101
|
Chaudhry SR, Stoffel-Wagner B, Kinfe TM, Güresir E, Vatter H, Dietrich D, Lamprecht A, Muhammad S. Elevated Systemic IL-6 Levels in Patients with Aneurysmal Subarachnoid Hemorrhage Is an Unspecific Marker for Post-SAH Complications. Int J Mol Sci 2017; 18:ijms18122580. [PMID: 29194369 PMCID: PMC5751183 DOI: 10.3390/ijms18122580] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 12/31/2022] Open
Abstract
Background: Aneurysmal subarachnoid hemorrhage (aSAH) is still a fatal and morbid disease, although bleeding aneurysms can be secured in almost all cases. Occurrence of post-SAH complications including cerebral vasospasm, delayed cerebral ischemia, hydrocephalus, epilepsy, and infections are the main determinants of clinical outcome. Hence, it is important to search for early predictors for specific post-SAH complications to treat these complications properly. Both cellular and molecular (cytokines) inflammation play a key role after aSAH during the phase of occurrence of post-SAH complications. Interleukin-6 (IL-6) is a well-known cytokine that has been extensively analyzed in cerebrospinal fluid (CSF) of patients after aSAH, but detailed studies exploring the role of systemic IL-6 in aSAH associated complications and its impact on early clinical outcome prediction are lacking. The current study aims to analyze the systemic IL-6 levels over two weeks after bleeding and its role in post-SAH complications. Methods: We recruited 80 aSAH patients prospectively who underwent peripheral venous blood withdrawal in serum gel tubes. The blood was centrifuged to harvest the serum, which was immediately frozen at −80 °C until analysis. Serum IL-6 levels were quantified using Immulite immunoassay system. Patient records including age, gender, post-SAH complications, aneurysm treatment, and clinical outcome (modified Rankin scale and Glasgow outcome scale) were retrieved to allow different subgroup analysis. Results: Serum IL-6 levels were significantly raised after aSAH compared to healthy controls over the first two weeks after hemorrhage. Serum IL-6 levels were found to be significantly elevated in aSAH patients presenting with higher Hunt and Hess grades, increasing age, and both intraventricular and intracerebral hemorrhage. Interestingly, serum IL-6 was also significantly raised in aSAH patients who developed seizures, cerebral vasospasm (CVS), and chronic hydrocephalus. IL-6 levels were sensitive to the development of infections and showed an increase in patients who developed pneumoniae. Intriguingly, we found a delayed increase in serum IL-6 in patients developing cerebral infarction. Finally, IL-6 levels were significantly higher in patients presenting with poor clinical outcome in comparison to good clinical outcome at discharge from hospital. Conclusion: Serum IL-6 levels were elevated early after aSAH and remained high over the two weeks after initial bleeding. Serum IL-6 was elevated in different aSAH associated complications, acting as a non-specific marker for post-SAH complications and an important biomarker for clinical outcome at discharge.
Collapse
Affiliation(s)
- Shafqat Rasul Chaudhry
- Department of Neurosurgery, University Hospital Bonn, D-53127 Bonn, Germany.
- Department of Pharmaceutics, University of Bonn, D-53121 Bonn, Germany.
| | - Birgit Stoffel-Wagner
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, D-53127 Bonn, Germany.
| | - Thomas Mehari Kinfe
- Department of Neurosurgery, University Hospital Bonn, D-53127 Bonn, Germany.
| | - Erdem Güresir
- Department of Neurosurgery, University Hospital Bonn, D-53127 Bonn, Germany.
| | - Hartmut Vatter
- Department of Neurosurgery, University Hospital Bonn, D-53127 Bonn, Germany.
| | - Dirk Dietrich
- Department of Neurosurgery, University Hospital Bonn, D-53127 Bonn, Germany.
| | - Alf Lamprecht
- Department of Pharmaceutics, University of Bonn, D-53121 Bonn, Germany.
| | - Sajjad Muhammad
- Department of Neurosurgery, University Hospital Bonn, D-53127 Bonn, Germany.
| |
Collapse
|
102
|
Jalsrai A, Reinhold A, Becker A. EthanolIris tenuifoliaextract reduces brain damage in a mouse model of cerebral ischaemia. Phytother Res 2017; 32:333-339. [DOI: 10.1002/ptr.5981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/21/2017] [Accepted: 10/18/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Aldarmaa Jalsrai
- Institute of Traditional Medicine and Technology; Ministry of Education, Culture, Science, and Sports; 17041 Ulaanbaatar Mongolia
| | - Annegret Reinhold
- Institute of Molecular and Clinical Immunology, Faculty of Medicine; Otto von Guericke University; Leipziger Strasse 44 39120 Magdeburg Germany
| | - Axel Becker
- Institute of Pharmacology and Toxicology, Faculty of Medicine; Otto von Guericke University; Leipziger Strasse 44 39120 Magdeburg Germany
| |
Collapse
|
103
|
Hermanto Y, Sunohara T, Faried A, Takagi Y, Takahashi J, Maki T, Miyamoto S. Transplantation of feeder-free human induced pluripotent stem cell-derived cortical neuron progenitors in adult male Wistar rats with focal brain ischemia. J Neurosci Res 2017; 96:863-874. [PMID: 29110329 DOI: 10.1002/jnr.24197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/18/2017] [Accepted: 10/18/2017] [Indexed: 12/24/2022]
Abstract
The use of human induced pluripotent stem cells (hiPSCs) eliminates the ethical issues associated with fetal or embryonic materials, thus allowing progress in cell therapy research for ischemic stroke. Strict regulation of cell therapy development requires the xeno-free condition to eliminate clinical complications. Maintenance of hiPSCs with feeder-free condition presents a higher degree of spontaneous differentiation in comparison with conventional cultures. Therefore, feeder-free derivation might be not ideal for developing transplantable hiPSC derivatives. We developed the feeder-free condition for differentiation of cortical neurons from hiPSCs. Then, we evaluated the cells' characteristics upon transplantation into the sham and focal brain ischemia on adult male Wistar rats. Grafts in lesioned brains demonstrated polarized reactivity toward the ischemic border, indicated by directional preferences in axonal outgrowth and cellular migration, with no influence on graft survival. Following the transplantation, forelimb asymmetry was better restored compared with controls. Herein, we provide evidence to support the use of the xeno-free condition for the development of cell therapy for ischemic stroke.
Collapse
Affiliation(s)
- Yulius Hermanto
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Clinical Application, Center of iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,Department of Neurosurgery, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Tadashi Sunohara
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Clinical Application, Center of iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Ahmad Faried
- Department of Neurosurgery, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Yasushi Takagi
- Department of Neurosurgery, Institute of Biological Sciences, Tokushima University, Tokushima, Japan
| | - Jun Takahashi
- Department of Clinical Application, Center of iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Takakuni Maki
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
104
|
Grønhøj MH, Clausen BH, Fenger CD, Lambertsen KL, Finsen B. Beneficial potential of intravenously administered IL-6 in improving outcome after murine experimental stroke. Brain Behav Immun 2017; 65:296-311. [PMID: 28587928 DOI: 10.1016/j.bbi.2017.05.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/18/2017] [Accepted: 05/30/2017] [Indexed: 01/18/2023] Open
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine with neuroprotective properties. Still, the therapeutic potential of IL-6 after experimental stroke has not yet been investigated in a clinically relevant way. Here, we investigated the therapeutic use of intravenously administered IL-6 and the soluble IL-6 receptor (sIL-6R) alone or in combination, early after permanent middle cerebral artery occlusion (pMCAo) in mice. IL-6 did not affect the infarct volume in C57BL/6 mice, at neither 24 nor 72h after pMCAo but reduced the infarct volume in IL-6 knockout mice at 24h after pMCAo. Assessment of post-stroke behavior showed an improved grip strength after a single IL-6 injection and also improved rotarod endurance after two injections, in C57BL/6 mice at 24h. An improved grip strength and a better preservation of sensory functions was also observed in IL-6 treated IL-6 knockout mice 24h after pMCAo. Co-administration of IL-6 and sIL-6R increased the infarct volume, the number of infiltrating polymorphonuclear leukocytes and impaired the rotarod endurance of C57BL/6 mice 24h after pMCAo. IL-6 administration to naïve C57BL/6 mice lead after 45min to increased plasma-levels of CXCL1 and IL-10, whereas IL-6 administration to C57BL/6 mice lead to a reduction in the ischemia-induced increase in IL-6 and CXCL1 at both mRNA and protein level in brain, and of IL-6 and CXCL1 in serum. We also investigated the expression of IL-6 and IL-6R after pMCAo and found that cortical neurons upregulated IL-6 mRNA and protein, and upregulated IL-6R after pMCAo. In conclusion, the results show a complex but potentially beneficial effect of intravenously administered IL-6 in experimental stroke.
Collapse
Affiliation(s)
- Mads Hjortdal Grønhøj
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Denmark; Department of Neurosurgery, Odense University Hospital, Denmark
| | - Bettina Hjelm Clausen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Denmark
| | - Christina Dühring Fenger
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Denmark
| | - Kate Lykke Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Denmark; Department of Neurology, Odense University Hospital, Denmark; BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Bente Finsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Denmark; BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
105
|
Begum G, Song S, Wang S, Zhao H, Bhuiyan MIH, Li E, Nepomuceno R, Ye Q, Sun M, Calderon MJ, Stolz DB, St Croix C, Watkins SC, Chen Y, He P, Shull GE, Sun D. Selective knockout of astrocytic Na + /H + exchanger isoform 1 reduces astrogliosis, BBB damage, infarction, and improves neurological function after ischemic stroke. Glia 2017; 66:126-144. [PMID: 28925083 DOI: 10.1002/glia.23232] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 08/25/2017] [Accepted: 08/29/2017] [Indexed: 01/25/2023]
Abstract
Stimulation of Na+ /H+ exchanger isoform 1 (NHE1) in astrocytes causes ionic dysregulation under ischemic conditions. In this study, we created a Nhe1flox/flox (Nhe1f/f ) mouse line with exon 5 of Nhe1 flanked with two loxP sites and selective ablation of Nhe1 in astrocytes was achieved by crossing Nhe1f/f mice with Gfap-CreERT2 Cre-recombinase mice. Gfap-CreERT2+/- ;Nhe1f/f mice at postnatal day 60-90 were treated with either corn oil or tamoxifen (Tam, 75 mg/kg/day, i.p.) for 5 days. After 30 days post-injection, mice underwent transient middle cerebral artery occlusion (tMCAO) to induce ischemic stroke. Compared with the oil-vehicle group (control), Tam-treated Gfap-CreERT2+/- ;Nhe1f/f (Nhe1 KO) mice developed significantly smaller ischemic infarction, less edema, and less neurological function deficits at 1-5 days after tMCAO. Immunocytochemical analysis revealed less astrocytic proliferation, less cellular hypertrophy, and less peri-lesion gliosis in Nhe1 KO mouse brains. Selective deletion of Nhe1 in astrocytes also reduced cerebral microvessel damage and blood-brain barrier (BBB) injury in ischemic brains. The BBB microvessels of the control brains show swollen endothelial cells, opened tight junctions, increased expression of proinflammatory protease MMP-9, and significant loss of tight junction protein occludin. In contrast, the Nhe1 KO mice exhibited reduced BBB breakdown and normal tight junction structure, with increased expression of occludin and reduced MMP-9. Most importantly, deletion of astrocytic Nhe1 gene significantly increased regional cerebral blood flow in the ischemic hemisphere at 24 hr post-MCAO. Taken together, our study provides the first line of evidence for a causative role of astrocytic NHE1 protein in reactive astrogliosis and ischemic neurovascular damage.
