101
|
Hulbert J, Elger CE, Meyer R, Surges R. Antiepileptic Drugs Impair Shortening of Isolated Cardiomyocytes. Front Neurol 2017; 8:133. [PMID: 28421035 PMCID: PMC5376916 DOI: 10.3389/fneur.2017.00133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/21/2017] [Indexed: 11/28/2022] Open
Abstract
Background Most antiepileptic drugs (AEDs) inhibit seizure generation by acting on voltage-dependent ion channels. Voltage-dependent sodium and calcium channels are commonly expressed in brain and heart, suggesting that AEDs may have considerable cardiodepressive effects, thereby facilitating sudden cardiac death as a potential cause of sudden unexpected death in epilepsy. Here, we investigated the effects of carbamazepine (CBZ), lamotrigine (LTG), and levetiracetam (LEV) alone and in combination on the shortening properties of isolated ventricular cardiomyocytes of wild-type mice. Methods Properties of murine cardiomyocytes were determined by recording the sarcomere shortening with a video imaging system before, during, and after administration of AEDs in different concentrations and combinations. We assessed (i) the number of successful shortenings during continuous electrical stimulation (electromechanical coupling) and (ii) the shortening amplitude as well as other shortening-related properties upon repetitive electrical stimulation at 4 Hz. Data are given as mean ± SEM. Results At 100 μM, CBZ (10 cells), LTG (11 cells), and LEV (11 cells) alone had no effect on the electromechanical coupling but reversibly reduced shortening amplitudes by 15 ± 4, 24 ± 3, and 11 ± 3%, respectively. Increasing the LTG concentration to 250 (21 cells) and 500 μM (4 cells) reversibly inhibited the electromechanical coupling in 62 and 100% of the experiments. Importantly, simultaneous application of CBZ, LTG, and LEV at 100 μM also impaired the electromechanical coupling in 8 of 19 cardiomyocytes (42%) and reduced the shortening amplitude by 21 ± 4%. Conclusion Our data show that AEDs reversibly impair cardiac excitation and contraction. Importantly, the blocking effect on electromechanical coupling appears to be additive when different AEDs are simultaneously applied. The translational value of these experimental findings into clinical practice is limited. Our results, however, suggest that rationale AED therapy may be important with respect to cardiac side effects and potential facilitation of serious cardiac dysfunction especially when AEDs are used in combination or at very high doses.
Collapse
Affiliation(s)
- Johanna Hulbert
- Institute of Physiology II, University Hospital Bonn, Bonn, Germany
| | | | - Rainer Meyer
- Institute of Physiology II, University Hospital Bonn, Bonn, Germany
| | - Rainer Surges
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
102
|
Vasil’ev PM, Kalitin KY, Spasov AA, Grechko OY, Poroikov VV, Filimonov DA, Anisimova VA. Prediction and Study of Anticonvulsant Properties of Benzimidazole Derivatives. Pharm Chem J 2017. [DOI: 10.1007/s11094-017-1530-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
103
|
Grewal GK, Kukal S, Kanojia N, Saso L, Kukreti S, Kukreti R. Effect of Oxidative Stress on ABC Transporters: Contribution to Epilepsy Pharmacoresistance. Molecules 2017; 22:molecules22030365. [PMID: 28264441 PMCID: PMC6155434 DOI: 10.3390/molecules22030365] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/21/2017] [Accepted: 02/23/2017] [Indexed: 01/16/2023] Open
Abstract
Epilepsy is a neurological disorder affecting around 1%–2% of population worldwide and its treatment includes use of antiepileptic drugs to control seizures. Failure to respond to antiepileptic drug therapy is a major clinical problem and over expression of ATP-binding cassette transporters is considered one of the major reasons for pharmacoresistance. In this review, we have summarized the regulation of ABC transporters in response to oxidative stress due to disease and antiepileptic drugs. Further, ketogenic diet and antioxidants were examined for their role in pharmacoresistance. The understanding of signalling pathways and mechanism involved may help in identifying potential therapeutic targets and improving drug response.
Collapse
Affiliation(s)
- Gurpreet Kaur Grewal
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, Delhi 110007, India.
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi 110007, India.
| | - Samiksha Kukal
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, Delhi 110007, India.
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi 110007, India.
| | - Neha Kanojia
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, Delhi 110007, India.
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi 110007, India.
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy.
| | - Shrikant Kukreti
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi (North Campus), Delhi 110007, India.
| | - Ritushree Kukreti
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, Delhi 110007, India.
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi 110007, India.
| |
Collapse
|
104
|
Rao G, Mashkouri S, Aum D, Marcet P, Borlongan CV. Contemplating stem cell therapy for epilepsy-induced neuropsychiatric symptoms. Neuropsychiatr Dis Treat 2017; 13:585-596. [PMID: 28260906 PMCID: PMC5328607 DOI: 10.2147/ndt.s114786] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Epilepsy is a debilitating disease that impacts millions of people worldwide. While unprovoked seizures characterize its cardinal symptom, an important aspect of epilepsy that remains to be addressed is the neuropsychiatric component. It has been documented for millennia in paintings and literature that those with epilepsy can suffer from bouts of aggression, depression, and other psychiatric ailments. Current treatments for epilepsy include the use of antiepileptic drugs and surgical resection. Antiepileptic drugs reduce the overall firing of the brain to mitigate the rate of seizure occurrence. Surgery aims to remove a portion of the brain that is suspected to be the source of aberrant firing that leads to seizures. Both options treat the seizure-generating neurological aspect of epilepsy, but fail to directly address the neuropsychiatric components. A promising new treatment for epilepsy is the use of stem cells to treat both the biological and psychiatric components. Stem cell therapy has been shown efficacious in treating experimental models of neurological disorders, including Parkinson's disease, and neuropsychiatric diseases, such as depression. Additional research is necessary to see if stem cells can treat both neurological and neuropsychiatric aspects of epilepsy. Currently, there is no animal model that recapitulates all the clinical hallmarks of epilepsy. This could be due to difficulty in characterizing the neuropsychiatric component of the disease. In advancing stem cell therapy for treating epilepsy, experimental testing of the safety and efficacy of allogeneic and autologous transplantation will require the optimization of cell dosage, delivery, and timing of transplantation in a clinically relevant model of epilepsy with both neurological and neuropsychiatric symptoms of the disease as the primary outcome measures.
Collapse
Affiliation(s)
- Gautam Rao
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Sherwin Mashkouri
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - David Aum
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Paul Marcet
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
105
|
Chouchi M, Kaabachi W, Klaa H, Tizaoui K, Turki IBY, Hila L. Relationship between ABCB1 3435TT genotype and antiepileptic drugs resistance in Epilepsy: updated systematic review and meta-analysis. BMC Neurol 2017; 17:32. [PMID: 28202008 PMCID: PMC5311838 DOI: 10.1186/s12883-017-0801-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/19/2017] [Indexed: 12/28/2022] Open
Abstract
Background Antiepileptic drugs (AEDs) are effective medications available for epilepsy. However, many patients do not respond to this treatment and become resistant. Genetic polymorphisms may be involved in the variation of AEDs response. Therefore, we conducted an updated systematic review and a meta-analysis to investigate the contribution of the genetic profile on epilepsy drug resistance. Methods We proceeded to the selection of eligible studies related to the associations of polymorphisms with resistance to AEDs therapy in epilepsy, published from January 1980 until November 2016, using Pubmed and Cochrane Library databases. The association analysis was based on pooled odds ratios (ORs) and 95% confidence intervals (CIs). Results From 640 articles, we retained 13 articles to evaluate the relationship between ATP-binding cassette sub-family C member 1 (ABCB1) C3435T polymorphism and AEDs responsiveness in a total of 454 epileptic AEDs-resistant cases and 282 AEDs-responsive cases. We found a significant association with an OR of 1.877, 95% CI 1.213–2.905. Subanalysis by genotype model showed a more significant association between the recessive model of ABCB1 C3435T polymorphism (TT vs. CC) and the risk of AEDs resistance with an OR of 2.375, 95% CI 1.775–3.178 than in the dominant one (CC vs. TT) with an OR of 1.686, 95% CI 0.877–3.242. Conclusion Our results indicate that ABCB1 C3435T polymorphism, especially TT genotype, plays an important role in refractory epilepsy. As genetic screening of this genotype may be useful to predict AEDs response before starting the treatment, further investigations should validate the association.
Collapse
Affiliation(s)
- Malek Chouchi
- Department of Genetic, Tunis El Manar University, Faculty of Medicine of Tunis, 15 Jebel Lakhdhar street, La Rabta, 1007, Tunis, Tunisia. .,Department of Child Neurology, National Institute Mongi Ben Hmida of Neurology, UR12SP24 Abnormal Movements of Neurologic Diseases, Jebel Lakhdhar street, La Rabta, 1007, Tunis, Tunisia.
| | - Wajih Kaabachi
- Division of Histology and Immunology Division, Department of Basic Sciences, Faculty of Medicine of Tunis, 15 Jebel Lakhdhar street, La Rabta, 1007, Tunis, Tunisia
| | - Hedia Klaa
- Department of Child Neurology, National Institute Mongi Ben Hmida of Neurology, UR12SP24 Abnormal Movements of Neurologic Diseases, Jebel Lakhdhar street, La Rabta, 1007, Tunis, Tunisia
| | - Kalthoum Tizaoui
- Division of Histology and Immunology Division, Department of Basic Sciences, Faculty of Medicine of Tunis, 15 Jebel Lakhdhar street, La Rabta, 1007, Tunis, Tunisia
| | - Ilhem Ben-Youssef Turki
- Department of Child Neurology, National Institute Mongi Ben Hmida of Neurology, UR12SP24 Abnormal Movements of Neurologic Diseases, Jebel Lakhdhar street, La Rabta, 1007, Tunis, Tunisia
| | - Lamia Hila
- Department of Genetic, Faculty of Medicine of Tunis, 15 Jebel Lakhdhar street, La Rabta, 1007, Tunis, Tunisia
| |
Collapse
|
106
|
Angelopoulou C, Veletza S, Heliopoulos I, Vadikolias K, Tripsianis G, Stathi C, Piperidou C. Association of SCN1A gene polymorphism with antiepileptic drug responsiveness in the population of Thrace, Greece. Arch Med Sci 2017; 13:138-147. [PMID: 28144265 PMCID: PMC5206360 DOI: 10.5114/aoms.2016.59737] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/13/2015] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION The aim was to examine the influence of the SCN1A gene polymorphism IVS5-91 rs3812718 G>A on the response to antiepileptic drugs (AEDs) in monotherapy or polytherapy. MATERIAL AND METHODS Two hundred epilepsy patients and 200 healthy subjects were genotyped for SCN1A IVS5-91 rs3812718 G>A polymorphism using TaqMan assay. Patients were divided into drug-responsive and drug-resistant patients. The drug-responsive group was further studied, comparing monotherapy in maximum and minimum doses and monotherapy-responsive and -resistant groups. RESULTS There were no statistically significant differences in the allelic frequencies and genotype distributions between patients and controls (p = 0.178). The distribution of SCN1A IVS5-91 rs3812718 G>A genotypes was similar between drug-responsive and drug-resistant patients (p = 0.463). The differences in genotype distributions (A/A or A/G vs. G/G) between monotherapy-responsive and -resistant groups were statistically significant (p = 0.021). Within the monotherapy-responsive group, patients with the A/A or A/G genotype needed higher dose AEDs than patients with the G/G genotype (p = 0.032). The relative risk for generalized epilepsy due to A-containing genotypes was of marginal statistical significance when compared with the G/G genotype (p = 0.05). CONCLUSIONS Overall, our findings demonstrate an association of SCN1A IVS5-91 rs3812718 G>A polymorphism with AED responsiveness in monotherapy without evidence of an effect on drug-resistant epilepsy.
