecies of Ae. aegypti in Sudan. These are Ae. aegypti aegypti in Eastern Sudan and Ae. aegypti formosus in Western Sudan. Clustering analysis showed that mosquitoes from East Sudan are genetically homogeneous, while we found population substructure in West Sudan. In the global context our results indicate that Eastern Sudan populations are genetically closer to Asian and American populations, while Western Sudan populations are related to East and West African populations. Approximate Bayesian Computation Analysis supports a scenario in which Ae. aegypti entered Sudan in at least two independent occasions nearly 70–80 years ago. This study provides a baseline database that can be used to determine the likely origin of new introductions for this invasive species into Sudan. The presence of the two subspecies in the country should be consider when designing interventions, since they display different behaviors regarding epidemiologically relevant parameters, such as blood feeding preferences and ability to transmit disease.
Collapse
Affiliation(s)
- Mohammed-Ahmed B. Elnour
- Department of Parasitology and Medical Entomology, Tropical Medicine Research Institute, National Center for Research, Khartoum, Sudan
| | - Andrea Gloria-Soria
- Department of Environmental Sciences, Center for Vector Biology and Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, CT, United States
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | - Rasha S. Azrag
- Department of Zoology, Faculty of Science, University of Khartoum, Khartoum, Sudan
| | - Abeer M. Alkhaibari
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Jeffrey R. Powell
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | - Bashir Salim
- Department of Parasitology, Faculty of Veterinary Medicine, University of Khartoum, Khartoum North, Sudan
- *Correspondence: Bashir Salim,
| |
Collapse
|
118
|
Conklin JR, Verkuil YI, Battley PF, Hassell CJ, Ten Horn J, Johnson JA, Tomkovich PS, Baker AJ, Piersma T, Fontaine MC. Global flyway evolution in red knots Calidris canutus and genetic evidence for a Nearctic refugium. Mol Ecol 2022; 31:2124-2139. [PMID: 35106871 PMCID: PMC9545425 DOI: 10.1111/mec.16379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 12/13/2021] [Accepted: 01/14/2022] [Indexed: 11/30/2022]
Abstract
Present‐day ecology and population structure are the legacies of past climate and habitat perturbations, and this is particularly true for species that are widely distributed at high latitudes. The red knot, Calidris canutus, is an arctic‐breeding, long‐distance migratory shorebird with six recognized subspecies defined by differences in morphology, migration behavior, and annual cycle phenology, in a global distribution thought to have arisen just since the last glacial maximum (LGM). We used nextRAD sequencing of 10,881 single‐nucleotide polymorphisms (SNPs) to assess the neutral genetic structure and phylogeographic history of 172 red knots representing all known global breeding populations. Using population genetics approaches, including model‐based scenario‐testing in an approximate Bayesian computation (ABC) framework, we infer that red knots derive from two main lineages that diverged ca. 34,000 years ago, and thus most probably persisted at the LGM in both Palearctic and Nearctic refugia, followed by at least two instances of secondary contact and admixture. Within two Beringian subspecies (C. c. roselaari and rogersi), we detected previously unknown genetic structure among sub‐populations sharing a migratory flyway, reflecting additional complexity in the phylogeographic history of the region. Conversely, we found very weak genetic differentiation between two Nearctic populations (rufa and islandica) with clearly divergent migratory phenotypes and little or no apparent contact throughout the annual cycle. Together, these results suggest that relative gene flow among migratory populations reflects a complex interplay of historical, geographical, and ecological factors.
Collapse
Affiliation(s)
- Jesse R Conklin
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands
| | - Yvonne I Verkuil
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands
| | - Phil F Battley
- Wildlife and Ecology Group, School of Agriculture and Environment, Massey University, Palmerston North, 4442, New Zealand
| | - Chris J Hassell
- Global Flyway Network, PO Box 3089, Broome, WA, 6725, Australia
| | - Job Ten Horn
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB, Den Burg, Texel, The Netherlands
| | - James A Johnson
- U.S. Fish & Wildlife Service, Migratory Bird Management, 1011 E. Tudor Road, MS 201, Anchorage, Alaska, 99503, USA
| | - Pavel S Tomkovich
- Zoological Museum, Moscow MV Lomonosov State University, Bolshaya Nikitskaya Str. 6, Moscow, 125009, Russia
| | - Allan J Baker
- Department of Natural History, Royal Ontario Museum, 100 Queens Park, Toronto, ON, M5S 2C6, Canada
| | - Theunis Piersma
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands.,Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB, Den Burg, Texel, The Netherlands
| | - Michaël C Fontaine
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands.,MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France.,Montpellier Ecology and Evolution of Diseases Network (MEEDiN), Montpellier, France
| |
Collapse
|
119
|
Nowicki M, Hadziabdic D, Trigiano RN, Runge F, Thines M, Boggess SL, Ristaino J, Spring O. Microsatellite Markers from Peronospora tabacina, the Cause of Blue Mold of Tobacco, Reveal Species Origin, Population Structure, and High Gene Flow. PHYTOPATHOLOGY 2022; 112:422-434. [PMID: 34058860 DOI: 10.1094/phyto-03-21-0092-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Peronospora tabacina is an obligate parasite that causes blue mold of tobacco. The pathogen reproduces primarily by sporangia, whereas the sexual oospores are rarely observed. A collection of 122 isolates of P. tabacina was genotyped using nine microsatellites to assess the population structure of individuals from subpopulations collected from central, southern, and western Europe; the Middle East; Central America; North America; and Australia. Genetic variations among the six subpopulations accounted for ∼8% of the total variation, including moderate levels of genetic differentiation, high gene flow among these subpopulations, and a positive correlation between geographic and genetic distance (r = 0.225; P < 0.001). Evidence of linkage disequilibrium (P < 0.001) showed that populations contained partially clonal subpopulations but that subpopulations from Australia and Mediterranean Europe did not. High genetic variation and population structure among samples could be explained by continuous gene flow across continents via infected transplant exchange and/or long-distance dispersal of sporangia via wind currents. This study analyzed the most numerous P. tabacina collection and allowed conclusions regarding the migration, mutation, and evolutionary history of this obligate biotrophic oomycete. The evidence pointed to the species origin in Australia and identified intracontinental and intercontinental migration patterns of this important pathogen.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Marcin Nowicki
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville 37996-4560, U.S.A
| | - Denita Hadziabdic
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville 37996-4560, U.S.A
| | - Robert N Trigiano
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville 37996-4560, U.S.A
| | - Fabian Runge
- Institute of Botany 210, University of Hohenheim, D-70593 Stuttgart, Germany
- Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, D-60325 Frankfurt am Main, Germany
| | - Marco Thines
- Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, D-60325 Frankfurt am Main, Germany
- Department of Life Sciences, Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, D-60323 Frankfurt am Main, Germany
| | - Sarah L Boggess
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville 37996-4560, U.S.A
| | - Jean Ristaino
- Department of Entomology and Plant Pathology, Emerging Plant Disease and Global Food Security Cluster, North Carolina State University, Raleigh 27650, U.S.A
| | - Otmar Spring
- Institute of Botany 210, University of Hohenheim, D-70593 Stuttgart, Germany
| |
Collapse
|
120
|
Integrating Earth–life systems: a geogenomic approach. Trends Ecol Evol 2022; 37:371-384. [DOI: 10.1016/j.tree.2021.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/04/2021] [Accepted: 12/08/2021] [Indexed: 12/26/2022]
|
121
|
Origin, Persistence, and Vulnerability to Climate Changes of Podocarpus Populations in Central African Mountains. FORESTS 2022. [DOI: 10.3390/f13020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background and objectives—Podocarpus latifolius (synonym of P. milanjianus) is a key tree representative of Afromontane forests where it is highly threatened by climate and land-use changes. While large populations occur in East Africa, only a few isolated and usually small populations remain in western Central Africa (Cameroon to Angola). Studying the evolutionary history of such relictual populations can thus be relevant to understand their resilience under changing environments. Materials and Methods—we developed nine polymorphic nuclear microsatellites (nSSRs) to estimate genetic variability, (historical) gene flow, and demographic changes among natural populations from Central to East Africa. Results—despite the extended distribution range of P. latifolius, a strong isolation-by-distance pattern emerges at the intra-population scale, indicating low seed and pollen dispersal capacities. Central African populations display a lower genetic diversity (He = 0.34 to 0.61) and are more differentiated from each other (FST = 0.28) than are East African populations (He = 0.65 to 0.71; FST = 0.10), suggesting high genetic drift in the Central African populations. Spatial genetic structure reveals past connections between East and West Africa but also a gene flow barrier across the equator in western Central Africa. Demographic modelling anchors the history of current lineages in the Pleistocene and supports a strong demographic decline in most western populations during the last glacial period. By contrast, no signature of demographic change was detected in East African populations. Conclusions—in Cameroon, our results exclude a recent (re)colonization from one source population of all mountain ranges, but rather indicate long-term persistence of populations in each mountain with fluctuating sizes. A higher impact of genetic drift and further loss of diversity can be expected by survival through climatically unfavorable periods in such small refugial populations. Tracking the Quaternary legacy of podocarp populations is thus essential for their conservation since there is a temporal gap between environment crises and an ecological/genetic answer at the population level.