Collapse
Affiliation(s)
- Gulnaz Begum
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shanshan Song
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shaoxia Wang
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Hanshu Zhao
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Eric Li
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rachel Nepomuceno
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Qing Ye
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ming Sun
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Donna B Stolz
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Claudette St Croix
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yinhuai Chen
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio
| | - Pingnian He
- Department of Cellular and Molecular Physiology, Penn State Hershey College of Medicine, Hershey, Pennsylvania
| | - Gary E Shull
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
106
|
Li Y, Zhang X, Cui L, Chen R, Zhang Y, Zhang C, Zhu X, He T, Shen Z, Dong L, Zhao J, Wen Y, Zheng X, Li P. Salvianolic acids enhance cerebral angiogenesis and neurological recovery by activating JAK2/STAT3 signaling pathway after ischemic stroke in mice. J Neurochem 2017; 143:87-99. [PMID: 28771727 DOI: 10.1111/jnc.14140] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 07/18/2017] [Accepted: 07/26/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Yaoru Li
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Xiangjian Zhang
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease; Shijiazhuang Hebei China
| | - Lili Cui
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease; Shijiazhuang Hebei China
| | - Rong Chen
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease; Shijiazhuang Hebei China
| | - Ye Zhang
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Cong Zhang
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Xingyuan Zhu
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Tingting He
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Zuyuan Shen
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Lipeng Dong
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Jingru Zhao
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Ya Wen
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Xiufen Zheng
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Pan Li
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| |
Collapse
|
107
|
Chen JY, Yu Y, Yuan Y, Zhang YJ, Fan XP, Yuan SY, Zhang JC, Yao SL. Enriched housing promotes post-stroke functional recovery through astrocytic HMGB1-IL-6-mediated angiogenesis. Cell Death Discov 2017; 3:17054. [PMID: 28845299 PMCID: PMC5563836 DOI: 10.1038/cddiscovery.2017.54] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 06/30/2017] [Indexed: 01/03/2023] Open
Abstract
Enriched environment (EE) is shown to promote angiogenesis, neurogenesis and functional recovery after ischemic stroke. However, the underlying mechanisms remain unclear. C57BL/6 mice underwent middle cerebral artery occlusion (60 min) followed by reperfusion, after which mice were housed in either standard environment (SE) or EE. Here we found that post-ischemic EE exhibited decreased depression and anxiety-like behavior, and promoted angiogenesis and functional recovery compared to SE mice. EE mice treated with high-mobility group box-1 (HMGB1) inhibitor glycyrrhizin had an increased post-stroke depression and anxiety-like behavior, and the angiogenesis and functional recovery were decreased. HMGB1 and interleukin-6 (IL-6) expression in astrocyte were increased in EE mice. EE mice treated with glycyrrhizin decreased, whereas EE mice treated with recombinant HMGB1 (rHMGB1) increased the levels of IL-6 and p-AKT. Blockade of IL-6 with anti-IL-6-neutralizing antibody in EE mice attenuated EE-mediated angiogenesis and functional recovery. Furthermore, our in vitro data revealed that in primary astrocyte cultures rHMGB1 promoted the expression of IL-6 in activated astrocytes. PI3K/AKT signaling pathway was involved in HMGB1-mediated expression of astrocytic IL-6. Thus, our results reveal a previously uncharacterized property of HMGB1/IL-6 signaling pathway in EE-mediated angiogenesis and functional recovery after ischemic stroke.
Collapse
Affiliation(s)
- Jia-Yi Chen
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuan Yu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yin Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu-Jing Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xue-Peng Fan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Department of Critical Care Medicine, Wuhan Integrated TCM & Western Medicine Hospital, Wuhan 430022, China
| | - Shi-Ying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jian-Cheng Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shang-Long Yao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
108
|
Yanev P, Seevinck PR, Rudrapatna US, Bouts MJ, van der Toorn A, Gertz K, Kronenberg G, Endres M, van Tilborg GA, Dijkhuizen RM. Magnetic resonance imaging of local and remote vascular remodelling after experimental stroke. J Cereb Blood Flow Metab 2017; 37:2768-2779. [PMID: 27798270 PMCID: PMC5536787 DOI: 10.1177/0271678x16674737] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The pattern of vascular remodelling in relation to recovery after stroke remains largely unclear. We used steady-state contrast-enhanced magnetic resonance imaging to assess the development of cerebral blood volume and microvascular density in perilesional and exofocal areas from (sub)acutely to chronically after transient stroke in rats. Microvascular density was verified histologically after infusion with Evans Blue dye. At day 1, microvascular cerebral blood volume and microvascular density were reduced in and around the ischemic lesion (intralesional borderzone: microvascular cerebral blood volume = 72 ± 8%; microvascular density = 76 ± 8%) (P < 0.05), while total cerebral blood volume remained relatively unchanged. Perilesional microvascular cerebral blood volume and microvascular density subsequently normalized (day 7) and remained relatively stable (day 70). In remote ipsilateral areas in the thalamus and substantia nigra - not part of the ischemic lesion - microvascular density gradually increased between days 1 and 70 (thalamic ventral posterior nucleus: microvascular density = 119 ± 9%; substantia nigra: microvascular density = 122 ± 8% (P < 0.05)), which was confirmed histologically. Our data indicate that initial microvascular collapse, with maintained collateral flow in larger vessels, is followed by dynamic revascularization in perilesional tissue. Furthermore, progressive neovascularization in non-ischemic connected areas may offset secondary neuronal degeneration and/or contribute to non-neuronal tissue remodelling. The complex spatiotemporal pattern of vascular remodelling, involving regions outside the lesion territory, may be a critical endogenous process to promote post-stroke brain reorganization.
Collapse
Affiliation(s)
- Pavel Yanev
- 1 Biomedical MR Imaging and Spectroscopy Group, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter R Seevinck
- 1 Biomedical MR Imaging and Spectroscopy Group, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Umesh S Rudrapatna
- 1 Biomedical MR Imaging and Spectroscopy Group, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mark Jrj Bouts
- 1 Biomedical MR Imaging and Spectroscopy Group, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Annette van der Toorn
- 1 Biomedical MR Imaging and Spectroscopy Group, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Karen Gertz
- 2 Department of Neurology, Charité - Universitaetsmedizin Berlin, Berlin, Germany.,3 Center for Stroke Research Berlin, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Golo Kronenberg
- 2 Department of Neurology, Charité - Universitaetsmedizin Berlin, Berlin, Germany.,4 German Center for Cardiovascular Research (DZHK), Universitaetsmedizin Berlin, Berlin, Germany
| | - Matthias Endres
- 2 Department of Neurology, Charité - Universitaetsmedizin Berlin, Berlin, Germany.,3 Center for Stroke Research Berlin, Charité - Universitaetsmedizin Berlin, Berlin, Germany.,4 German Center for Cardiovascular Research (DZHK), Universitaetsmedizin Berlin, Berlin, Germany.,5 German Center for Neurodegenerative Diseases (DZNE), Universitaetsmedizin Berlin, Berlin, Germany.,6 Berlin Institute of Health (BIH), Berlin, Germany
| | - Geralda A van Tilborg
- 1 Biomedical MR Imaging and Spectroscopy Group, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rick M Dijkhuizen
- 1 Biomedical MR Imaging and Spectroscopy Group, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
109
|
Mechanism of Lycium barbarum polysaccharides on primary cultured rat hippocampal neurons. Cell Tissue Res 2017; 369:455-465. [DOI: 10.1007/s00441-017-2648-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/25/2017] [Indexed: 01/27/2023]
|
110
|
Pu CM, Liu CW, Liang CJ, Yen YH, Chen SH, Jiang-Shieh YF, Chien CL, Chen YC, Chen YL. Adipose-Derived Stem Cells Protect Skin Flaps against Ischemia/Reperfusion Injury via IL-6 Expression. J Invest Dermatol 2017; 137:1353-1362. [PMID: 28163069 DOI: 10.1016/j.jid.2016.12.030] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 12/19/2016] [Accepted: 12/29/2016] [Indexed: 12/26/2022]
Abstract
Flap necrosis is the most frequent postoperative complication encountered in reconstructive surgery. We elucidated whether adipose-derived stem cells (ADSCs) and their derivatives might induce neovascularization and protect skin flaps during ischemia/reperfusion (I/R) injury. Flaps were subjected to 3 hours of ischemia by ligating long thoracic vessels and then to blood reperfusion. Qtracker-labeled ADSCs, ADSCs in conditioned medium (ADSC-CM), or ADSC exosomes (ADSC-Exo) were injected into the flaps. These treatments led to significantly increased flap survival and capillary density compared with I/R on postoperative day 5. IL-6 levels in the cell lysates or in conditioned medium were significantly higher in ADSCs than in Hs68 fibroblasts. ADSC-CM and ADSC-Exo increased tube formation. This result was corroborated by a strong decrease in skin repair after adding IL-6-neutralizing antibodies or small interfering RNA for IL-6 ADSCs. ADSC transplantation also increased flap recovery in I/R injury of IL-6-knockout mice. IL-6 was secreted from ADSCs through signal transducer and activator of transcription phosphorylation, and then IL-6 stimulated angiogenesis and enhanced recovery after I/R injury by the classic signaling pathway. The mechanism of skin recovery includes the direct differentiation of ADSCs into endothelial cells and the indirect effect of IL-6 released from ADSCs. ADSC-CM and ADSC-Exo could be used as off-the-shelf products for this therapy.
Collapse
Affiliation(s)
- Chi-Ming Pu
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan; Division of Plastic Surgery, Department of Surgery, Cathay General Hospital, Taipei, Taiwan
| | - Chen-Wei Liu
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chan-Jung Liang
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Hsiu Yen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan; Division of Plastic Surgery, Department of Surgery, Cathay General Hospital, Taipei, Taiwan
| | - Shun-Hua Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Fen Jiang-Shieh
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Liang Chien
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Chun Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yuh-Lien Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
111
|
Wang Y, Liu J, Yu H, Cai Y. Analyses of the Dual Immune Roles Cytokines Play in Ischemic Stroke. LECTURE NOTES IN COMPUTER SCIENCE 2017:113-120. [DOI: 10.1007/978-3-319-69182-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
112
|
Kronenberg G, Uhlemann R, Schöner J, Wegner S, Boujon V, Deigendesch N, Endres M, Gertz K. Repression of telomere-associated genes by microglia activation in neuropsychiatric disease. Eur Arch Psychiatry Clin Neurosci 2017; 267:473-477. [PMID: 27896432 PMCID: PMC5509772 DOI: 10.1007/s00406-016-0750-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/18/2016] [Indexed: 12/18/2022]
Abstract
Microglia senescence may promote neuropsychiatric disease. This prompted us to examine the relationship between microglia activation states and telomere biology. A panel of candidate genes associated with telomere maintenance, mitochondrial biogenesis, and cell-cycle regulation were investigated in M1- and M2-polarized microglia in vitro as well as in MACS-purified CD11b+ microglia/brain macrophages from models of stroke, Alzheimer's disease, and chronic stress. M1 polarization, ischemia, and Alzheimer pathology elicited a strikingly similar transcriptomic profile with, in particular, reduced expression of murine Tert. Our results link classical microglia activation with repression of telomere-associated genes, suggesting a new mechanism underlying microglia dysfunction.
Collapse
Affiliation(s)
- Golo Kronenberg
- grid.440244.2Klinik für Psychiatrie und Psychotherapie, Charité Campus Mitte, Berlin, Germany ,0000 0001 2218 4662grid.6363.0Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin, Berlin, Germany ,0000 0001 2218 4662grid.6363.0Klinik und Hochschulambulanz für Neurologie, Charité - Universitätsmedizin, Berlin, Germany ,0000000121858338grid.10493.3fKlinik und Poliklinik für Psychiatrie und Psychotherapie, Universitätsmedizin Rostock, Gehlsheimer Straße 20, 18147 Rostock, Germany
| | - Ria Uhlemann
- 0000 0001 2218 4662grid.6363.0Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin, Berlin, Germany ,0000 0001 2218 4662grid.6363.0Klinik und Hochschulambulanz für Neurologie, Charité - Universitätsmedizin, Berlin, Germany
| | - Johanna Schöner
- grid.440244.2Klinik für Psychiatrie und Psychotherapie, Charité Campus Mitte, Berlin, Germany ,0000 0001 2218 4662grid.6363.0Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin, Berlin, Germany ,0000 0001 2218 4662grid.6363.0Klinik und Hochschulambulanz für Neurologie, Charité - Universitätsmedizin, Berlin, Germany
| | - Stephanie Wegner
- 0000 0001 2218 4662grid.6363.0Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin, Berlin, Germany ,0000 0001 2218 4662grid.6363.0Klinik und Hochschulambulanz für Neurologie, Charité - Universitätsmedizin, Berlin, Germany
| | - Valérie Boujon
- 0000 0001 2218 4662grid.6363.0Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin, Berlin, Germany ,0000 0001 2218 4662grid.6363.0Klinik und Hochschulambulanz für Neurologie, Charité - Universitätsmedizin, Berlin, Germany
| | - Nikolas Deigendesch
- 0000 0001 2218 4662grid.6363.0Institut für Neuropathologie, Charité - Universitätsmedizin, Berlin, Germany
| | - Matthias Endres
- 0000 0001 2218 4662grid.6363.0Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin, Berlin, Germany ,0000 0001 2218 4662grid.6363.0Klinik und Hochschulambulanz für Neurologie, Charité - Universitätsmedizin, Berlin, Germany ,0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Charitéplatz 1, 10117 Berlin, Germany ,0000 0001 2218 4662grid.6363.0Cluster of Excellence NeuroCure, Charité - Universitätsmedizin, Berlin, Germany ,grid.452396.fDZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Karen Gertz
- Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin, Berlin, Germany. .,Klinik und Hochschulambulanz für Neurologie, Charité - Universitätsmedizin, Berlin, Germany.
| |
Collapse
|
113
|
Dong W, Xian Y, Yuan W, Huifeng Z, Tao W, Zhiqiang L, Shan F, Ya F, Hongli W, Jinghuan W, Lei Q, Li Z, Hongyi Q. Catalpol stimulates VEGF production via the JAK2/STAT3 pathway to improve angiogenesis in rats' stroke model. JOURNAL OF ETHNOPHARMACOLOGY 2016; 191:169-179. [PMID: 27301615 DOI: 10.1016/j.jep.2016.06.030] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/05/2016] [Accepted: 06/08/2016] [Indexed: 05/25/2023]
Abstract
ETHNOBOTANICAL RELEVANCE Catalpol is the main active component of the radix from Rehmannia glutinosa Libosch, which has pleiotropic protective effects in neurodegenerative diseases, ischemic stroke, metabolic disorders and others AIM Catalpol has been shown to have neuroprotective, neurorepair, and angiogenesis effects following ischemic brain injury. However, its molecular mechanisms are still poorly understood. In previous studies, the JAK2/STAT3 signaling pathway was found to play a role in neuroprotection and angiogenesis. This study investigated the role of catalpol in stimulating angiogenesis via the JAK2/STAT3 pathway after permanent focal cerebral ischemia (pMCAO). METHODS Rats were subjected to right middle cerebral artery occlusion through electrocoagulation and were treated with catalpol (5mg/kg), AG490 was also used to inhibit STAT3 phosphorylation (pSTAT3). RESULTS Following stroke, Catalpol improved the neuroethology deficit, increased the cerebral blood flow (CBF) of infarcted brain and upregulated EPO and EPOR. AG490 suppressed the phosphorylation of signal transducer and activator of transcription 3 (STAT3), ultimately inhibited VEGF mRNA expression, which reduced VEGF protein expression and inhibited stroke-induced angiogenesis. However, Catalpol enhanced stroke-induced STAT3 activation and subsequently restored STAT3 activity through the recovery of STAT3 binding to VEGF. Moreover, Catalpol reversed the effect of AG490 on STAT3 activation and nuclear translocation, restored the transcriptional activity of the VEGF promoter by recruiting STAT3 to the VEGF promoter, improved VEGF mRNA and protein expression, increased angiogenesis, reduced the difference in CBF between the infarcted and intact brain and ameliorated the neuroethology behaviors after stroke. CONCLUSION Catalpol affects neuroprotection and angiogenesis via the JAK2/STAT3 signaling pathway, which is mediated by STAT3 activation and VEGF expression. Catalpol may be used as a potential therapeutic drug for stroke.