Collapse
Affiliation(s)
| | - Stavroula Veletza
- Department of Neurology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioannis Heliopoulos
- Department of Neurology, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Grigorios Tripsianis
- Department of Neurology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Chrysa Stathi
- Department of Neurology, Democritus University of Thrace, Alexandroupolis, Greece
| | | |
Collapse
|
107
|
Golyala A, Kwan P. Drug development for refractory epilepsy: The past 25 years and beyond. Seizure 2017; 44:147-156. [DOI: 10.1016/j.seizure.2016.11.022] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/30/2016] [Indexed: 01/25/2023] Open
|
108
|
Remarkable alterations of Nav1.6 in reactive astrogliosis during epileptogenesis. Sci Rep 2016; 6:38108. [PMID: 27905510 PMCID: PMC5131488 DOI: 10.1038/srep38108] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 11/04/2016] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (VGSCs) play a vital role in controlling neuronal excitability. Nav1.6 is the most abundantly expressed VGSCs subtype in the adult central nervous system and has been found to contribute to facilitate the hyperexcitability of neurons after electrical induction of status epilepticus (SE). To clarify the exact expression patterns of Nav1.6 during epileptogenesis, we examined the expression of Nav1.6 at protein and mRNA levels in two distinct animal models of temporal lobe epilepsy (TLE) including a post-SE model induced by kainic acid (KA) intrahippocampal injection and a kindling model evoked by pentylenetetrazole (PTZ). A prominent, seizure intensity-dependent increase of Nav1.6 expression in reactive astrocytes was observed in ipsilateral hippocampus of post-SE rats, reaching the peak at 21 days after SE, a time point during the latent stage of epileptogenesis. However, Nav1.6 with low expression level was selectively expressed in the hippocampal neurons rather than astrocytes in PTZ-kindled animals. This seizure-related increase of a VGSCs subtype in reactive astrocytes after SE may represent a new mechanism for signal communication between neuron and glia in the course of epileptogenesis, facilitating the neuronal hyperexcitability.
Collapse
|
109
|
Siegrist R, Pozzi D, Jacob G, Torrisi C, Colas K, Braibant B, Mawet J, Pfeifer T, de Kanter R, Roch C, Kessler M, Corminboeuf O, Bezençon O. Structure–Activity Relationship, Drug Metabolism and Pharmacokinetics Properties Optimization, and in Vivo Studies of New Brain Penetrant Triple T-Type Calcium Channel Blockers. J Med Chem 2016; 59:10661-10675. [DOI: 10.1021/acs.jmedchem.6b01356] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Romain Siegrist
- Drug Discovery Chemistry,
Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse
16, CH-4123 Allschwil, Switzerland
| | - Davide Pozzi
- Drug Discovery Chemistry,
Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse
16, CH-4123 Allschwil, Switzerland
| | - Gaël Jacob
- Drug Discovery Chemistry,
Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse
16, CH-4123 Allschwil, Switzerland
| | - Caterina Torrisi
- Drug Discovery Chemistry,
Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse
16, CH-4123 Allschwil, Switzerland
| | - Kilian Colas
- Drug Discovery Chemistry,
Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse
16, CH-4123 Allschwil, Switzerland
| | - Bertrand Braibant
- Drug Discovery Chemistry,
Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse
16, CH-4123 Allschwil, Switzerland
| | - Jacques Mawet
- Drug Discovery Chemistry,
Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse
16, CH-4123 Allschwil, Switzerland
| | - Thomas Pfeifer
- Drug Discovery Chemistry,
Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse
16, CH-4123 Allschwil, Switzerland
| | - Ruben de Kanter
- Drug Discovery Chemistry,
Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse
16, CH-4123 Allschwil, Switzerland
| | - Catherine Roch
- Drug Discovery Chemistry,
Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse
16, CH-4123 Allschwil, Switzerland
| | - Melanie Kessler
- Drug Discovery Chemistry,
Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse
16, CH-4123 Allschwil, Switzerland
| | - Olivier Corminboeuf
- Drug Discovery Chemistry,
Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse
16, CH-4123 Allschwil, Switzerland
| | - Olivier Bezençon
- Drug Discovery Chemistry,
Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse
16, CH-4123 Allschwil, Switzerland
| |
Collapse
|
110
|
Holtkamp D, Opitz T, Niespodziany I, Wolff C, Beck H. Activity of the anticonvulsant lacosamide in experimental and human epilepsy via selective effects on slow Na+channel inactivation. Epilepsia 2016; 58:27-41. [DOI: 10.1111/epi.13602] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Dominik Holtkamp
- Department of Epileptology; Laboratory for Experimental Epileptology and Cognition Research; University of Bonn; Bonn Germany
| | - Thoralf Opitz
- Department of Epileptology; Laboratory for Experimental Epileptology and Cognition Research; University of Bonn; Bonn Germany
| | | | | | - Heinz Beck
- Department of Epileptology; Laboratory for Experimental Epileptology and Cognition Research; University of Bonn; Bonn Germany
- German Center for Neurodegenerative Diseases (DZNE); Bonn Germany
| |
Collapse
|
111
|
Wormuth C, Lundt A, Henseler C, Müller R, Broich K, Papazoglou A, Weiergräber M. Review: Ca v2.3 R-type Voltage-Gated Ca 2+ Channels - Functional Implications in Convulsive and Non-convulsive Seizure Activity. Open Neurol J 2016; 10:99-126. [PMID: 27843503 PMCID: PMC5080872 DOI: 10.2174/1874205x01610010099] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/16/2016] [Accepted: 06/24/2016] [Indexed: 11/22/2022] Open
Abstract
Background: Researchers have gained substantial insight into mechanisms of synaptic transmission, hyperexcitability, excitotoxicity and neurodegeneration within the last decades. Voltage-gated Ca2+ channels are of central relevance in these processes. In particular, they are key elements in the etiopathogenesis of numerous seizure types and epilepsies. Earlier studies predominantly targeted on Cav2.1 P/Q-type and Cav3.2 T-type Ca2+ channels relevant for absence epileptogenesis. Recent findings bring other channels entities more into focus such as the Cav2.3 R-type Ca2+ channel which exhibits an intriguing role in ictogenesis and seizure propagation. Cav2.3 R-type voltage gated Ca2+ channels (VGCC) emerged to be important factors in the pathogenesis of absence epilepsy, human juvenile myoclonic epilepsy (JME), and cellular epileptiform activity, e.g. in CA1 neurons. They also serve as potential target for various antiepileptic drugs, such as lamotrigine and topiramate. Objective: This review provides a summary of structure, function and pharmacology of VGCCs and their fundamental role in cellular Ca2+ homeostasis. We elaborate the unique modulatory properties of Cav2.3 R-type Ca2+ channels and point to recent findings in the proictogenic and proneuroapoptotic role of Cav2.3 R-type VGCCs in generalized convulsive tonic–clonic and complex-partial hippocampal seizures and its role in non-convulsive absence like seizure activity. Conclusion: Development of novel Cav2.3 specific modulators can be effective in the pharmacological treatment of epilepsies and other neurological disorders.
Collapse
Affiliation(s)
- Carola Wormuth
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Andreas Lundt
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Christina Henseler
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Ralf Müller
- Department of Psychiatry and Psychotherapy, University of Cologne, Faculty of Medicine, Cologne, Germany
| | - Karl Broich
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Anna Papazoglou
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Marco Weiergräber
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| |
Collapse
|
112
|
Malik R, Mehta P, Srivastava S, Choudhary BS, Sharma M. Pharmacophore modeling, 3D-QSAR, and in silico ADME prediction of N-pyridyl and pyrimidine benzamides as potent antiepileptic agents. J Recept Signal Transduct Res 2016; 37:259-266. [PMID: 27607834 DOI: 10.1080/10799893.2016.1217883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Biological mechanism attributing mutations in KCNQ2/Q3 results in benign familial neonatal epilepsy (BFNE), a rare form of epilepsy and thus neglected. It offers a potential target for antiepileptic drug discovery. In the present work, a pharmacophore-based 3D-QSAR model was generated for a series of N-pyridyl and pyrimidine benzamides possessing KCNQ2/Q3 opening activity. The pharmacophore model generated contains one hydrogen bond donor (D), one hydrophobic (H), and two aromatic rings (R). They are the crucial molecular write-up detailing predicted binding efficacy of high affinity and low affinity ligands for KCNQ2/Q3 opening activity. Furthermore, it has been validated by using a biological correlation between pharmacophore hypothesis-based 3D-QSAR variables and functional fingerprints of openers responsible for the receptor binding and also by docking of these benzamides into the validated homology model. Excellent statistical computational tools of QSAR model such as good correlation coefficient (R2 > 0.80), higher F value (F > 39), and excellent predictive power (Q2 > 0.7) with low standard deviation (SD <0.3) strongly suggest that the developed model could be used for prediction of antiepileptic activity of newer analogs. A preliminary pharmacokinetic profile of these derivatives was also performed on the basis of QikProp predictions.