Collapse
|
122
|
Fan D, Lei S, Liang H, Yao Q, Kou Y, Cheng S, Yang Y, Qiu Y, Zhang Z. More opportunities more species: Pleistocene differentiation and northward expansion of an evergreen broad-leaved tree species Machilus thunbergii (Lauraceae) in Southeast China. BMC PLANT BIOLOGY 2022; 22:35. [PMID: 35038992 PMCID: PMC8762935 DOI: 10.1186/s12870-021-03420-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND The broad continuum between tropical and temperate floras in Eastern Asia (EAS) are thought to be one of the main factors responsible for a prominent species diversity anomaly of temperate plants between EAS and eastern North America (ENS). However, how the broad continuum and niche evolution between tropical and temperate floras in EAS contributes to lineage divergence and species diversity remains largely unknown. RESULTS Population genetic structure, demography, and determinants of genetic structure [i.e., isolation-by-distance (IBD), isolation-by-resistance (IBR), and isolation-by-environment (IBE)] of Machilus thunbergii Sieb. et Zucc. (Lauraceae) were evaluated by examining sequence variation of ten low-copy nuclear genes across 43 populations in southeast China. Climatic niche difference and potential distributions across four periods (Current, mid-Holocene, the last glacial maximum, the last interglacial) of two genetic clusters were determined by niche modelling. North and south clusters of populations in M. thunbergii were revealed and their demarcation line corresponds well with the northern boundary of tropical zone in China of Zhu & Wan. The divergence time between the clusters and demographic expansion of M. thunbergii occurred after the mid-Pleistocene climate transition (MPT, 0.8-1.2 Ma). Migration rates between clusters were asymmetrical, being much greater from north to south than the reverse. Significant effects of IBE, but non-significant effects of IBD and IBR on population genetic divergence were detected. The two clusters have different ecological niches and require different temperature regimes. CONCLUSIONS The north-south genetic differentiation may be common across the temperate-tropical boundary in southeast China. Divergent selection under different temperature regimes (possibly above and below freezing temperature in winter) could account for this divergence pattern. The broad continuum between tropical and temperate floras in EAS may have provided ample opportunities for tropical plant lineages to acquire freezing tolerance and to colonize the temperate regions during the late-Cenozoic global cooling. Our findings shed deeper insights into the high temperate plant species diversity in EAS.
Collapse
Affiliation(s)
- Dengmei Fan
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Shuqing Lei
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Hua Liang
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Qi Yao
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yixuan Kou
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| | - Shanmei Cheng
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yi Yang
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yingxiong Qiu
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhiyong Zhang
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
123
|
Carstens BC, Smith ML, Duckett DJ, Fonseca EM, Thomé MTC. Assessing model adequacy leads to more robust phylogeographic inference. Trends Ecol Evol 2022; 37:402-410. [PMID: 35027224 DOI: 10.1016/j.tree.2021.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 11/29/2022]
Abstract
Phylogeographic studies base inferences on large data sets and complex demographic models, but these models are applied in ways that could mislead researchers and compromise their inference. Researchers face three challenges associated with the use of models: (i) 'model selection', or the identification of an appropriate model for analysis; (ii) 'evaluation of analytical results', or the interpretation of the biological significance of the resulting parameter estimates, delimitations, and topologies; and (iii) 'model evaluation', or the use of statistical approaches to assess the fit of the model to the data. The field collectively invests most of its energy in point (ii) without considering the other points; we argue that attention to points (i) and (iii) is essential to phylogeographic inference.
Collapse
Affiliation(s)
- Bryan C Carstens
- Department of Evolution, Ecology, and Organismal Biology at The Ohio State University, Columbus, OH, USA.
| | - Megan L Smith
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Drew J Duckett
- Department of Evolution, Ecology, and Organismal Biology at The Ohio State University, Columbus, OH, USA
| | - Emanuel M Fonseca
- Department of Evolution, Ecology, and Organismal Biology at The Ohio State University, Columbus, OH, USA
| | - M Tereza C Thomé
- Department of Evolution, Ecology, and Organismal Biology at The Ohio State University, Columbus, OH, USA
| |
Collapse
|
124
|
|
125
|
Invasion genomics uncover contrasting scenarios of genetic diversity in a widespread marine invader. Proc Natl Acad Sci U S A 2021; 118:2116211118. [PMID: 34911766 PMCID: PMC8713979 DOI: 10.1073/pnas.2116211118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2021] [Indexed: 01/25/2023] Open
Abstract
Invasion rates have increased in the past 100 y irrespective of international conventions. What characterizes a successful invasion event? And how does genetic diversity translate into invasion success? Employing a whole-genome perspective using one of the most successful marine invasive species world-wide as a model, we resolve temporal invasion dynamics during independent invasion events in Eurasia. We reveal complex regionally independent invasion histories including cases of recurrent translocations, time-limited translocations, and stepping-stone range expansions with severe bottlenecks within the same species. Irrespective of these different invasion dynamics, which lead to contrasting patterns of genetic diversity, all nonindigenous populations are similarly successful. This illustrates that genetic diversity, per se, is not necessarily the driving force behind invasion success. Other factors such as propagule pressure and repeated introductions are an important contribution to facilitate successful invasions. This calls into question the dominant paradigm of the genetic paradox of invasions, i.e., the successful establishment of nonindigenous populations with low levels of genetic diversity.