Collapse
MESH Headings
- Angiogenesis Inducing Agents/pharmacology
- Animals
- Brain/drug effects
- Brain/enzymology
- Brain/pathology
- Brain/physiopathology
- Cerebral Arteries/drug effects
- Cerebral Arteries/enzymology
- Cerebral Arteries/pathology
- Cerebral Arteries/physiopathology
- Cerebrovascular Circulation/drug effects
- Disease Models, Animal
- Erythropoietin/metabolism
- Infarction, Middle Cerebral Artery/drug therapy
- Infarction, Middle Cerebral Artery/enzymology
- Infarction, Middle Cerebral Artery/pathology
- Infarction, Middle Cerebral Artery/physiopathology
- Iridoid Glucosides/pharmacology
- Janus Kinase 2/metabolism
- Male
- Neovascularization, Physiologic/drug effects
- Neuroprotective Agents/pharmacology
- Phosphorylation
- Promoter Regions, Genetic
- Protein Binding
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Receptors, Erythropoietin/metabolism
- STAT3 Transcription Factor/metabolism
- Signal Transduction/drug effects
- Time Factors
- Transcriptional Activation
- Up-Regulation
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Wan Dong
- Department of Emergency, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yang Xian
- Department of Pharmacy, The Seventh People's Hospital of Chengdu, Chengdu 610041, China
| | - Wang Yuan
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China; Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Zhu Huifeng
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China; Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China.
| | - Wang Tao
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China; Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Liu Zhiqiang
- Department of Pharmacy, The First People's Hospital of Neijiang, Neijiang 641000, China
| | - Feng Shan
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China; Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Fu Ya
- College of Chemistry and Chemical Engineering, Chongqing University of Science & Technology, Chongqing 401331, China
| | - Wang Hongli
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China; Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Wang Jinghuan
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China; Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Qin Lei
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China; Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Zou Li
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China; Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Qi Hongyi
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China; Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| |
Collapse
|
114
|
Partial loss of VE-cadherin improves long-term outcome and cerebral blood flow after transient brain ischemia in mice. BMC Neurol 2016; 16:144. [PMID: 27538712 PMCID: PMC4991103 DOI: 10.1186/s12883-016-0670-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/10/2016] [Indexed: 01/02/2023] Open
Abstract
Background VE-cadherin is the chief constituent of endothelial adherens junctions. However, the role of VE-cadherin in the pathogenesis of cerebrovascular diseases including brain ischemia has not yet been investigated. Methods VE-cadherin heterozygous (VEC+/-) mice and wildtype controls were subjected to transient brain ischemia by 30 min filamentous middle cerebral artery occlusion (MCAo)/reperfusion. Results Acute lesion sizes as assessed by MR-imaging on day 3 did not differ between genotypes. Unexpectedly, however, partial loss of VE-cadherin resulted in long-term stroke protection measured histologically on day 28. Equally surprisingly, VEC+/- mice displayed no differences in post-stroke angiogenesis compared to littermate controls, but showed increased absolute regional cerebral blood flow in ischemic striatum at four weeks. The early induction of VE-cadherin mRNA transcription after stroke was reduced in VEC+/- mice. By contrast, N-cadherin and β-catenin mRNA expression showed a delayed, but sustained, upregulation up to 28 days after MCAo, which was increased in VEC+/- mice. Furthermore, partial loss of VE-cadherin resulted in a pattern of elevated ischemia-triggered mRNA transcription of pericyte-related molecules α-smooth muscle actin (α-SMA), aminopeptidase N (CD13), and platelet-derived growth factor receptor β (PDGFR-β). Conclusions Partial loss of VE-cadherin results in long term stroke protection. On the cellular and molecular level, this effect appears to be mediated by improved endothelial/pericyte interactions and the resultant increase in cerebral blood flow. Our study reinforces accumulating evidence that long-term stroke outcome depends critically on vascular mechanisms.
Collapse
|
115
|
Activation of Signal Transducer and Activator of Transcription 3 in Endothelial Cells of Chronic Subdural Hematoma Outer Membranes. World Neurosurg 2016; 91:376-82. [DOI: 10.1016/j.wneu.2016.04.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 01/05/2023]
|
116
|
Bernardini C, Zannoni A, Bertocchi M, Bianchi F, Salaroli R, Botelho G, Bacci ML, Ventrella V, Forni M. Deleterious effects of tributyltin on porcine vascular stem cells physiology. Comp Biochem Physiol C Toxicol Pharmacol 2016; 185-186:38-44. [PMID: 26965667 DOI: 10.1016/j.cbpc.2016.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 12/27/2022]
Abstract
The vascular functional and structural integrity is essential for the maintenance of the whole organism and it has been demonstrated that different types of vascular progenitor cells resident in the vessel wall play an important role in this process. The purpose of the present research was to observe the effect of tributyltin (TBT), a risk factor for vascular disorders, on porcine Aortic Vascular Precursor Cells (pAVPCs) in term of cytotoxicity, gene expression profile, functionality and differentiation potential. We have demonstrated that pAVPCs morphology deeply changed following TBT treatment. After 48h a cytotoxic effect has been detected and Annexin binding assay demonstrated that TBT induced apoptosis. The transcriptional profile of characteristic pericyte markers has been altered: TBT 10nM substantially induced alpha-SMA, while, TBT 500nM determined a significant reduction of all pericyte markers. IL-6 protein detected in the medium of pAVPCs treated with TBT at both doses studied and with a dose response. TBT has interfered with normal pAVPC functionality preventing their ability to support a capillary-like network. In addition TBT has determined an increase of pAVPC adipogenic differentiation. In conclusion in the present paper we have demonstrated that TBT alters the vascular stem cells in terms of structure, functionality and differentiating capability, therefore effects of TBT in blood should be deeply explored to understand the potential vascular risk associated with the alteration of vascular stem cell physiology.
Collapse
Affiliation(s)
- Chiara Bernardini
- Department of Veterinary Medical Sciences - DIMEVET, University of Bologna, Ozzano Emilia, Bologna, Italy.
| | - Augusta Zannoni
- Department of Veterinary Medical Sciences - DIMEVET, University of Bologna, Ozzano Emilia, Bologna, Italy
| | - Martina Bertocchi
- Department of Veterinary Medical Sciences - DIMEVET, University of Bologna, Ozzano Emilia, Bologna, Italy
| | - Francesca Bianchi
- Stem Wave Institute for Tissue Healing (SWITH), Gruppo Villa Maria (GVM) Care & Research - Ettore Sansavini Health Science Foundation, Lugo, Ravenna, Italy; National Institute of Biostructures and Biosystems at the Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Roberta Salaroli
- Department of Veterinary Medical Sciences - DIMEVET, University of Bologna, Ozzano Emilia, Bologna, Italy
| | - Giuliana Botelho
- Department of Veterinary Medical Sciences - DEVET, UNICENTRO - Universidade Estadual do Centro-Oeste do Paraná, Brazil
| | - Maria Laura Bacci
- Department of Veterinary Medical Sciences - DIMEVET, University of Bologna, Ozzano Emilia, Bologna, Italy
| | - Vittoria Ventrella
- Department of Veterinary Medical Sciences - DIMEVET, University of Bologna, Ozzano Emilia, Bologna, Italy
| | - Monica Forni
- Department of Veterinary Medical Sciences - DIMEVET, University of Bologna, Ozzano Emilia, Bologna, Italy
| |
Collapse
|
117
|
Lin Y, Zhang JC, Yao CY, Wu Y, Abdelgawad AF, Yao SL, Yuan SY. Critical role of astrocytic interleukin-17 A in post-stroke survival and neuronal differentiation of neural precursor cells in adult mice. Cell Death Dis 2016; 7:e2273. [PMID: 27336717 PMCID: PMC5143370 DOI: 10.1038/cddis.2015.284] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/06/2015] [Accepted: 09/02/2015] [Indexed: 01/26/2023]
Abstract
The brain and the immune system interact in complex ways after ischemic stroke, and the long-term effects of immune response associated with stroke remain controversial. As a linkage between innate and adaptive immunity, interleukin-17 A (IL-17 A) secreted from gamma delta (γδ) T cells has detrimental roles in the pathogenesis of acute ischemic stroke. However, to date, the long-term actions of IL-17 A after stroke have not been investigated. Here, we found that IL-17 A showed two distinct peaks of expression in the ischemic hemisphere: the first occurring within 3 days and the second on day 28 after stroke. Our data also showed that astrocyte was the major cellular source of IL-17 A that maintained and augmented subventricular zone (SVZ) neural precursor cells (NPCs) survival, neuronal differentiation, and subsequent synaptogenesis and functional recovery after stroke. IL-17 A also promoted neuronal differentiation in cultured NPCs from the ischemic SVZ. Furthermore, our in vitro data revealed that in primary astrocyte cultures activated astrocytes released IL-17 A via p38 mitogen-activated protein kinase (MAPK). Culture media from reactive astrocytes increased neuronal differentiation of NSCs in vitro. Blockade of IL-17 A with neutralizing antibody prevented this effect. In addition, after screening for multiple signaling pathways, we revealed that the p38 MAPK/calpain 1 signaling pathway was involved in IL-17 A-mediated neurogenesis in vivo and in vitro. Thus, our results reveal a previously uncharacterized property of astrocytic IL-17 A in the maintenance and augment of survival and neuronal differentiation of NPCs, and subsequent synaptogenesis and spontaneous recovery after ischemic stroke.
Collapse
Affiliation(s)
- Y Lin
- Department of Anesthesia, Institute of Anesthesia and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Department of Critical Care Medicine, Institute of Anesthesia and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - J-C Zhang
- Department of Anesthesia, Institute of Anesthesia and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Department of Critical Care Medicine, Institute of Anesthesia and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - C-Y Yao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Y Wu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - A F Abdelgawad
- Department of Anesthesia, Institute of Anesthesia and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Department of Anesthesia, Faculty of Medicine, Benha University, Benha, Egypt
| | - S-L Yao
- Department of Anesthesia, Institute of Anesthesia and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Department of Critical Care Medicine, Institute of Anesthesia and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - S-Y Yuan
- Department of Anesthesia, Institute of Anesthesia and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Department of Critical Care Medicine, Institute of Anesthesia and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
118
|
Zhang J, Yao C, Chen J, Zhang Y, Yuan S, Lin Y. Hyperforin promotes post-stroke functional recovery through interleukin (IL)-17A-mediated angiogenesis. Brain Res 2016; 1646:504-513. [PMID: 27328426 DOI: 10.1016/j.brainres.2016.06.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 11/17/2022]
Abstract
Hyperforin, the main active ingredient of the medicinal plant Hypericum perforatum, has been shown to be neuroprotective against acute ischemic stroke. However, the long-term actions of hyperforin on the post-stroke functional recovery and underlying mechanisms have not been investigated. C57BL/6 wild-type mice or interleukin (IL)-17A knock-out mice underwent middle cerebral artery occlusion (60min) followed by reperfusion for 28 days. Here, we found that delayed treatment with hyperforin significantly promoted functional recovery and increased IL-17A expression in the ischemic hemisphere at 28 days post-ischemia (dpi). IL-17A knock-out or anti-IL-17A monoclonal antibody (mAb) treatment significantly attenuated the promoting effects of hyperforin on functional recovery. After screening for neurotrophic factors, we revealed that blocking IL-17A significantly decreased, whereas recombinant mouse IL-17A (rIL-17A) treatment significantly increased vascular endothelial growth factor (VEGF) expression. Our data also showed that rIL-17A treatment significantly increased CD34 expression and promoted functional recovery at 28dpi, and the promoting effects were attenuated by VEGF neutralizing antibody treatment. Furthermore, hyperforin treatment significantly increased the expression of VEGF and CD34 in the ischemic hemisphere at 28dpi, and the effects were attenuated by blocking IL-17A. Furthermore, VEGF neutralizing antibody significantly attenuated the promoting role of hyperforin on the cerebral CD34 expression. Thus, our results suggest that, in addition to the acute neuroprotection when delivered immediately after ischemic stroke, hyperforin could also promote functional recovery when delivered in the later phases of stroke recovery. Our results also reveal a previously uncharacterized property of IL-17A/VEGF signaling-induced angiogenesis in hyperforin-mediated functional recovery.