Collapse
Affiliation(s)
- Ruchi Malik
- a Department of Pharmacy, School of Chemical Sciences and Pharmacy , Central University of Rajasthan , Kishangarh, Ajmer , Rajasthan , India
| | - Pakhuri Mehta
- a Department of Pharmacy, School of Chemical Sciences and Pharmacy , Central University of Rajasthan , Kishangarh, Ajmer , Rajasthan , India
| | - Shubham Srivastava
- a Department of Pharmacy, School of Chemical Sciences and Pharmacy , Central University of Rajasthan , Kishangarh, Ajmer , Rajasthan , India
| | - Bhanwar Singh Choudhary
- a Department of Pharmacy, School of Chemical Sciences and Pharmacy , Central University of Rajasthan , Kishangarh, Ajmer , Rajasthan , India
| | - Manish Sharma
- b School of Pharmacy , Maharishi Markandeshwar University , Sadopur, Ambala , Haryana , India
| |
Collapse
|
113
|
Talevi A. Computational approaches for innovative antiepileptic drug discovery. Expert Opin Drug Discov 2016; 11:1001-16. [DOI: 10.1080/17460441.2016.1216965] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
114
|
Stasiołek M, Romanowicz H, Połatyńska K, Chamielec M, Skalski D, Makowska M, Smolarz B. Association between C3435T polymorphism of MDR1 gene and the incidence of drug-resistant epilepsy in the population of Polish children. Behav Brain Funct 2016; 12:21. [PMID: 27391700 PMCID: PMC4938960 DOI: 10.1186/s12993-016-0106-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/04/2016] [Indexed: 11/18/2022] Open
Abstract
Purpose Epilepsy is a disease of neurological character. Approximately one third of epileptic patients demonstrate a drug-resistant phenotype, which is associated with the development of drug-resistant epilepsy. The multidrug resistance protein 1 and glycoprotein P, encoded by MDR1, play a significant role in the transmembrane transport of anti-epileptic agents. Single nucleotide polymorphism C3435T (rs1045642) within MDR1 gene may be associated with an increased expression of P-gp which affects the levels of antiepileptic drugs in plasma. The presented studies analysed the association between C3435T polymorphism of MDR1 gene and the incidence of drug-resistant epilepsy in the population of Polish children. Methods C3435T polymorphism of MDR1 gene was analysed by the high resolution melting technique in a group of patients with drug-resistant (n = 106) and drug-responsive epilepsy (n = 67), as well as in non-epileptic children (n = 98) hospitalised at the Department of Neurology, Polish Mother’s Memorial Hospital in Lodz. Genotype and allele distributions were evaluated and their compatibility with the Hardy–Weinberg distribution was assessed by means of the χ2 test. Genotype and allele evaluation, regarding their relationship with a given feature, was supported by an analysis of odds ratio and 95 % confidence interval, calculated according to the logistic regression model. Results An association was observed between the incidence rate of DRE and the presence of C allele in C3435T polymorphism of MDR1 gene, which may enhance the risk of the disease. The T allele may then play a protective role. No differences were found in the studied groups, regarding either genotype or allele distribution in reference to patient’s gender or concomitant diseases. Conclusion Following the obtained results, C3435T polymorphism of MDR1 gene may be connected with the incidence of drug-resistant epilepsy in the population of Polish children. ISRCTN ISRCTN73824458. Registered 28th September 2014.
Collapse
Affiliation(s)
- Mariusz Stasiołek
- Department of Neurology, Polish Mother's Memorial Hospital-Research Institute, Rzgowska 281/289, 93-338, Lodz, Poland
| | - Hanna Romanowicz
- Laboratory of Cancer Genetics, Department of Clinical Pathomorphology, Polish Mother's Memorial Hospital-Research Institute, Rzgowska 281/289, 93-338, Lodz, Poland
| | - Katarzyna Połatyńska
- Department of Neurology, Polish Mother's Memorial Hospital-Research Institute, Rzgowska 281/289, 93-338, Lodz, Poland
| | - Maciej Chamielec
- Department of Neurology, Polish Mother's Memorial Hospital-Research Institute, Rzgowska 281/289, 93-338, Lodz, Poland
| | - Dominik Skalski
- Department of Neurology, Regional Hospital Dr. Charles Jonscher, Milionowa 14, 93-113, Lodz, Poland
| | - Marianna Makowska
- Department of Neurology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Beata Smolarz
- Laboratory of Cancer Genetics, Department of Clinical Pathomorphology, Polish Mother's Memorial Hospital-Research Institute, Rzgowska 281/289, 93-338, Lodz, Poland.
| |
Collapse
|
115
|
Wang Y, Ying X, Chen L, Liu Y, Wang Y, Liang J, Xu C, Guo Y, Wang S, Hu W, Du Y, Chen Z. Electroresponsive Nanoparticles Improve Antiseizure Effect of Phenytoin in Generalized Tonic-Clonic Seizures. Neurotherapeutics 2016; 13:603-13. [PMID: 27137202 PMCID: PMC4965401 DOI: 10.1007/s13311-016-0431-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Previously, we developed electroresponsive hydrogel nanoparticles (ERHNPs) modified with angiopep-2 (ANG) to facilitate the delivery of the antiseizure drug phenytoin sodium (PHT). However, the electroresponsive characteristics were not verified directly in epileptic mice and the optimal preparation formula for electroresponsive ability is still unclear. Here, we further synthesized PHT-loaded ANG-ERHNPs (ANG-PHT-HNPs) and PHT-loaded nonelectroresponsive hydrogel nanoparticles (ANG-PHT-HNPs) by changing the content of sodium 4-vinylbenzene sulfonate in the preparation formulae. In vivo microdialysis analysis showed that ANG-PHT-ERHNPs not only have the characteristics of a higher distribution in the central nervous system, but also have electroresponsive ability, which resulted in a strong release of nonprotein-bound PHT during seizures. In both electrical- (maximal electrical shock) and chemical-induced (pentylenetetrazole and pilocarpine) seizure models, ANG-PHT-ERHNPs lowered the effective therapeutic doses of PHT and demonstrated the improved antiseizure effects compared with ANG-PHT-HNPs or PHT solution. These results demonstrate that ANG-ERHNPs are able to transport PHT into the brain efficiently and release them when epileptiform activity occurred, which is due to the content of sodium 4-vinylbenzene sulfonate in formula. This may change the therapeutic paradigm of existing drug treatment for epilepsy into a type of on-demand control for epilepsy in the future.
Collapse
Affiliation(s)
- Yi Wang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoying Ying
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liying Chen
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yao Liu
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Wang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiao Liang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Cenglin Xu
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Guo
- Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuang Wang
- Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiwei Hu
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhong Chen
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China.
- Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
116
|
Du C, Zheng F, Wang X. Exploring novel AEDs from drugs used for treatment of non-epileptic disorders. Expert Rev Neurother 2016; 16:449-61. [PMID: 27010915 DOI: 10.1586/14737175.2016.1158101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Epilepsy is a chronic neurological disease. Although many anti-epileptic drugs (AEDs) have been developed for clinical use, they have no effect on 20-30% of patients and do not generally prevent epileptogenesis. Because of the long development cycle for new AEDs and the high cost, increasing efforts are being made to find anti-epileptic effects among drugs that are already listed for the treatment of other diseases and repurpose them as potential anti-epileptic treatments. Here, we review the progress that has been made in this field as a result of animal and clinical trials of drugs such as rapamycin, everolimus, losartan, celecoxib, bumetanide and other non-epileptic drugs. These drugs can prevent the epileptogenesis, reduce the epileptic pathological changes, and even be used to treat intractable epilepsy. Their mechanisms of action are completely different from those of existing AEDs, prompting researchers to change their perspectives in the search for new AEDs.
Collapse
Affiliation(s)
- Chao Du
- a Department of Neurology , The First Affiliated Hospital of Chongqing Medical University , Chongqing , China
| | - Fangshuo Zheng
- a Department of Neurology , The First Affiliated Hospital of Chongqing Medical University , Chongqing , China
| | - Xuenfeng Wang
- a Department of Neurology , The First Affiliated Hospital of Chongqing Medical University , Chongqing , China
| |
Collapse
|
117
|
Piplani S, Saini V, Niraj RRK, Pushp A, Kumar A. Homology modelling and molecular docking studies of human placental cadherin protein for its role in teratogenic effects of anti-epileptic drugs. Comput Biol Chem 2015; 60:1-8. [PMID: 26625086 DOI: 10.1016/j.compbiolchem.2015.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 10/15/2015] [Accepted: 11/10/2015] [Indexed: 11/17/2022]
Abstract
Anti-epileptic drugs (AEDs) have high risk of teratogenic side effects, including neural tube defects while mother is on AEDs for her own prevention of convulsions during pregnancy. The present study investigated the interaction of major marketed AEDs and human placental (hp)-cadherin protein, in-silico, to establish the role of hp-cadherin protein in teratogenicity and also to evaluate the importance of Ca(2+) ion in functioning of the protein. A set of 21 major marketed AEDs were selected for the study and 3D-structure of hp-cadherin was constructed using homology modelling and energy minimized using MD simulations. Molecular docking studies were carried out using selected AEDs as ligand with hp-cadherin (free and bound Ca(2+) ion) to study the behavioural changes in hp-cadherin due to presence of Ca(2+) ion. The study reflected that four AEDs (Gabapentin, Pregabalin, Remacimide and Vigabatrine) had very high affinity towards hp-cadherin and thus the later may have prominent role in the teratogenic effects of these AEDs. From docking simulation analysis it was observed that Ca(2+) ion is required to make hp-cadherin energetically favourable and sterically functional.