Collapse
|
126
|
Sherpa S, Kebaïli C, Rioux D, Guéguen M, Renaud J, Després L. Population decline at distribution margins: Assessing extinction risk in the last glacial relictual but still functional metapopulation of a European butterfly. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Stéphanie Sherpa
- Laboratoire d'Ecologie Alpine UMR CNRS‐UGA‐USMB 5553 Université Grenoble Alpes Grenoble Cedex 9 France
| | - Caroline Kebaïli
- Laboratoire d'Ecologie Alpine UMR CNRS‐UGA‐USMB 5553 Université Grenoble Alpes Grenoble Cedex 9 France
- Parc Naturel Régional du Haut Jura Lajoux France
| | - Delphine Rioux
- Laboratoire d'Ecologie Alpine UMR CNRS‐UGA‐USMB 5553 Université Grenoble Alpes Grenoble Cedex 9 France
| | - Maya Guéguen
- Laboratoire d'Ecologie Alpine UMR CNRS‐UGA‐USMB 5553 Université Grenoble Alpes Grenoble Cedex 9 France
| | - Julien Renaud
- Laboratoire d'Ecologie Alpine UMR CNRS‐UGA‐USMB 5553 Université Grenoble Alpes Grenoble Cedex 9 France
| | - Laurence Després
- Laboratoire d'Ecologie Alpine UMR CNRS‐UGA‐USMB 5553 Université Grenoble Alpes Grenoble Cedex 9 France
| |
Collapse
|
127
|
Nieto‐Blázquez ME, Quiroga MP, Premoli AC, Roncal J. Podocarpus
in the palaeogeographically complex island of Hispaniola: A stepping‐stone colonization and conservation recommendations. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- María Esther Nieto‐Blázquez
- Department of Biology Memorial University of Newfoundland St. John's NL Canada
- Molecular Ecology Group Senckenberg Biodiversity and Climate Research Centre Frankfurt am Main Germany
| | - María Paula Quiroga
- Laboratorio Ecotono INIBIOMA‐COCINET Universidad Nacional de Comahue‐CRUB Bariloche Argentina
| | - Andrea C. Premoli
- Laboratorio Ecotono INIBIOMA‐COCINET Universidad Nacional de Comahue‐CRUB Bariloche Argentina
| | - Julissa Roncal
- Department of Biology Memorial University of Newfoundland St. John's NL Canada
| |
Collapse
|
128
|
Zhao X, Fu X, Yin C, Lu F. Wheat speciation and adaptation: perspectives from reticulate evolution. ABIOTECH 2021; 2:386-402. [PMID: 36311810 PMCID: PMC9590565 DOI: 10.1007/s42994-021-00047-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022]
Abstract
Reticulate evolution through the interchanging of genetic components across organisms can impact significantly on the fitness and adaptation of species. Bread wheat (Triticum aestivum subsp. aestivum) is one of the most important crops in the world. Allopolyploid speciation, frequent hybridization, extensive introgression, and occasional horizontal gene transfer (HGT) have been shaping a typical paradigm of reticulate evolution in bread wheat and its wild relatives, which is likely to have a substantial influence on phenotypic traits and environmental adaptability of bread wheat. In this review, we outlined the evolutionary history of bread wheat and its wild relatives with a highlight on the interspecific hybridization events, demonstrating the reticulate relationship between species/subspecies in the genera Triticum and Aegilops. Furthermore, we discussed the genetic mechanisms and evolutionary significance underlying the introgression of bread wheat and its wild relatives. An in-depth understanding of the evolutionary process of Triticum species should be beneficial to future genetic study and breeding of bread wheat.
Collapse
Affiliation(s)
- Xuebo Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiangdong Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Changbin Yin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Fei Lu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
129
|
Sousa R, Vasconcelos J, Vera-Escalona I, Pinto AR, Hawkins SJ, Freitas M, Delgado J, González JA, Riera R. Pleistocene expansion, anthropogenic pressure and ocean currents: Disentangling the past and ongoing evolutionary history of Patella aspera Röding, 1798 in the archipelago of Madeira. MARINE ENVIRONMENTAL RESEARCH 2021; 172:105485. [PMID: 34715642 DOI: 10.1016/j.marenvres.2021.105485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/12/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
AIMS Rising sea-level following the Last Glacial Maximum lead to fragmentation of coastal limpet populations between islands of the Archipelago of Madeira. This fragmentation is reinforced by recent heavy exploitation reducing effective population size on Madeira Island. We use the limpet P. aspera to understand how the role of processes at different time scales (i.e. changes in the sea level and overexploitation) can influence the genetic composition of an extant species, relating these processes to reproductive phenology and seasonal shifts in ocean currents. LOCATION Madeira Island, Porto Santo and Desertas (Archipelago of Madeira, NE Atlantic Ocean). TAXON The limpet Patella aspera. METHODS Twelve microsatellite genetic markers were used. A power analysis was used to evaluate the power of the microsatellite markers to detect a signal of population differentiation. Long-term past migrations were assessed using a Bayesian Markov Montecarlo approach in the software MIGRATE-n to estimate mutation-scaled migration rates (M = m/μ; m, probability of a lineage immigrating per generation; μ, mutation rate). Two scenarios were evaluated using an Approximate Bayesian Computation (ABC) in the software DIYABC 2.1 (i) Scenario 1: considered a population scenario from a reduced Ne at time t3 to a higher Ne at time t2; and (ii) Scenario 2 considering a reduction of Ne from a time t3 to a time t2. RESULTS Colonization of the archipelago by Portuguese settlers six centuries ago probably led to an important decrease in the genetic diversity of the species (Ne). Contemporary gene flow strongly support a pattern of high asymmetric connectivity explained by the reproductive phenology of the species and spatio-temporal seasonal changes in the ocean currents. Spatio-temporal reconstructions using Bayesian methods, including coalescent and Approximate Bayesian Computation (ABC) approaches, suggest changes in the migration patterns from highly symmetric to highly asymmetric connectivity with subtle population differentiation as consequence of post-glacial maximum sea level rise during the Holocene. MAIN CONCLUSIONS Our results suggest that anthropogenic activity could have had serious effects on the genetic diversity of heavily exploited littoral species since the end of the Pleistocene, probably accelerating in recent years.