Collapse
Affiliation(s)
- Jiancheng Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chengye Yao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiayi Chen
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yujing Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yun Lin
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Anesthesia, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
119
|
Angiogenesis in Ischemic Stroke and Angiogenic Effects of Chinese Herbal Medicine. J Clin Med 2016; 5:jcm5060056. [PMID: 27275837 PMCID: PMC4929411 DOI: 10.3390/jcm5060056] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 01/06/2023] Open
Abstract
Stroke is one of the major causes of death and adult disability worldwide. The underlying pathophysiology of stroke is highly complicated, consisting of impairments of multiple signalling pathways, and numerous pathological processes such as acidosis, glutamate excitotoxicity, calcium overload, cerebral inflammation and reactive oxygen species (ROS) generation. The current treatment for ischemic stroke is limited to thromolytics such as recombinant tissue plasminogen activator (tPA). tPA has a very narrow therapeutic window, making it suitable to only a minority of stroke patients. Hence, there is great urgency to develop new therapies that can protect brain tissue from ischemic damage. Recent studies have shown that new vessel formation after stroke not only replenishes blood flow to the ischemic area of the brain, but also promotes neurogenesis and improves neurological functions in both animal models and patients. Therefore, drugs that can promote angiogenesis after ischemic stroke can provide therapeutic benefits in stroke management. In this regard, Chinese herbal medicine (CHM) has a long history in treating stroke and the associated diseases. A number of studies have demonstrated the pro-angiogenic effects of various Chinese herbs and herbal formulations in both in vitro and in vivo settings. In this article, we present a comprehensive review of the current knowledge on angiogenesis in the context of ischemic stroke and discuss the potential use of CHM in stroke management through modulation of angiogenesis.
Collapse
|
120
|
Kawabori M, Yenari MA. Inflammatory responses in brain ischemia. Curr Med Chem 2016; 22:1258-77. [PMID: 25666795 DOI: 10.2174/0929867322666150209154036] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/02/2014] [Accepted: 02/02/2015] [Indexed: 12/20/2022]
Abstract
Brain infarction causes tissue death by ischemia due to occlusion of the cerebral vessels and recent work has shown that post stroke inflammation contributes significantly to the development of ischemic pathology. Because secondary damage by brain inflammation may have a longer therapeutic time window compared to the rescue of primary damage following arterial occlusion, controlling inflammation would be an obvious therapeutic target. A substantial amount of experimentall progress in this area has been made in recent years. However, it is difficult to elucidate the precise mechanisms of the inflammatory responses following ischemic stroke because inflammation is a complex series of interactions between inflammatory cells and molecules, all of which could be either detrimental or beneficial. We review recent advances in neuroinflammation and the modulation of inflammatory signaling pathways in brain ischemia. Potential targets for treatment of ischemic stroke will also be covered. The roles of the immune system and brain damage versus repair will help to clarify how immune modulation may treat stroke.
Collapse
Affiliation(s)
| | - Midori A Yenari
- Dept. of Neurology, University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA.
| |
Collapse
|
121
|
Zhang JC, Xu H, Yuan Y, Chen JY, Zhang YJ, Lin Y, Yuan SY. Delayed Treatment with Green Tea Polyphenol EGCG Promotes Neurogenesis After Ischemic Stroke in Adult Mice. Mol Neurobiol 2016; 54:3652-3664. [PMID: 27206430 DOI: 10.1007/s12035-016-9924-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/03/2016] [Indexed: 12/30/2022]
Abstract
(-)-Epigallocatechin-3‑gallate (EGCG), the predominant constituent of green tea, has been demonstrated to be neuroprotective against acute ischemic stroke. However, the long-term actions of EGCG on neurogenesis and functional recovery after ischemic stroke have not been identified. In this study, C57BL/6 mice underwent middle cerebral artery occlusion (60 min) followed by reperfusion for 28 days. Neural progenitor cells (NPCs) were isolated from ipsilateral subventricular zone (SVZ) at 14 days post-ischemia (dpi). The effects of EGCG on the proliferation and differentiation of NPCs were examined in vivo and in vitro. Behavioral assessments were made 3 days before MCAO and at 28 dpi. SVZ NPCs were stimulated with lipopolysaccharide (LPS) in vitro to mimic the inflammatory response after ischemic stroke. We found that 14 days treatment with EGCG significantly increased the proliferation of SVZ NPCs and the migration of SVZ neuroblasts, as well as functional recovery, perhaps through M2 phenotype induction in microglia. LPS stimulation promoted the neuronal differentiation in cultured NPCs from the ischemic SVZ. EGCG treatment (20 or 40 μM) further significantly increased the neuronal differentiation of LPS-stimulated SVZ NPCs. After screening for multiple signaling pathways, the AKT signaling pathway was found to be involved in EGCG-mediated proliferation and neuronal differentiation of NPCs in vitro. Taken together, our results reveal a previously uncharacterized role of EGCG in the augment of proliferation and neuronal differentiation of SVZ NPCs and subsequent spontaneous recovery after ischemic stroke. Thus, the beneficial effects of EGCG on neurogenesis and stroke recovery should be considered in developing therapeutic approaches.
Collapse
Affiliation(s)
- Jian-Cheng Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Anesthesia & Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Hang Xu
- Department of Critical Care Medicine, First Affiliated Hospital of the Medical College, Shihezi University, Shihezi City, Xinjiang Uyghur Autonomous Region, 832003, China
| | - Yin Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Anesthesia & Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Jia-Yi Chen
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Anesthesia & Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yu-Jing Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Anesthesia & Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yun Lin
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Department of Anesthesia & Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Shi-Ying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Department of Anesthesia & Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
122
|
Integrated Analysis of Expression Profile Based on Differentially Expressed Genes in Middle Cerebral Artery Occlusion Animal Models. Int J Mol Sci 2016; 17:ijms17050776. [PMID: 27213359 PMCID: PMC4881595 DOI: 10.3390/ijms17050776] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/10/2016] [Accepted: 05/16/2016] [Indexed: 12/19/2022] Open
Abstract
Stroke is one of the most common causes of death, only second to heart disease. Molecular investigations about stroke are in acute shortage nowadays. This study is intended to explore a gene expression profile after brain ischemia reperfusion. Meta-analysis, differential expression analysis, and integrated analysis were employed on an eight microarray series. We explored the functions and pathways of target genes in gene ontology (GO) enrichment analysis and constructed a protein-protein interaction network. Meta-analysis identified 360 differentially expressed genes (DEGs) for Mus musculus and 255 for Rattus norvegicus. Differential expression analysis identified 44 DEGs for Mus musculus and 21 for Rattus norvegicus. Timp1 and Lcn2 were overexpressed in both species. The cytokine-cytokine receptor interaction and chemokine signaling pathway were highly enriched for the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. We have exhibited a global view of the potential molecular differences between middle cerebral artery occlusion (MCAO) animal model and sham for Mus musculus or Rattus norvegicus, including the biological process and enriched pathways in DEGs. This research helps contribute to a clearer understanding of the inflammation process and accurate identification of ischemic infarction stages, which might be transformed into a therapeutic approach.
Collapse
|
123
|
Pannella M, Caliceti C, Fortini F, Aquila G, Vieceli Dalla Sega F, Pannuti A, Fortini C, Morelli MB, Fucili A, Francolini G, Voltan R, Secchiero P, Dinelli G, Leoncini E, Ferracin M, Hrelia S, Miele L, Rizzo P. Serum From Advanced Heart Failure Patients Promotes Angiogenic Sprouting and Affects the Notch Pathway in Human Endothelial Cells. J Cell Physiol 2016; 231:2700-10. [PMID: 26987674 DOI: 10.1002/jcp.25373] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/10/2016] [Indexed: 12/21/2022]
Abstract
It is unknown whether components present in heart failure (HF) patients' serum provide an angiogenic stimulus. We sought to determine whether serum from HF patients affects angiogenesis and its major modulator, the Notch pathway, in human umbilical vein endothelial cells (HUVECs). In cells treated with serum from healthy subjects or from patients at different HF stage we determined: (1) Sprouting angiogenesis, by measuring cells network (closed tubes) in collagen gel. (2) Protein levels of Notch receptors 1, 2, 4, and ligands Jagged1, Delta-like4. We found a higher number of closed tubes in HUVECs treated with advanced HF patients serum in comparison with cells treated with serum from mild HF patients or controls. Furthermore, as indicated by the reduction of the active form of Notch4 (N4IC) and of Jagged1, advanced HF patients serum inhibited Notch signalling in HUVECs in comparison with mild HF patients' serum and controls. The circulating levels of NT-proBNP (N-terminal of the pro-hormone brain natriuretic peptide), a marker for the detection and evalutation of HF, were positively correlated with the number of closed tubes (r = 0.485) and negatively with Notch4IC and Jagged1 levels in sera-treated cells (r = -0.526 and r = -0.604, respectively). In conclusion, we found that sera from advanced HF patients promote sprouting angiogenesis and dysregulate Notch signaling in HUVECs. Our study provides in vitro evidence of an angiogenic stimulus arising during HF progression and suggests a role for the Notch pathway in it. J. Cell. Physiol. 231: 2700-2710, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Micaela Pannella
- Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Cristiana Caliceti
- Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy
| | - Francesca Fortini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Giorgio Aquila
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Antonio Pannuti
- Stanley Scott Cancer Center, Louisiana State University Health Sciences Center and Louisiana Cancer Research Consortium, New Orleans, Louisiana
| | - Cinzia Fortini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Alessandro Fucili
- University Hospital of Ferrara, Ferrara, Italy.,Maria Cecilia Hospital, GVM Care & Research, E.S. Health Science Foundation, Cotignola, Italy
| | - Gloria Francolini
- Cardiovascular Research Center, Salvatore Maugeri Foundation IRCCS, Lumezzane, Italy
| | - Rebecca Voltan
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Paola Secchiero
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Giovanni Dinelli
- Department of Agricultural Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Emanuela Leoncini
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, Bologna, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Lucio Miele
- Stanley Scott Cancer Center, Louisiana State University Health Sciences Center and Louisiana Cancer Research Consortium, New Orleans, Louisiana
| | - Paola Rizzo
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
124
|
Abstract
Stroke not only causes initial cell death, but also a limited process of repair and recovery. As an overall biological process, stroke has been most often considered from the perspective of early phases of ischemia, how these inter-relate and lead to expansion of the infarct. However, just as the biology of later stages of stroke becomes better understood, the clinical realities of stroke indicate that it is now more a chronic disease than an acute killer. As an overall biological process, it is now more important to understand how early cell death leads to the later, limited recovery so as develop an integrative view of acute to chronic stroke. This progression from death to repair involves sequential stages of primary cell death, secondary injury events, reactive tissue progenitor responses, and formation of new neuronal circuits. This progression is radial: from the tissue that suffers the infarct secondary injury signals, including free radicals and inflammatory cytokines, radiate out from the stroke core to trigger later regenerative events. Injury and repair processes occur not just in the local stroke site, but are also triggered in the connected networks of neurons that had existed in the stroke center: damage signals are relayed throughout a brain network. From these relayed, distributed damage signals, reactive astrocytosis, inflammatory processes, and the formation of new connections occur in distant brain areas. In short, emerging data in stroke cell death studies and the development of the field of stroke neural repair now indicate a continuum in time and in space of progressive events that can be considered as the 3 Rs of stroke biology: radial, relayed, and regenerative.