Collapse
Affiliation(s)
- Sakshi Piplani
- Toxicology and Computational Biology Group, Centre for Bioinformatics, M.D. University, Rohtak, Haryana 124001, India
| | - Vandana Saini
- Toxicology and Computational Biology Group, Centre for Bioinformatics, M.D. University, Rohtak, Haryana 124001, India
| | - Ravi Ranjan K Niraj
- Toxicology and Computational Biology Group, Centre for Bioinformatics, M.D. University, Rohtak, Haryana 124001, India
| | - Adya Pushp
- Toxicology and Computational Biology Group, Centre for Bioinformatics, M.D. University, Rohtak, Haryana 124001, India
| | - Ajit Kumar
- Toxicology and Computational Biology Group, Centre for Bioinformatics, M.D. University, Rohtak, Haryana 124001, India.
| |
Collapse
|
118
|
Leclercq K, Kaminski RM. Status epilepticus induction has prolonged effects on the efficacy of antiepileptic drugs in the 6-Hz seizure model. Epilepsy Behav 2015; 49:55-60. [PMID: 26123104 DOI: 10.1016/j.yebeh.2015.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 06/07/2015] [Indexed: 01/09/2023]
Abstract
Several factors may influence the efficacy of antiepileptic drugs (AEDs) in patients with epilepsy, and treatment resistance could be related to genetics, neuronal network alterations, and modification of drug transporters or targets. Consequently, preclinical models used for the identification of potential new, more efficacious AEDs should reflect at least a few of these factors. Previous studies indicate that induction of status epilepticus (SE) may alter drug efficacy and that this effect could be long-lasting. In this context, we wanted to assess the protective effects of mechanistically diverse AEDs in mice subjected to pilocarpine-induced SE in another seizure model. We first determined seizure thresholds in mice subjected to pilocarpine-induced SE in the 6-Hz model, 2 weeks and 8 weeks following SE. We then evaluated the protective effects of mechanistically diverse AEDs in post-SE and control animals. No major differences in 6-Hz seizure susceptibility were observed between control groups, while the seizure threshold of pilocarpine mice at 8 weeks after SE was higher than at 2 weeks and higher than in control groups. Treatment with AEDs revealed major differences in drug response depending on their mechanism of action. Diazepam produced a dose-dependent protection against 6-Hz seizures in control and pilocarpine mice, both at 2 weeks and 8 weeks after SE, but with a more pronounced increase in potency in post-SE animals at 2 weeks. Levetiracetam induced a potent and dose-dependent protection in pilocarpine mice, 2 weeks after SE, while its protective effects were observed only at much higher doses in control mice. Its potency decreased in post-SE mice at 8 weeks and was very limited (30% protection at the highest tested dose) in the control group. Carbamazepine induced a dose-dependent protection at 2 weeks in control mice but only limited effect (50% at the highest tested dose) in pilocarpine mice. Its efficacy deeply decreased in post-SE mice at 8 weeks after SE. Perampanel and phenytoin showed almost comparable protective effects in all groups of mice. These experiments confirm that prior SE may have an impact on both potency and efficacy of AEDs and indicate that this effect may be dependent on the underlying epileptogenic processes. This article is part of a Special Issue entitled "Status Epilepticus".
Collapse
|
119
|
Löscher W. Single versus combinatorial therapies in status epilepticus: Novel data from preclinical models. Epilepsy Behav 2015; 49:20-5. [PMID: 25819944 DOI: 10.1016/j.yebeh.2015.02.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 02/22/2015] [Indexed: 12/30/2022]
Abstract
Drug-refractory status epilepticus (RSE) is a major medical emergency with a mortality of up to 40% and the risk of severe long-term consequences. The mechanisms involved in RSE are incompletely understood. Animal models are important in developing treatment strategies for more effective termination of SE and prevention of its long-term outcomes. The pilocarpine and lithium-pilocarpine rat models are widely used in this respect. In these models, resistance to diazepam and other antiseizure drugs (ASDs) develops during SE so that an SE that is longer than 30 min is difficult to suppress. Furthermore, because all ASDs used in SE treatment are much more rapidly eliminated by rodents than by humans, SE recurs several hours after ASD treatment. Long-term consequences include hippocampal damage, behavioral alterations, and epilepsy with spontaneous recurrent seizures. In this review, different rational polytherapies for SE, which are more effective than monotherapies, are discussed, including a novel polytherapy recently developed by our group. Based on data from diverse seizure models, we hypothesized that cholinergic mechanisms are involved in the mechanisms underlying ASD resistance of SE. We, therefore, developed an intravenous drug cocktail, consisting of diazepam, phenobarbital, and the anticholinergic scopolamine. This drug combination irreversibly terminated SE when administered 60, 90, or 120 min after SE onset. The efficacy of this cocktail in terminating SE was comparable with the previously reported efficacy of polytherapies with the glutamate receptor antagonist ketamine. Furthermore, when injected 60 min after SE onset, the scopolamine-containing cocktail prevented development of epilepsy and hippocampal neurodegeneration, which was not observed with high doses of diazepam or a combination of phenobarbital and diazepam. Our data add to the existing preclinical evidence that rational polytherapy can be more effective than monotherapy in the treatment of SE and that combinatorial therapy may offer a clinically useful option for the treatment of RSE. This article is part of a Special Issue entitled "Status Epilepticus".
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany.
| |
Collapse
|
120
|
van Luijtelaar G, Lüttjohann A, Makarov VV, Maksimenko VA, Koronovskii AA, Hramov AE. Methods of automated absence seizure detection, interference by stimulation, and possibilities for prediction in genetic absence models. J Neurosci Methods 2015. [PMID: 26213219 DOI: 10.1016/j.jneumeth.2015.07.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Genetic rat models for childhood absence epilepsy have become instrumental in developing theories on the origin of absence epilepsy, the evaluation of new and experimental treatments, as well as in developing new methods for automatic seizure detection, prediction, and/or interference of seizures. METHOD Various methods for automated off and on-line analyses of ECoG in rodent models are reviewed, as well as data on how to interfere with the spike-wave discharges by different types of invasive and non-invasive electrical, magnetic, and optical brain stimulation. Also a new method for seizure prediction is proposed. RESULTS Many selective and specific methods for off- and on-line spike-wave discharge detection seem excellent, with possibilities to overcome the issue of individual differences. Moreover, electrical deep brain stimulation is rather effective in interrupting ongoing spike-wave discharges with low stimulation intensity. A network based method is proposed for absence seizures prediction with a high sensitivity but a low selectivity. Solutions that prevent false alarms, integrated in a closed loop brain stimulation system open the ways for experimental seizure control. CONCLUSIONS The presence of preictal cursor activity detected with state of the art time frequency and network analyses shows that spike-wave discharges are not caused by sudden and abrupt transitions but that there are detectable dynamic events. Their changes in time-space-frequency characteristics might yield new options for seizure prediction and seizure control.
Collapse
Affiliation(s)
- Gilles van Luijtelaar
- Donders Centre for Cognition, Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
| | - Annika Lüttjohann
- Donders Centre for Cognition, Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands; Institute of Physiology I, Westfälische Wilhelms University Münster, Münster, Germany
| | - Vladimir V Makarov
- REC "Nonlinear Dynamics of Complex Systems", Saratov State Technical University, Politechnicheskaja 77, Saratov, 410028, Russia; Faculty of Nonlinear Processes, Saratov State University, Astrakhanskaya 83, Saratov, 410012, Russia
| | - Vladimir A Maksimenko
- REC "Nonlinear Dynamics of Complex Systems", Saratov State Technical University, Politechnicheskaja 77, Saratov, 410028, Russia; Faculty of Nonlinear Processes, Saratov State University, Astrakhanskaya 83, Saratov, 410012, Russia
| | - Alexei A Koronovskii
- REC "Nonlinear Dynamics of Complex Systems", Saratov State Technical University, Politechnicheskaja 77, Saratov, 410028, Russia; Faculty of Nonlinear Processes, Saratov State University, Astrakhanskaya 83, Saratov, 410012, Russia
| | - Alexander E Hramov
- REC "Nonlinear Dynamics of Complex Systems", Saratov State Technical University, Politechnicheskaja 77, Saratov, 410028, Russia; Faculty of Nonlinear Processes, Saratov State University, Astrakhanskaya 83, Saratov, 410012, Russia
| |
Collapse
|
121
|
Gurevich EV, Gurevich VV. Beyond traditional pharmacology: new tools and approaches. Br J Pharmacol 2015; 172:3229-3241. [PMID: 25572005 PMCID: PMC4500362 DOI: 10.1111/bph.13066] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/24/2014] [Accepted: 01/02/2015] [Indexed: 12/14/2022] Open
Abstract
Traditional pharmacology is defined as the science that deals with drugs and their actions. While small molecule drugs have clear advantages, there are many cases where they have proved to be ineffective, prone to unacceptable side effects, or where due to a particular disease aetiology they cannot possibly be effective. A dominant feature of the small molecule drugs is their single mindedness: they provide either continuous inhibition or continuous activation of the target. Because of that, these drugs tend to engage compensatory mechanisms leading to drug tolerance, drug resistance or, in some cases, sensitization and consequent loss of therapeutic efficacy over time and/or unwanted side effects. Here we discuss new and emerging therapeutic tools and approaches that have potential for treating the majority of disorders for which small molecules are either failing or cannot be developed. These new tools include biologics, such as recombinant hormones and antibodies, as well as approaches involving gene transfer (gene therapy and genome editing) and the introduction of specially designed self-replicating cells. It is clear that no single method is going to be a 'silver bullet', but collectively, these novel approaches hold promise for curing practically every disorder.
Collapse
Affiliation(s)
- E V Gurevich
- Department of Pharmacology, Vanderbilt UniversityNashville, TN, USA
| | - V V Gurevich
- Department of Pharmacology, Vanderbilt UniversityNashville, TN, USA
| |
Collapse
|
122
|
Sharma AK, Rani E, Waheed A, Rajput SK. Pharmacoresistant Epilepsy: A Current Update on Non-Conventional Pharmacological and Non-Pharmacological Interventions. J Epilepsy Res 2015; 5:1-8. [PMID: 26157666 PMCID: PMC4494988 DOI: 10.14581/jer.15001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 04/24/2015] [Indexed: 11/12/2022] Open
Abstract
Uncontrolled seizure or epilepsy is intricately related with an increase risk of pharmacoresistant epilepsy. The failure to achieve seizure control with the first or second drug trial of an anticonvulsant medication given at the appropriate daily dosage is termed as pharmacoresistance, despite the fact that these drugs possess different modes of action. It is one of the devastating neurological disorders act as major culprit of mortality in developed as well as developing countries with towering prevalence. Indeed, the presence of several anti-epileptic drug including carbamazepine, phenytoin, valproate, gabapentin etc. But no promising therapeutic remedies available to manage pharmacoresistance in the present clinical scenario. Hence, utility of alternative strategies in management of resistance epilepsy is increased which further possible by continuing developing of promising therapeutic interventions to manage this insidious condition adequately. Strategies include add on therapy with adenosine, verapamil etc or ketogenic diet, vagus nerve stimulation, focal cooling or standard drugs in combinations have shown some promising results. In this review we will shed light on the current pharmacological and non pharmacological mediator with their potential pleiotropic action on pharmacoresistant epilepsy.