Collapse
Affiliation(s)
- Ricardo Sousa
- Observatório Oceânico da Madeira, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (OOM/ARDITI) - Edifício Madeira Tecnopolo, Funchal, Madeira, Portugal; Direção Regional do Mar (DRM)/ Direção de Serviços de Monitorização, Estudos e Investigação do Mar (DSEIMar), 9004-562, Funchal, Madeira, Portugal; MARE - Marine and Environmental Sciences Centre, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Edifício Madeira Tecnopolo Piso 0, Caminho da Penteada, 9020-105, Funchal, Madeira, Portugal
| | - Joana Vasconcelos
- MARE - Marine and Environmental Sciences Centre, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Edifício Madeira Tecnopolo Piso 0, Caminho da Penteada, 9020-105, Funchal, Madeira, Portugal; Faculdade de Ciências de Vida, Universidade da Madeira, Campus Universitário da Madeira, Caminho da Penteada, 9020-020, Funchal, Madeira, Portugal; Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile
| | - Iván Vera-Escalona
- CIBAS, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile; IU-ECOAQUA, Group of Biodiversity and Conservation (BIOCON), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Ana Rita Pinto
- Direção Regional do Mar (DRM)/ Direção de Serviços de Monitorização, Estudos e Investigação do Mar (DSEIMar), 9004-562, Funchal, Madeira, Portugal
| | - S J Hawkins
- Marine Biological Association of the UK, Plymouth, PL1 2PB, UK; School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, SO14 3ZH, UK
| | - Mafalda Freitas
- Observatório Oceânico da Madeira, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (OOM/ARDITI) - Edifício Madeira Tecnopolo, Funchal, Madeira, Portugal; Direção Regional do Mar (DRM)/ Direção de Serviços de Monitorização, Estudos e Investigação do Mar (DSEIMar), 9004-562, Funchal, Madeira, Portugal; MARE - Marine and Environmental Sciences Centre, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Edifício Madeira Tecnopolo Piso 0, Caminho da Penteada, 9020-105, Funchal, Madeira, Portugal
| | - João Delgado
- Direção Regional do Mar (DRM)/ Direção de Serviços de Monitorização, Estudos e Investigação do Mar (DSEIMar), 9004-562, Funchal, Madeira, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Porto, Portugal
| | - José A González
- Ecología Marina Aplicada y Pesquerías (i-UNAT), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Rodrigo Riera
- Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile; IU-ECOAQUA, Group of Biodiversity and Conservation (BIOCON), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
130
|
Banerjee AK, Feng H, Lin Y, Hou Z, Li W, Shao H, Luo Z, Guo W, Huang Y. Phylogeographic pattern of a cryptoviviparous mangrove, Aegiceras corniculatum, in the Indo-West Pacific, provides insights for conservation actions. PLANTA 2021; 255:7. [PMID: 34845531 DOI: 10.1007/s00425-021-03798-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
This study identified the historical geoclimatic factors which caused low genetic diversity and strong phylogeographic structure in a cryptoviviparous mangrove. The phylogeographic pattern was used to suggest conservation actions. Phylogeographic studies are used to understand the spatial distribution and evolution of genetic diversity, and have major conservation implications, especially for threatened taxa like the mangroves. This study aimed to assess the phylogeographic pattern of Aegiceras corniculatum, a cryptoviviparous mangrove, across its distribution range in the Indo-West Pacific (IWP) region. We genotyped 398 samples, collected from 37 populations, at four chloroplast DNA (cpDNA) loci, and identified the influence of historical processes on the contemporary population structure of the species. Low genetic diversity at the population level was observed. The evolutionary relationship between 12 cpDNA haplotypes suggested a strong phylogeographic structure, which was further validated by the clustering algorithms and proportioning of maximum variation among hierarchical population groups. The magnitude and direction of historical gene flow indicated that the species attained its wide distribution from its likely ancestral area of the Malay Archipelago. The divergence time estimates of the haplotypes indicated that the geoclimatic changes during the Pleistocene, especially the glacial sea-level changes and emergence of landmasses, hindered genetic exchange and created genetic differentiation between the phylogenetic groups. The species overwintered the last glacial maxima in multiple refugia in the IWP, as identified by the environmental niche modelling. Overall, our findings indicated that ancient glacial vicariance had influenced the present genetic composition of A. corniculatum, which was maintained by the current demographic features of this region. We discussed how these findings can be used to prioritize areas for conservation actions, restore disturbed habitats and prevent further genetic erosion.
Collapse
Affiliation(s)
- Achyut Kumar Banerjee
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Hui Feng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Yuting Lin
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Zhuangwei Hou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Weixi Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Huiyu Shao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Zida Luo
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Wuxia Guo
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, Guangdong, China
| | - Yelin Huang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
| |
Collapse
|
131
|
The evolutionary heritage and ecological uniqueness of Scots pine in the Caucasus ecoregion is at risk of climate changes. Sci Rep 2021; 11:22845. [PMID: 34819535 PMCID: PMC8613269 DOI: 10.1038/s41598-021-02098-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 11/08/2021] [Indexed: 12/04/2022] Open
Abstract
Scots pine is one of the most widely occurring pines, but future projections suggest a large reduction in its range, mostly at the southern European limits. A significant part of its range is located in the Caucasus, a global hot-spot of diversity. Pine forests are an important reservoir of biodiversity and endemism in this region. We explored demographic and biogeographical processes that shaped the genetic diversity of Scots pine in the Caucasus ecoregion and its probable future distribution under different climate scenarios. We found that the high genetic variability of the Caucasian populations mirrors a complex glacial and postglacial history that had a unique evolutionary trajectory compared to the main range in Europe. Scots pine currently grows under a broad spectrum of climatic conditions in the Caucasus, which implies high adaptive potential in the past. However, the current genetic resources of Scots pine are under high pressure from climate change. From our predictions, over 90% of the current distribution of Scots pine may be lost in this century. By threatening the stability of the forest ecosystems, this would dramatically affect the biodiversity of the Caucasus hot-spot.
Collapse
|
132
|
Puckett EE, Davis IS. Spatial patterns of genetic diversity in eight bear (Ursidae) species. URSUS 2021. [DOI: 10.2192/ursus-d-20-00029.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Emily E. Puckett
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA
| | - Isis S. Davis
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
133
|
Bi J, Shen W, Zhu W. Random Forest Adjustment for Approximate Bayesian Computation. J Comput Graph Stat 2021. [DOI: 10.1080/10618600.2021.1981341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jiefeng Bi
- Wang Yanan Institute for Studies in Economics (WISE), Xiamen University, Xiamen, China
| | - Weining Shen
- Department of Statistics, University of California, Irvine, CA
| | - Weixuan Zhu
- Wang Yanan Institute for Studies in Economics (WISE), Department of Statistics and Data Science, School of Economics, Xiamen University, Xiamen, China
| |
Collapse
|
134
|
Ony M, Klingeman WE, Zobel J, Trigiano RN, Ginzel M, Nowicki M, Boggess SL, Everhart S, Hadziabdic D. Genetic diversity in North American Cercis Canadensis reveals an ancient population bottleneck that originated after the last glacial maximum. Sci Rep 2021; 11:21803. [PMID: 34750401 PMCID: PMC8576035 DOI: 10.1038/s41598-021-01020-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 10/18/2021] [Indexed: 11/23/2022] Open
Abstract
Understanding of the present-day genetic diversity, population structure, and evolutionary history of tree species can inform resource management and conservation activities, including response to pressures presented by a changing climate. Cercis canadensis (Eastern Redbud) is an economically valuable understory tree species native to the United States (U.S.) that is also important for forest ecosystem and wildlife health. Here, we document and explain the population genetics and evolutionary history of this deciduous tree species across its distributed range. In this study, we used twelve microsatellite markers to investigate 691 wild-type trees sampled at 74 collection sites from 23 Eastern U.S. states. High genetic diversity and limited gene flow were revealed in wild, natural stands of C. canadensis with populations that are explained by two major genetic clusters. These findings indicate that an ancient population bottleneck occurred coinciding with the last glacial maximum (LGM) in North America. The structure in current populations likely originated from an ancient population in the eastern U.S. that survived LGM and then later diverged into two contemporary clusters. Data suggests that populations have expanded since the last glaciation event from one into several post-glacial refugia that now occupy this species’ current geographic range. Our enhanced understanding benchmarks the genetic variation preserved within this species and can direct future efforts in conservation, and resource utilization of adaptively resilient populations that present the greatest genetic and structural diversity.
Collapse
Affiliation(s)
- Meher Ony
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, USA
| | | | - John Zobel
- Department of Forest Resources, University of Minnesota, St. Paul, MN, USA
| | - Robert N Trigiano
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, USA
| | - Matthew Ginzel
- Department of Entomology, Purdue University, West Lafayette, IN, USA
| | - Marcin Nowicki
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, USA
| | - Sarah L Boggess
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, USA
| | - Sydney Everhart
- Department of Plant Pathology, University of Nebraska, Lincoln, NE, USA
| | - Denita Hadziabdic
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
135
|
Fountain-Jones NM, Smith ML, Austerlitz F. Machine learning in molecular ecology. Mol Ecol Resour 2021; 21:2589-2597. [PMID: 34738721 DOI: 10.1111/1755-0998.13532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022]
Affiliation(s)
| | - Megan L Smith
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | | |
Collapse
|
136
|
Sata H, Shimizu M, Iwasaki T, Ikeda H, Soejima A, Kozhevnikov AE, Kozhevnikova ZV, Im HT, Jang SK, Azuma T, Nagano AJ, Fujii N. Phylogeography of the East Asian grassland plant, Viola orientalis (Violaceae), inferred from plastid and nuclear restriction site-associated DNA sequencing data. JOURNAL OF PLANT RESEARCH 2021; 134:1181-1198. [PMID: 34595677 DOI: 10.1007/s10265-01339-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/18/2021] [Indexed: 05/23/2023]
Abstract
To elucidate the origin and migration history of the "Mansen elements," a group of temperate grassland plants mainly distributed in northeastern Asia, phylogeographic analyses based on chloroplast DNA markers and double-digest restriction site-associated DNA sequencing (ddRAD-seq) data were performed on Viola orientalis, one of the representative species of the group. Phylogenetic analyses using ddRAD-seq data revealed that the populations of V. orientalis were clustered into five clades, among which the continental clades made of populations from Russia and Korea diverged more than 100,000 years earlier than the Japanese clades. The Japanese clade likely diverged during the last glacial period, followed by a further post-glacial divergence into the Kyushu and the Honshu subclades. Our study demonstrated that V. orientalis originated in the continental area of northeastern Asia and, during the last glacial period, has spread southward through the Korean Peninsula across the Japanese Islands. This finding supports the previously proposed evolutionary hypothesis regarding the origin and migration routes of the Mansen elements.