Collapse
Affiliation(s)
- S Thomas Carmichael
- Departments of Neurology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
125
|
He G, Xu W, Tong L, Li S, Su S, Tan X, Li C. Gadd45b prevents autophagy and apoptosis against rat cerebral neuron oxygen-glucose deprivation/reperfusion injury. Apoptosis 2016; 21:390-403. [DOI: 10.1007/s10495-016-1213-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
126
|
Carmichael ST, Kathirvelu B, Schweppe CA, Nie EH. Molecular, cellular and functional events in axonal sprouting after stroke. Exp Neurol 2016; 287:384-394. [PMID: 26874223 DOI: 10.1016/j.expneurol.2016.02.007] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 01/26/2023]
Abstract
Stroke is the leading cause of adult disability. Yet there is a limited degree of recovery in this disease. One of the mechanisms of recovery is the formation of new connections in the brain and spinal cord after stroke: post-stroke axonal sprouting. Studies indicate that post-stroke axonal sprouting occurs in mice, rats, primates and humans. Inducing post-stroke axonal sprouting in specific connections enhances recovery; blocking axonal sprouting impairs recovery. Behavioral activity patterns after stroke modify the axonal sprouting response. A unique regenerative molecular program mediates this aspect of tissue repair in the CNS. The types of connections that are formed after stroke indicate three patterns of axonal sprouting after stroke: reactive, reparative and unbounded axonal sprouting. These differ in mechanism, location, relationship to behavioral recovery and, importantly, in their prospect for therapeutic manipulation to enhance tissue repair.
Collapse
Affiliation(s)
- S Thomas Carmichael
- Departments of Neurology and of Neurobiology, David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095, USA.
| | - Balachandar Kathirvelu
- Departments of Neurology and of Neurobiology, David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095, USA.
| | - Catherine A Schweppe
- Departments of Neurology and of Neurobiology, David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095, USA.
| | - Esther H Nie
- Departments of Neurology and of Neurobiology, David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095, USA.
| |
Collapse
|
127
|
Hind WH, England TJ, O'Sullivan SE. Cannabidiol protects an in vitro model of the blood-brain barrier from oxygen-glucose deprivation via PPARγ and 5-HT1A receptors. Br J Pharmacol 2016; 173:815-25. [PMID: 26497782 DOI: 10.1111/bph.13368] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 10/08/2015] [Accepted: 10/13/2015] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND AND PURPOSE In vivo and in vitro studies have demonstrated a protective effect of cannabidiol (CBD) in reducing infarct size in stroke models and against epithelial barrier damage in numerous disease models. We aimed to investigate whether CBD also affects blood-brain barrier (BBB) permeability following ischaemia. EXPERIMENTAL APPROACH Human brain microvascular endothelial cell (HBMEC) and human astrocyte co-cultures modelled the BBB. Ischaemia was modelled by oxygen-glucose deprivation (OGD) and permeability was measured by transepithelial electrical resistance. KEY RESULTS CBD (10 μM) prevented the increase in permeability caused by 4 h OGD. CBD was most effective when administered before the OGD, but protective effects were observed up to 2 h into reperfusion. This protective effect was inhibited by a PPARγ antagonist and partly reduced by a 5-HT1A receptor antagonist, but was unaffected by antagonists of cannabinoid CB1 or CB2 receptors, TRPV1 channels or adenosine A2A receptors. CBD also reduced cell damage, as measured by LDH release and by markers of cellular adhesion, such as the adhesion molecule VCAM-1. In HBMEC monocultures, CBD decreased VCAM-1 and increased VEGF levels, effects which were inhibited by PPARγ antagonism. CONCLUSIONS AND IMPLICATIONS These data suggest that preventing permeability changes at the BBB could represent an as yet unrecognized mechanism of CBD-induced neuroprotection in ischaemic stroke, a mechanism mediated by activation of PPARγ and 5-HT1A receptors.
Collapse
Affiliation(s)
- William H Hind
- School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, UK
| | - Timothy J England
- School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, UK
| | | |
Collapse
|
128
|
The emerging role of signal transducer and activator of transcription 3 in cerebral ischemic and hemorrhagic stroke. Prog Neurobiol 2016; 137:1-16. [DOI: 10.1016/j.pneurobio.2015.11.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 10/13/2015] [Accepted: 11/18/2015] [Indexed: 01/05/2023]
|
129
|
Shim R, Wong CHY. Ischemia, Immunosuppression and Infection--Tackling the Predicaments of Post-Stroke Complications. Int J Mol Sci 2016; 17:ijms17010064. [PMID: 26742037 PMCID: PMC4730309 DOI: 10.3390/ijms17010064] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/14/2015] [Accepted: 12/24/2015] [Indexed: 12/29/2022] Open
Abstract
The incidence of stroke has risen over the past decade and will continue to be one of the leading causes of death and disability worldwide. While a large portion of immediate death following stroke is due to cerebral infarction and neurological complications, the most common medical complication in stroke patients is infection. In fact, infections, such as pneumonia and urinary tract infections, greatly worsen the clinical outcome of stroke patients. Recent evidence suggests that the disrupted interplay between the central nervous system and immune system contributes to the development of infection after stroke. The suppression of systemic immunity by the nervous system is thought to protect the brain from further inflammatory insult, yet this comes at the cost of increased susceptibility to infection after stroke. To improve patient outcome, there have been attempts to lessen the stroke-associated bacterial burden through the prophylactic use of broad-spectrum antibiotics. However, preventative antibiotic treatments have been unsuccessful, and therefore have been discouraged. Additionally, with the ever-rising obstacle of antibiotic-resistance, future therapeutic options to reverse immune impairment after stroke by augmentation of host immunity may be a viable alternative option. However, cautionary steps are required to ensure that collateral ischemic damage caused by cerebral inflammation remains minimal.
Collapse
Affiliation(s)
- Raymond Shim
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, VIC 3168, Australia.
| | - Connie H Y Wong
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, VIC 3168, Australia.
| |
Collapse
|
130
|
Smith AJ, Duncan HF, Diogenes A, Simon S, Cooper PR. Exploiting the Bioactive Properties of the Dentin-Pulp Complex in Regenerative Endodontics. J Endod 2016; 42:47-56. [DOI: 10.1016/j.joen.2015.10.019] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 10/29/2015] [Accepted: 10/29/2015] [Indexed: 02/06/2023]
|
131
|
He GQ, Xu WM, Li JF, Li SS, Liu B, Tan XD, Li CQ. Huwe1 interacts with Gadd45b under oxygen-glucose deprivation and reperfusion injury in primary Rat cortical neuronal cells. Mol Brain 2015; 8:88. [PMID: 26698301 PMCID: PMC4690333 DOI: 10.1186/s13041-015-0178-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/08/2015] [Indexed: 01/31/2023] Open
Abstract
Background Growth arrest and DNA-damage inducible protein 45 beta (Gadd45b) is serving as a neuronal activity sensor. Brain ischemia induces the expression of Gadd45b, which stimulates recovery after stroke and may play a protective role in cerebral ischemia. However, little is known of the molecular mechanisms of how Gadd45b expression regulated and the down-stream targets in brain ischemia. Here, using an oxygen-glucose deprivation and reperfusion (OGD/R) model, we identified Huwe1/Mule/ARF-BP1, a HECT domain containing ubiquitin ligase, involved in the control of Gadd45b protein level. In this study, we also investigated the role of Huwe1-Gadd45b mediated pathway in BDNF methylation. Results We found that the depletion of Huwe1 by lentivirus shRNA mediated interference significantly increased the expression of Gadd45b and BDNF at 24 h after OGD. Moreover, treatment with Cycloheximide (CHX) inhibited endogenous expression of Gadd45b, and promoted expression of Gadd45b after co-treated with lentivirus shRNA-Huwe1. Inhibition of Gadd45b by lentivirus shRNA decreased the expression levels of brain derived neurotrophic factor (BDNF) and phosphorylated cAMP response element-binding protein (p-CREB) pathway, while inhibition of Huwe1 increased the expression levels of BDNF and p-CREB. Moreover, shRNA-Huwe1 treatment decreased the methylation level of the fifth CpG islands (123 bp apart from BDNF IXa), while shRNA-Gadd45b treatment increased the methylation level of the forth CpG islands (105 bp apart from BDNF IXa). Conclusions These findings suggested that Huwe1 involved in the regulation of Gadd45b expression under OGD/R, providing a novel route for neurons following cerebral ischemia-reperfusion injury. It also indicated that the methylation of BDNF IXa was affected by Gadd45b as well as Huwe1 in the OGD/R model. Electronic supplementary material The online version of this article (doi:10.1186/s13041-015-0178-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guo-qian He
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| | - Wen-ming Xu
- Department of Obstetrics and Gynecology, Joint Laboratory of Reproductive Medicine, Sichuan University-The Chinese University of Hongkong Joint Laboratory for Reproductive Medicine (SCU-CUHK), Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jin-fang Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| | - Shuai-shuai Li
- Department of Obstetrics and Gynecology, Joint Laboratory of Reproductive Medicine, Sichuan University-The Chinese University of Hongkong Joint Laboratory for Reproductive Medicine (SCU-CUHK), Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Bin Liu
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Jinan, 250000, China.
| | - Xiao-dan Tan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| | - Chang-qing Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
132
|
Lisovsky A, Chamberlain MD, Wells LA, Sefton MV. Cell Interactions with Vascular Regenerative MAA-Based Materials in the Context of Wound Healing. Adv Healthc Mater 2015; 4:2375-87. [PMID: 26010569 DOI: 10.1002/adhm.201500192] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/13/2015] [Indexed: 12/19/2022]
Abstract
In diabetic patients the development of chronic non-healing wounds is a common complication. A methacrylic acid-based biomaterial is a vascular regenerative material that enhances diabetic healing without the use of cells or growth factors. The bioactive nature of this material is thought to be associated with its anionic charge or surface chemistry. Contact between the methacrylic acid-based biomaterial and tissue begins with protein (including complement) adsorption and is followed by interaction of the biomaterial with resident and infiltrating cells in the wound bed (e.g., macrophages and endothelial cells). This results in changes to their surface receptors to activate phosphorylation cascades that lead to differential activation of signalling pathways such as those involving osteopontin and sonic hedgehog. These changes modulate the phenotype of the cells in the wound bed, eventually improving vessel formation and wound healing. Understanding the molecular and cellular mechanisms will have broad implications for biomaterials, not just the methacrylic acid-based material, and will facilitate the advancement of regenerative biomaterials for diverse applications.
Collapse
Affiliation(s)
- Alexandra Lisovsky
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; M5S 3G9 Canada
| | | | - Laura Anne Wells
- Department of Chemical Engineering; Queen's University; K7L 3N6 Canada
| | - Michael Vivian Sefton
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; M5S 3G9 Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; 164 College Street, Suite 407 Toronto Ontario M5S 3G9 Canada
| |
Collapse
|
133
|
Chen A, Oakley AE, Monteiro M, Tuomela K, Allan LM, Mukaetova-Ladinska EB, O'Brien JT, Kalaria RN. Multiplex analyte assays to characterize different dementias: brain inflammatory cytokines in poststroke and other dementias. Neurobiol Aging 2015; 38:56-67. [PMID: 26827643 PMCID: PMC4759608 DOI: 10.1016/j.neurobiolaging.2015.10.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 10/20/2015] [Accepted: 10/24/2015] [Indexed: 12/22/2022]
Abstract
Both the inflammatory potential and cognitive function decline during aging. The association between the repertoire of inflammatory biomarkers and cognitive decline is unclear. Inflammatory cytokines have been reported to be increased, decreased, or unchanged in the cerebrospinal fluid and sera of subjects with dementia. We assessed 112 postmortem brains from subjects diagnosed with poststroke dementia (PSD), vascular dementia, mixed dementia, and Alzheimer's disease (AD), comparing those to poststroke nondemented (PSND) subjects and age-matched controls. We analyzed 5 brain regions including the gray and white matter from the frontal and temporal lobes for a panel of cytokine and/or chemokine analytes using multiplex-array assays. Of the 37 analytes, 14 were under or near the detection limits, 7 were close to the lowest detection level, and 16 cytokines were within the linear range of the assay. We observed widely variable concentrations of C-reactive protein (CRP) and serum amyloid A at the high end (1-150 ng/mg protein), whereas several of the interleukins (IL, interferon-gamma and tumor necrosis factor) at the low end (1-10 pg/mg). There were also regional variations; most notable being high concentrations of some cytokines (e.g., CRP and angiogenesis panel) in the frontal white matter. Overall, we found decreased concentrations of several cytokines, including IL-1 beta (p = 0.000), IL-6 (p = 0.000), IL-7 (p = 0.000), IL-8 (p = 0.000), IL-16 (p = 0.001), interferon-inducible protein-10 (0.044), serum amyloid A (p = 0.011), and a trend in IL-1 alpha (p = 0.084) across all dementia groups compared to nondemented controls. IL-6 and IL-8 were significantly lower in dementia subjects than in nondemented subjects in every region. In particular, lower levels of IL-6 and IL-8 were notable in the PSD compared to PSND subjects. Because these 2 stroke groups had comparable degree of vascular pathology, the lower production of IL-6 and IL-8 in PSD reaffirms a possible specific involvement of immunosenescence in dementia pathogenesis. In contrast, CRP was not altered between dementia and nondementia subjects or between PSD and PSND. Our study provides evidence not only for the feasibility of tracking cytokines in postmortem brain tissue but also suggests differentially impaired inflammatory mechanisms underlying dementia including AD. There was a diminished inflammatory response, possibly reflecting immunosenescence and cerebral atrophy, in all dementias. Strategies to enhance anti-inflammatory cytokines and boost the immune system of the brain may be beneficial for preventing cognitive dysfunction, especially after stroke.