Collapse
Affiliation(s)
- Arun Kumar Sharma
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh-201313, India
| | - Ekta Rani
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab-140401, India
| | - Abdul Waheed
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh-201313, India
| | - Satyendra K Rajput
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh-201313, India
| |
Collapse
|
123
|
Lv N, Qu J, Long H, Zhou L, Cao Y, Long L, Liu Z, Xiao B. Association study between polymorphisms in the CACNA1A, CACNA1C, and CACNA1H genes and drug-resistant epilepsy in the Chinese Han population. Seizure 2015. [PMID: 26216687 DOI: 10.1016/j.seizure.2015.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
PURPOSE As important ion channels of the central nervous system, calcium channels not only take part in epileptogenesis but also act as the targets of commonly used antiepileptic drugs (AEDs). Thus, this study aimed to provide the first investigation of the association between CACNA1A, CACNA1C, and CACNA1H single nucleotide polymorphisms (SNPs) and AED resistance in the Chinese Han population. METHODS We performed genotyping of tagging single nucleotide polymorphisms (tagSNPs) of CACNA1A, 1C and 1H in 480 Chinese epilepsy patients (288 drug-responsive and 192 drug-resistant patients). The Illumina GoldenGate BeadArray assay was used to detect the genotypes of all of the patients. A total of 15 SNPs were selected based on the HapMap database. The genotype distributions in drug-responsive and drug-resistant patients were compared, and the haplotype frequencies of each gene were calculated. RESULTS None of the 15 tagSNPs alleles were found to be associated with drug-resistant epilepsy. However, the frequency of the TAGAA haplotype in CACNA1A was significantly higher in drug-resistant patients than in drug-responsive patients after the correction of multiple comparisons with Bonferroni's method (TAGAA 13.3% vs. 7.1%, OR=2.129 [1.373-3.299], P=0.00059<0.05/10). CONCLUSIONS This study revealed no association between the 15 tagSNPs of CACNA1A, 1C, and 1H and drug efficacy in the Chinese Han population. The TAGAA haplotype of CACNA1A may be a risk factor for AED resistance.
Collapse
Affiliation(s)
- Nan Lv
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jian Qu
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University Xiangya School of Medicine, Changsha, Hunan, China
| | - Hongyu Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Luo Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yuze Cao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhaoqian Liu
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University Xiangya School of Medicine, Changsha, Hunan, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
124
|
Barker-Haliski ML, Friedman D, French JA, White HS. Disease Modification in Epilepsy: From Animal Models to Clinical Applications. Drugs 2015; 75:749-67. [DOI: 10.1007/s40265-015-0395-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
125
|
Leclercq K, Afrikanova T, Langlois M, De Prins A, Buenafe OE, Rospo CC, Van Eeckhaut A, de Witte PAM, Crawford AD, Smolders I, Esguerra CV, Kaminski RM. Cross-species pharmacological characterization of the allylglycine seizure model in mice and larval zebrafish. Epilepsy Behav 2015; 45:53-63. [PMID: 25845493 DOI: 10.1016/j.yebeh.2015.03.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 01/29/2023]
Abstract
Treatment-resistant seizures affect about a third of patients suffering from epilepsy. To fulfill the need for new medications targeting treatment-resistant seizures, a number of rodent models offer the opportunity to assess a variety of potential treatment approaches. The use of such models, however, has proven to be time-consuming and labor-intensive. In this study, we performed pharmacological characterization of the allylglycine (AG) seizure model, a simple in vivo model for which we demonstrated a high level of treatment resistance. (d,l)-Allylglycine inhibits glutamic acid decarboxylase (GAD) - the key enzyme in γ-aminobutyric acid (GABA) biosynthesis - leading to GABA depletion, seizures, and neuronal damage. We performed a side-by-side comparison of mouse and zebrafish acute AG treatments including biochemical, electrographic, and behavioral assessments. Interestingly, seizure progression rate and GABA depletion kinetics were comparable in both species. Five mechanistically diverse antiepileptic drugs (AEDs) were used. Three out of the five AEDs (levetiracetam, phenytoin, and topiramate) showed only a limited protective effect (mainly mortality delay) at doses close to the TD50 (dose inducing motor impairment in 50% of animals) in mice. The two remaining AEDs (diazepam and sodium valproate) displayed protective activity against AG-induced seizures. Experiments performed in zebrafish larvae revealed behavioral AED activity profiles highly analogous to those obtained in mice. Having demonstrated cross-species similarities and limited efficacy of tested AEDs, we propose the use of AG in zebrafish as a convenient and high-throughput model of treatment-resistant seizures.
Collapse
Affiliation(s)
| | - Tatiana Afrikanova
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| | - Melanie Langlois
- Luxembourg Center for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - An De Prins
- Center for Neurosciences, C4N, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Olivia E Buenafe
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| | - Chiara C Rospo
- Neuroscience TA, UCB Biopharma, Braine-l'Alleud, Belgium
| | - Ann Van Eeckhaut
- Luxembourg Center for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Peter A M de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| | - Alexander D Crawford
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium; Luxembourg Center for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Ilse Smolders
- Center for Neurosciences, C4N, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Camila V Esguerra
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium; Chemical Neuroscience Group, Biotechnology Centre of Oslo, University of Oslo, Oslo, Norway.
| | | |
Collapse
|
126
|
Sandow N, Kim S, Raue C, Päsler D, Klaft ZJ, Antonio LL, Hollnagel JO, Kovacs R, Kann O, Horn P, Vajkoczy P, Holtkamp M, Meencke HJ, Cavalheiro EA, Pragst F, Gabriel S, Lehmann TN, Heinemann U. Drug resistance in cortical and hippocampal slices from resected tissue of epilepsy patients: no significant impact of p-glycoprotein and multidrug resistance-associated proteins. Front Neurol 2015; 6:30. [PMID: 25741317 PMCID: PMC4332373 DOI: 10.3389/fneur.2015.00030] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/03/2015] [Indexed: 01/16/2023] Open
Abstract
Drug resistant patients undergoing epilepsy surgery have a good chance to become sensitive to anticonvulsant medication, suggesting that the resected brain tissue is responsible for drug resistance. Here, we address the question whether P-glycoprotein (Pgp) and multidrug resistance-associated proteins (MRPs) expressed in the resected tissue contribute to drug resistance in vitro. Effects of anti-epileptic drugs [carbamazepine (CBZ), sodium valproate, phenytoin] and two unspecific inhibitors of Pgp and MRPs [verapamil (VPM) and probenecid (PBN)] on seizure-like events (SLEs) induced in slices from 35 hippocampal and 35 temporal cortex specimens of altogether 51 patients (161 slices) were studied. Although in slice preparations the blood brain barrier is not functional, we found that SLEs predominantly persisted in the presence of anticonvulsant drugs (90%) and also in the presence of VPM and PBN (86%). Following subsequent co-administration of anti-epileptic drugs and drug transport inhibitors, SLEs continued in 63% of 143 slices. Drug sensitivity in slices was recognized either as transition to recurrent epileptiform transients (30%) or as suppression (7%), particularly by perfusion with CBZ in PBN containing solutions (43, 9%). Summarizing responses to co-administration from more than one slice per patient revealed that suppression of seizure-like activity in all slices was only observed in 7% of patients. Patients whose tissue was completely or partially sensitive (65%) presented with higher seizure frequencies than those with resistant tissue (35%). However, corresponding subgroups of patients do not differ with respect to expression rates of drug transporters. Our results imply that parenchymal MRPs and Pgp are not responsible for drug resistance in resected tissue.
Collapse
Affiliation(s)
- Nora Sandow
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin , Berlin , Germany ; Department of Neurosurgery, Charité Universitätsmedizin Berlin , Berlin , Germany
| | - Simon Kim
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin , Berlin , Germany
| | - Claudia Raue
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin , Berlin , Germany
| | - Dennis Päsler
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin , Berlin , Germany
| | - Zin-Juan Klaft
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin , Berlin , Germany
| | - Leandro Leite Antonio
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin , Berlin , Germany ; Laboratorio de Neurologia Experimental, Universidade Federal de São Paulo-Escola Paulista de Medicina , São Paulo , Brazil
| | - Jan Oliver Hollnagel
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin , Berlin , Germany
| | - Richard Kovacs
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin , Berlin , Germany
| | - Oliver Kann
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin , Berlin , Germany ; Institute of Physiology and Pathophysiology, University of Heidelberg , Heidelberg , Germany
| | - Peter Horn
- Department of Neurosurgery, Charité Universitätsmedizin Berlin , Berlin , Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité Universitätsmedizin Berlin , Berlin , Germany
| | - Martin Holtkamp
- Epilepsy Center of Berlin-Brandenburg, Ev. Krankenhaus Königin Elisabeth Herzberge , Berlin , Germany
| | - Heinz-Joachim Meencke
- Epilepsy Center of Berlin-Brandenburg, Ev. Krankenhaus Königin Elisabeth Herzberge , Berlin , Germany
| | - Esper A Cavalheiro
- Laboratorio de Neurologia Experimental, Universidade Federal de São Paulo-Escola Paulista de Medicina , São Paulo , Brazil
| | - Fritz Pragst
- Institute of Forensic Medicine - Forensic Toxicology, Charité Universitätsmedizin Berlin , Berlin , Germany
| | - Siegrun Gabriel
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin , Berlin , Germany
| | | | - Uwe Heinemann
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin , Berlin , Germany
| |
Collapse
|
127
|
Wang Y, Tang L, Pan J, Li J, Zhang Q, Chen B. The recessive model of MRP2 G1249A polymorphism decrease the risk of drug-resistant in Asian Epilepsy: a systematic review and meta-analysis. Epilepsy Res 2015; 112:56-63. [PMID: 25847339 DOI: 10.1016/j.eplepsyres.2015.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/20/2015] [Accepted: 02/06/2015] [Indexed: 01/16/2023]
Abstract
ABCC2 gene polymorphisms have been shown to be associated with drug-resistant epilepsy. However, the published results were controversial. To comprehensively re-evaluate the association between ABCC2 gene polymorphisms and drug-resistant epilepsy in Asian, we carried out this meta-analysis, which included eight related studies. Studies were selected using PUBMED, Web of science, the Cochrane database of system reviews and Embase. Pooled odds ratio (OR) with 95% confidence interval (CI) was used to assess the association. Studies with 1302 drug-resistant cases and 1563 drug-sensitive controls were included. No significant association was detected by combined analyses for C-24T, G-1774delG, C3972T and G2934A. However, significant association was found in recessive model for G1249A polymorphism (GG vs. GA+AA: OR=0.72, 95%CI=0.53-0.96, P=0.03), indicating the recessive model of G1249A in MRP2/ABCC2 might decrease the risk of drug resistance in Asian epilepsy.