Collapse
Affiliation(s)
- Haruna Sata
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo, Kumamoto, Kumamoto, 860-8555, Japan
| | - Midori Shimizu
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo, Kumamoto, Kumamoto, 860-8555, Japan
| | - Takaya Iwasaki
- Natural Science Division, Faculty of Core Research, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| | - Hajime Ikeda
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| | - Akiko Soejima
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo, Kumamoto, Kumamoto, 860-8555, Japan
| | - Andrey E Kozhevnikov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Zoya V Kozhevnikova
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Hyoung-Tak Im
- Department of Biological Science, Chonnam National University, Gwangju, 61186, South Korea
| | - Su-Kil Jang
- East Coast Research Institute of Life Science, Gangneung-Wonju National University, Jukheon-gil 7, Gangneung city, Gangwon-do, 25457, South Korea
| | - Takayuki Azuma
- Botanic Garden, Field Science Center for Northern Biosphere, Hokkaido University, N3W8, Chuo-ku, Sapporo, Hokkaido, 060-0003, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga, 520-2194, Japan
| | - Noriyuki Fujii
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo, Kumamoto, Kumamoto, 860-8555, Japan.
- Course of Biological Science, Faculty of Science, Kumamoto University, 2-39-1 Kurokami, Chuo, Kumamoto, Kumamoto, 860-8555, Japan.
| |
Collapse
|
137
|
Ledoux J, Ghanem R, Horaud M, López‐Sendino P, Romero‐Soriano V, Antunes A, Bensoussan N, Gómez‐Gras D, Linares C, Machordom A, Ocaña O, Templado J, Leblois R, Ben Souissi J, Garrabou J. Gradients of genetic diversity and differentiation across the distribution range of a Mediterranean coral: Patterns, processes and conservation implications. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Jean‐Baptiste Ledoux
- CIIMAR/CIMAR Centro Interdisciplinar de Investigação Marinha e Ambiental Universidade do Porto Porto Portugal
- Institut de Ciències del Mar CSIC Barcelona Spain
| | - Raouia Ghanem
- Institut National Agronomique de Tunisie Université de Carthage Tunis Tunisie
- Laboratoire de Biodiversité, Biotechnologies et Changements Climatiques (LR11ES09) Université Tunis El Manar Tunis Tunisie
| | | | | | | | - Agostinho Antunes
- CIIMAR/CIMAR Centro Interdisciplinar de Investigação Marinha e Ambiental Universidade do Porto Porto Portugal
- Departamento de Biologia Faculdade de Ciências Universidade do Porto Porto Portugal
| | | | | | - Cristina Linares
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals Institut de Recerca de la Biodiversitat (IRBIO) Universitat de Barcelona Barcelona Spain
| | - Annie Machordom
- Museo Nacional de Ciencias Naturales (MNCN‐CSIC) Madrid Spain
| | - Oscar Ocaña
- Departamento de Oceanografía Biológica y Biodiversidad Fundación Museo del Mar de Ceuta Ceuta Spain
| | - José Templado
- Museo Nacional de Ciencias Naturales (MNCN‐CSIC) Madrid Spain
| | - Raphaêl Leblois
- CBGP INRAE CIRAD IRD Montpellier SupAgro University of Montpellier Montpellier France
- Institut de Biologie Computationnelle University of Montpellier Montpellier France
| | - Jamila Ben Souissi
- Institut National Agronomique de Tunisie Université de Carthage Tunis Tunisie
- Laboratoire de Biodiversité, Biotechnologies et Changements Climatiques (LR11ES09) Université Tunis El Manar Tunis Tunisie
| | | |
Collapse
|
138
|
Torres L, Pante E, González‐Solís J, Viricel A, Ribout C, Zino F, MacKin W, Precheur C, Tourmetz J, Calabrese L, Militão T, Zango L, Shirihai H, Bretagnolle V. Sea surface temperature, rather than land mass or geographic distance, may drive genetic differentiation in a species complex of highly dispersive seabirds. Ecol Evol 2021; 11:14960-14976. [PMID: 34765153 PMCID: PMC8571584 DOI: 10.1002/ece3.8180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 06/27/2021] [Accepted: 07/19/2021] [Indexed: 11/09/2022] Open
Abstract
Seabirds, particularly Procellariiformes, are highly mobile organisms with a great capacity for long dispersal, though simultaneously showing high philopatry, two conflicting life-history traits that may lead to contrasted patterns of genetic population structure. Landmasses were suggested to explain differentiation patterns observed in seabirds, but philopatry, isolation by distance, segregation between breeding and nonbreeding zones, and oceanographic conditions (sea surface temperatures) may also contribute to differentiation patterns. To our knowledge, no study has simultaneously contrasted the multiple factors contributing to the diversification of seabird species, especially in the gray zone of speciation. We conducted a multilocus phylogeographic study on a widespread seabird species complex, the little shearwater complex, showing highly homogeneous morphology, which led to considerable taxonomic debate. We sequenced three mitochondrial and six nuclear markers on all extant populations from the Atlantic (lherminieri) and Indian Oceans (bailloni), that is, five nominal lineages from 13 populations, along with one population from the eastern Pacific Ocean (representing the dichrous lineage). We found sharp differentiation among populations separated by the African continent with both mitochondrial and nuclear markers, while only mitochondrial markers allowed characterizing the five nominal lineages. No differentiation could be detected within these five lineages, questioning the strong level of philopatry showed by these shearwaters. Finally, we propose that Atlantic populations likely originated from the Indian Ocean. Within the Atlantic, a stepping-stone process accounts for the current distribution. Based on our divergence time estimates, we suggest that the observed pattern of differentiation mostly resulted from historical and current variation in sea surface temperatures.