Collapse
Affiliation(s)
- Aiqing Chen
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing & Vitality, Newcastle Upon Tyne, UK; Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK.
| | - Arthur E Oakley
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing & Vitality, Newcastle Upon Tyne, UK; Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Maria Monteiro
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing & Vitality, Newcastle Upon Tyne, UK; Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Katri Tuomela
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing & Vitality, Newcastle Upon Tyne, UK; Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Louise M Allan
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing & Vitality, Newcastle Upon Tyne, UK; Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Elizabeta B Mukaetova-Ladinska
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing & Vitality, Newcastle Upon Tyne, UK; Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - John T O'Brien
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing & Vitality, Newcastle Upon Tyne, UK; Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Raj N Kalaria
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing & Vitality, Newcastle Upon Tyne, UK; Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
134
|
Inhibition of interleukin-6 abolishes the promoting effects of pair housing on post-stroke neurogenesis. Neuroscience 2015; 307:160-70. [DOI: 10.1016/j.neuroscience.2015.08.055] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/25/2015] [Accepted: 08/22/2015] [Indexed: 11/18/2022]
|
135
|
Liu ZJ, Chen C, Li XR, Ran YY, Xu T, Zhang Y, Geng XK, Zhang Y, Du HS, Leak RK, Ji XM, Hu XM. Remote Ischemic Preconditioning-Mediated Neuroprotection against Stroke is Associated with Significant Alterations in Peripheral Immune Responses. CNS Neurosci Ther 2015; 22:43-52. [PMID: 26384716 DOI: 10.1111/cns.12448] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 12/16/2022] Open
Abstract
AIMS Remote ischemic preconditioning (RIPC) of a limb is a clinically feasible strategy to protect against ischemia-reperfusion injury after stroke. However, the mechanism underlying RIPC remains elusive. METHODS We generated a rat model of noninvasive RIPC by four repeated cycles of brief blood flow constriction (5 min) in the hindlimbs using a tourniquet. Blood was collected 1 h after preconditioning and 3 days after brain reperfusion. The impact of RIPC on immune cell and cytokine profiles prior to and after transient middle cerebral artery occlusion (MCAO) was assessed. RESULTS Remote ischemic preconditioning protects against focal ischemia and preserves neurological functions 3 days after stroke. Flow cytometry analysis demonstrated that RIPC ameliorates the post-MCAO reduction of CD3(+)CD8(+) T cells and abolishes the reduction of CD3(+)/CD161a(+) NKT cells in the blood. In addition, RIPC robustly elevates the percentage of B cells in peripheral blood, thereby reversing the reduction in the B-cell population after stroke. RIPC also markedly elevates the percentage of CD43(+)/CD172a(+) noninflammatory resident monocytes, without any impact on the percentage of CD43(-)/CD172a(+) inflammatory monocytes. Finally, RIPC induces IL-6 expression and enhances the elevation of TNF-α after stroke. CONCLUSION Our results reveal dramatic immune changes during RIPC-afforded neuroprotection against cerebral ischemia.
Collapse
Affiliation(s)
- Zong-Jian Liu
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Beijing, China
| | - Chen Chen
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Beijing, China
| | - Xiao-Rong Li
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Beijing, China
| | - Yuan-Yuan Ran
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Beijing, China
| | - Tao Xu
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Beijing, China
| | - Ying Zhang
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Beijing, China
| | - Xiao-Kun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Beijing, China
| | - Yu Zhang
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hui-Shan Du
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Beijing, China
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Xun-Ming Ji
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Beijing, China
| | - Xiao-Ming Hu
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
136
|
Association of early inflammatory parameters after subarachnoid hemorrhage with functional outcome: A prospective cohort study. Clin Neurol Neurosurg 2015; 138:177-83. [PMID: 26355810 DOI: 10.1016/j.clineuro.2015.08.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 08/22/2015] [Accepted: 08/24/2015] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Early brain injury after aneurysmal subarachnoid hemorrhage (aSAH) comprises a pronounced neuroinflammatory reaction. Nevertheless, its relevance for functional outcome and its role as outcome predictor remains uncertain. We evaluated the relationship of various early inflammatory parameters regarding functional outcome according to the modified Rankin Scale score (mRS) at discharge (primary objective) and six months after aSAH. PATIENTS A total of 81 patients (63% female) with a mean age of 53.8 ± 13.2 years were included. METHODS At admission clinical data and various inflammatory parameters in serum and - wherever applicable - cerebrospinal fluid (CSF) of patients after aSAH were assessed. Outcome was evaluated according to dichotomized mRS at discharge and six months after aSAH (unfavorable outcome: mRS 3-6). Univariate and thereafter multivariate logistic regression analyses were performed using SAS 9.2. RESULTS Elevated levels of interleukin 6 (IL-6) and leukemia inhibitory factor (LIF) in serum and CSF were related to unfavorable outcome at discharge (p<0.05; univariate analyses). IL-6 remains the only parameter relevant for outcome applying a multivariate model including the relevant baseline characteristics. Six months after aSAH no significant correlation was found regarding the outcome, most likely due to the high drop-out rate (27%). A pronounced rise of LIF serum and CSF levels after aSAH was observed. CONCLUSION Higher early IL-6 serum levels after aSAH are associated with poor outcome at discharge. In addition, involvement of LIF in the early inflammatory reaction after aSAH has been demonstrated.
Collapse
|
137
|
Gopinathan G, Milagre C, Pearce OMT, Reynolds LE, Hodivala-Dilke K, Leinster DA, Zhong H, Hollingsworth RE, Thompson R, Whiteford JR, Balkwill F. Interleukin-6 Stimulates Defective Angiogenesis. Cancer Res 2015; 75:3098-107. [PMID: 26081809 PMCID: PMC4527186 DOI: 10.1158/0008-5472.can-15-1227] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 05/13/2015] [Indexed: 12/19/2022]
Abstract
The cytokine IL6 has a number of tumor-promoting activities in human and experimental cancers, but its potential as an angiogenic agent has not been fully investigated. Here, we show that IL6 can directly induce vessel sprouting in the ex vivo aortic ring model, as well as endothelial cell proliferation and migration, with similar potency to VEGF. However, IL6-stimulated aortic ring vessel sprouts had defective pericyte coverage compared with VEGF-stimulated vessels. The mechanism of IL6 action on pericytes involved stimulation of the Notch ligand Jagged1 as well as angiopoietin2 (Ang2). When peritoneal xenografts of ovarian cancer were treated with an anti-IL6 antibody, pericyte coverage of vessels was restored. In addition, in human ovarian cancer biopsies, there was an association between levels of IL6 mRNA, Jagged1, and Ang2. Our findings have implications for the use of cancer therapies that target VEGF or IL6 and for understanding abnormal angiogenesis in cancers, chronic inflammatory disease, and stroke.
Collapse
Affiliation(s)
- Ganga Gopinathan
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Carla Milagre
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Oliver M T Pearce
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Louise E Reynolds
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Kairbaan Hodivala-Dilke
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - David A Leinster
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Haihong Zhong
- MedImmune, One MedImmune Way, Gaithersburg, Maryland
| | | | - Richard Thompson
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - James R Whiteford
- William Harvey Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Frances Balkwill
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom.
| |
Collapse
|
138
|
Interleukin-6 mediates enhanced thrombus development in cerebral arterioles following a brief period of focal brain ischemia. Exp Neurol 2015; 271:351-7. [PMID: 26054883 DOI: 10.1016/j.expneurol.2015.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/29/2015] [Accepted: 06/03/2015] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The cerebral microvasculature is rendered more vulnerable to thrombus formation following a brief (5.0 min) period of focal ischemia. This study examined the contribution of interleukin-6 (IL-6), a neuroprotective and prothrombotic cytokine produced by the brain, to transient ischemia-induced thrombosis in cerebral arterioles. APPROACH & RESULTS The middle cerebral artery of C57BL/6J mice was occluded for 5 min, followed by 24h of reperfusion (MCAo/R). Intravital fluorescence microscopy was used to monitor thrombus development in cerebral arterioles induced by light/dye photoactivation. Thrombosis was quantified as the time of onset of platelet aggregation on the vessel wall and the time for complete blood flow cessation. MCAo/R in wild type (WT) mice yielded an acceleration of thrombus formation that was accompanied by increased IL-6 levels in plasma and in post-ischemic brain tissue. The exaggerated thrombosis response to MCAo/R was blunted in WT mice receiving an IL-6 receptor-blocking antibody and in IL-6 deficient (IL-6(-/-)) mice. Bone marrow chimeras, produced by transplanting IL-6(-/-) marrow into WT recipients, did not exhibit protection against MCAo/R-induced thrombosis. CONCLUSIONS The increased vulnerability of the cerebral vasculature to thrombus development after MCAo/R is mediated by IL-6, which is likely derived from brain cells rather than circulating blood cells. These findings suggest that anti-IL-6 therapy may reduce the likelihood of cerebral thrombus development after a transient ischemic attack.
Collapse
|
139
|
Hoffmann CJ, Harms U, Rex A, Szulzewsky F, Wolf SA, Grittner U, Lättig-Tünnemann G, Sendtner M, Kettenmann H, Dirnagl U, Endres M, Harms C. Vascular Signal Transducer and Activator of Transcription-3 Promotes Angiogenesis and Neuroplasticity Long-Term After Stroke. Circulation 2015; 131:1772-82. [DOI: 10.1161/circulationaha.114.013003] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 03/13/2015] [Indexed: 11/16/2022]
Abstract
Background—
Poststroke angiogenesis contributes to long-term recovery after stroke. Signal transducer and activator of transcription-3 (Stat3) is a key regulator for various inflammatory signals and angiogenesis. It was the aim of this study to determine its function in poststroke outcome.
Methods and Results—
We generated a tamoxifen-inducible and endothelial-specific Stat3 knockout mouse model by crossbreeding Stat3
floxed/KO
and Tie2-Cre
ERT2
mice. Cerebral ischemia was induced by 30 minutes of middle cerebral artery occlusion. We demonstrated that endothelial Stat3 ablation did not alter lesion size 2 days after ischemia but did worsen functional outcome at 14 days and increase lesion size at 28 days. At this late time point vascular Stat3 expression and phosphorylation were still increased in wild-type mice. Gene array analysis of a CD31-enriched cell population of the neurovascular niche showed that endothelial Stat3 ablation led to a shift toward an antiangiogenic and axon growth-inhibiting micromilieu after stroke, with an increased expression of Adamts9. Remodeling and glycosylation of the extracellular matrix and microglia proliferation were increased, whereas angiogenesis was reduced.
Conclusions—
Endothelial Stat3 regulates angiogenesis, axon growth, and extracellular matrix remodeling and is essential for long-term recovery after stroke. It might serve as a potent target for stroke treatment after the acute phase by fostering angiogenesis and neuroregeneration.