Collapse
Affiliation(s)
- Yan Wang
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, PR China; School of Basic Medical Science, Changsha Medical University, Changsha, PR China
| | - Liang Tang
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, PR China; School of Basic Medical Science, Changsha Medical University, Changsha, PR China
| | - Jiabao Pan
- Department of Biological Science and Biotechnology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, PR China
| | - Jianming Li
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, PR China; School of Basic Medical Science, Changsha Medical University, Changsha, PR China
| | - Qingsong Zhang
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, PR China; School of Basic Medical Science, Changsha Medical University, Changsha, PR China
| | - Bifeng Chen
- Department of Biological Science and Biotechnology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, PR China.
| |
Collapse
|
128
|
Leclercq K, Kaminski RM. Genetic background of mice strongly influences treatment resistance in the 6 Hz seizure model. Epilepsia 2014; 56:310-8. [DOI: 10.1111/epi.12893] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Karine Leclercq
- UCB Biopharma SPRL; Neuroscience TA; Braine l'Alleud Belgium
| | | |
Collapse
|
129
|
Kubowicz P, Marona H, Pękala E. Synthesis, Anticonvulsant Activity and Metabolism of 4-chlor-3-methylphenoxyethylamine Derivatives ofTrans-2-aminocyclohexan-1-ol. Chirality 2014; 27:163-9. [DOI: 10.1002/chir.22406] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/14/2014] [Accepted: 10/15/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Paulina Kubowicz
- Department of Pharmaceutical Biochemistry; Faculty of Pharmacy, Jagiellonian University, Medical College; Cracow Poland
| | - Henryk Marona
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy; Jagiellonian University, Medical College; Cracow Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry; Faculty of Pharmacy, Jagiellonian University, Medical College; Cracow Poland
| |
Collapse
|
130
|
Cunliffe VT, Baines RA, Giachello CNG, Lin WH, Morgan A, Reuber M, Russell C, Walker MC, Williams RSB. Epilepsy research methods update: Understanding the causes of epileptic seizures and identifying new treatments using non-mammalian model organisms. Seizure 2014; 24:44-51. [PMID: 25457452 DOI: 10.1016/j.seizure.2014.09.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 09/23/2014] [Indexed: 12/31/2022] Open
Abstract
This narrative review is intended to introduce clinicians treating epilepsy and researchers familiar with mammalian models of epilepsy to experimentally tractable, non-mammalian research models used in epilepsy research, ranging from unicellular eukaryotes to more complex multicellular organisms. The review focuses on four model organisms: the social amoeba Dictyostelium discoideum, the roundworm Caenorhabditis elegans, the fruit fly Drosophila melanogaster and the zebrafish Danio rerio. We consider recent discoveries made with each model organism and discuss the importance of these advances for the understanding and treatment of epilepsy in humans. The relative ease with which mutations in genes of interest can be produced and studied quickly and cheaply in these organisms, together with their anatomical and physiological simplicity in comparison to mammalian species, are major advantages when researchers are trying to unravel complex disease mechanisms. The short generation times of most of these model organisms also mean that they lend themselves particularly conveniently to the investigation of drug effects or epileptogenic processes across the lifecourse.
Collapse
Affiliation(s)
- Vincent T Cunliffe
- Bateson Centre, Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom.
| | - Richard A Baines
- Faculty of Life Sciences, University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT, United Kingdom.
| | - Carlo N G Giachello
- Faculty of Life Sciences, University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Wei-Hsiang Lin
- Faculty of Life Sciences, University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Alan Morgan
- Department of Molecular and Cellular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, United Kingdom.
| | - Markus Reuber
- Academic Neurology Unit, University of Sheffield, Royal Hallamshire Hospital, Glossop Road, Sheffield S10 2JF, United Kingdom.
| | - Claire Russell
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, United Kingdom.
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, United Kingdom.
| | - Robin S B Williams
- School of Biological Sciences, Royal Holloway College, University of London, Egham Hill, Egham, Surrey TW20 0EX, United Kingdom.
| |
Collapse
|
131
|
Manna I, Gambardella A, Labate A, Mumoli L, Ferlazzo E, Pucci F, Aguglia U, Quattrone A. Polymorphism of the multidrug resistance 1 gene MDR1/ABCB1 C3435T and response to antiepileptic drug treatment in temporal lobe epilepsy. Seizure 2014; 24:124-6. [PMID: 25458099 DOI: 10.1016/j.seizure.2014.09.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 09/22/2014] [Accepted: 09/25/2014] [Indexed: 11/18/2022] Open
Abstract
PURPOSE A synonymous C to T variant at position 3435 (c.3435C>T) is one common polymorphism of the multidrug resistant 1 (MDR1) gene, which encodes the major transmembrane efflux transporter P-glycoprotein. It has been suggested that this polymorphism, and more specifically the 3435CC genotype, may be associated with the response to antiepileptic drug treatment. Here we wished to examine the role of such a candidate variant in a cohort of 175 patients (98 women and 76 men; mean ± SD age: 47.90 ± 17.64) with temporal lobe epilepsy (TLE). METHODS Patients were classified according to whether they had drug-responsive (n=134) or drug-resistant (n=41) epilepsy. We also enrolled 175 healthy controls (93 women and 82 men; mean ± SD age: 72.5 ± 6.8), matched for sex and ethnicity. RESULTS Patients and controls were genotyped for detection of the 3435C>T polymorphism, but the analysis showed no significant association between the CC genotype and the risk of drug-resistant epilepsy. CONCLUSION These findings rule out the MDR1 c.3435C>T polymorphism having a major role or increasing the risk of drug-resistance suggesting a revision is required to determine the contribution of this polymorphism in predicting drug response in epilepsy.
Collapse
Affiliation(s)
- Ida Manna
- Institute of Molecular Bioimaging and Physiology (IBFM), Section of Germaneto, National Research Council, Catanzaro, Italy
| | - Antonio Gambardella
- Institute of Neurology, University "Magna Graecia", Germaneto, Catanzaro, Italy.
| | - Angelo Labate
- Institute of Neurology, University "Magna Graecia", Germaneto, Catanzaro, Italy
| | - Laura Mumoli
- Institute of Neurology, University "Magna Graecia", Germaneto, Catanzaro, Italy
| | - Edoardo Ferlazzo
- Regional Epilepsy Centre, Hospital of Reggio Calabria, Reggio Calabria, Italy
| | - Franco Pucci
- Institute of Neurology, University "Magna Graecia", Germaneto, Catanzaro, Italy
| | - Umberto Aguglia
- Institute of Neurology, University "Magna Graecia", Germaneto, Catanzaro, Italy; Regional Epilepsy Centre, Hospital of Reggio Calabria, Reggio Calabria, Italy
| | - Aldo Quattrone
- Institute of Molecular Bioimaging and Physiology (IBFM), Section of Germaneto, National Research Council, Catanzaro, Italy; Institute of Neurology, University "Magna Graecia", Germaneto, Catanzaro, Italy
| |
Collapse
|
132
|
Margineanu DG. Systems biology, complexity, and the impact on antiepileptic drug discovery. Epilepsy Behav 2014; 38:131-42. [PMID: 24090772 DOI: 10.1016/j.yebeh.2013.08.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 08/26/2013] [Indexed: 12/16/2022]
Abstract
The number of available anticonvulsant drugs increased in the period spanning over more than a century, amounting to the current panoply of nearly two dozen so-called antiepileptic drugs (AEDs). However, none of them actually prevents/reduces the post-brain insult development of epilepsy in man, and in no less than a third of patients with epilepsy, the seizures are not drug-controlled. Plausibly, the enduring limitation of AEDs' efficacy derives from the insufficient understanding of epileptic pathology. This review pinpoints the unbalanced reductionism of the analytic approaches that overlook the intrinsic complexity of epilepsy and of the drug resistance in epilepsy as the core conceptual flaw hampering the discovery of truly antiepileptogenic drugs. A rising awareness of the complexity of epileptic pathology is, however, brought about by the emergence of nonreductionist systems biology (SB) that considers the networks of interactions underlying the normal organismic functions and of SB-based systems (network) pharmacology that aims to restore pathological networks. By now, the systems pharmacology approaches of AED discovery are fairly meager, but their forthcoming development is both a necessity and a realistic prospect, explored in this review.
Collapse
Affiliation(s)
- Doru Georg Margineanu
- Department of Neurosciences, Faculty of Medicine and Pharmacy, University of Mons, Ave. Champ de Mars 6, B-7000 Mons, Belgium.
| |
Collapse
|
133
|
Park KM, Shin KJ, Ha SY, Park J, Kim SE, Kim SE. Response to antiepileptic drugs in partial epilepsy with structural lesions on MRI. Clin Neurol Neurosurg 2014; 123:64-8. [DOI: 10.1016/j.clineuro.2014.04.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 03/21/2014] [Accepted: 04/30/2014] [Indexed: 11/26/2022]
|
134
|
Bardai A, Blom MT, van Noord C, Verhamme KM, Sturkenboom MCJM, Tan HL. Sudden cardiac death is associated both with epilepsy and with use of antiepileptic medications. Heart 2014; 101:17-22. [PMID: 25031263 DOI: 10.1136/heartjnl-2014-305664] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVE Epilepsy is associated with increased risk for sudden cardiac death (SCD). We aimed to establish, in a community based study, whether this association is mediated by epilepsy per se, use of antiepileptic medications (AEMs), or both. METHODS We studied SCD cases and age/sex matched controls in a case-control study in a large scale general practitioners' research database (n=478 661 patients). SCD risk for symptomatic epilepsy (seizure <2 years before SCD), stable epilepsy (no seizure <2 years before SCD), and use of AEMs (any indication) was determined. RESULTS We identified 926 SCD cases and 9832 controls. Fourteen cases had epilepsy. Epilepsy was associated with an increased SCD risk (cases 1.5%, controls 0.5%; adjusted OR 2.8, 95% CI 1.4 to 5.3). SCD risk was increased for symptomatic epilepsy (cases 0.9%, controls 0.1%; adjusted OR 5.8, 95% CI 2.1 to 15.6), but not with stable epilepsy (cases 0.6%, controls 0.4%; adjusted OR 1.6, 95% CI 0.7 to 4.1). AEM use was found in 23 cases and was associated with an increased SCD risk (cases 2.5%, controls 0.8%; adjusted OR overall 2.6, 95% CI 1.5 to 4.3) among symptomatic epilepsy cases (cases 0.9%, controls 0.1%; adjusted OR 6.4, 95% CI 2.4 to 17.4) and non-epilepsy cases (cases 1.0%, controls 0.4%; adjusted OR 2.3, 95% CI 1.01 to 5.2). Increased SCD risk was associated with sodium channel blocking AEMs (cases 1.6%, controls 0.4%; adjusted OR 2.8, 95% CI 1.1 to 7.2), but not with non-sodium channel blocking AEMs. Carbamazepine and gabapentin were associated with increased SCD risk (carbamazepine: cases 1.1%, controls 0.3%; adjusted OR 3.2, 95% CI 1.1 to 9.2; gabapentin: cases 0.3%, controls 0.1%; adjusted OR 5.7, 95% CI 1.2 to 27.9). CONCLUSIONS Epilepsy and AEM use are both associated with increased SCD risk in the general population. Poor seizure control contributes to increased SCD risk in epilepsy, while sodium channel blockade contributes to SCD susceptibility in AEM users.