Collapse
Affiliation(s)
- Lucas Torres
- Centre d'Etudes Biologiques de ChizéUMR 7372CNRS ‐ La Rochelle UniversitéBeauvoir sur NiortFrance
- Laboratoire LIENSsUMR 7266CNRS ‐ La Rochelle UniversitéLa RochelleFrance
| | - Eric Pante
- Laboratoire LIENSsUMR 7266CNRS ‐ La Rochelle UniversitéLa RochelleFrance
| | - Jacob González‐Solís
- Department de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA)Institut de Recerca de la Biodiversitat (IRBio)Universitat de BarcelonaBarcelonaSpain
| | - Amélia Viricel
- Laboratoire LIENSsUMR 7266CNRS ‐ La Rochelle UniversitéLa RochelleFrance
| | - Cécile Ribout
- Centre d'Etudes Biologiques de ChizéUMR 7372CNRS ‐ La Rochelle UniversitéBeauvoir sur NiortFrance
| | | | - Will MacKin
- 3913 Sterling Ridge LnDurhamNorth CarolinaUSA
| | | | - Julie Tourmetz
- Société d'Etudes Ornithologiques de La RéunionSaint AndréFrance
| | - Licia Calabrese
- Island Conservation SocietyMahéSeychelles
- Faculty of Business & Sustainable DevelopmentIsland Biodiversity & Conservation CenterUniversity of SeychellesMahéSeychelles
| | - Teresa Militão
- Department de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA)Institut de Recerca de la Biodiversitat (IRBio)Universitat de BarcelonaBarcelonaSpain
| | - Laura Zango
- Department de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA)Institut de Recerca de la Biodiversitat (IRBio)Universitat de BarcelonaBarcelonaSpain
| | | | - Vincent Bretagnolle
- Centre d'Etudes Biologiques de ChizéUMR 7372CNRS ‐ La Rochelle UniversitéBeauvoir sur NiortFrance
| |
Collapse
|
139
|
Urquía D, Gutierrez B, Pozo G, Pozo MJ, Torres MDL. Origin and dispersion pathways of guava in the Galapagos Islands inferred through genetics and historical records. Ecol Evol 2021; 11:15111-15131. [PMID: 34765164 PMCID: PMC8571588 DOI: 10.1002/ece3.8193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/07/2021] [Accepted: 09/16/2021] [Indexed: 11/23/2022] Open
Abstract
Guava (Psidium guajava) is an aggressive invasive plant in the Galapagos Islands. Determining its provenance and genetic diversity could explain its adaptability and spread, and how this relates to past human activities. With this purpose, we analyzed 11 SSR markers in guava individuals from Isabela, Santa Cruz, San Cristobal, and Floreana islands in the Galapagos, as well as from mainland Ecuador. The mainland guava population appeared genetically differentiated from the Galapagos populations, with higher genetic diversity levels found in the former. We consistently found that the Central Highlands region of mainland Ecuador is one of the most likely origins of the Galapagos populations. Moreover, the guavas from Isabela and Floreana show a potential genetic input from southern mainland Ecuador, while the population from San Cristobal would be linked to the coastal mainland regions. Interestingly, the proposed origins for the Galapagos guava coincide with the first human settlings of the archipelago. Through approximate Bayesian computation, we propose a model where San Cristobal was the first island to be colonized by guava from the mainland, and then, it would have spread to Floreana and finally to Santa Cruz; Isabela would have been seeded from Floreana. An independent trajectory could also have contributed to the invasion of Floreana and Isabela. The pathway shown in our model agrees with the human colonization history of the different islands in the Galapagos. Our model, in conjunction with the clustering patterns of the individuals (based on genetic distances), suggests that guava introduction history in the Galapagos archipelago was driven by either a single event or a series of introduction events in rapid succession. We thus show that genetic analyses supported by historical sources can be used to track the arrival and spread of invasive species in novel habitats and the potential role of human activities in such processes.
Collapse
Affiliation(s)
- Diego Urquía
- Laboratorio de Biotecnología VegetalUniversidad San Francisco de Quito (USFQ)QuitoEcuador
| | - Bernardo Gutierrez
- Laboratorio de Biotecnología VegetalUniversidad San Francisco de Quito (USFQ)QuitoEcuador
- Department of ZoologyUniversity of OxfordOxfordUK
| | - Gabriela Pozo
- Laboratorio de Biotecnología VegetalUniversidad San Francisco de Quito (USFQ)QuitoEcuador
| | - Maria Jose Pozo
- Laboratorio de Biotecnología VegetalUniversidad San Francisco de Quito (USFQ)QuitoEcuador
| | - Maria de Lourdes Torres
- Laboratorio de Biotecnología VegetalUniversidad San Francisco de Quito (USFQ)QuitoEcuador
- Galapagos Science CenterUniversidad San Francisco de Quito and University of North Carolina at Chapel HillGalapagosEcuador
| |
Collapse
|
140
|
Trense D, Hoffmann AA, Fischer K. Large- and small-scale geographic structures affecting genetic patterns across populations of an Alpine butterfly. Ecol Evol 2021; 11:14697-14714. [PMID: 34765135 PMCID: PMC8571576 DOI: 10.1002/ece3.8157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 11/09/2022] Open
Abstract
Understanding factors influencing patterns of genetic diversity and the population genetic structure of species is of particular importance in the current era of global climate change and habitat loss. These factors include the evolutionary history of a species as well as heterogeneity in the environment it occupies, which in turn can change across time. Most studies investigating spatio-temporal genetic patterns have focused on patterns across wide geographic areas rather than local variation, but the latter can nevertheless be important particularly in topographically complex areas. Here, we consider these issues in the Sooty Copper butterfly (Lycaena tityrus) from the European Alps, using genome-wide SNPs identified through RADseq. We found strong genetic differentiation within the Alps with four genetic clusters, indicating western, central, and eastern refuges, and a strong reduction of genetic diversity from west to east. This reduction in diversity may suggest that the southwestern refuge was the largest one in comparison to other refuges. Also, the high genetic diversity in the west may result from (a) admixture of different western refuges, (b) more recent demographic changes, or (c) introgression of lowland L. tityrus populations. At small spatial scales, populations were structured by several landscape features and especially by high mountain ridges and large river valleys. We detected 36 outlier loci likely under altitudinal selection, including several loci related to membranes and cellular processes. We suggest that efforts to preserve alpine L. tityrus should focus on the genetically diverse populations in the western Alps, and that the dolomite populations should be treated as genetically distinct management units, since they appear to be currently more threatened than others. This study demonstrates the usefulness of SNP-based approaches for understanding patterns of genetic diversity, gene flow, and selection in a region that is expected to be particularly vulnerable to climate change.
Collapse
Affiliation(s)
- Daronja Trense
- Institute for Integrated Natural Sciences, ZoologyUniversity Koblenz‐LandauKoblenzGermany
| | - Ary A. Hoffmann
- Pest & Environmental Adaptation Research GroupSchool of BiosciencesBio21 InstituteParkvilleVic.Australia
| | - Klaus Fischer
- Institute for Integrated Natural Sciences, ZoologyUniversity Koblenz‐LandauKoblenzGermany
| |
Collapse
|
141
|
Sata H, Shimizu M, Iwasaki T, Ikeda H, Soejima A, Kozhevnikov AE, Kozhevnikova ZV, Im HT, Jang SK, Azuma T, Nagano AJ, Fujii N. Phylogeography of the East Asian grassland plant, Viola orientalis (Violaceae), inferred from plastid and nuclear restriction site-associated DNA sequencing data. JOURNAL OF PLANT RESEARCH 2021; 134:1181-1198. [PMID: 34595677 DOI: 10.1007/s10265-021-01339-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
To elucidate the origin and migration history of the "Mansen elements," a group of temperate grassland plants mainly distributed in northeastern Asia, phylogeographic analyses based on chloroplast DNA markers and double-digest restriction site-associated DNA sequencing (ddRAD-seq) data were performed on Viola orientalis, one of the representative species of the group. Phylogenetic analyses using ddRAD-seq data revealed that the populations of V. orientalis were clustered into five clades, among which the continental clades made of populations from Russia and Korea diverged more than 100,000 years earlier than the Japanese clades. The Japanese clade likely diverged during the last glacial period, followed by a further post-glacial divergence into the Kyushu and the Honshu subclades. Our study demonstrated that V. orientalis originated in the continental area of northeastern Asia and, during the last glacial period, has spread southward through the Korean Peninsula across the Japanese Islands. This finding supports the previously proposed evolutionary hypothesis regarding the origin and migration routes of the Mansen elements.