Collapse
Affiliation(s)
- Christian J. Hoffmann
- From Center for Stroke Research Berlin (C.J.H., U.H., A.R., U.G., G.L-T., U.D., M.E., C.H.) and Department of Neurology (C.J.H., U.H., M.E., C.H.), Charité-Universitätsmedizin Berlin, Germany; Max-Delbrück Center for Molecular Medicine, Berlin, Germany (F.S., S.A.W., H.K.); Institute of Clinical Neurobiology, University Hospital, University of Würzburg, Germany (M.S.); Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Germany (H.K., U.D., M.E.); and German Center for
| | - Ulrike Harms
- From Center for Stroke Research Berlin (C.J.H., U.H., A.R., U.G., G.L-T., U.D., M.E., C.H.) and Department of Neurology (C.J.H., U.H., M.E., C.H.), Charité-Universitätsmedizin Berlin, Germany; Max-Delbrück Center for Molecular Medicine, Berlin, Germany (F.S., S.A.W., H.K.); Institute of Clinical Neurobiology, University Hospital, University of Würzburg, Germany (M.S.); Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Germany (H.K., U.D., M.E.); and German Center for
| | - Andre Rex
- From Center for Stroke Research Berlin (C.J.H., U.H., A.R., U.G., G.L-T., U.D., M.E., C.H.) and Department of Neurology (C.J.H., U.H., M.E., C.H.), Charité-Universitätsmedizin Berlin, Germany; Max-Delbrück Center for Molecular Medicine, Berlin, Germany (F.S., S.A.W., H.K.); Institute of Clinical Neurobiology, University Hospital, University of Würzburg, Germany (M.S.); Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Germany (H.K., U.D., M.E.); and German Center for
| | - Frank Szulzewsky
- From Center for Stroke Research Berlin (C.J.H., U.H., A.R., U.G., G.L-T., U.D., M.E., C.H.) and Department of Neurology (C.J.H., U.H., M.E., C.H.), Charité-Universitätsmedizin Berlin, Germany; Max-Delbrück Center for Molecular Medicine, Berlin, Germany (F.S., S.A.W., H.K.); Institute of Clinical Neurobiology, University Hospital, University of Würzburg, Germany (M.S.); Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Germany (H.K., U.D., M.E.); and German Center for
| | - Susanne A. Wolf
- From Center for Stroke Research Berlin (C.J.H., U.H., A.R., U.G., G.L-T., U.D., M.E., C.H.) and Department of Neurology (C.J.H., U.H., M.E., C.H.), Charité-Universitätsmedizin Berlin, Germany; Max-Delbrück Center for Molecular Medicine, Berlin, Germany (F.S., S.A.W., H.K.); Institute of Clinical Neurobiology, University Hospital, University of Würzburg, Germany (M.S.); Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Germany (H.K., U.D., M.E.); and German Center for
| | - Ulrike Grittner
- From Center for Stroke Research Berlin (C.J.H., U.H., A.R., U.G., G.L-T., U.D., M.E., C.H.) and Department of Neurology (C.J.H., U.H., M.E., C.H.), Charité-Universitätsmedizin Berlin, Germany; Max-Delbrück Center for Molecular Medicine, Berlin, Germany (F.S., S.A.W., H.K.); Institute of Clinical Neurobiology, University Hospital, University of Würzburg, Germany (M.S.); Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Germany (H.K., U.D., M.E.); and German Center for
| | - Gisela Lättig-Tünnemann
- From Center for Stroke Research Berlin (C.J.H., U.H., A.R., U.G., G.L-T., U.D., M.E., C.H.) and Department of Neurology (C.J.H., U.H., M.E., C.H.), Charité-Universitätsmedizin Berlin, Germany; Max-Delbrück Center for Molecular Medicine, Berlin, Germany (F.S., S.A.W., H.K.); Institute of Clinical Neurobiology, University Hospital, University of Würzburg, Germany (M.S.); Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Germany (H.K., U.D., M.E.); and German Center for
| | - Michael Sendtner
- From Center for Stroke Research Berlin (C.J.H., U.H., A.R., U.G., G.L-T., U.D., M.E., C.H.) and Department of Neurology (C.J.H., U.H., M.E., C.H.), Charité-Universitätsmedizin Berlin, Germany; Max-Delbrück Center for Molecular Medicine, Berlin, Germany (F.S., S.A.W., H.K.); Institute of Clinical Neurobiology, University Hospital, University of Würzburg, Germany (M.S.); Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Germany (H.K., U.D., M.E.); and German Center for
| | - Helmut Kettenmann
- From Center for Stroke Research Berlin (C.J.H., U.H., A.R., U.G., G.L-T., U.D., M.E., C.H.) and Department of Neurology (C.J.H., U.H., M.E., C.H.), Charité-Universitätsmedizin Berlin, Germany; Max-Delbrück Center for Molecular Medicine, Berlin, Germany (F.S., S.A.W., H.K.); Institute of Clinical Neurobiology, University Hospital, University of Würzburg, Germany (M.S.); Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Germany (H.K., U.D., M.E.); and German Center for
| | - Ulrich Dirnagl
- From Center for Stroke Research Berlin (C.J.H., U.H., A.R., U.G., G.L-T., U.D., M.E., C.H.) and Department of Neurology (C.J.H., U.H., M.E., C.H.), Charité-Universitätsmedizin Berlin, Germany; Max-Delbrück Center for Molecular Medicine, Berlin, Germany (F.S., S.A.W., H.K.); Institute of Clinical Neurobiology, University Hospital, University of Würzburg, Germany (M.S.); Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Germany (H.K., U.D., M.E.); and German Center for
| | - Matthias Endres
- From Center for Stroke Research Berlin (C.J.H., U.H., A.R., U.G., G.L-T., U.D., M.E., C.H.) and Department of Neurology (C.J.H., U.H., M.E., C.H.), Charité-Universitätsmedizin Berlin, Germany; Max-Delbrück Center for Molecular Medicine, Berlin, Germany (F.S., S.A.W., H.K.); Institute of Clinical Neurobiology, University Hospital, University of Würzburg, Germany (M.S.); Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Germany (H.K., U.D., M.E.); and German Center for
| | - Christoph Harms
- From Center for Stroke Research Berlin (C.J.H., U.H., A.R., U.G., G.L-T., U.D., M.E., C.H.) and Department of Neurology (C.J.H., U.H., M.E., C.H.), Charité-Universitätsmedizin Berlin, Germany; Max-Delbrück Center for Molecular Medicine, Berlin, Germany (F.S., S.A.W., H.K.); Institute of Clinical Neurobiology, University Hospital, University of Würzburg, Germany (M.S.); Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Germany (H.K., U.D., M.E.); and German Center for
| |
Collapse
|
140
|
Wang P, Mu YY, Cheng J, Shen J, Shen MH, Chen X, Li Q, Sun Y, Gong MR. Electroacupuncture on serum interleukin level in rat models of cerebral ischemia-reperfusion injury. JOURNAL OF ACUPUNCTURE AND TUINA SCIENCE 2015. [DOI: 10.1007/s11726-015-0815-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
141
|
Werner CM, Schirmer SH, Gensch C, Pavlickova V, Pöss J, Wright MB, Böhm M, Laufs U. The dual PPARα/γ agonist aleglitazar increases the number and function of endothelial progenitor cells: implications for vascular function and atherogenesis. Br J Pharmacol 2014; 171:2685-703. [PMID: 24467636 DOI: 10.1111/bph.12608] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/30/2013] [Accepted: 01/16/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Aleglitazar is a dual PPARα/γ agonist but little is known about its effects on vascular function and atherogenesis. Hence, we characterized its effects on circulating angiogenic cells (CAC), neoangiogenesis, endothelial function, arteriogenesis and atherosclerosis in mice. EXPERIMENTAL APPROACH C57Bl/6 wild-type (WT, normal chow), endothelial NOS (eNOS)(-/-) (normal chow) and ApoE(-/-) (Western-type diet) mice were treated with aleglitazar (10 mg·kg(-1) ·day(-1) , i.p.) or vehicle. KEY RESULTS Aleglitazar enhanced expression of PPARα and PPARγ target genes, normalized glucose tolerance and potently reduced hepatic fat in ApoE(-/-) mice. In WT mice, but not in eNOS(-/-) , aleglitazar up-regulated Sca-1/VEGFR2-positive CAC in the blood and bone marrow and up-regulated diLDL/lectin-positive CAC. Aleglitazar augmented CAC migration and enhanced neoangiogenesis. In ApoE(-/-) mice, aleglitazar up-regulated CAC number and function, reduced markers of vascular inflammation and potently improved perfusion restoration after hindlimb ischaemia and aortic endothelium-dependent vasodilatation. This was associated with markedly reduced formation of atherosclerotic plaques. In human cultured CAC from healthy donors and patients with coronary artery disease with or without diabetes mellitus, aleglitazar increased migration and colony-forming units in a concentration-dependent manner. Furthermore, oxidative stress-induced CAC apoptosis and expression of p53 were reduced, while telomerase activity and expression of phospho-eNOS and phospho-Akt were elevated. Comparative agonist and inhibitor experiments revealed that aleglitazar's effects on CAC migration and colony-forming units were mediated by both PPARα and PPARγ signalling and required Akt. CONCLUSIONS AND IMPLICATIONS Aleglitazar augments the number, function and survival of CAC, which correlates with improved vascular function, enhanced arteriogenesis and prevention of atherosclerosis in mice.
Collapse
Affiliation(s)
- C M Werner
- Klinik für Innere Medizin III (Kardiologie, Angiologie und Internistische Intensivmedizin), Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | | | | | | | | | | | | | | |
Collapse
|
142
|
Zille M, Riabinska A, Terzi MY, Balkaya M, Prinz V, Schmerl B, Nieminen-Kelhä M, Endres M, Vajkoczy P, Pina AL. Influence of pigment epithelium-derived factor on outcome after striatal cerebral ischemia in the mouse. PLoS One 2014; 9:e114595. [PMID: 25470280 PMCID: PMC4255036 DOI: 10.1371/journal.pone.0114595] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/10/2014] [Indexed: 11/18/2022] Open
Abstract
We here suggest that pigment epithelium-derived factor (PEDF) does not have an effect on lesion size, behavioral outcome, cell proliferation, or cell death after striatal ischemia in the mouse. PEDF is a neurotrophic factor with neuroprotective, antiangiogenic, and antipermeability effects. It influences self-renewal of neural stem cells and proliferation of microglia. We investigated whether intraventricular infusion of PEDF reduces infarct size and cell death, ameliorates behavioral outcome, and influences cell proliferation in the one-hour middle cerebral artery occlusion (MCAO) mouse model of focal cerebral ischemia. C57Bl6/N mice were implanted with PEDF or artificial cerebrospinal fluid (control) osmotic pumps and subjected to 60-minute MCAO 48 hours after pump implantation. They received daily BrdU injections for 7 days after MCAO in order to investigate cell proliferation. Infarct volumes were determined 24 hours after reperfusion using magnetic resonance imaging. We removed the pumps on day 5 and performed behavioral testing between day 7 and 21. Immunohistochemical staining was performed to determine the effect of PEDF on cell proliferation and cell death. Our model produced an ischemic injury confined solely to striatal damage. We detected no reduction in infarct sizes and cell death in PEDF- vs. CSF-infused MCAO mice. Behavioral outcome and cell proliferation did not differ between the groups. However, we cannot exclude that PEDF might work under different conditions in stroke. Further studies will elucidate the effect of PEDF treatment on cell proliferation and behavioral outcome in moderate to severe ischemic injury in the brain.
Collapse
Affiliation(s)
- Marietta Zille
- Department of Experimental Neurology, Center for Stroke Research Berlin, Charite - Universitaetsmedizin Berlin, Berlin, Germany
| | - Arina Riabinska
- Department of Neurosurgery, Charite - Universitaetsmedizin Berlin, Berlin, Germany
| | - Menderes Yusuf Terzi
- Department of Neurosurgery, Charite - Universitaetsmedizin Berlin, Berlin, Germany
| | - Mustafa Balkaya
- Department of Experimental Neurology, Center for Stroke Research Berlin, Charite - Universitaetsmedizin Berlin, Berlin, Germany
| | - Vincent Prinz
- Department of Experimental Neurology, Center for Stroke Research Berlin, Charite - Universitaetsmedizin Berlin, Berlin, Germany
| | - Bettina Schmerl
- Department of Neurosurgery, Charite - Universitaetsmedizin Berlin, Berlin, Germany
| | | | - Matthias Endres
- Department of Experimental Neurology, Center for Stroke Research Berlin, Charite - Universitaetsmedizin Berlin, Berlin, Germany
- Department of Neurology, Charite - Universitaetsmedizin Berlin, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charite - Universitaetsmedizin Berlin, Berlin, Germany
| | - Ana Luisa Pina
- Department of Neurosurgery, Charite - Universitaetsmedizin Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
143
|
Yamamoto S, Hotta MM, Okochi M, Honda H. Effect of vascular formed endothelial cell network on the invasive capacity of melanoma using the in vitro 3D co-culture patterning model. PLoS One 2014; 9:e103502. [PMID: 25058006 PMCID: PMC4110033 DOI: 10.1371/journal.pone.0103502] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/02/2014] [Indexed: 12/12/2022] Open
Abstract
In vitro three dimensional (3D) cancer models were developed to observe the invasive capacity of melanoma cell spheroids co-cultured with the vascular-formed endothelial cell network. An array-like multicellular pattern of mouse melanoma cell line B16F1 was developed by magnetic cell labeling using a pin-holder device for allocation of magnetic force. When the B16F1 patterned together with a vascular network of human umbilical vein epithelial cells (HUVEC), spreading and progression were observed along the HUVEC network. The B16F1 cells over 80 µm distance from HUVEC remain in a compact spheroid shape, while B16F1 in the proximity of HUVEC aggressively changed their morphology and migrated. The mRNA expression levels of IL-6, MDR-1 and MMP-9 in B16F1 increased along with the distance the HUVEC network, and these expressions were increased by 5, 3 and 2-fold in the B16F1 close to HUVEC (within 80 µm distance) as compared to that far from HUVEC (over 80 µm distance). Our results clearly show that malignancy of tumor cells is enhanced in proximity to vascular endothelial cells and leads to intravasation.
Collapse
Affiliation(s)
- Shuhei Yamamoto
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Michael Masakuni Hotta
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Mina Okochi
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Hiroyuki Honda
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Nagoya, Japan
- * E-mail:
| |
Collapse
|
144
|
Seifert HA, Pennypacker KR. Molecular and cellular immune responses to ischemic brain injury. Transl Stroke Res 2014; 5:543-53. [PMID: 24895236 DOI: 10.1007/s12975-014-0349-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 05/19/2014] [Accepted: 05/21/2014] [Indexed: 12/21/2022]
Abstract
Despite extensive research into stroke pathology, there have not been any major recent advancements in stroke therapeutics. Animal models of cerebral ischemia and clinical data have been used to investigate the progressive neural injury that occurs after an initial ischemic insult. This has lead researchers to focus more on the peripheral immune response that is generated as a result of cerebral ischemia. The therapies that have been developed as a result of this research thus far have proven ineffective in clinical trials. The failure of these therapeutics in clinical trials is thought to be due to the broad immunosuppression elicited as a result of the treatments and the cerebral ischemia itself. Emerging evidence indicates a more selective modulation of the immune system following stroke could be beneficial. The spleen has been shown to exacerbate neural injury following experimental stroke and would provide a strong therapeutic target. Selecting facets of the immune system to target would allow the protective and regenerative properties of the immune response to remain intact while blunting the pro-inflammatory response generated towards the injured brain.