Collapse
Affiliation(s)
- Abdennasser Bardai
- Department of Cardiology, Heart Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands Interuniversity Cardiology Institute Netherlands, Utrecht, The Netherlands Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marieke T Blom
- Department of Cardiology, Heart Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Charlotte van Noord
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Katia M Verhamme
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Miriam C J M Sturkenboom
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands Department of Medical Informatics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Hanno L Tan
- Department of Cardiology, Heart Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
135
|
Podell M. Antiepileptic drug therapy and monitoring. Top Companion Anim Med 2014; 28:59-66. [PMID: 24070683 DOI: 10.1053/j.tcam.2013.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/20/2013] [Indexed: 11/11/2022]
Abstract
Over the past 2 decades, the number of antiepileptic drugs (AEDs) available to veterinarians has grown exponentially. Coupled with this increase is the ability to rapidly and accurately diagnose underlying brain disease with readily accessible magnetic resonance imaging. As a result, the veterinary community is attuned to the need for early treatment intervention. As more treatment choices become available, the unrelenting questions still arise are when should treatment begin, which initial drug therapy is best for our patients, when should treatment changes be considered, and finally, what are the advantages that newer drugs provide for our patients. The purpose of this chapter is to review decision-making strategies for AED therapy, provide an overview of the applicability of current AED available, and present information on the therapeutic advances in epilepsy.
Collapse
Affiliation(s)
- Michael Podell
- Chicago Veterinary Neurology and Neurosurgery, Chicago Veterinary Emergency and Specialty Center, Chicago, IL, USA.
| |
Collapse
|
136
|
Salar S, Maslarova A, Lippmann K, Nichtweiss J, Weissberg I, Sheintuch L, Kunz WS, Shorer Z, Friedman A, Heinemann U. Blood-brain barrier dysfunction can contribute to pharmacoresistance of seizures. Epilepsia 2014; 55:1255-63. [PMID: 24995798 DOI: 10.1111/epi.12713] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2014] [Indexed: 11/28/2022]
Abstract
OBJECTIVE We tested the hypothesis that interstitial albumin can contribute to pharmacoresistance, which is common among patients with focal epilepsies. These patients often present with an open blood-brain barrier (BBB), resulting in diffusion of drug-binding albumin into the brain interstitial space. METHODS Seizure-like events (SLEs) induced by 100 μm 4-aminopyridine (4-AP) were monitored using extracellular field potential recordings from acute rat entorhinal cortex-hippocampus slices. Effects of standard antiepileptic drugs (phenytoin, valproic acid, carbamazepine, and phenobarbital) were studied in the presence of albumin applied acutely or by intraventricular injection. Unbound antiepileptic drugs (AEDs) were detected by ultrafiltration and high-performance liquid chromatography (HPLC). RESULTS Contrary to the absence of albumin, conventional AEDs failed to suppress SLEs in the rat entorhinal cortex in the presence of albumin. This effect was partially caused by buffering of phenytoin and carbamazepine (CBZ) by albumin. Increasing CBZ concentration from 50 μm to 100 μm resulted in block of SLEs. In slices obtained from animals that were pretreated with intraventricular albumin application 24 h prior to experiment, CBZ suppressed SLEs similar to control slices. We also found that application of serum-like electrolytes transformed SLEs into late recurrent discharges (LRDs), which were no longer responding to CBZ. SIGNIFICANCE A dysfunctional BBB with acute extravasation of serum albumin into the brain's interstitial space could contribute to pharmacoresistance. In such instances, choice of an AED with low albumin binding affinity may help in seizure control.
Collapse
Affiliation(s)
- Seda Salar
- Institute of Neurophysiology, Charite-University Medicine Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Serralheiro A, Alves G, Fortuna A, Falcão A. Intranasal administration of carbamazepine to mice: a direct delivery pathway for brain targeting. Eur J Pharm Sci 2014; 60:32-9. [PMID: 24813112 DOI: 10.1016/j.ejps.2014.04.019] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/23/2014] [Accepted: 04/28/2014] [Indexed: 01/16/2023]
Abstract
The currently available antiepileptic drugs are typically administered via oral or intravenous (IV) routes which commonly exhibit high systemic distribution into non-targeted tissues, leading to peripheral adverse effects and limited brain uptake. In order to improve the efficacy and tolerability of the antiepileptic drug therapy, alternative administration strategies have been investigated. The purpose of the present study was to assess the pharmacokinetics of carbamazepine administered via intranasal (IN) and IV routes to mice, and to investigate whether a direct transport of the drug from nose to brain could be involved. The similar pharmacokinetic profiles obtained in all matrices following both administration routes indicate that, after IN delivery, carbamazepine reaches quickly and extensively the bloodstream, achieving the brain predominantly via systemic circulation. However, the uneven biodistribution of carbamazepine through the brain regions with higher concentrations in the olfactory bulb and frontal cortex following IN instillation, in comparison with the homogenous brain distribution pattern after IV injection, strongly suggests the involvement of a direct transport of carbamazepine from nose to brain. Therefore, it seems that IN delivery represents a suitable and promising alternative route to administer carbamazepine not only for the chronically use of the drug but also in emergency conditions.
Collapse
Affiliation(s)
- Ana Serralheiro
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal
| | - Gilberto Alves
- CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal; CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - Ana Fortuna
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal
| | - Amílcar Falcão
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal
| |
Collapse
|
138
|
Haerian BS, Baum L, Kwan P, Tan HJ, Raymond AA, Mohamed Z. SCN1A, SCN2A and SCN3A gene polymorphisms and responsiveness to antiepileptic drugs: a multicenter cohort study and meta-analysis. Pharmacogenomics 2014; 14:1153-66. [PMID: 23859570 DOI: 10.2217/pgs.13.104] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Approximately a third of newly diagnosed epilepsy patients do not respond to antiepileptic drugs (AEDs). Evidence suggests that low penetrance variants in the genes of drug targets such as voltage-gated sodium channels may be involved in drug responsiveness. To examine this hypothesis, we compared data from two epilepsy cohorts from Malaysia and Hong Kong, as well as a meta-analysis from published data. MATERIALS & METHODS Genotype analysis of 39 polymorphisms located in the SCN1A, SCN2A and SCN3A genes was performed on 1504 epilepsy patients from Malaysia and Hong Kong who were receiving AEDs. Meta-analysis was performed for pooled data of SCN1A rs3812718 and rs2298771, and SCN2A rs17183814 polymorphisms. RESULTS Our data from the Hong Kong and Malaysia cohorts showed no significant allele, genotype and haplotype association of polymorphisms in the SCN1A, SCN2A, and SCN3A genes with drug responsiveness in epilepsy. This finding was supported by a meta-analysis for SCN1A rs3812718 and rs2298771, and for SCN2A rs17183814 polymorphisms. CONCLUSION Our comprehensive study suggests that common polymorphisms in SCN1A, SCN2A and SCN3A do not play major roles in influencing response to AEDs. Original submitted 11 March 2013; Revision submitted 31 May 2013.
Collapse
Affiliation(s)
- Batoul Sadat Haerian
- Pharmacogenomics Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | | | | | | | | | | |
Collapse
|
139
|
Aprotosoaie AC, Hăncianu M, Costache II, Miron A. Linalool: a review on a key odorant molecule with valuable biological properties. FLAVOUR FRAG J 2014. [DOI: 10.1002/ffj.3197] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ana Clara Aprotosoaie
- Department of Pharmacognosy, Faculty of Pharmacy; University of Medicine and Pharmacy “Grigore T. Popa”; Iasi Romania
| | - Monica Hăncianu
- Department of Pharmacognosy, Faculty of Pharmacy; University of Medicine and Pharmacy “Grigore T. Popa”; Iasi Romania
| | - Irina-Iuliana Costache
- Department of Internal Medicine, Faculty of Medicine; “Sf. Spiridon” University Hospital Iasi; Romania
| | - Anca Miron
- Department of Pharmacognosy, Faculty of Pharmacy; University of Medicine and Pharmacy “Grigore T. Popa”; Iasi Romania
| |
Collapse
|
140
|
Massot A, Vivanco R, Principe A, Roquer J, Rocamora R. Post-authorisation study of eslicarbazepine as treatment for drug-resistant epilepsy: preliminary results. NEUROLOGÍA (ENGLISH EDITION) 2014. [DOI: 10.1016/j.nrleng.2013.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
141
|
Effects of thiamine and thiamine pyrophosphate on epileptic episode model established with caffeine in rats. Epilepsy Res 2014; 108:405-10. [DOI: 10.1016/j.eplepsyres.2013.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/03/2013] [Accepted: 12/07/2013] [Indexed: 11/22/2022]
|
142
|
Chen P, Yan Q, Xu H, Lu A, Zhao P. The effects of ABCC2 G1249A polymorphism on the risk of resistance to antiepileptic drugs: a meta-analysis of the literature. Genet Test Mol Biomarkers 2013; 18:106-11. [PMID: 24325761 DOI: 10.1089/gtmb.2013.0362] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS The G1249A variant of the multidrug resistance-associated protein 2 (ABCC2) gene may be associated with the development of antiepileptic drug (AED) resistance. Although numerous studies have investigated the association between the G1249A variant and the risk of drug resistance in epilepsy, the results of these studies have been inconclusive. To assess the role of G1249A polymorphism in drug resistance in epilepsy, a meta-analysis was performed. MATERIALS AND METHODS We systematically reviewed relevant studies retrieved by the PubMed and Embase. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated based on the date extracted from the studies to evaluate the strength of association. We also analyzed the heterogeneity and sensitivity of each report and the publication bias of the studies. RESULTS A total of 6 published studies, involving 2213 patients (1100 patients with drug-resistant epilepsy and 1113 controls with drug-responsive epilepsy) were reviewed in the present meta-analysis. The overall results indicated that the variant genotypes were associated with a significantly decreased risk of AED resistance (AA vs. GG: OR=0.372, 95% CI=0.182-0.762; recessive model: OR=0.399, 95% CI=0.200-0.795) (fixed-effects model). A stratified analysis by ethnicity showed similar findings for Caucasians in an additive model (A vs. G: OR=0.700, 95% CI=0.494-0.992). CONCLUSIONS The meta-analysis suggests that the ABCC2 G1249A polymorphism is significantly associated with a decreased risk of AED resistance. However, further functional investigations are warranted to validate the association.