Collapse
Affiliation(s)
- Haruna Sata
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo, Kumamoto, Kumamoto, 860-8555, Japan
| | - Midori Shimizu
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo, Kumamoto, Kumamoto, 860-8555, Japan
| | - Takaya Iwasaki
- Natural Science Division, Faculty of Core Research, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| | - Hajime Ikeda
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| | - Akiko Soejima
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo, Kumamoto, Kumamoto, 860-8555, Japan
| | - Andrey E Kozhevnikov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Zoya V Kozhevnikova
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Hyoung-Tak Im
- Department of Biological Science, Chonnam National University, Gwangju, 61186, South Korea
| | - Su-Kil Jang
- East Coast Research Institute of Life Science, Gangneung-Wonju National University, Jukheon-gil 7, Gangneung city, Gangwon-do, 25457, South Korea
| | - Takayuki Azuma
- Botanic Garden, Field Science Center for Northern Biosphere, Hokkaido University, N3W8, Chuo-ku, Sapporo, Hokkaido, 060-0003, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga, 520-2194, Japan
| | - Noriyuki Fujii
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo, Kumamoto, Kumamoto, 860-8555, Japan.
- Course of Biological Science, Faculty of Science, Kumamoto University, 2-39-1 Kurokami, Chuo, Kumamoto, Kumamoto, 860-8555, Japan.
| |
Collapse
|
142
|
Zhao Z, Oosthuizen J, Heideman N. How many species does the
Psammobates tentorius
(tent tortoise) species complex (Reptilia, Testudinidae) comprise? A taxonomic solution potentially applicable to species complexes. J ZOOL SYST EVOL RES 2021. [DOI: 10.1111/jzs.12525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhongning Zhao
- Department of Zoology and Entomology University of the Free State Bloemfontein South Africa
| | - Jaco Oosthuizen
- School of Pathology University of the Free Bloemfontein South Africa
| | - Neil Heideman
- Department of Zoology and Entomology University of the Free State Bloemfontein South Africa
| |
Collapse
|
143
|
Kebaïli C, Sherpa S, Rioux D, Després L. Demographic inferences and climatic niche modelling shed light on the evolutionary history of the emblematic cold-adapted Apollo butterfly at regional scale. Mol Ecol 2021; 31:448-466. [PMID: 34687582 DOI: 10.1111/mec.16244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 11/29/2022]
Abstract
Cold-adapted species escape climate warming by latitudinal and/or altitudinal range shifts, and currently occur in Southern Europe in isolated mountain ranges within "sky islands". Here, we studied the genetic structure of the Apollo butterfly in five such sky islands (above 1,000 m) in France, and infer its demographic history since the last interglacial, using single nucleotide polymorphisms (ddRADseq SNPs). The Auvergne and Alps populations show strong genetic differentiation but not alpine massifs, although separated by deep valleys. Combining three complementary demographic inference methods and species distribution models (SDMs) we show that the LIG period was highly unfavourable for Apollo that probably survived in small population in the highest summits of Auvergne. The population shifted downslope and expanded eastward between LIG and LGM throughout the large climatically suitable Rhône valley between the glaciated summits of Auvergne and Alps. The Auvergne and Alps populations started diverging before the LGM but remained largely connected till the mid-Holocene. Population decline in Auvergne was more gradual but started before (~7 kya vs. 800 ya), and was much stronger with current population size ten times lower than in the Alps. In the Alps, the low genetic structure and limited evidence for isolation by distance suggest a nonequilibrium metapopulation functioning. The core Apollo population experienced cycles of contraction-expansion with climate fluctuations with largely interconnected populations overtime according to a "metapopulation-pulsar" functioning. This study demonstrates the power of combining demographic inferences and SDMs to determine past and future evolutionary trajectories of an endangered species at a regional scale.
Collapse
Affiliation(s)
- Caroline Kebaïli
- Laboratoire d'Ecologie Alpine (LECA), CNRS, Université Grenoble Alpes, Grenoble, France.,Parc Naturel Régional du Haut Jura, Lajoux, France
| | - Stéphanie Sherpa
- Laboratoire d'Ecologie Alpine (LECA), CNRS, Université Grenoble Alpes, Grenoble, France
| | - Delphine Rioux
- Laboratoire d'Ecologie Alpine (LECA), CNRS, Université Grenoble Alpes, Grenoble, France
| | - Laurence Després
- Laboratoire d'Ecologie Alpine (LECA), CNRS, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
144
|
Chou MH, Tseng WZ, Sang YD, Morgan B, De Vivo M, Kuan YH, Wang LJ, Chen WY, Huang JP. Incipient speciation and its impact on taxonomic decision: a case study using a sky island sister-species pair of stag beetles (Lucanidae: Lucanus). Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Species delimitation can be difficult when the divergence between focal taxa is in the incipient stage of speciation, because conflicting results are expected among different data sets, and the species limits can differ depending on the species concept applied. We studied speciation history and investigated the impact on taxonomic decision-making when using different types of data in a Taiwanese endemic sister-species pair of stag beetles, Lucanus miwai and Lucanus yulaoensis, from sky island habitats. We showed that the two geographical taxa can be diagnosed by male mandibular shape. We found two mitochondrial co1 lineages with pairwise sequence divergence > 3%; however, L. miwai might not be monophyletic. The result of our multispecies coalescent-based species delimitation using five nuclear loci supported the evolutionary independence of the two sister species, but the calculated values of the genealogical divergence index (gdi) corresponded to the ambiguous zone of species delimitation. We also showed that post-divergence gene flow is unlikely. Our study demonstrates challenges in the delineation of incipient species, but shows the importance of understanding the speciation history and adopting integrative approaches to reconcile seemingly conflicting results before making evolutionarily relevant taxonomic decisions.
Collapse
Affiliation(s)
- Ming-Hsun Chou
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Wei-Zhe Tseng
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yao-De Sang
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei, Taiwan
| | - Brett Morgan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Mattia De Vivo
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Hsiu Kuan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Liang-Jong Wang
- Division of Forest Protection, Taiwan Forestry Research Institute, Taipei, Taiwan
| | - Wei-Yun Chen
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Jen-Pan Huang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
145
|
Sun Z, Orozco-terWengel P, Chen G, Sun R, Sun L, Wang H, Shi W, Zhang B. Spatial dynamics of Chinese Muntjac related to past and future climate fluctuations. Curr Zool 2021; 67:361-370. [PMID: 34616935 PMCID: PMC8489110 DOI: 10.1093/cz/zoaa080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 12/16/2020] [Indexed: 11/23/2022] Open
Abstract
Climate fluctuations in the past and in the future are likely to result in population expansions, shifts, or the contraction of the ecological niche of many species, and potentially leading to the changes in their geographical distributions. Prediction of suitable habitats has been developed as a useful tool for the assessment of habitat suitability and resource conservation to protect wildlife. Here, we model the ancestral demographic history of the extant modern Chinese Muntjac Muntiacus reevesi populations using approximate Bayesian computation (ABC) and used the maximum entropy model to simulate the past and predict the future spatial dynamics of the species under climate oscillations. Our results indicated that the suitable habitats for the M. reevesi shifted to the Southeast and contracted during the Last Glacial Maximum, whereas they covered a broader and more northern position in the Middle Holocene. The ABC analyses revealed that the modern M. reevesi populations diverged in the Middle Holocene coinciding with the significant contraction of the highly suitable habitat areas. Furthermore, our predictions suggest that the potentially suitable environment distribution for the species will expand under all future climate scenarios. These results indicated that the M. reevesi diverged in the recent time after the glacial period and simultaneously as its habitat’s expanded in the Middle Holocene. Furthermore, the past and future climate fluctuation triggered the change of Chinese muntjac spatial distribution, which has great influence on the Chinese muntjac’s population demographic history.