Collapse
Affiliation(s)
- Hilary A Seifert
- Department of Molecular Pharmacology and Physiology, School of Basic Biomedical Sciences, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd., MDC Box 8, Tampa, FL, 33612, USA
| | | |
Collapse
|
145
|
The Yin and Yang of innate immunity in stroke. BIOMED RESEARCH INTERNATIONAL 2014; 2014:807978. [PMID: 24877133 PMCID: PMC4021995 DOI: 10.1155/2014/807978] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/15/2014] [Indexed: 11/18/2022]
Abstract
Immune system plays an elementary role in the pathophysiological progress of ischemic stroke. It consists of innate and adaptive immune system. Activated within minutes after ischemic onset, innate immunity is responsible for the elimination of necrotic cells and tissue repair, while it is critically involved in the initiation and amplification of poststroke inflammation that amplifies ischemic damage to the brain tissue. Innate immune response requires days to be fully developed, providing a considerable time window for therapeutic intervention, suggesting prospect of novel immunomodulatory therapies against poststroke inflammation-induced brain injury. However, obstacles still exist and a comprehensive understanding of ischemic stroke and innate immune reaction is essential. In this review, we highlighted the current experimental and clinical data depicting the innate immune response following ischemic stroke, mainly focusing on the recognition of damage-associated molecular patterns, activation and recruitment of innate immune cells, and involvement of various cytokines. In addition, clinical trials targeting innate immunity were also documented regardless of the outcome, stressing the requirements for further investigation.
Collapse
|
146
|
Shaafi S, Sharifipour E, Rahmanifar R, Hejazi S, Andalib S, Nikanfar M, Baradarn B, Mehdizadeh R. Interleukin-6, a reliable prognostic factor for ischemic stroke. IRANIAN JOURNAL OF NEUROLOGY 2014; 13:70-6. [PMID: 25295149 PMCID: PMC4187333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 02/28/2014] [Indexed: 11/05/2022]
Abstract
BACKGROUND Interleukin-6 (IL-6) is one of the inflammatory mediators characterized by elevated levels in ischemic stroke (IS) patients. The present study set out to assess the role of IL-6, as a marker for inflammation, in the severity and prognosis of acute IS. METHODS In a cross-sectional descriptive study, 45 patients with acute IS were selected. Patients with their first day of stroke were included in the study. National Institutes of Health Stroke Scale (NIHSS) and the modified Rankin Scale (mRS) for stroke severity were evaluated on Days 1, 5, 90, and 365. Serum IL-6 level was measured by enzyme-linked immunosorbent assay (ELISA) on days 1 and 5. RESULTS In the present study, 45 patients with a mean age of 77.6 ± 4.9 including 32 (71%) men and 13 (28.9%) women were studied. Death occurred in 2 (4.4%) patients before discharge from the hospital; the others, be that as it may, followed the study until Day 365 with a mortality rate of 6 (13.3%). A positive significant correlation was found between IL-6, and NIHSS and mRS of the patients from the time of admission to the end of the follow-up period (P < 0.001, r = 0.6). Moreover, there was a significant correlation between IL-6 and infarction size in brain magnetic resonance imaging (MRI) scan (P < 0.001, r = 0.7). CONCLUSION The evidence from the present study suggests that IL-6 contributes to determination of severity of ischemic stroke. In addition, IL-6 concentrations affect clinical outcomes in ischemic stroke.
Collapse
Affiliation(s)
- Sheyda Shaafi
- Department of Neurology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Sharifipour
- Department of Neurology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rouhollah Rahmanifar
- Department of Neurology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - SeyedShamseddin Hejazi
- Department of Neurology, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Sasan Andalib
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Nikanfar
- Department of Neurology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradarn
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Robab Mehdizadeh
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
147
|
Abstract
Stroke usually affects people with underlying medical conditions. In particular, diabetics are significantly more likely to have a stroke and the prognosis for recovery is poor. Because diabetes is associated with degenerative changes in the vasculature of many organs, we sought to determine how hyperglycemia affects blood flow dynamics after an ischemic stroke. Longitudinal in vivo two-photon imaging was used to track microvessels before and after photothrombotic stroke in a diabetic mouse model. Chronic hyperglycemia exacerbated acute (3-7 d) ischemia-induced increases in blood flow velocity, vessel lumen diameter, and red blood cell flux in peri-infarct regions. These changes in blood flow dynamics were most evident in superficial blood vessels within 500 μm from the infarct, rather than deeper or more distant cortical regions. Long-term imaging of diabetic mice not subjected to stroke indicated that these acute stroke-related changes in vascular function could not be attributed to complications from hyperglycemia alone. Treating diabetic mice with insulin immediately after stroke resulted in less severe alterations in blood flow within the first 7 d of recovery, but had more variable results at later time points. Analysis of microvessel branching patterns revealed that stroke led to a pruning of microvessels in peri-infarct cortex, with very few instances of sprouting. These results indicate that chronic hyperglycemia significantly affects the vascular response to ischemic stroke and that insulin only partially mitigates these changes. The combination of these acute and chronic alterations in blood flow dynamics could underlie diabetes-related deficits in cortical plasticity and stroke recovery.
Collapse
|
148
|
Selective neuronal loss in ischemic stroke and cerebrovascular disease. J Cereb Blood Flow Metab 2014; 34:2-18. [PMID: 24192635 PMCID: PMC3887360 DOI: 10.1038/jcbfm.2013.188] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/15/2013] [Accepted: 10/17/2013] [Indexed: 01/23/2023]
Abstract
As a sequel of brain ischemia, selective neuronal loss (SNL)-as opposed to pannecrosis (i.e. infarction)-is attracting growing interest, particularly because it is now detectable in vivo. In acute stroke, SNL may affect the salvaged penumbra and hamper functional recovery following reperfusion. Rodent occlusion models can generate SNL predominantly in the striatum or cortex, showing that it can affect behavior for weeks despite normal magnetic resonance imaging. In humans, SNL in the salvaged penumbra has been documented in vivo mainly using positron emission tomography and (11)C-flumazenil, a neuronal tracer validated against immunohistochemistry in rodent stroke models. Cortical SNL has also been documented using this approach in chronic carotid disease in association with misery perfusion and behavioral deficits, suggesting that it can result from chronic or unstable hemodynamic compromise. Given these consequences, SNL may constitute a novel therapeutic target. Selective neuronal loss may also develop at sites remote from infarcts, representing secondary 'exofocal' phenomena akin to degeneration, potentially related to poststroke behavioral or mood impairments again amenable to therapy. Further work should aim to better characterize the time course, behavioral consequences-including the impact on neurological recovery and contribution to vascular cognitive impairment-association with possible causal processes such as microglial activation, and preventability of SNL.
Collapse
|
149
|
Deddens LH, van Tilborg GAF, van der Toorn A, de Vries HE, Dijkhuizen RM. PECAM-1-targeted micron-sized particles of iron oxide as MRI contrast agent for detection of vascular remodeling after cerebral ischemia. CONTRAST MEDIA & MOLECULAR IMAGING 2013; 8:393-401. [PMID: 23740809 DOI: 10.1002/cmmi.1536] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 11/30/2012] [Accepted: 01/14/2013] [Indexed: 12/23/2022]
Abstract
An increasing amount of studies have provided evidence for vascular remodeling, for example, angiogenesis, after cerebral ischemia, which may play a significant role in post-stroke brain plasticity and recovery. Molecular imaging can provide unique in vivo whole-brain information on alterations in the expression of specific endothelial markers. A possible target for molecular magnetic resonance imaging (MRI) of post-stroke (neo)vascularization is platelet endothelial cell adhesion molecule-1 (PECAM-1). Here we describe significantly increased PECAM-1 mRNA levels in ipsilesional brain tissue at 6 h, 24 h and 3 days after transient middle cerebral artery occlusion in mice, and elevated PECAM-1 staining throughout the lesion at 3, 7 and 21 days post-stroke. The potential of micron-sized particles of iron oxide (MPIO) conjugated with PECAM-1-targeted antibodies, that is, αPECAM-1-MPIO, to expose stroke-induced PECAM-1 upregulation with molecular MRI was assessed. In vitro studies demonstrated that PECAM-1-expressing brain endothelial cells could be effectively labeled with αPECAM-1-MPIO, giving rise to a fourfold increase in MRI relaxation rate R2. Injection of near-infrared fluorescent dye-labeled αPECAM-1 showed target specificity and dose efficiency of the antibody for detection of brain endothelial cells at 3 days post-stroke. However, in vivo molecular MRI at 3 and 7 days after stroke revealed no αPECAM-1-MPIO-based contrast enhancement, which was corroborated by the absence of αPECAM-1-MPIO in post mortem brain tissue. This indicates that this molecular MRI approach, which has been proven successful for in vivo detection of other types of cell adhesion molecules, is not invariably effective for MRI-based assessment of stroke-induced alterations in expression of cerebrovascular markers.
Collapse
Affiliation(s)
- Lisette H Deddens
- Biomedical MR Imaging and Spectroscopy Group, Image Sciences Institute, University Medical Center Utrecht, Yalelaan 2, 3584 CM Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
150
|
Nave AH, Kröber JM, Brunecker P, Fiebach JB, List J, Grittner U, Endres M, Meisel A, Flöel A, Ebinger M. Biomarkers and perfusion--training-induced changes after stroke (BAPTISe): protocol of an observational study accompanying a randomized controlled trial. BMC Neurol 2013; 13:197. [PMID: 24330706 PMCID: PMC3870989 DOI: 10.1186/1471-2377-13-197] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/03/2013] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Physical activity is believed to exert a beneficial effect on functional and cognitive rehabilitation of patients with stroke. Although studies have addressed the impact of physical exercise in cerebrovascular prevention and rehabilitation, the underlying mechanisms leading to improvement are poorly understood. Training-induced increase of cerebral perfusion is a possible mediating mechanism. Our exploratory study aims to investigate training-induced changes in blood biomarker levels and magnetic resonance imaging in patients with subacute ischemic stroke. METHODS/DESIGN This biomarker-driven study uses an observational design to examine a subgroup of patients in the randomized, controlled PHYS-STROKE trial. In PHYS-STROKE, 215 patients with subacute stroke (hemorrhagic and ischemic) receive either 4 weeks of physical training (aerobic training, 5 times a week, for 50 minutes) or 4 weeks of relaxation sessions (5 times a week, for 50 minutes). A convenience sample of 100 of these patients with ischemic stroke will be included in BAPTISe and will receive magnetic resonance imaging (MRI) scans and an additional blood draw before and after the PHYS-STROKE intervention. Imaging scans will address parameters of cerebral perfusion, vessel size imaging, and microvessel density (the Q factor) to estimate the degree of neovascularization in the brain. Blood tests will determine several parameters of immunity, inflammation, endothelial function, and lipometabolism. Primary objective of this study is to evaluate differential changes in MRI and blood-derived biomarkers between groups. Other endpoints are next cerebrovascular events and functional status of the patient after the intervention and after 3 months assessed by functional scores, in particular walking speed and Barthel index (co-primary endpoints of PHYS-STROKE). Additionally, we will assess the association between functional outcomes and biomarkers including imaging results. For all endpoints we will compare changes between patients who received physical fitness training and patients who had relaxation sessions. DISCUSSION This exploratory study will be the first to investigate the effects of physical fitness training in patients with ischemic stroke on MRI-based cerebral perfusion, pertinent blood biomarker levels, and functional outcome. The study may have an impact on current patient rehabilitation strategies and reveal important information about the roles of MRI and blood-derived biomarkers in ischemic stroke. TRIAL REGISTRATION NCT01954797.
Collapse
Affiliation(s)
- Alexander H Nave
- Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Neurology, Charité - Universätsmedizin Berlin, Berlin, Germany
| | - Jan M Kröber
- Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Neurology, Charité - Universätsmedizin Berlin, Berlin, Germany
| | - Peter Brunecker
- Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jochen B Fiebach
- Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Neurology, Charité - Universätsmedizin Berlin, Berlin, Germany
| | - Jonathan List
- Department of Neurology, Charité - Universätsmedizin Berlin, Berlin, Germany
| | - Ulrike Grittner
- Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department for Biostatistics and Clinical Epidemiology, Charité - Universätsmedizin Berlin, Berlin, Germany
| | - Matthias Endres
- Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Neurology, Charité - Universätsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universätsmedizin Berlin, Berlin, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Standort Berlin, Germany
| | - Andreas Meisel
- Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Neurology, Charité - Universätsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universätsmedizin Berlin, Berlin, Germany
| | - Agnes Flöel
- Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Neurology, Charité - Universätsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universätsmedizin Berlin, Berlin, Germany
| | - Martin Ebinger
- Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Neurology, Charité - Universätsmedizin Berlin, Berlin, Germany
| |
Collapse
|