Collapse
Affiliation(s)
- Pin Chen
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University , Nanjing, China
| | | | | | | | | |
Collapse
|
143
|
Levetiracetam resistance: Synaptic signatures & corresponding promoter SNPs in epileptic hippocampi. Neurobiol Dis 2013; 60:115-25. [DOI: 10.1016/j.nbd.2013.08.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/22/2013] [Accepted: 08/27/2013] [Indexed: 01/16/2023] Open
|
144
|
Seven M, Batar B, Unal S, Yesil G, Yuksel A, Guven M. The drug-transporter gene MDR1 C3435T and G2677T/A polymorphisms and the risk of multidrug-resistant epilepsy in Turkish children. Mol Biol Rep 2013; 41:331-6. [PMID: 24213830 PMCID: PMC3877425 DOI: 10.1007/s11033-013-2866-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 11/05/2013] [Indexed: 12/21/2022]
Abstract
One-third of all individuals with epilepsy are resistant to antiepileptic drug (AED) treatment. Antiepileptic treatment response has been suggested to be modulated by genetic polymorphisms of drug efflux transporters. Several polymorphic variants within the multidrug resistance 1 (MDR1) gene, which encodes the major transmembrane efflux transporter P-glycoprotein, have been proposed to be associated with AED resistance in epilepsy patients. The aim of this study was to evaluate the effect of C3435T and G2677T/A polymorphisms of MDR1 on AED resistance in Turkish children with epilepsy. MDR1 C3435T and G2677T/A were genotyped in 152 patients with epilepsy, classified as drug-resistant in 69 and drug-responsive in 83. Genotypes of the C3435T and G2677T/A polymorphisms were determined by polymerase chain reaction followed by restriction fragment length polymorphism. Genotype and allele frequencies of C3435T and G2677T/A polymorphisms of the MDR1 gene did not differ between drug-resistant and drug-responsive epilepsy patients. Our results suggest that MDR1 C3435T and G2677T/A polymorphisms are not associated with AED resistance in Turkish epileptic patients. To clarify the exact clinical implication of the MDR1 polymorphisms on the multidrug resistance in epilepsy, further investigations in various ethnic populations would be necessary.
Collapse
Affiliation(s)
- Mehmet Seven
- Department of Medical Genetics, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
145
|
Löscher W, Klitgaard H, Twyman RE, Schmidt D. New avenues for anti-epileptic drug discovery and development. Nat Rev Drug Discov 2013; 12:757-76. [DOI: 10.1038/nrd4126] [Citation(s) in RCA: 424] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
146
|
Neuropathology of the blood-brain barrier in epilepsy: support to the transport hypothesis of pharmacoresistance. Epilepsy Curr 2013; 13:169-71. [PMID: 24009480 DOI: 10.5698/1535-7597-13.4.169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
147
|
Wong AD, Ye M, Levy AF, Rothstein JD, Bergles DE, Searson PC. The blood-brain barrier: an engineering perspective. FRONTIERS IN NEUROENGINEERING 2013; 6:7. [PMID: 24009582 PMCID: PMC3757302 DOI: 10.3389/fneng.2013.00007] [Citation(s) in RCA: 419] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 08/07/2013] [Indexed: 12/03/2022]
Abstract
It has been more than 100 years since Paul Ehrlich reported that various water-soluble dyes injected into the circulation did not enter the brain. Since Ehrlich's first experiments, only a small number of molecules, such as alcohol and caffeine have been found to cross the blood-brain barrier, and this selective permeability remains the major roadblock to treatment of many central nervous system diseases. At the same time, many central nervous system diseases are associated with disruption of the blood-brain barrier that can lead to changes in permeability, modulation of immune cell transport, and trafficking of pathogens into the brain. Therefore, advances in our understanding of the structure and function of the blood-brain barrier are key to developing effective treatments for a wide range of central nervous system diseases. Over the past 10 years it has become recognized that the blood-brain barrier is a complex, dynamic system that involves biomechanical and biochemical signaling between the vascular system and the brain. Here we reconstruct the structure, function, and transport properties of the blood-brain barrier from an engineering perspective. New insight into the physics of the blood-brain barrier could ultimately lead to clinical advances in the treatment of central nervous system diseases.
Collapse
Affiliation(s)
- Andrew D. Wong
- Department of Materials Science and Engineering, Johns Hopkins UniversityBaltimore, MD, USA
- Institute for Nanobiotechnology, Johns Hopkins UniversityBaltimore, MD, USA
| | - Mao Ye
- Department of Materials Science and Engineering, Johns Hopkins UniversityBaltimore, MD, USA
- Institute for Nanobiotechnology, Johns Hopkins UniversityBaltimore, MD, USA
| | - Amanda F. Levy
- Department of Materials Science and Engineering, Johns Hopkins UniversityBaltimore, MD, USA
- Institute for Nanobiotechnology, Johns Hopkins UniversityBaltimore, MD, USA
| | - Jeffrey D. Rothstein
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins UniversityBaltimore, MD, USA
- Brain Sciences Institute, Johns Hopkins UniversityBaltimore, MD, USA
| | - Dwight E. Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins UniversityBaltimore, MD, USA
| | - Peter C. Searson
- Department of Materials Science and Engineering, Johns Hopkins UniversityBaltimore, MD, USA
- Institute for Nanobiotechnology, Johns Hopkins UniversityBaltimore, MD, USA
| |
Collapse
|
148
|
Stępień KM, Tomaszewski M, Tomaszewska J, Czuczwar SJ. The multidrug transporter P-glycoprotein in pharmacoresistance to antiepileptic drugs. Pharmacol Rep 2013; 64:1011-9. [PMID: 23238460 DOI: 10.1016/s1734-1140(12)70900-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 06/08/2012] [Indexed: 01/16/2023]
Abstract
This review provides an overview of the knowledge on P-glycoprotein (P-gp) and its role as a membrane transporter in drug resistance in epilepsy and drug interactions. Overexpression of P-gp, encoded by the ABCB1 gene, is involved in resistance to antiepileptic drugs (AEDs), limits gastrointestinal absorption and brain access of AEDs. Although several association studies on ABCB1 gene with drug disposition and disease susceptibility are completed to date, the data remain unclear and incongruous. Although the literature describes other multidrug resistance transporters, P-gp is the main extensively studied drug efflux transporter in epilepsy.
Collapse
Affiliation(s)
- Karolina M Stępień
- Clinical Biochemistry and Metabolic Medicine Department, Central Manchester Foundation Trust, Oxford Road, M13 9WL Manchester, UK
| | | | | | | |
Collapse
|
149
|
Rogawski MA. The intrinsic severity hypothesis of pharmacoresistance to antiepileptic drugs. Epilepsia 2013; 54 Suppl 2:33-40. [PMID: 23646969 DOI: 10.1111/epi.12182] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Pharmacoresistance to antiepileptic drugs (AEDs) is a barrier to seizure freedom for many persons with epilepsy. For nearly two decades, pharmacoresistance has been framed in terms of factors affecting the access of AEDs to their molecular targets in the brain or the actions of the drugs on these targets. Shortcomings in this prevailing view led to the formulation of the intrinsic severity hypothesis of pharmacoresistance to AEDs, which is based on the recognition that there are neurobiologic factors that confer phenotypic variation among individuals with etiologically similar forms of epilepsy and postulates that more severe epilepsy is more difficult to treat with AEDs. In recent years, progress has been made identifying potential genetic mechanisms of variation in epilepsy severity, including subclinical mutations in ion channels that increase or reduce epilepsy severity in mice. Efforts are underway to identify clinically important genetic modifiers. If it can be demonstrated that such severity factors play a role in pharmacoresistance, treatments could be devised to reverse severity mechanisms. By overcoming pharmacoresistance, this new approach to epilepsy therapy may allow drug refractory patients to achieve seizure freedom without side effects.
Collapse
Affiliation(s)
- Michael A Rogawski
- Department of Neurology, School of Medicine and Center for Neuroscience, University of California, Davis, Sacramento, California 95817, USA.
| |
Collapse
|
150
|
Kobow K, El-Osta A, Blümcke I. The methylation hypothesis of pharmacoresistance in epilepsy. Epilepsia 2013; 54 Suppl 2:41-7. [PMID: 23646970 DOI: 10.1111/epi.12183] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Seizures cannot be medically controlled in approximately 40% of people with epilepsy. Although we are beginning to understand how to better treat certain seizure types, we still do not know the regulatory events that determine antiepileptic drug resistance. Proposed pathoetiologic mechanisms include altered expression of drug targets (i.e., receptor or ion channel modifications), endothelial drug transporter activation (i.e., increasing drug clearance), or intrinsic severity factors. The latter hypothesis results from an often confirmed clinical observation, that seizure severity is a reliable predictor for the development of pharmacoresistance (PR) in epilepsy. Herein, we propose, that genome modifications that do not involve changes to the DNA sequence per se (i.e., epigenetic changes) could confer PR in patients with epilepsy. Seizures cause excessive neuronal membrane depolarization, which can influence the cellular nucleus; we thus hypothesize that seizures can mediate epigenetic modifications that result in persistent genomic methylation, histone density, and posttranslational modifications, as well as noncoding RNA-based changes. Although experimental evidence is lacking in epilepsy, such mechanisms are well characterized in cancer, either as a result of anticancer drugs themselves or cancer-related intrinsic signals (i.e., noncoding RNAs). We suggest that similar mechanisms also play a role in PR epilepsies. Addressing such epigenetic mechanisms may be a successful strategy to increase the brain's sensitivity to antiepileptic drugs and may even act as disease-modifying treatment.
Collapse
Affiliation(s)
- Katja Kobow
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | | | | |
Collapse
|