Collapse
Affiliation(s)
- Zhonglou Sun
- School of Life Sciences, Anhui University, Hefei, 230601, China
| | | | - Guotao Chen
- School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Ruolei Sun
- School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Lu Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Hui Wang
- School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Wenbo Shi
- School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Baowei Zhang
- School of Life Sciences, Anhui University, Hefei, 230601, China
| |
Collapse
|
146
|
Evidence for independent domestication of sheep mtDNA lineage A in India and introduction of lineage B through Arabian sea route. Sci Rep 2021; 11:19733. [PMID: 34611177 PMCID: PMC8492717 DOI: 10.1038/s41598-021-97761-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 08/24/2021] [Indexed: 11/10/2022] Open
Abstract
India ranks the second in the world in terms of its sheep population with approximately 74.26 million represented by 44 well-described breeds in addition to several non-descript populations. Genetic diversity and phylogeography of Indian sheep breeds remain poorly understood, particularly for south Indian breeds. To have a comprehensive view of the domestication history of Indian sheep, we sequenced the mitochondrial DNA (mtDNA) control region (D-loop) and cytochrome b gene (CYTB) of 16 Indian domestic sheep breeds, most of them (13) from the south India. We analysed these sequences along with published data of domestic and wild sheep from different countries, including India. The haplotype diversity was relatively high in Indian sheep, which were classified into the three known mtDNA lineages, namely A, B and C. Lineage A was predominant among Indian sheep whereas lineages B and C were observed at low frequencies but C was restricted to the breeds of north and east India. The median joining network showed five major expanding haplogroups of lineage A (A1–A5). Out of which, A2, A4 and A5 were more frequent in Indian sheep in contrast to breeds from other parts of the world. Among the 27 Indian sheep breeds analysed, Mandya and Sonadi breeds were significantly different from other Indian breeds in the MDS analyses. This was explained by a very high contribution of lineage B into these two breeds. The Approximate Bayesian Computation (ABC) provided evidence for the domestication of lineage A sheep in the Indian subcontinent. Contrary to the current knowledge, we also found strong support for the introduction of lineage B into Indian subcontinent through sea route rather than from the Mongolian Plateau. The neighbour-joining tree of domestic and wild sheep revealed the close genetic relationship of Indian domestic sheep with Pakistani wild sheep O. vignei blanfordi. Based on our analyses and archaeological evidences, we suggest the Indian subcontinent as one of the domestication centres of the lineage A sheep, while lineage B sheep might have arrived into India from elsewhere via Arabian sea route. To the best of our knowledge, this is the first comprehensive study on Indian sheep where we have analysed more than 740 animals belonging to 27 sheep breeds raised in various regions of India. Our study provides insight into the understanding of the origin and migratory history of Indian sheep.
Collapse
|
147
|
New insights into the past and recent evolutionary history of the Corsican mouflon (Ovis gmelini musimon) to inform its conservation. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01399-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
148
|
Geographic patterns of genomic variation in the threatened Salado salamander, Eurycea chisholmensis. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01364-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
149
|
Smith MM, Gilbert JH, Olson ER, Scribner KT, Van Deelen TR, Van Stappen JF, Williams BW, Woodford JE, Pauli JN. A recovery network leads to the natural recolonization of an archipelago and a potential trailing edge refuge. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02416. [PMID: 34278627 DOI: 10.1002/eap.2416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/22/2021] [Indexed: 06/13/2023]
Abstract
Rapid environmental change is reshaping ecosystems and driving species loss globally. Carnivore populations have declined and retracted rapidly and have been the target of numerous translocation projects. Success, however, is complicated when these efforts occur in novel ecosystems. Identifying refuges, locations that are resistant to environmental change, within a translocation framework should improve population recovery and persistence. American martens (Martes americana) are the most frequently translocated carnivore in North America. As elsewhere, martens were extirpated across much of the Great Lakes region by the 1930s and, despite multiple translocations beginning in the 1950s, martens remain of regional conservation concern. Surprisingly, martens were rediscovered in 2014 on the Apostle Islands of Lake Superior after a putative absence of >40 yr. To identify the source of martens to the islands and understand connectivity of the reintroduction network, we collected genetic data on martens from the archipelago and from all regional reintroduction sites. In total, we genotyped 483 individual martens, 43 of which inhabited the Apostle Islands (densities 0.42-1.46 km-2 ). Coalescent analyses supported the contemporary recolonization of the Apostle Islands with progenitors likely originating from Michigan, which were sourced from Ontario. We also identified movements by a first-order relative between the Apostle Islands and the recovery network. We detected some regional gene flow, but in an unexpected direction: individuals moving from the islands to the mainland. Our findings suggest that the Apostle Islands were naturally recolonized by progeny of translocated individuals and now act as a source back to the reintroduction sites on the mainland. We suggest that the Apostle Islands, given its protection from disturbance, complex forest structure, and reduced carnivore competition, will act as a potential refuge for marten along their trailing range boundary and a central node for regional recovery. Our work reveals that translocations, even those occurring along southern range boundaries, can create recovery networks that function like natural metapopulations. Identifying refuges, locations that are resistant to environmental change, within these recovery networks can further improve species recovery, even within novel environments. Future translocation planning should a priori identify potential refuges and sources to improve short-term recovery and long-term persistence.
Collapse
Affiliation(s)
- Matthew M Smith
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, Wisconsin, 53706, USA
| | - Jonathan H Gilbert
- Great Lakes Indian Fish and Wildlife Commission, Odanah, Wisconsin, 54861, USA
| | - Erik R Olson
- Department of Natural Resources, Northland College, Ashland, Wisconsin, 54806, USA
| | - Kim T Scribner
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Timothy R Van Deelen
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, Wisconsin, 53706, USA
| | - Julie F Van Stappen
- Apostle Islands National Lakeshore, National Park Service, Bayfield, Wisconsin, 54814, USA
| | - Bronwyn W Williams
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, 48824, USA
- Research Laboratory, North Carolina Museum of Natural Sciences, Raleigh, North Carolina, 27699, USA
| | - James E Woodford
- Bureau of Natural Heritage Conservation, Wisconsin Department of Natural Resources, Rhinelander, Wisconsin, 54501, USA
| | - Jonathan N Pauli
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, Wisconsin, 53706, USA
| |
Collapse
|
150
|
Bilgmann K, Armansin N, Ferchaud A, Normandeau E, Bernatchez L, Harcourt R, Ahonen H, Lowther A, Goldsworthy S, Stow A. Low effective population size in the genetically bottlenecked Australian sea lion is insufficient to maintain genetic variation. Anim Conserv 2021. [DOI: 10.1111/acv.12688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- K. Bilgmann
- Department of Biological Sciences Macquarie University Sydney Australia
| | - N. Armansin
- Department of Biological Sciences Macquarie University Sydney Australia
| | - A.L. Ferchaud
- Département de Biologie Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval Québec QC Canada
| | - E. Normandeau
- Département de Biologie Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval Québec QC Canada
| | - L. Bernatchez
- Département de Biologie Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval Québec QC Canada
| | - R. Harcourt
- Department of Biological Sciences Macquarie University Sydney Australia
| | - H. Ahonen
- Department of Biological Sciences Macquarie University Sydney Australia
- Norwegian Polar Institute Tromsø Norway
| | | | - S.D. Goldsworthy
- South Australian Research and Development Institute Adelaide South Australia
| | - A. Stow
- Department of Biological Sciences Macquarie University Sydney Australia
| |
Collapse
|